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ABSTRACT OF THE DISSERTATION

Destination-based Routing and Circuit Allocation for Future Traffic Growth

by

Ping Yin

Doctor of Philosophy in Electrical Engineering (Computer Engineering)

University of California San Diego, 2020

Professor Bill Lin, Chair

Internet traffic continues to grow relentlessly, driven largely by increasingly high-

resolution video streaming, the increasing adoption of cloud computing, the emergence of

5G networks, and the ever-growing reach of social media and social networks. Existing

networks use packet switching to route packets on a hop-by-hop basis from the source to the

destination. However, they suffer from two shortcomings. First, in existing networks, packets

are routed along a fixed shortest path using the Open Shortest Path First (OSPF) protocol or

obliviously load-balanced across equal-cost paths using the Equal-Cost Multi-Path (ECMP)

protocol. These routing protocols do not fully utilize the network capacity because they do

not adapt to network congestions in their routing decisions. Second, although studies have
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shown that the majority of packets processed by Internet routers are pass-through traffic,

packets nonetheless have to be queued and routed at every hop in existing networks, which

unnecessarily adds substantial delays and processing costs.

In this thesis, we present two new approaches to overcome these shortcomings. First,

we propose new backpressure-based routing algorithms which use only shortest-path routes

when they are sufficient to accommodate the given traffic load, but will incrementally

expand routing choices as needed to accommodate increasing traffic loads. This avoids the

poor delay performance inherent in backpressure-based routing algorithms where packets

may take long detours under light or moderate loads, and still retains the notable advantage,

the network-wide optimal throughput, because packets are adaptively routed along less

congested paths.

Second, we propose a unified packet and circuit switched network in which the

underlying optical transport is used to circuit-switch pass-through traffic by means of

pre-established circuits. This avoids unnecessary packet queuing delays and processing

costs at each hop. We propose a novel convex optimization framework based on a new

destination-based multicommodity flow formulation for the allocation of circuits in such

unified networks.

Finally, social networks have become extremely large and complicated. We present

an approach to an influence spreading optimization problem that maximizes the positive

effects in a large social network when negative people who are inclined to evaluate a product

negatively are present.
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Chapter 1

Introduction

1.1 Motivation

The Internet is experiencing explosive traffic growth. As an observation expressed

as Edholm’s law, Internet bandwidth has been doubling every 18 months. Driven largely by

increasingly high-resolution video streaming, the increasing adoption of cloud computing,

the emergence of 5G networks, and the evergrowing reach of social media and social

networks, Internet traffic will continue to grow relentlessly. Existing networks use packet

switching to route packets on a hop-by-hop basis from the source to the destination.

However, they suffer from two shortcomings.

First, in existing networks, packets are routed along a fixed shortest path using the

Open Shortest Path First (OSPF) protocol or obliviously load-balanced across equal-cost

paths using the Equal-Cost Multi-Path (ECMP) protocol. These routing protocols do not

fully utilize the network capacity because they do not adapt to network congestions in

their routing decisions. Compared with these fixed routing protocols, where each traffic

flow has a single and fixed route, adaptive routing is more appealing because it tends to

offer better throughput by routing packets along different routing paths depending on
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network congestion. Among adaptive routing algorithms, backpressure-based algorithms

[78, 17, 86, 62, 69, 6, 70, 5, 9, 87] have been extensively studied in the literature because they

have been shown to be network-wide throughput optimal. However, backpressure-based

algorithms typically have poor delay performance under light or moderate loads because

they allow the routing of packets to any adjacent node as the next-hop, even if the routing

decisions will cause a packet to take unnecessarily long detours, potentially traversing

routing loops. In addition, backpressure-based algorithms require to compute differential

backlogs for every per-destination queue with the corresponding per-destination queue

at every adjacent node. This computation cost is expensive given the large number of

possible pairwise differential backlogs. Therefore, a new routing algorithm which offers

competitively low delay and much less cost in computation while retaining the merit of

network-wide optimal throughput is desirable.

Second, although studies have shown that the majority of packets processed by

Internet routers are pass-through traffic, in existing networks, packets nonetheless have

to be queued and routed at every hop in existing networks, which unnecessarily adds

substantial delays and processing costs. These pass-through traffic packets can be better

circuit-switched in a unified packet and circuit switched network through the underlying

optical transport network by means of pre-established circuits to avoid substantial delays

and processing costs associated with Internet routers. More recently, given the broad success

of software-defined networking (SDN) [72, 49, 83, 55], there has been considerable renewed

interest in the unified packet and circuit switched network architectures based on SDN as

the unified control plane [30, 31]. In the SDN-based unified architecture proposed in [31],

backbone routers are replaced with less expensive hybrid optical-circuit/electrical-packet

switches that have both circuit-switching and packet-switching capabilities. These hybrid

switches are logically connected in a fully-meshed network where each hybrid switch

implements an IP node, and where each IP node is logically connected to each and

2



every other IP node via a single direct circuit-switched hop. This unified packet and

circuit-switched network can then be managed using a single converged control plane. A

key problem that must be solved in this unified architecture approach is the allocation

of optical circuits between adjacent IP nodes in the logical full-mesh, which is known

as multi-commodity flow problems. Classically, multi-commodity flow formulations use

n(n− 1)m flow assignment variables for a network consisting of n nodes and m edges, each

of which defines the fraction of the corresponding IE pair traffic (among n(n− 1) IE pairs)

along the corresponding edge (among m edges). This is obviously not scalable when n

becomes too large, and its solution does not necessarily deliver fair sharing of network

capacity among competing traffic flows. Therefore, a new compact formulation framework

which is more scalable as n becomes large and also ensures fair sharing of network capacity

among competing traffic flows is attractive.

1.2 Contributions and Organization

The contributions of this dissertation include new backpressure-based routing

algorithms for packet switching networks which achieve low packet delay, optimal network-

wide throughput, and small computation cost simultaneously; a novel convex optimization

framework based on a new destination-based multi-commodity flow formulation for the

allocation of circuits in unified packet and circuit switched networks; a new approach to an

influence spreading optimization problem which maximizes the positive effect in a large

social network.

First, we propose new backpressure-based routing algorithms that minimizes conges-

tion by adaptively routing packets along less congested paths. To overcome the poor delay

performance under light or moderate loads, we propose new backpressure-based adaptive

routing algorithms that only use shortest-path routes to destinations when they are sufficient

3



to accommodate the given traffic load, but the proposed algorithms will incrementally

expand routing choices as needed to accommodate increasing traffic loads. In particular,

we propose two route-expanding BP (backpressure) algorithms, called L-BP and A-BP,

that are based on the incremental expansion of backpressure routing choices in response

to congestion at a node on a per-destination queue basis. L-BP detects congestion by

monitoring per-destination queue lengths, whereas A-BP detects congestion by monitoring

the waiting times of packets at the heads of per-destination queues. Networks running

these two algorithms are purely backpressure-based, but some per-destination queues are

in shortest-path mode while others are allowed to be forwarded to any neighbor node. We

also propose two semi-oblivious BP (backpressure) algorithms, called O-BP and E-BP,

that combine OSPF and ECMP oblivious routing, respectively, with backpressure routing.

Networks running these algorithms first use OSPF or ECMP oblivious routing when the

traffic load is light or moderate, but these algorithms incrementally switch nodes on a

per-node basis to backpressure routing in response to congestion detected by monitoring

output port queue lengths. All of these new backpressure-based routing algorithms achieve

the design goal of low packet delay, small computation cost, and optimal network-wide

throughput simultaneously.

In addition to new adaptive routing algorithms for packet switching networks, we

propose a new unified packet and circuit switched network architecture in which the

underlying optical transport is used to circuit-switch pass-through traffic by means of

pre-established circuits. This avoids unnecessary packet queuing delays and processing

costs at each hop. We propose a novel convex optimization framework based on a new

destination-based multicommodity flow formulation for the allocation of circuits in such

unified networks. This formulation reduces the number of flow assignment variables by a

factor of n− 1, and thus the method may be scaled to far larger networks, where n is the

number of nodes in the network.
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In particular, we consider two deployment settings for circuit allocation. In the first

setting, we consider the case in which real-time traffic measurements are possible, and we

can dynamically allocate circuits on a frequent basis in response to changing traffic. In the

second setting, we consider the case in which we allocate circuits based on historical traffic

patterns. The past traffic measurements may be used to predict the behavior of future

traffic and precompute the circuit configuration offline accordingly because previous studies

have shown that the aggregate traffic at the core of the network tends to be very smooth

and that it follows strong diurnal patterns over repeated data sets [22, 67, 56]. For both

two deplayment settings, we formulate global network optimization objectives as concave

functions that capture the fair sharing of network capacity among competing traffic flows.

The convexity of our problem formulations ensures globally optimal solutions. In the case

of traffic fluctuations or unexpected traffic changes which lead to inadequate pre-computed

capacities along direct circuits, we propose two adaptive re-routing algorithms to adaptively

re-route the excess traffic over circuits with spare capacity. One is based on a variant

of the well-known backpressure-based re-routing algorithm [85] that guarantees optimal

re-routing; the other is a simple but powerful greedy re-routing algorithm that simply

re-routes the excess traffic over the outgoing circuit with the most residual capacity. With

the help of adaptive re-routing, we can increase network throughput without the need to

create new circuits on-the-fly.

The last problem considered in this thesis is related to social networks. Social

networks have become extremely large and complicated. A key optimization problem

in social networks is the influence spreading optimization problem in which the goal is

to maximize the positive effects of an influence campaign in a large social network. We

consider in this thesis a version of the problem in which people who are inclined to provide

negative comments or viewpoints are present. In particular, the problem we study is how

to choose the initial adopters (seeds) in the network to maximize the actually benefit, i.e.,

5



the difference of the total positive response and the total negative response. We call our

problem Strengthening the Positive Effect (SPE) since it is apparently our goal. We check

the objective function of SPE and find it is non-monotone and non-submodular. What is

more, we prove that SPE cannot be solved with any positive guarantee unless P=NP. Since

generally solving SPE with some guarantee is almost impossible, we break our problem

into some special cases. We first investigate the unweighted and undirected network, and

propose an almost optimal algorithm for a special case, and an approximate algorithm

for the general case. For general network, we give a reasonable constraint and devise an

approximation algorithm.

The rest of the dissertation is organized as follows:

• Chapter 2 presents a series of new backpressure-based routing algorithms by means

of incremental expansion of routing choices as needed for packet switching network.

• Chapter 3 presents a novel convex optimization framework based on a new destination-

based multicommodity flow formulation for the allocation of circuits in unified packet

and circuit switched networks.

• Chapter 4 presents a new approach to the influence spreading optimization problem

for large social networks that considers the negative impact of negative users.

• Chapter 5 concludes this dissertation.
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Chapter 2

Efficient Traffic Load-Balancing via

Incremental Expansion of Routing

Choices

2.1 Introduction

Traffic on the Internet continues to grow at a rapid pace. The choice of routing

algorithm plays a vital role in the performance of communication networks. Compared with

fixed routing [17, 43, 42], where each flow has a single and fixed route, adaptive routing

is more appealing because it offers better latency and throughput by routing packets

along different routing paths, depending on network congestion. Among adaptive routing

algorithms, backpressure-based algorithms [78, 17, 86, 62, 69, 6, 70, 5, 9, 87] have been

extensively studied in the literature because they have been shown to be network-wide

throughput optimal [78]. It was initially introduced in the context of wireless radio

networks, but it can be easily adapted to wireline networks as well, for example for packet

routing in backbone networks for the Internet. Despite throughput-optimality guarantees,
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backpressure-based algorithms have not been used in practice due to several shortcomings.

First, backpressure-based algorithms typically have poor delay performance under

light or moderate loads because packets may be sent over unnecessarily long routes,

potentially traversing routing loops. The original backpressure algorithm allows the routing

of a packet to any adjacent node as the next-hop, even if the routing decisions will

cause a packet to take long detours. Second, backpressure algorithms typically maintain

per-destination queues, and the routing and scheduling decisions are based on maintaining

differential backlogs for every per-destination queue with the corresponding per-destination

queue at every adjacent node. Although the implementation of per-destination queues

has often been cited as a concern [17, 43, 42, 86], we note that significant advances

have been made in memory architectures since the original backpressure routing work for

implementing huge packet buffers at line rates that support a very large number of logical

queues [41, 73, 81, 80]1.

Despite these advances that address the practical implementation of per-destination

queues, the need remains for backpressure-based algorithms to compute differential backlogs

for every per-destination queue with the corresponding per-destination queue at every

adjacent node. This computation is expensive given the large number of possible pairwise

differential backlogs. Further, the computation requires many exchanges of backlog

information between every pair of adjacent nodes for every pair of per-destination queues.

The substantial amount of computations and associated information exchanges remains

significant impediments for practical implementations.

To address the poor delay performance concern, the backpressure idea can be applied

to a fixed routing problem, where packets are forced to use shortest paths [17]. However,

limiting routing choices shrinks the network stability region and is thus not throughput

1Some of these memory architectures have been in commercial use in modern Internet routers to support
per-class queuing or per-flow queuing, where the number of logical queues far exceeds the number of
destinations needed for backpressure routing.
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optimal. As we shall later see in the evaluation section, limiting the routing choices to just

shortest paths will cause the network to saturate much earlier than if all routing choices

are permitted.

Several prior works [62, 61, 33, 86, 34] have recognized the importance of favoring

shorter paths instead of only considering shortest paths. However, all these approaches

still require the computation of differential backlogs for all per-destination queues between

every pair of neighboring nodes and the associated exchanges of backlog information. In

comparison, our proposed algorithms only need a small number of the computations and

backlog information exchanges as needed. Although the approach studied in [86] further

offers provably minimal-hop (MinHop) routing, their solution dramatically increases the

number of queues that each node needs to maintain since their approach requires per-hop

queues for each destination. The dramatic increase in the number of queues makes the

associated differential backlog computation problem even more difficult. Besides, the

delay performance using their MinHop approach depends on the choices of parameters

used. As we shall see later in the evaluation section, our approach offers comparable delay

performance with the carefully tuned MinHop algorithm, while significantly reducing the

information exchange frequency.

Other algorithms have been proposed to reduce the delay without using shortest

paths. [6, 5] have proposed to replicate packets adaptively to build up gradients towards

the destinations faster. Not only does this approach need a duplicate buffer for each

per-destination queue in a router, but managing the original packets with their replicas

can be difficult in practice. Besides, the number of backlog information exchanges and

computations between every pair of per-destination queues in their algorithm is the same as

in the original backpressure algorithm. [25] proposed a class of enhanced BP algorithms by

incorporating a general queue-dependent bias function, which basically use the queue state

information beyond one hop, into the traditional backpressure algorithm. Although proven
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to be throughput optimal, their algorithms add the computation complexity to compute

the bias function term in addition to what the original backpressure algorithm needs. Even

their simplest BPnxt algorithm requires twice the amount of computations and backlog

information exchanges as what the original backpressure algorithm requires. The other

algorithm, BPmin, not only needs global queue state information, but also requires N times

more computations than the original backpressure algorithm. Our approach achieves the

same goal with a much simpler design, that is dynamically expanding the routing choices

as needed in response to the network congestion.

Further, there are prior works [87, 43, 42] that aim to reduce the number of

backlog information exchanges needed to compute the pairwise differential backlogs of

per-destination queues. [87] proposed a cluster-based back-pressure algorithm, where nodes

are grouped into clusters and each node needs only to maintain per-destination queues

for destinations within its cluster. However, this approach, although retaining the same

optimal throughput as the original backpressure algorithm, still has large delay at low

or moderate traffic loads. The approaches in [43, 42] eliminate the per-flow information

by using per-hop queues and per-link queues, however, it can only be applied to fixed

routing scenarios, while our approach aims at adaptive routing, where the path that a

packet traverses in the network is not pre-defined.

Finally, [17, 9] introduced the idea of shadow queues for making adaptive routing

decisions. Their idea is to create a shadow network in which a backpressure algorithm is

used to make routing decisions. Although their approach does not require per-destination

queuing of packets, their solution still incurs the same calculation complexity as the

original backpressure algorithm for the shadow queues in that the same computation of

differential backlogs for all destinations between every pair of neighboring nodes and the

same associated exchanges of backlog information are still required. Further, although

their approach stores the actual packets in per-neighbor queues instead of per-destination
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queues, the amount of packet buffer storage that each node needs remains the same2. We

believe that our solution is complementary to [17, 9] in that the algorithms described in

this chapter can be used as the shadow algorithm in their framework.

Although these algorithms partly addressed the aforementioned disadvantages of the

original backpressure algorithm, to the best of our knowledge, no work has addressed all the

aforementioned issues in an adaptive routing scenario. Our approach substantially improves

the delay performance, significantly reduces the number of pairwise differential backlog

information exchanges and computations, but still retains the same optimal throughput as

the original backpressure algorithm.

2.1.1 Our Approach

In this chapter, we propose two related classes of modified backpressure-based routing

algorithms that address the aforementioned concerns. We first propose route-expanding

backpressure-based routing algorithms that are based on the idea that routing choices

should be limited to next-hops that are along shortest path routes by default. This

approach significantly reduces the amount of differential backlog calculations and associated

information exchanges as each node only has to consider a subset of next hops for each

destination. In addition, this approach addresses delay performance concerns by only

routing packets along shortest path routes when the traffic load is light or moderate.

In particular, we propose to detect congestion by monitoring per-destination queue

lengths or the waiting times of packets in the per-destination queues. When the length of

a per-destination queue or the waiting time of a packet at the head of a per-destination

queue exceeds some threshold, the routing choices for the corresponding per-destination

queue get expanded to include next hops that are not along shortest path routes. This

2The state-of-the-art DRAM-based packet buffers [41, 73, 81, 80] can store a huge number of packets,
tens of gigabytes, and support a very large number of logical queues.
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expansion of routing choices is on a per-destination queue basis. Although a packet may

be forwarded to a next hop that is not along a shortest path route to the destination,

the packet may still be forwarded along a shortest path route from this next hop to the

destination if the corresponding per-destination queue at this next hop is not yet congested.

This way, routing choices are incrementally expanded at different nodes in the network

as needed with increasingly longer paths considered. In effect, a packet can take a detour

whenever it encounters congestion along the way to the destination. When a node expands

its routing choices for packets for a particular destination, it notifies other adjacent nodes

to begin providing backlog information, and it expands its differential backlog calculations

with those adjacent nodes as well.

Alternatively, we propose semi-oblivious backpressure-based routing algorithms that

simply route packets obliviously by default, which only consider shortest-path next-hops. In

this default oblivious-routing mode, backlog information exchanges and differential backlog

calculations are largely avoided, and only shortest-path next-hops are considered, which

also addresses delay performance concerns by only routing packets along shortest path

routes when the traffic load is light or moderate. The proposed semi-oblivious approach

detects congestion by monitoring output port queue lengths. When the length of an output

queue at a router exceeds some threshold, the entire router switches to backpressure-routing

mode where packets are adaptively routed to any adjacent node as possible next-hops using

the backpressure routing algorithm. Although when a router is in backpressure-routing

mode, a packet may be forwarded to a next hop that is not along a shortest path route to

the destination, the packet may still be forwarded along a shortest path route from this

next hop forward if the subsequent routers are still in oblivious-routing mode. This way,

the proposed semi-oblivious approach also incrementally expands routing choices as needed

with increasingly longer paths considered.
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2.1.2 Contributions and Outline

The main contributions of this chapter are as follows:

• We propose two route-expanding BP (backpressure) algorithms, called L-BP and

A-BP, that are based on the incremental expansion of backpressure routing choices

in response to congestion at a node on a per-destination queue basis. L-BP detects

congestion by monitoring per-destination queue lengths, whereas A-BP detects

congestion by monitoring the waiting times of packets at the heads of per-destination

queues. Networks running these two algorithms are purely backpressure-based, but

some per-destination queues are in shortest-path mode while others are allowed to be

forwarded to any neighbor node.

• We also propose two semi-oblivious BP (backpressure) algorithms, called O-BP

and E-BP, that combine OSPF and ECMP oblivious routing, respectively, with

backpressure routing. Networks running these algorithms first use OSPF or ECMP

oblivious routing when the traffic load is light or moderate, but these algorithms

incrementally switch nodes on a per-node basis to backpressure routing in response

to congestion detected by monitoring output port queue lengths.

• We prove theoretically that all these algorithms are network-wide throughput optimal

(i.e., the proposed algorithms can explore the same network stability region as the

original backpressure algorithm) in A.1. In particular, we use a fluid model for our

proofs, which models well the system dynamics of our modified algorithms.

• We extensively evaluate our proposed algorithms on the adaptive Internet routing

problem. We show our evaluations on the Abilene network [40], a public PoP-level

academic network in the US, using actual traffic profiles measured on the network.

Our simulation results show that our proposed algorithms indeed provide substantial
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improvements in delay performance. Our simulation results further show that in

practice, our approach dramatically reduces the number of pairwise differential

backlogs that have to be computed and the amount of corresponding backlog

information that has to be exchanged because routing choices are only incrementally

expanded as needed. That is, only a subset of per-destination queues in a subset of

nodes (in the case of route-expanding BP algorithms) or a subset of nodes (in the

case of the semi-oblivious BP algorithm) need to consider expanded routing choices

even for traffic loads that approach the edge of the network stability region.

• To the best of our knowledge, our approach is the first work which substantially

improves the delay performance and also significantly reduces the number of pairwise

differential backlog information exchanges and computations, while keeping the same

optimal throughput benefit as the original backpressure algorithm in the adaptive

routing scenarios.

The rest of the chapter is organized as follows: In Section 2.2, we present the basic

network model and summarize the original backpressure algorithm. Then we present our

route-expanding BP algorithms and semi-oblivious BP algorithms in Sections 2.3 and 2.4,

respectively. In Section 2.5, we describe our experimental setup and simulation results. We

conclude our chapter in Section 2.6.

2.2 Background

2.2.1 The Network Model

We consider a multi-hop network represented by a directed graph G = (N ,L), where

N is the set of nodes, and L is the set of directed links. All packets that enter the network

are associated with a particular commodity that corresponds to the packet destination. A
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packet that is destined for node c is regarded as a commodity c packet, c = 1, . . . , N . We

use Lc to denote the routing restrictions for commodity c, which is the set of all links (a, b)

that a commodity c packet is allowed to use 3. Obviously, if there is no routing restriction

for commodity c packets, then Lc = L. The link capacity µab(t) for link (a, b) is defined

to be the maximum number of packets that can be transmitted over link (a, b) in one

timeslot4. In general, multiple commodities might be transmitted over this link during a

single timeslot, but the total rate cannot exceed the link capacity µab(t).

Each node i maintains a set of internal queues for storing network layer packets

according to their commodity. Therefore, the internal queues are also known as per-destina-

tion queues. In the remainder of this chapter, we will use internal queues and per-destination

queues interchangeably.

Let A
(c)
n (t) represent the cumulative amount of new commodity c packets that

exogenously arrives to source node n by timeslot t (since time 0). Assume these arrival

processes are admissible. Let D
(c)
ab (t) be the cumulative amount of commodity c packets

sent from node a to node b via link (a, b) by timeslot t (since time 0), a, b, c = 1, . . . , N .

Let Q
(c)
n denote the internal queue in node n that stores packets destined for node c.

With a slight abuse of notation, let Q
(c)
n (t) also represent the current backlog of commodity

c packets stored in an internal queue at node n. The queue backlog Q
(c)
n (t) contains packets

that arrived exogenously by A
(c)
n (t) as well as packets that arrived endogenously from other

nodes by D
(c)
an (t), a = 1, . . . , N . We define Q

(c)
c (t) = 0 and D

(c)
cn (t) = 0 for all t, c = 1, . . . , N

and n = 1, . . . , N , so that any packet that has been delivered to its destination is assumed

to exit the network right away. The queue backlogs then satisfy the following equation for

3As we shall see in Sections 3 and 4, our routing algorithms restrict routing choices to only shortest-path
output links when the traffic is not heavy to minimize end-to-end delay. These routing restrictions are
denoted by Lc.

4Although we define µab(t) here in terms of number of packets, our algorithms and results are applicable
to any unit of data as appropriate for the intended application (e.g., the unit of data can just be bits or a
rate).
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all n = 1, . . . , N and c = 1, . . . , N such that n 6= c.

Q(c)
n (t) = Q(c)

n (0)−
N∑
b=1

D
(c)
nb (t) +

N∑
a=1

D(c)
an (t) + A(c)

n (t) (2.1)

2.2.2 The Backpressure Algorithm

The original backpressure algorithm was first introduced in [78] in the context of

wireless radio networks. It has been shown to achieve optimal throughput [78] and can

serve as a solution to certain multi-commodity flow problems [10].

For each link (a, b), the algorithm defines the optimal commodity c∗ab(t) as the

commodity that maximizes the differential backlog (ties broken arbitrarily):

c∗ab(t) , arg max
{c|(a,b)∈Lc}

[
Q(c)
a (t)−Q(c)

b (t)

]
, (2.2)

and defines W ∗
ab(t) as the corresponding optimal weight:

W ∗
ab(t) , max

[
Q

(c∗ab(t))
a (t)−Q(c∗ab(t))

b (t), 0

]
. (2.3)

If W ∗
ab(t) > 0, then the internal commodity c∗ab(t) queue is scheduled to be served, and the

packets will be transmitted over link (a, b) during timeslot t. Otherwise, no packets will be

transmitted over link (a, b) during timeslot t.

It is common in wireless networks that only a subset of all links, referred to as a

schedule, can transmit packets simultaneously due to interference. Let S be the set of

all possible schedules. The original backpressure algorithm finds the optimal schedule,

S∗(t) ∈ S as an optimization problem as follows:

S∗(t) = arg max
S∈S

∑
(a,b)∈S

W ∗
ab(t)µab(t) (2.4)
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At each timeslot t, for each link (a, b) ∈ S∗(t), µab(t) packets are removed from Q
(c∗ab)
a and

transmitted to Q
(c∗ab)

b . If Q
(c∗ab)
a does not have µab(t) packets, then all packets will leave

Q
(c∗ab)
a . For wireline networks, µab(t) is a typically constant (e.g., one packet per timeslot),

and S is always the set of all links since all links can be activated without interfering with

each other.

The intuition behind the backpressure algorithm is that packets may not be

transmitted if the differential backlog is non-positive, which indicates a congestion at

the downstream node. The original backpressure algorithm considers Lc = L for any

commodity c packet. That is, any packet in node a, no matter what commodity it belongs

to, can transmit to any neighbor node of node a, as long as the optimal weight computed by

Equation 2.3 is positive. This feature essentially exploits all feasible paths in the network

for any commodity packet, and as a result, stabilizes the network under heavy traffic loads.

However, this feature also incurs large end-to-end packet delays when the network is only

lightly or moderately loaded because packets unnecessarily explore and traverse long paths.

In the following sections, we will use the original backpressure algorithm as a baseline

algorithm to compare with our proposed algorithms.

2.3 Route-Expanding BP Algorithms

ca

e b

df

(a) Queue Q
(c)
a is initially in

Phase I.

ca

e b

df

(b) Queue Q
(c)
a switches over

to Phase II.

ca

e b

df

(c) Queue Q
(c)
a returns back

to Phase I.

Figure 2.1: A simple network showing how Lc (thick edges) changes.

As mentioned in Section 2.2.2, the original backpressure algorithm assumes that Lc
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contains all of the links of the network, L. This unconstrained routing may introduce large

delays when the traffic load is light, as a packet can unnecessarily explore long paths.

One way to reduce the end-to-end delay is to restrict Lc to only shortest paths.

We call this Shortest-Path Backpressure algorithm (SPBP). Take the network shown in

Fig. 2.1(a) as an example, node c has two neighbors, b and d. Neighbor d is on the shortest

path for commodity f packets, while neighbor b is not. In the case of SPBP, commodity f

packets in node c can only transmit to node d on condition that f is the optimal commodity

for link (c, d) and its weight, computed by Equation 3, is positive. In comparison, the

original backpressure algorithm allows commodity f packets to transmit to both node b

and d, as long as f is the optimal commodity for each link and the weight is positive.

While SPBP can reduce the delay, it also shrinks the network stability region, as it

limits the routing choices compared with the original backpressure algorithm. On the other

hand, our route-expanding backpressure algorithms can retain the same stability region as

the original backpressure algorithm and reduce delay for light or moderate traffic loads by

incremental expansion of routing choices. It starts with the shortest-path routing choices

as described above for SPBP. To overcome its shortcomings, a dynamic change of routing

choices is introduced.

In particular, each internal queue in a node n has two phases of routing. A queue

in Phase I can switch over to Phase II when a transition criterion is satisfied. A Phase II

queue can also return Phase I when the transition criterion is no longer met. Similar to

the SPBP, packets in a Phase I queue can only go to a subset of the neighbor nodes, which

are on the shortest paths from current node to the destination. In Phase II, similar to the

original backpressure algorithm, packets in that queue can be transmitted to any neighbor

of the current node. The rest of the backpressure scheduling rules are the same, following

Equation 2.2, 2.3, 2.4.

The routing choices Lc are changing dynamically. In the beginning, all internal
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per-destination queues are in Phase I. This is equivalent to restricting Lc to allow only

links on the shortest paths. When a transition criterion is satisfied, queue Q
(c)
n switches

over to Phase II, and we add all (n, k) to set Lc for any neighbor k of node n. When the

transition criterion is no longer satisfied, Q
(c)
n returns back to Phase I, and we remove those

added links from Lc. When all queues in the network are in Phase II, the Lc becomes L,

and this is equivalent to the original backpressure algorithm.

Consider the network shown in Fig. 2.1 as an example and consider queue Q
(c)
a . In

the beginning, (a, b), (a, d) ∈ Lc, because node b and node d are on shortest paths to node

c. When Q
(c)
a switches over to Phase II, (a, e), (a, f) are added to Lc. When Q

(c)
a returns

back to Phase I, (a, e), (a, f) are then removed from Lc.

We propose two transition criteria, a length-based criterion and an age-based

criterion, which we refer to the corresponding algorithms as L-BP and A-BP, respectively:

• L-BP: Let Lmax be the maximum backlog that a queue Q
(c)
n can stay in Phase

I. Whenever Q
(c)
n (t) > Lmax, the queue Q

(c)
n switches over to Phase II. Whenever

Q
(c)
n (t) ≤ (1− ε)Lmax, it returns back to Phase I. ε can be chosen to provide a safe

margin between the transition thresholds to prevent a per-destination queue from

transitioning back and forth frequently between the two phases (ε can be any number

in [0, 1); e.g., in the evaluation section, we use ε = 0).

• A-BP: Consider the head packet of queue Q
(c)
n . Let E

(c)
n (t) represent the age of the

head packet, which is the period from the timeslot that the head packet enters the

queue until current timeslot t. Let Amax be the maximum age of the head packet for

its queue to stay in Phase I. Whenever E
(c)
n (t) > Amax, the queue switches over to

Phase II. Whenever E
(c)
n (t) ≤ (1− ε)Amax, it returns back to Phase I. Like L-BP, ε

can be chosen to provide a safe margin between the transition thresholds to prevent

a per-destination queue from transitioning back and forth frequently between the two

phases. In the evaluation section, we use ε = 0.
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2.4 Semi-Oblivious BP Algorithms

In this section, we introduce two semi-oblivious backpressure-based routing algorithms

called O-BP and E-BP. Like L-BP and A-BP, the nodes in the network have two phases of

routing.

In Phase I, nodes obliviously forward packets using OSPF (O-BP) or ECMP (E-BP).

In OSPF [59], a shortest-path next-hop is identified for each destination, and incoming

packets are obliviously forwarded to this shortest-path next-hop. In ECMP [37], all

equal-cost shortest-path next-hops are identified for each destination, and incoming packets

are obliviously routed to one of these shortest-path next-hops with equal probability.

When congestion is detected by monitoring output port queue lengths, a node

transitions to Phase II in which the node will start forwarding packets based on the original

backpressure routing policy, as described in Section 2.2, in which packets can be forwarded

to any next-hop, not just shortest-path next-hops. A node remains in Phase II until the

alleviation of congestion is detected, which can also be detected by monitoring output port

queue lengths. A key benefit of using O-BP or E-BP over L-BP/A-BP is that the number

of backlog information exchanges and differential backlog calculations is largely avoided

(packets are simply routed obliviously to a shortest-path next-hop) when O-BP and E-BP

are in Phase I. In contrast, L-BP and A-BP require backlog information exchanges and

differential backlog calculations for all per-destination queues between the current node

and those neighbors which are on a shortest path of a packet. These information exchanges

and calculations can be substantial.

However, a major challenge in combining OSPF or ECMP with backpressure routing

is how packets are stored in a router. For OSPF, packets are queued at the output port

that corresponds to a shortest path and served on a first-come-first-serve basis. For ECMP,

packets are queued at multiple output ports that correspond to multiple shortest-path

next-hops (if there is more than one shortest path), and packets are served at these output
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ports on a first-come-first-serve basis. As a result, one output port queue will likely have

a mixture packets with many different destinations. However, in backpressure routing,

packets are stored in per-destination queues according to their destination rather than their

next hop (all packets in the same per-destination queue must have the same destination).

To overcome this incompatibility, we extend a router to implement both output port

queues used in OSPF/ECMP and per-destination queues used in the backpressure policy.

However, these output port queues and per-destination queues are simply implemented as

doubly linked lists with pointers to packets rather than storing the actual packet themselves.

This way, each packet is still only physically stored once. That is, Q
(c)
n implements a queue

of pointers to packets in node n destined for node c. For each output port, let Z
(j)
n denote

the output queue in node n that stores pointers to packets waiting at output j. With a

slight abuse of notation, let Z
(j)
h (t) also represent the current backlog of packets waiting at

output j.

When a router receives a packet, it is linked to the tail of its corresponding

per-destination queue and an output port queue. For O-BP, the choice of output port

queue corresponds to the shortest-path output as determined by OSPF. For E-BP, one

shortest-path output port is selected with equal probability. When a router is in Phase

I, a packet will depart from the head of each output port queue, on the condition that

the differential backlog for the commodity that this packet belongs to is positive, in which

case the corresponding entry for that packet in the per-destination queue will be removed.

Otherwise, if the differential backlog for the commodity that the packet at the head of

an output port queue is non-positive, no packet will be moved. This ensures that our

algorithms will never move a packet if the differential backlog is non-positive no matter

whether the router is in Phase I or Phase II, which is required for the throughput optimality

proof in Appendix A.1.

When a router is in Phase II, the router will use the per-destination queue information
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of its neighbors to compute the backpressure weight, then choose the packet from the

per-destination queue with the maximum positive weight, and forward it to its neighbor

accordingly, and the corresponding entry in the output port queue will also be removed.

More specifically, the transition criteria for O-BP and E-BP are as follows:

• O-BP and E-BP: Let Hmax be the maximum backlog that any output port queue

Z
(j)
n can have for a router to stay in Phase I. Whenever Z

(j)
n (t) > Hmax for any output

j, the entire router switches over to Phase II. Whenever Z
(j)
n (t) ≤ (1 − ε)Hmax is

satisfied for all outputs, the entire router returns back to Phase I. ε can be chosen

to provide a safe margin between the transition thresholds to prevent a router from

transitioning back and forth frequently between the two phases (ε can be any number

in [0, 1); e.g., in the evaluation section, we use ε = 0).

2.5 Evaluations

In this section, we present evaluations of our proposed route-expanding and semi-

oblivious algorithms. To evaluate these algorithms, we focus on the adaptive routing

problem for the wireline case. In particular, we present our evaluations using a real, large

PoP-level backbone network, namely the Abilene[40] network. The Abilene network has

been studied and discussed in the research literature. Its network topology, traffic dataset,

and routing information are available in the public domain [90]. In the following, we first

describe our experimental setup and then present our simulation results.

2.5.1 Experimental Setup

The Abilene network is a public academic network in the U.S. with 12 nodes

interconnected by OC192, 9.92 Gbits/s links. We use the traffic matrices obtained in

[90] in the experiments. Each traffic matrix consists of the demand rate of every source
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Figure 2.2: Delay comparison under different traffic loads for shortest-path routing.

23



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Traffic Load

0

10

20

30

40

50

60

70

80

90

D
e

la
y

BP

L
max

 = 0

L
max

 = 1

L
max

 = 2

L
max

 = 5

L
max

 = 10

(a) BP vs. L-BP

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Normalized Traffic Load

0

10

20

30

40

50

60

70

80

90

D
e

la
y

BP

A
max

 = 0

A
max

 = 1

A
max

 = 2

A
max

 = 5

A
max

 = 10

(b) BP vs. A-BP

Figure 2.3: Delay comparison under different traffic loads for route-expanding
backpressure routing.
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Figure 2.4: Delay comparison under different traffic loads for semi-oblivious backpressure
routing.
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destination pair within five minutes. Therefore, these traffic matrices provide a snapshot of

real total demand offerings between each source-destination pair in the Abilene network

every five minutes. The actual dataset spans from March 1, 2004 to September 4, 2004. As

the traffic matrices indicate, the Abilene network is underutilized. To demonstrate that

our new backpressure-based algorithm improves delay performance while retaining optimal

throughput, we selected the traffic matrix with the highest traffic load, and scaled it by

different factors. We incrementally increased the scaling factor until the resulting arrival

rates exceed the network’s stability region. Then we normalized that largest scaling factor.

We implemented our simulator in C++. Traffic generation follows a Bernoulli arrival

process with probability

p =
traffic demand

link capacity
.

We assume µab(t) = 1. That is, at each timeslot, at most one packet may be transmitted

over each link. The end-to-end delay is measured by the time period from the timeslot

when a packet enters the network by the traffic generation function to the timeslot when

the packet arrives at its destination and thus leaves the network. To get reliable results,

the simulation time should be long enough for the network to reach a steady state. In

particular, for each scaling factor, we simulated 40 million timeslots, of which the first 20

million timeslots serve as a warm-up phase. We then collect 200 data points by sampling

every 100,000 timeslots for the remaining 20 million timeslots. Finally, we average over

these 200 data points for the results presented in this section for each scaling factor.

2.5.2 Experimental Results

Delay Performance

In this section, we present and compare simulaton results for end-to-end delay

performance for the original backpressure algorithm (BP), Open-Shortest-Path-First (OSPF)
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Figure 2.5: Backlog information exchange frequency and percentages of Phase II queues
for L-BP and A-BP.
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routing, Equal-Cost Multi-Path (ECMP) routing, Shortest-path backpressure (SPBP)

routing, the L-BP and A-BP route-expanding BP routing algorithms, and the O-BP and

E-BP semi-oblivious BP routing algorithms. The results are shown in Fig. 2.2, Fig. 2.3

and Fig. 2.4. From these results, we can observe the following:

• Original BP: We observe in Fig. 2.2 that under the original backpressure algorithm,

the delay first decreases and then increases with increasing traffic loads. This

phenomenon validates that the original backpressure algorithm incurs large delays

under light or moderate traffic loads, because packets may explore unnecessarily long

paths.

• OSPF and ECMP: From Fig. 2.2(a), we observe that OSPF and ECMP have

low average end-to-end delays compared with the original backpressure algorithm.

However, they both saturate the network early, achieving only about 72% of the

achievable throughput.

• SPBP: Fig. 2.2(b) illustrates that although SPBP also achieves low average end-to-end

delays, it is still not throughput optimal because it saturates the network early,

achieving similarly only about 72% of the achievable throughput. This is to be

expected since reducing routing choices shrinks the network stability region.

• L-BP: Fig. 2.3(a) shows that L-BP route-expanding backpressure algorithm can

achieve the same optimal throughput as the original backpressure algorithm and how

the choices of the threshold Lmax impact the delay performance. As expected, when

Lmax = 0, the delay performance is exactly the same as the original backpressure

algorithm, because all per-destination queues are always in Phase II. Our experiments

show that as long as Lmax ≥ 1, the L-BP algorithm is able to reduce the delay by more

than 80% compared with the original backpressure algorithm when the traffic load

is light or moderate. To obtain better delay performance, Lmax should be carefully
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chosen and tuned. Intuitively, Lmax should not be too big, as a big Lmax may impede

the entrance into Phase II and the accumulated packets may have larger queuing

delays than those in a smaller Lmax setting. For example, as illustrated in Fig. 2.3(a),

the delay for Lmax = 10 increases significantly at higher traffic loads, because those

congested per-destination queues do not enter Phase II in time. On the other hand,

if Lmax is too small, then it would be too easy for the per-destination queues to enter

Phase II and route the packets unnecessarily to longer paths.

• A-BP: Fig. 2.3(b) shows that A-BP route-expanding backpressure algorithm can

achieve the same optimal throughput as the original backpressure algorithm and

how the choices of the threshold Amax impact the delay performance. Similar to

L-BP, when Amax = 0, the delay performance is exactly the same as the original

backpressure algorithm, because all per-destination queues are always in Phase II.

In addition, our experiments show that as long as Amax ≥ 1, the A-BP algorithm is

able to reduce the delay by more than 90% compared with the original backpressure

algorithm when the traffic load is light or moderate. The parameter Amax should

also be tuned carefully. For the same reason, Amax should not be too big, as a big

Amax may prevent the queue from entering Phase II in time. Also, if the threshold is

too small (e.g. Amax = 1), then it makes the queues too easy to enter Phase II.

• O-BP and E-BP:

Fig. 2.4 shows that, similar to L-BP and A-BP, the O-BP and E-BP semi-oblivious

backpressure algorithms can also both achieve the same optimal throughput as the

original backpressure algorithm. Our experiments show that when Hmax ≥ 2, both

O-BP and E-BP are able to reduce the delay at light or moderate traffic dramatically.

As before, Hmax should be chosen carefully to achieve better performance. In general,

smaller Hmax is more favorable. In our experiments, Hmax = 2 has the best delay
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performance for both O-BP and E-BP algorithms.

Backlog Information Exchanges in L-BP and A-BP

In this section, we examine two metrics: the backlog information exchange frequency

and the percentage of queues in the network that are in Phase II for L-BP and A-BP.

A backlog information exchange is recognized when an internal per-destination queue

needs its neighbor’s corresponding per-destination queue backlog information to compute

the backpressure. For example, according to the original backpressure algorithm, if a node

has three neighbors, then each internal per-destination queue has to know the backlog

information from its three neighbors, and the corresponding differential backlogs need to

be computed for these three neighbors. However, in our proposed algorithms, if a queue

is in Phase I, then the backlog information only needs to be exchanged with a subset of

neighbor nodes that are a part of some shortest path routes, and the differential backlog

calculations only need to be computed with respect to these nodes.

It should be noted that, among the original BP algorithm, SPBP, L-BP, and A-BP,

the original BP algorithm needs the maximum number of backlog information exchanges,

which is the upper bound. SPBP needs the least, which is the lower bound. For the

L-BP/A-BP algorithms, whether their backlog information exchange frequencies are closer

to BP or SPBP depends on how many queues in L-BP/A-BP are in Phase II. If no queue

in L-BP/A-BP is in Phase II, then L-BP/A-BP is the same as SPBP. If all queues in

L-BP/A-BP are in Phase II, then L-BP/A-BP is the same as BP.

Compared with SPBP, which is not throughput optimal, L-BP/A-BP adaptively

transitions per-destination queues to Phase II from Phase I as needed to achieve the optimal

throughput. However, the more per-destination queues are transitioned into Phase II, the

higher is the amount of backlog information that a node has to exchange with its neighbors.

Fig. 2.5 shows that the increase in backlog information exchange is very small, which is a
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Figure 2.6: Backlog information exchange frequency and percentages of Phase II queues
for L-BP under maximum traffic load.
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Figure 2.7: Backlog information exchange frequency and percentages of Phase II queues
for A-BP under maximum traffic load.
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small price to pay for optimal throughput.

In particular, Fig. 2.5(a) shows the backlog information exchange frequency for BP,

SPBP, L-BP, and A-BP algorithms, under different traffic loads. The information exchange

frequency is normalized to the number of backlog exchanges required by BP, which has

the highest frequency as BP requires information exchanges with all neighbors. On the

other hand, SPBP has the lowest frequency as it only requires information exchanges with

shortest-path neighbors; the normalized frequency for SPBP is about 0.45. Surprisingly,

L-BP and A-BP only require slightly more backlog information exchanges compared with

SPBP, even at very high traffic loads. This means that, by adding a bit more backlog

information exchanges, L-BP and A-BP can achieve optimal throughput, which is a much

higher throughput than SPBP. In Fig. 2.5(b), we can see an increasing number of queues are

switched over to Phase II when the traffic load increases. For the same group of algorithms,

L-BP or A-BP, the smaller the threshold is, the more queues are switched over to Phase

II as the the traffic load increases, because a smaller threshold makes the router easier

to switch over the Phase II. Nevertheless, the increase is negligible if the threshold and

algorithm is properly chosen. For example, the percentage of Phase II routers for L-BP

(Lmax = 5), even under the highest traffic load, is still less than 3%. For others, even under

very high traffic loads, the percentages are still below 23%. All of this translates to much

lower computational requirements for calculating the necessary different backlogs.

Fig. 2.6 and Fig. 2.7 take the maximum traffic load (the traffic load we use in our

experiments that is just about to saturate the network) as an example, and show the

number of backlog information exchanges and the percentages of Phase II queues for L-BP

and A-BP, respectively.

In every figure, we can see that a bigger threshold usually incurs less information

exchanges, because less routers are switched over to Phase II. With a carefully chosen

threshold, an algorithm may only require the similar amount of backlog information
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exchanges to SPBP algorithm. For example, in Fig. 2.6(a), most data points from L-BP

(Lmax = 5) for the backlog information exchanges are between 0.45 and 0.46. Recall that

the lower bound from SPBP for the normalized backlog information exchange frequency is

about 0.45. Therefore, Fig. 2.6(a) shows that most of the time the backlog information

exchange frequency of L-BP (Lmax = 5) is comparable to the SPBP algorithm. For other

algorithms, as can be seen from Fig. 2.6(a) and Fig. 2.7(a), most of the data points are

below 0.54, which indicates that most of the time the frequency of the backlog information

exchanges is also limited.

Fig. 2.6(b) and Fig. 2.7(b) show that most of the time only less than 25% queues

are switched over to Phase II. This indicates that our algorithms are able to identify the

most congested areas of the network, switch over those queues to Phase II, and keep the

remaining queues working in Phase I.

Backlog Information Exchanges in O-BP and E-BP

In this section, we examine the backlog information exchange frequency and the

percentage of routers in the network that are in Phase II for the O-BP and E-BP

semi-oblivious BP algorithms.

When a router is in Phase I, for each link, it only needs backlog information from

the corresponding neighbor for a single commodity, which the packet at the head of the

output port queue belongs to. In comparison, when a router is in Phase II, it needs the

backlog information from all its neighbors for all commodities. Fig. 2.8(a) compares the

backlog information exchange frequency among SPBP, O-BP and E-BP algorithms under

different traffic loads. As we can see, O-BP and E-BP require substantially lower frequency

of backlog information exchanges. This is because when the traffic load is not high, most

routers are still in Phase I, and thus they only need very few information exchanges. Even

when the traffic load becomes high, O-BP and E-BP still incur less information exchanges
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Figure 2.8: Backlog information exchange frequency and percentages of Phase II routers
for O-BP and E-BP.
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than SPBP. This is because, as shown in Fig. 2.8(b), a large percentage of the routers in

the network still remain in Phase I, and these Phase I routers only need a small fraction of

backlog information from their neighbors. Although the Phase II routers have to exchange

backlog information with its neighbors for all commodities, the number of such Phase

II routers is very small. As a result, O-BP and E-BP always require less information

exchanges than SPBP for the entire range of traffic loads simulated.

Fig. 2.9(a) and Fig. 2.10(a) show the amount of backlog information exchanges at

the maximum traffic load for O-BP and E-BP respectively. Similar to L-BP and A-BP

algorithms, a bigger threshold leads to less information exchanges, because more routers are

still in Phase I. With a carefully chosen threshold, our algorithm can reduce the information

exchanges dramatically. Take Hmax = 5 as an example, even under this maximum traffic

load, the normalized amount the information exchanges of either of O-BP or E-BP rarely

exceeds 0.45, which is even less than the normalized frequency required by SPBP. This is

because, as shown in Fig. 2.9(b) and 2.10(b), even when the traffic load is about to saturate

the network, there are still about 65% to 75% routers that are in Phase I, which only need

a small amount of backlog information from their neighbors. Besides, that the percentage

is concentrated at a fixed number of values indicates that only some particular routers

are congested in the network at this traffic load. Our algorithms are able to identify the

congested areas in the network and only switch over those routers to Phase II.

Comparison with prior proposed algorithms

We have implemented the MinHop algorithm proposed in [86] to compare with our

proposed algorithms in Fig. 2.11.

Fig. 2.11(a) shows that our delay performance is comparable with the MinHop

algorithm. The delay performance of the MinHop algorithm is sensitive to the choice of the

parameter K. If K is too big, then their algorithm will favor shortest paths. As long as
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Figure 2.9: Backlog information exchange frequency and percentages of Phase II routers
for O-BP under maximum traffic load.
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Figure 2.10: Backlog information exchange frequency and percentages of Phase II
routers for E-BP under maximum traffic load.
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Figure 2.11: Compare with [86] (referred here as ”MinHop”).
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the K is not infinite, the throughput still remains optimal, but the delay can be extremely

huge. On the other hand, if K is too small, for example K = 0.1, then the delay is also

compromised, because it just favors shorter queues. As a result, K plays an important role

in improving delay performance, which is similar to what our Lmax, Amax, and Hmax do.

The main drawback of [86] is its complexity. As can be seen from Fig. 2.11(b),

due to the huge number of queues that must be maintained per router, the amount of

information exchanges is enormous. When compared with even the original backpressure

algorithm, the amount of information exchanges required by MinHop [86] is 30 times higher,

which in turn is far higher than what our algorithms require.

2.6 Conclusion

In this chapter, we proposed two new route-expanding backpressure-based adaptive

routing algorithms, called L-BP and A-BP, that are based on the incremental expansion of

routing choices in response to congestion at a node on a per-destination basis. We also

proposed two new semi-oblivious backpressure-based adaptive routing algorithms, called

O-BP and E-BP, that are based on oblivious routing by default and incremental expansion

to backpressure routing on a per-node basis. All variants are shown to be throughput

optimal by means of fluid model analysis. Simulation results using actual traffic profiles

on a public network demonstrate that our proposed algorithms indeed provide substantial

improvements in delay performance. The simulation results further show that in practice,

our approach dramatically reduces the amount of differential backlogs that has to be

computed and the amount of backlog information that has to be exchanged because routing

choices are only incrementally expanded as needed.
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Chapter 3

Network Optimization for Unified

Packet and Circuit Switched

Networks

3.1 Introduction

Internet traffic continues to grow unabatedly at a rapid rate, driven largely by more

and more video content, from 1080p HD to 4K Ultra HD video streaming today, to 8K

Ultra HD video streaming in the near future. Although the packet-switching approach

used in Internet backbone networks has thus far been able to keep up, it is unclear whether

electronic routers that have been used at the core of backbone networks will continue

to scale to match future traffic growth. On the other hand, optical fiber and switching

elements have demonstrated an abundance of capacity that appears to be unmatched by

electronic routers. The rate of increase in optical transport capacity has been keeping

pace with traffic growth. Thus, one way of keeping pace with future traffic demands is to

build an all-optical backbone network. However, packet switching requires the buffering
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of packets, of which optical switches are not capable today, and it appears unlikely that

reasonable size packet buffers can ever be practically realized in optics. On the other hand,

circuit switching has a much simpler data transport, making it well-suited to optics and its

vast capacity potential.

To harness the huge capacity of optical circuit switching in IP networks, researchers

have explored different ways of implementing IP over dynamically configurable optical

transport networks [22, 12, 88, 71, 52, 58, 24]. These earlier efforts assumed a GMPLS-based

control plane [58, 24]. More recently, given the broad success of software-defined networking

(SDN) [72, 49, 83, 55], there has been considerable renewed interest in unified packet

and circuit switched network architectures based on SDN as the unified control plane

[30, 31]. In the SDN-based unified architecture proposed in [31], backbone routers are

replaced with less expensive hybrid optical-circuit/electrical-packet switches that have both

circuit-switching and packet-switching capabilities. These hybrid switches are logically

connected in a fully-meshed network where each hybrid switch implements an IP node,

and where each IP node is logically connected to each and every other IP node via a single

direct circuit-switched hop. This unified packet and circuit-switched network can then be

managed using a single converged control plane.

Figure 3.1 depicts this unified fully-meshed IP network architecture. The actual

underlying optical transport network can be dynamically allocated to provide different

circuit capacities to implement each logical connection in the full-mesh, for example based

on estimated traffic demands. For example, in figure 3.1, a logical connection from San

Francisco (SF) to New York (NY) may be implemented as an optical circuit-switched path

via Seattle and Chicago. In general, a logical connection may be implemented over multiple

physical paths.

There are several key advantages with an SDN-based unified fully-meshed architecture:

• First, studies have shown that up to 85% of the packets that are processed by
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Figure 3.1: IP network logically as a full-mesh, with logical connections implemented
over an optical circuit-switched transport network and logical routers implemented as part

of hybrid optical-circuit/electrical-packet switches.

backbone routers today are just pass-through traffic [74, 71, 31]. Therefore, packets

are unnecessarily delayed due to queuing time at intermediate routers. With a unified

architecture, packets can traverse the circuit-switched network through pre-established

circuits (light-paths) at optical speeds from the source node to the destination node

in a single logical hop.

• Second, backbone routers are unnecessarily expensive today because they must

be designed to process all packets, including all pass-through packets. With a

unified architecture, expensive packet-switched router ports are primarily needed

only for interfacing with access routers; pass-through traffic can be handled by less

expensive circuit-switched ports. This approach promises to dramatically reduce

capital expenditures [74, 71, 52, 39, 31].
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• Finally, a unified architecture is expected to be far more scalable since most traffic

can be switched end-to-end using scalable optical transports.

A key problem that must be solved in this unified architecture approach is the

allocation of optical circuits between adjacent IP nodes in the logical full-mesh (i.e., between

every IE pair of ingress and egress nodes). In this chapter, we propose to formulate our

circuit allocation problems as convex optimization problems. In particular, the main

contributions of this work are as follows:

• We propose a novel convex optimization framework based on a new destination-based

multicommodity flow formulation for the allocation of circuits in unified packet and

circuit switched networks.

• We consider two deployment settings for circuit allocation. In the first setting, we

consider the case in which real-time traffic measurements are possible, and we can

dynamically allocate circuits on a frequent basis in response to changing traffic.

• In the second setting, we consider the case in which we allocate circuits based on

historical traffic patterns. Previous studies have shown that the aggregate traffic

at the core of the network tends to be very smooth and that it follows strong

diurnal patterns [22, 67, 56]. Such diurnal traffic observations over repeated data sets

suggest that circuits can be allocated based on historical data. In this setting, circuit

configurations can be precomputed offline.

• In both settings, we formulate global network optimization objectives as concave

functions that capture the fair sharing of network capacity among competing traffic

flows. The convexity of our problem formulations ensures globally optimal solutions.

The rest of this chapter is organized as follows. In §3.2, we present our destination-based

multicommodity flow formulation for circuit allocation that reduces the number of decision

45



variables in the convex optimization problems by a factor of n, where n is the number

of nodes in the network. In §3.3, we present our formulations of the real-time based

and history-based circuit allocation problems as convex optimization problems. We then

describe our experimental setup in §3.4, and we present the results of our evaluations in

§3.5. In §3.6, we discuss additional related work. Finally, we present concluding remarks in

§3.7.

3.2 Destination-Based Multi-Commodity Flow

Formulation

We formulate our optical circuit allocation problems as multi-commodity flow

optimization problems. We consider a backbone network with n nodes and m directed

edges, and we index nodes as i = 1, . . . , n and edges as j = 1, . . . ,m. Note that an

undirected edge between nodes k and ` can be modeled by two directed edges, one from k

to ` and the other from ` to k. With n nodes, we have n(n− 1) ingress-egress (IE) pairs,

and we index IE pairs as (k, `), which refers to ingress (source) ` and egress (destination) k

(i.e., from node ` to node k).

Classically, multi-commodity flow formulations typically use n(n− 1)m flow assign-

ment variables, each of which defines the fraction of the corresponding IE pair traffic

(among n(n− 1) IE pairs) along the corresponding edge (among m edges). In this chapter,

we propose a destination-based multi-commodity flow formulation in which the flows

(“commodities”) are labeled by their destination or egress node k rather than by an IE pair.

This reduces the number of flow assignment variables by a factor of n− 1 to nm variables.

This substantial reduction in the number of variables allows us to scale the method to

far larger networks. To the best of our knowledge, our proposed compact formulation has

not been proposed before in networking. This destination-based multi-commodity flow
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formulation is described in the remainder of this section. We then describe our optimization

objectives as concave functions in the subsequent sections so that the optimization problems

can be solved with convex optimization.

Traffic demand matrix. We denote the traffic demand from node ` to node k as

Tk` ≥ 0. Accordingly, we refer to the corresponding n× n matrix T as the traffic demand

matrix. As a node k has no traffic to itself that requires transport on the network, we

conveniently redefine Tkk to be

Tkk = −
∑
` 6=k

Tk`,

the negative of the total traffic demand for, and exiting at, node k. With this definition of

Tkk, we have ∑
`

Tk` = 0,

i.e., T1 = 0, where 1 is the vector with all entries equal to one. As defined, T is a Metzler

matrix. Note that the traffic matrix T gives us the IE pair traffic (the n(n− 1) off-diagonal

entries Tk`, k 6= `) as well as the total traffic demand for each of the n nodes (−Tkk).

Multi-commodity flow conservation. The traffic flows from ingress node to

egress node over a network with m directed edges, as described by its incidence matrix

A ∈ Rn×m, where

Aij =


+1 if edge j enters node i

−1 if edge j leaves node i

0 otherwise.

We assume that the network is completely connected, i.e., there is a directed path from

any node to any other, which is typically the case for backbone networks.

We allow the splitting or aggregation of network flows that are destined to the same

egress node. Let Fkj ≥ 0 denote the flow on edge j that is destined for destination k. As

mentioned, this is a multi-commodity flow problem, with n different flows labeled by their
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destination or egress node k.

At each node, and for each of the n flows, we must have flow conservation, taking

into account the ingress flow at the node, the flow entering the node from incoming edges,

the flow leaving the node over outgoing edges, and (when the node is the egress node) the

flow egressing from the node. For a node i 6= k (i.e., not the egress node), the ingress flow

plus the net flow into the node must sum to zero:

Tki +
∑
j

AijFkj = 0, i, k = 1, . . . , n, i 6= k. (3.1)

By net flow, we mean the sum of flows entering on incoming edges minus the sum of the

flows leaving on outgoing edges. At the destination node, all the traffic exits, so we have

∑
j

AijFij =
∑
`

Ti` = −Tii, i = 1, . . . , n. (3.2)

The lefthand side is the net flow into node i, and the righthand side is the total of all traffic

exiting the network at node i. Equation (3.2) is identical to (3.1) for k = i. So (3.1) holds

for all i, k = 1, . . . , n. In fact, the n equalities (3.2) hold automatically, which can be seen

by summing (3.1) over all edges, so they are redundant. Therefore, we can simply express

multi-commodity flow conservation in a compact matrix formula as

T + FAT = 0. (3.3)

Edge capacities. The total traffic on edge j is
∑

k Fkj. In the simplest model,

each edge has a capacity that cannot be exceeded, i.e.,

∑
k

Fkj ≤ cj, j = 1, . . . ,m, (3.4)
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where cj is the capacity of edge j. This can be written as F T1 ≤ c, where the inequality is

elementwise.

Feasible traffic demands. A traffic demand matrix T (with Tk` ≥ 0 for k 6= `

and T1 = 0) can be supported by the network if there exists F ≥ 0 for which (3.4) and

(3.1) hold, i.e.,

F ≥ 0, T + FAT = 0, F T1 ≤ c. (3.5)

This set of inequalities, together with Tk` ≥ 0 for k 6= i and T1 = 0, defines a polyhedron,

which we denote as T . We refer to a traffic demand matrix T as feasible if T ∈ T (i.e., a

feasible traffic demand matrix is one for which there is a set of edge flows that respects

flow conservation and edge capacities).

3.3 Formulation of Circuit Allocation Problems

3.3.1 General Approach

To formulate our circuit allocation problems as convex optimization problems, we

define a utility function φk`(Tk`) for each IE pair (k, `), k 6= `, that computes the utility of

allocating a circuit with capacity Tk` to IE pair (k, `) (i.e., a circuit that can support traffic

demand up to Tk`). We use the compact notation φ(T ) to denote the matrix with entries

φk`(Tk`) when k 6= `, and we set the diagonal entries of φ(T ) to one. As discussed below,

for both the real-time-based and history-based circuit allocation formulations, φk`(Tk`) is

defined (and required) to be an increasing concave function.

To fairly allocate network resources to implement circuits for different IE pairs, we
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use the well-known utility fairness notion called α-fairness [57], which is defined as follows:

U(f) =


f1−α

1−α for α ≥ 0 and α 6= 1

log f for α = 1
(3.6)

Depending on the choice of α, different notions of fairness can be achieved. For example,

maximum utility is obtained when α = 0, proportional fairness is obtained when α→ 1,

and max-min fairness is obtained when α → ∞. In practice, a large α is sufficient to

ensure max-min fairness. For any α ≥ 0, U(f) is an increasing concave function. We then

formulate the circuit allocation problem as follows:

maximize
∑

k,` U(φk`(Tk`))

subject to T ∈ T ,

where T ∈ T corresponds to the set of constraints defined in (3.5). We refer to the objective

as the total network utility. Since an increasing concave function of a concave function

is still concave [16], U(φk`(Tk`)) is a concave function of Tk`. The objective is a sum of

concave functions, and therefore it is also a concave function. Maximizing a concave

function subject to convex constraints (i.e., linear equality and inequality constraints) is a

convex optimization problem.

Since the objective is an increasing function of T , we see that at the optimal point,

all edge traffic will actually be equal to the edge capacity (i.e., we will have F T1 = c).

Therefore, we can replace the inequality F T1 ≤ c in (3.5) with the equality constraint
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F T1 = c. The convex optimization problem then becomes

maximize
∑

k,` U(φk`(Tk`))

subject to F ≥ 0,

T + FAT = 0,

F T1 = c.

(3.7)

with variables T (the traffic demands that can be supported) and F (the detailed network

flows).

In the remainder of this section, we consider two versions of the circuit allocation

problem. In the first case, we consider the deployment setting in which real-time traffic

measurements are possible, and we can dynamically allocate circuits on a frequent basis

in response to changing traffic. In the second case, we consider the deployment setting

in which we allocate circuits based on historical traffic patterns. In both versions of the

problem, we optimize for utility max-min fairness by using a sufficiently large α value

in (3.6). The two problems differ in how we define the utility functions φk`(Tk`) for the IE

pairs.

3.3.2 Real-Time-Based Allocation

In this section, we consider the deployment setting in which actual traffic can be

measured in real-time at a reasonable timescale, and that circuits can be dynamically

reconfigured. In particular, let rk` be the traffic rate at the current measurement interval for

IE pair (k, `). Intuitively, the traffic pattern for the next time interval should be similar to

the current measurement interval if the measurement/reconfiguration interval is sufficiently

short. Therefore, we aim to allocate circuit capacities proportional to the current traffic

rates, but we want to fully allocate all network resources even when circuit allocations
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cannot be further increased for some IE pairs. In particular, we define

φk`(Tk`) =
Tk`
rk`

(3.8)

By defining the utility function φk`(Tk`) this way, the solution to network optimization

problem (3.7) corresponds to the weighted max-min fair solution.

3.3.3 History-Based Allocation

Alternatively, in this section, we consider the deployment setting in which real-time

traffic measurements are not possible. In this case, we make use of historical traffic statistics

to predict the traffic demands for a given time period. Previous studies have shown that

the aggregate traffic at the core of the network tends to be very smooth and that it follows

strong diurnal patterns. In particular, historical traffic demands during a particular time

of day (e.g., 11:00-11:30am on a weekday) are a good indicator of expected future traffic

demands over the same time of day. Let rk` = {rk`(1), rk`(2), . . . , rk`(t)} be a collection of t

historical traffic measurements taken at a particular time of day for the IE pair (k, `). The

corresponding empirical cumulative distribution function (CDF) Φk` : R+ → [0, 1] maps a

circuit capacity Tk` (i.e., the amount of traffic demand that the circuit can support) to the

fraction of rk` data points that can be supported:

Φk`(Tk`) =
#measurements ≤ Tk`

t

=
1

t

t∑
i=1

I[rk`(i) ≤ Tk`]
(3.9)

where I[rk`(i) ≤ Tk`] is the indicator that the measurement rk`(i) is less than or equal to

the circuit capacity Tk`.

From an empirical CDF Φk`(Tk`), we derive an increasing concave function φk`(Tk`)
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by curve fitting the empirical CDF. That is, for each data point rk`(i) ∈ rk`, we have the

corresponding empirical CDF data point Φk`(rk`(i)). In general, Φk`(Tk`) is not concave.

However, for traffic values above the median measured data rate, the corresponding

probability density function (PDF) of traffic is typically decreasing, which is reasonable

to assume. Therefore, we simply curve fit φk`(Tk`) to all the empirical CDF data points

above the median data rate in rk` (i.e., for all Φk`(rk`(i)) such that rk`(i) ≥ median(rk`))

using an increasing concave functional form. In general, any increasing concave function

can be used as the parametric form for curve fitting. As we shall see in §3.4.2, we have

found that an increasing concave piecewise linear (PWL) functional form can accurately

approximate the empirical CDFs above the corresponding median historical data rate. As

another example, fitting the historical data rates to a log-concave functional form would be

another natural way to accurately approximate the empirical CDFs.

By deriving the utility function φk`(Tk`) from the empirical CDF of the historical

traffic, we are maximizing the probability that the allocated circuits can handle future

traffic demands if future traffic demands follow similar traffic patterns as the measured

historical traffic. Correspondingly, the solution to the network optimization problem (3.7)

corresponds to the utility max-min fair solution where the utility function is derived from

historical traffic.

3.3.4 Deriving Per-IE Pair Circuit Configurations

By solving for the convex optimization problem (3.7) with the utility functions

defined in either §3.3.2 or §3.3.3, we know what circuit capacities Tk` can be realized for

each IE pair (k, `). However, in our destination-based multi-commodity flow formulation, a

flow corresponds to all traffic that are destined for the same destination k, and the flow

assignment variables Fkj ≥ 0 denote the flow on edge j that is destined for destination k.

As discussed earlier, this formulation enables us to reduce the number of variables by a
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factor of n− 1, which allows us to scale our approach to far larger networks.

To derive the actual circuit configurations on a per-IE pair basis, we have to

disaggregate a single destination flow into parts associated with the different IE pairs. This

has nothing to do with the optimization method, and does not affect what traffic profiles

that we are able to support.

As observed earlier, the solution must satisfy F T1 = c (i.e., all the edge capacity is

used). Given this constraint, we can show that for each flow with a given destination, there

are no (directed) cycles. To see this, suppose that for destination k there is a nonzero (i.e.,

positive) directed cycle. This means there are edges e1, . . . , ep that form a directed cycle,

and the flow destined for node k is positive on each of these edges. This implies that we can

reduce the flow destined for node k on each of these edges by some positive amount, and

remain feasible. By reducing the flow on each of these edges, we now have unused capacity

on these edges, which we can use by assigning (for example) to the IE pairs associated

with those edges. This increases these IE pair traffic values, which increases the objective,

which shows the original flow was not optimal. Therefore, the optimal solution contains no

(directed) cycles for each destination flow. We can exploit this property in deriving the

per-IE pair circuit configurations.

In particular, we start with the traffic matrix F , which gives the flow on each edge

for each destination. Our goal is to give a more detailed flow description Zk`,j ≥ 0, which

is the flow on edge j for the IE pair (k, `). For each IE pair (k, `), the edges with nonzero

Zk`,j values show us the route or routes that IE pair (k, `) takes. This must satisfy the

obvious flow conservation, where it is conserved for all nodes other than k or `, the traffic

Tk` enters at node ` and leaves at node k. These detailed flows must satisfy Zk`,j ≥ 0 and

∑
`

Zk`,j = Fkj,
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but otherwise are completely arbitrary. We describe two simple methods for constructing

Z given F , but many other methods could be used as well.

Indeed, any method that attributes flow to each IE pair (k, `) such that the remaining

flow satisfies all the conditions described above (though with Tk` set to zero) will work.

The lack of flow cycles ensures that all flow can be attributed to IE pairs.

Greedy assignments. Consider an IE pair (k, `). We can route the traffic from

node ` to node k in a greedy way. Starting at node `, route all the flow along an outgoing

edge j with Fkj ≥ Tk`, if there is such an edge. If there is no such edge, we will need to

split the flow into two or more edges. We repeat this until we get to the destination. Then

we subtract these flows from the F matrix, which leaves the flows destined for node k,

other than the flow originating at node `. We repeat the process. This method always

works; it tends to avoid splitting flows.

Proportional assignments. Alternatively, we can route the traffic for IE pair

(k, `) from node ` by splitting the flow proportionally across outgoing edges jh to a node h

that have Fkjh > 0. Our multi-commodity flow formulation ensures that

∑
h

Fkjh ≥ Tk`.

In particular, we assign to the detailed flow

Zk`,jh = Tk`

(
Fkjh∑
h Fkjh

)
, for each jh. (3.10)

We repeat this by proportionally splitting each Zk`,jh across the outgoing edges of node

h until we get to the destination. Like the greedy assignment method, we subtract these

detailed flows from the F matrix. We repeat this process for other IE pairs. This method

also always works. It tends to split the flows a lot; more specifically, whenever a flow splits

at a node, then all IE pairs will also split there.
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3.4 Evaluation Setup

3.4.1 Network and Traffic Matrices

We have evaluated our proposed network optimization framework on the optimal

circuit allocation problem on a real, large PoP (point of presence)-level backbone network,

namely the Abilene network [40]. The Abilene network has been studied and discussed in

the research literature. Its network topology, traffic dataset, and routing information are

available in the public domain [90]. In particular, Abilene is a public academic network in

the US with 11 nodes interconnected by OC192, 9.92 Gbits/s links. (Abilene actually has

another secondary core router at Atlanta, but it only connects to the primary Atlanta core

router and has much less traffic. To simplify the topology, we merged this secondary core

router into the primary Atlanta core router, including all of its traffic.)

To evaluate the Abilene network, we use real traffic matrices that have been collected

by a third party [90] in our simulations. We also use these traffic matrices in our experiments

to derive the circuit configurations using our proposed network optimization algorithms.

A traffic matrix consists of the requested traffic rates for every source-destination pair

within a 5-minute interval. Therefore, these traffic matrices provide a snapshot of real total

demand offerings between each IE pair in the Abilene network every five minutes. The

traffic matrices are derived based on the flow information collected from key locations of a

network by traffic monitors, such as Netflow [1]. Then the flow information is transformed

into the demand rate of each IE pair in a traffic matrix based on the routing information

in the network. We collected the traffic matrices in each network for an extended period

of time to represent the historical traffic measurements and simulation traffic load. The

detail information of the traffic matrices used is summarized in Table 3.1.

In particular, for history-based circuit allocation, as described in §3.3.3, we use the

historical traffic patterns during a particular time of day (3:00-3:30pm on a Wednesday)
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Table 3.1: Traffic data for Abilene.

Network Collection Historical Traffic Test Traffic Time
Period for Allocation for Evaluation Interval

Abilene 05/01/04 05/01/04 06/19/04 5 min
to 07/02/04 to 06/18/04 to 07/02/04

over a 7 weeks period from 05/01/2004 to 06/18/2004. Since the dataset offers the traffic

matrices at 5-minute intervals, each IE pair has 42 historical traffic data points across

the analyzed period. For our evaluations, we simulated the network traffic at the same

time of day (3:00-3:30pm on a Wednesday) in the following two weeks from 06/19/2004 to

07/02/2004. This gives another 12 traffic matrices for evaluation.

For real-time-based circuit allocation, as described in §3.3.2, we also use the 12

traffic matrices during the two weeks from 06/19/2004 to 07/02/2004 for evaluation. For

each of the 12 test traffic matrices, we interpolate the test traffic matrix with the test traffic

matrix from the previous 5-minute interval, and we use this interpolated traffic matrix to

define the current measured traffic rate rk` in the utility function φk`(Tk`) shown in (3.8).

3.4.2 Modeling Traffic Statistics

As discussed in §3.3.3, for each IE pair, we model the distribution of historical traffic

patterns by an empirical cumulative distribution function (CDF). In particular, for each IE

pair, we use the collection of historical traffic data points rk` = {rk`(1), rk`(2), . . . , rk`(t)}

to define a corresponding empirical CDF Φk` : R+ → [0, 1], as shown in (3.9), and we

use curve fitting to fit the empirical CDF data points Φk`(rk`(i)) to derive an increasing

concave approximation function φk`(Tk`). As noted in §3.3.3, the CDF of a historical

traffic distribution should be concave above the median traffic level. This is because the

probability density function (PDF) of traffic should be decreasing above the median level.
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Figure 3.2: An example PWL curve fitting of the historical traffic CDF for the flow from
Atlanta to Seattle.
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Therefore, we can accurately approximate the empirical CDF as a concave function by

curve fitting to those empirical CDF data points at or above the median data point for all

IE pairs.

In our evaluations, we use a piecewise linear (PWL) curve fitting to approximate

the empirical CDF. Fig. 3.2 shows an example a PWL curve fitting for the IE pair traffic

from Atlanta to Seattle. In particular, the PWL curve shown corresponds to the empirical

CDF of the 42 data points collected over the 7 weeks period between 05/01/2004 and

06/18/2004. The PWL curve is fitted to all data points at or above the median level. In our

experiments, we used CVXPY to implement a piecewise-linear curve fitting approach based

on least-square fitting to a fixed number of segments (e.g., 3 segments). More sophisticated

piecewise linear curve fitting approaches (e.g., [54]) can be used as well.

3.4.3 Circuit Allocation

We performed the circuit allocation for all 11 cities in the Abilene network, corres-

ponding to 110 IE pairs, by solving the convex optimization problem (e-network-opt) in

§3.3. For real-time-based circuit allocation, we use φ(T ) as defined in §3.3.2, and for

history-based circuit allocation, we use the PWL curve fitting approach shown above to

derive φ(T ), as discussed in §3.3.3. For α-fairness (cf. (3.6)), we assume α = 2. To solve

the convex optimization, we use CVXPY [32] with MOSEK [7].

3.4.4 Re-Routing over Circuits for Adaptation

Although both our real-time-based and history-based circuit allocation algorithms

aim to allocate circuit capacities so that actual traffic can be carried directly by the allocated

circuits, traffic fluctuations or unexpected traffic changes can lead to inadequate capacities

along direct circuits. One way to handle the excess traffic is to adaptively re-route the

excess traffic over circuits with spare capacity. Since our circuit allocation algorithms are
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Figure 3.3: When excess traffic occurs from SF to NY, we can re-route it using the
residual circuit capacity of the path through for example Chicago.

designed to create direct circuits between every IE-pairs, the logical network topology

becomes a fully-connected mesh.

Consider the example depicted in Fig. 3.3. Suppose the circuit capacity from SF

(San Francisco) to NY (New York) is 8 Gb/s, and suppose the circuit capacities from SF to

Chicago and Chicago to NY are both 4 Gb/s. Normally, we expect a circuit to have enough

capacity for its direct traffic. For example, in Fig. 3.3, given 2 Gb/s of traffic from Chicago

to NY, all of its traffic can be directly sent through the network using the circuit from

Chicago to NY. However, suppose we have a 10 Gb/s burst of traffic from SF to NY, then

there would be 2 Gb/s of excess traffic because the circuit capacity from SF to NY is only

8 Gb/s. When this occurs, an adaptive re-routing mechanism can be triggered to re-route

the 2 Gb/s of excess traffic over alternative circuit routes, for example through Chicago by

the utilizing the residual circuit capacity available along SF-Chicago and Chicago-NY.

As can be seen from this example, with the help of adaptive re-routing, we can

increase network throughput without the need to create new circuits on-the-fly. Although

this adaptive re-routing does rely on electronic routing at intermediate nodes, it is only
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used as a secondary mechanism to handle excess traffic. The majority of traffic is still

expected to be carried by the corresponding direct circuits. Therefore, the route processing

portion of a unified circuit/packet switch can remain simple.

In our experiments, we consider two re-routing methods. One is based on a variant

of the well-known backpressure-based re-routing algorithm [85] that guarantees optimal

re-routing. In the modified version of the backpressure-based re-routing algorithm, a unified

switch maintains a separate queue for packets for each destination, and it transmits packets

on the direct circuit as long as the circuit has sufficient capacity. Insufficient capacity is

detected when the queue of packets for the direct circuit exceeds some threshold Lmax.

When this occurs, packets are re-routed using the backpressure algorithm. The re-routing

is optimal in the sense that if a traffic pattern can be handled by re-routing over the logical

fully-meshed network of circuits, then the re-routing algorithm is guaranteed to succeed in

re-routing all traffic to their destinations. In §3.5.2, we refer to this re-routing approach as

“OptRR” for optimal re-routing.

Alternatively, we also consider a simple greedy re-routing algorithm that simply

re-routes the excess traffic over the outgoing circuit with the most residual capacity. Suppose

Tm` is the circuit capacity allocated to the circuit from the current node ` to node m, and

suppose µm` is the measured rate of traffic sent on the circuit from the current node ` to

node m in the current measurement interval. Then the amount of “residual capacity” on

the circuit from the current node ` to m is simply Tm` − µm`. A simple greedy algorithm is

just to re-route traffic to node m via the circuit to node m with the most residual capacity

rather than directly to destination k. This greedy approach only requires information

that can be measured locally, but it is not optimal. We include this re-routing method

in our experiments to show that even this simple approach is effective with our circuit

allocation methods. In §3.5.2, we refer to this re-routing approach as “GreedyRR” for

greedy re-routing.
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3.5 Experimental Results

In this section, we first evaluate the performance of our history-based circuit

allocation algorithm in terms of what fraction of the historical traffic patterns that the

allocated circuits can handle as well as the fraction of test traffic patterns that the allocated

circuits can handle. We then compare the performance of circuit-switching approaches

using our circuit allocation methods, namely the real-time-based and history-based circuit

allocation approaches, with a conventional packet-routing algorithm, OSPF [60] in §3.5.2.

We extend our circuit-switching approaches with adaptive re-routing in cases when the

circuit capacity is not enough, as discussed in §3.4.4. This re-routing approach is also

evaluated in §3.5.2. Our evaluations show that our circuit allocation algorithms can indeed

accommodate most of the actual traffic, and adaptive re-routing over the allocated circuits

can effectively accommodate excess traffic even under heavy traffic loads.

3.5.1 Evaluation of History-Based Circuit Allocation

Figure 3.4 shows the fractions of the data points whose traffic demands may be

accommodated by the optical circuit allocation solved by the convex optimization problem

solver for all 110 IE pairs. The achievable fopt on the Y-axis means the allocation Tk`

is no less than the fraction fopt of the traffic data points for IE pair (k, `). For example,

fopt = 0.9 for an IE pair means Tk` is greater or equal to 90% of the traffic data points for

that IE pair (k, `) at a given time, and fopt = 1 means Tk` can accommodate all of the

traffic data points for that IE pair. In particular, figure 3.4(a) shows the coverage of the

historical traffic patterns, and figure 3.4(b) shows the coverage of the test traffic patterns.

As can be seen from figure 3.4(a), the circuit configuration is able to accommodate

all historical traffic data points for more than two thirds of all 110 IE pairs. The smallest

fraction occurs at 0.5, and that is for only one flow. When the circuit configuration is
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Figure 3.4: Achievable utility for historical and test traffic demands
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Figure 3.5: Fraction of unhandled traffic for two test weeks
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applied to the two test weeks, figure 3.4(b) shows that this configuration can accommodate

all data points for more than 80% IE pairs.

Figure 3.4 only considers the traffic demands that are strictly lower than the optical

circuit bandwidth. If a traffic demand is slightly higher than the given circuit bandwidth,

the circuit allocation is considered to fail to accommodate that data point. As can be seen

from figure 3.4(b), the circuit allocation of some IE pairs fails to accommodate half of the

traffic demand data points. However, the actual unhandled traffic in this case may be

small. Therefore, figure 3.5 is used to show the amount of unhandled traffic for the test

weeks when our circuit allocation is used.

As can be seen from figure 3.5, our history-based circuit allocation can accommodate

all traffic demands for 90% IE pairs in the test weeks, and only less than 30% traffic from

the worst-case IE pair is unhandled by the allocated bandwidth.

3.5.2 Performance Evaluations

To evaluate the performance of our circuit allocation approach, we compare the

following:

• OSPF : This is conventional packet routing over the Abilene network in which the

routing paths are determined using the Open Shortest Path First (OSPF) protocol

[60], which is used for packet routing. The routing paths are based on Dijkstra’s

single shortest path algorithm. This conventional approach serves as a baseline for

our evaluations.

• RT : The plots labeled “RT” correspond to our real-time-based circuit allocation

algorithm for optical circuit-switching. In particular, we consider three cases. The

first case corresponds to circuit-switching without re-routing. Here, traffic is also

simply sent directly over a fully-meshed network in one logical hop, whose circuit

65



capacities are determined by the algorithm described in §3.3.2. This is labeled as

“RT-NoRR.” The other two cases correspond to the two methods of re-routing, as

discussed in §3.4.4. “RT-GreedyRR” corresponds to greedy re-routing based on

residual capacity, and “RT-OptRR” corresponds to optimal re-routing based on a

modified version of the backpressure algorithm for re-routing [85].

• HIST : The plots labeled “HIST” correspond to our history-based circuit allocation

for optical circuit-switching. “HIST-NoRR,” “HIST-GreedyRR,” and “HIST-OptRR”

correspond to the cases of no re-routing, greedy re-routing based on residual capacity,

and optimal re-routing based on the backpressure algorithm.

For each method, we simulated the network traffic during the two weeks from 06/19/2004

to 07/02/2004 at the same time of day (3:00-3:30pm on a Wednesday). This provides 12

traffic matrices for evaluation. We measured the drop rates, router hops, router loads, and

the percentage of packets being routed. The results presented are averaged over the 12

test cases. To demonstrate the performance of our algorithms under high traffic loads, we

normalized the traffic by scaling up the traffic loads until OSPF routing begins to drop

packets. That is, a normalized traffic load of 1.0 is the intensity of traffic that causes the

network to saturate when conventional packet switching with OSPF is used. To test the

robustness of our circuit allocation approaches, we further amplify the traffic intensity

beyond this saturation point to see how much more traffic our circuit allocation approaches

with re-routing can handle.

Figure 3.6 compares drop rates among real-time-based allocation (RT-NoRR,

RT-GreedyRR, and RT-OptRR), history-based allocation (HIST-NoRR, HIST-GreedyRR,

and HIST-OptRR), and OSPF. The suffixes NoRR, GreedyRR, and OptRR correspond

to no re-routing, greedy re-routing, and optimal re-routing, respectively, as discussed

in §3.4.4. The X-axis represents traffic loads which are normalized to the load where

OSPF begins to drop packets. As we can see, compared with OSPF, our “re-routing”
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Figure 3.6: Drop rate comparison.
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Figure 3.7: Average router hops.
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Figure 3.8: Average router load.
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Figure 3.9: Average percentage of packets routed.
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approaches (RT-GreedyRR, RT-OptRR and HIST-OptRR) can handle 50% more traffic

without dropping packets. Even with greedy re-routing, our history-based approach

(HIST-GreedyRR) can handle 33% more traffic without dropping packets. With “no

re-routing,” our history-based circuit allocation approach (HIST-NoRR) has a negligible

drop rate (0.00296) at the normalized load of 1.0 while OSPF has none, but HIST-NoRR

has a lower drop rate as traffic continues to scale. As expected, with “no re-routing,”

our real-time-based approach (RT-NoRR) achieves significantly better results than the

history-based approach (HIST-NoRR) because the circuit allocations are based on real-time

traffic measurements. Even without re-routing, our real-time-based approach (RT-NoRR)

can handle 33% more traffic than OSPF without dropping packets. The reason for the higher

throughput is because OSPF always route along the shortest path, whereas our circuits can

be configured across multiple paths, optimized to real-time traffic measurements. Although

the real-time-based circuit allocation approach performs better, both the real-time-based and

the history-based approaches are important, depending on whether or not the deployment

scenario allows for real-time measurements and frequent updates or not. The Internet, as

implemented today, does not have real-time measurements or allow for frequent dynamic

updates, but emerging software defined networking scenarios would provide for that. Our

optimization framework supports both settings.

Figure 3.7 shows the number of router hops a packet needs to go through until

it reaches its destination. With no re-routing, the real-time-based (RT-NoRR) and

history-based (HIST-NoRR) approaches are both always 1 hop over the direct optical circuit,

whereas OSPF routing averages 2.46 hops independent of load. With optimal re-routing,

both real-time-based (RT-OptRR) and history-based (HIST-OptRR) approaches require

very little re-routing for loads up to 1.5X. With greedy re-routing, the real-time-based

approach (RT-GreedyRR) also requires very little re-routing for loads up to 1.5X, whereas

the history-based approach (HIST-GreedyRR) requires very little re-routing for loads up to
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1.33X. As expected, these results show that the real-time-based approach is more accurate

than the history-based approach, but better re-routing can compensate for the difference.

At higher normalized loads, less re-routing is required when real-time-based allocation is

used together with optimal re-routing.

Figure 3.8 shows the average router load among real-time-based allocation (RT-NoRR,

RT-GreedyRR, and RT-OptRR), history-based allocation (HIST-NoRR, HIST-GreedyRR,

and HIST-OptRR), and OSPF. With “no re-routing” (RT-NoRR and HIST-NoRR), all

packets go over direct optical circuits and therefore these approaches have 0 electronic

router load. For OSPF, all packets are handled by electronic routers, so as expected, the

router load increases with traffic load. When optimal re-routing is employed with both the

real-time-based (RT-OptRR) and history-based (HIST-OptRR) approaches, we see that

most packets go over direct optical circuits until 1.33X traffic load; after that, the electronic

router load increases as more packets get re-routed. As with the average number of hops,

we see that the history-based approach (HIST-OptRR) requires a higher router load than

the real-time-based approach (RT-OptRR) when the normalized traffic load is increased to

1.67X. This is mostly due to the fact that when packets are re-routed, they go through a

high number of intermediate nodes (a higher number of hops). When greedy re-routing is

employed, router loads are comparable at 1.67X normalized loads for both real-time-based

(RT-GreedyRR) and history-based (HIST-GreedyRR) allocation approaches.

Finally, figure 3.9 shows the average percentage of packets that require routing. For

OSPF, 100% of the packets are routed. With “no re-routing” (RT-NoRR and HIST-NoRR),

none of the packets are routed since they all go over direct optical circuits. With “re-routing”

(RT-GreedyRR, RT-OptRR, HIST-GreedyRR, and HIST-OptRR), most packets go over

direct optical circuits until 1.33X traffic load (less than 10% of packet gets re-routed at this

load); after that, an increasing percentage of packets get re-routed. When packets have to

re-routed, the optimal re-routing approaches (RT-OptRR and HIST-OptRR) route a higher
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percentage of packets, but most of the time by a fewer a number of hops in comparison

with greedy re-routing (RT-GreedyRR and HIST-GreedyRR).

3.6 Additional Related Work

Previous approaches have been proposed for the allocation of circuits to handle

specific traffic matrices [13, 65, 79]. Our work is different in several ways. First, in the

history-based allocation setting, our formulation takes into consideration the statistical

daily traffic variations observed in past measurements and the probability of traffic demands

given their statistical distribution of occurrence in past measurements. In our formulation,

the allocated circuits do not necessarily provide sufficient circuit capacities for supporting all

the traffic matrices captured in the historical data sets. Instead, our problem is formulated

as a utility max-min fair circuit allocation problem that aims to maximize the acceptance

probability of the expected traffic demand by using the cumulative distribution function

over the historical data sets as the objective function. Our solution allocates all available

network resources across multiple paths to provide as much headroom as possible. Since

our solution does not rely on an online dynamic circuit creation mechanism, there is no

need to leave behind network resources for establishing new circuits.

Second, even in the case of our real-time-based allocation setting, our problem

formulation allows for the actual traffic in the next period to be different from the current

measurement period, and we fully allocate all network resources allow for some fluctuations

in traffic rates. This setting is formulated as a weighted max-min fair circuit allocation

problem. Our convex optimization approach makes it possible to solve both problems in a

unified framework.

There have also been prior work on weighted max-min fair allocation and utility

max-min fair allocation for bandwidth allocation problems, but they either only considered
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the single-path case [19, 68, 64] or provided approximate solutions [4, 22, 23] in the

multipath case based on a binary search of achievable utilities. Our approach in this

chapter is different in that the problems are solved as a single convex optimization problem,

including the modeling of historical traffic distributions as concave functions.

3.7 Conclusion

In this chapter, we considered circuit allocation problems for unified packet and

circuit switched networks. We proposed a novel convex optimization framework based on a

new destination-based multicommodity flow formulation for the allocation of circuits in

such unified networks. In particular, we consider two deployment settings, one based on

real-time traffic monitoring, and the other relying upon history-based traffic predictions. In

both cases, we formulate global network optimization objectives as concave functions that

capture the fair sharing of network capacity among competing traffic flows. The convexity

of our problem formulations ensures globally optimal solutions.
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Chapter 4

Strengthening the Positive Effect of

Viral Marketing

4.1 Introduction

The study of social network is booming in recent years thanks to the popularity of

large online social networking websites. People are interested in how the person-to-person

connections within a social network benefitting marketing strategies, and then proposed

viral marketing, which is based on the diffusion of innovations via the connections in a

social network. A key theoretical question in viral marketing is the “seeding” problem,

which studies how to optimally select a set of initial adopters. The application scenario

which the seeding problem comes from is as follows: Imagine that a firm would like to

market a product to a group of users on the social network, but the network is too big such

that it is impossible for the firm to target all the users. Therefore, the firm chooses the

most influential ones as the initial adopters, and starts an innovation cascade from them

using the person-to-person connections. Approaches of this problem is to model it as an

optimization problem that aims to maximize the number of users that can be reached by
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the cascade.

Although extensive works have been conducted in traditional influence maximization

problem, most of them agree that the benefit of doing viral marketing is purely increasing

in the number of users reached. In other words, it is commonly assumed that the users

touched by the cascade are always positive towards the products. However, numerous

research works in both marketing and online information dynamics have shown evidences

that more users being exposed to a product does not necessarily grant higher benefit. The

most influential example of such finding is Groupon Effect discovered by [18]. In this work

Byers et al. note that Groupon has some negative impact on average Yelp ratings, and they

provide some rationales for the phenomenon. One of the key reasons they argue is that

when using deal marketplace like Groupon, it attracts a huge amount of customers from

many portions of the population, including some groups that are less inclined to like the

product. In another example, Aizen et al. [3] investigate the online videos and other media,

and find that when some popular blog links to them, the rating drops discontinuously, since

more users are driven to the video item including many ones who may not be interested in

it. In [48], Kovcs and Sharkey et al. find a similar effect. They survey Goodreads - a book

sharing website, and check the books that win prestigious awards. They find that when a

book attracts more readers following the announcement, its average rating declines.

Evidences showing that exposing a product to different groups of users may harm the

benefit are also found by the studies in Marketing [14] [38] [44]. Berger and Heath in [14]

propose that for a consumer, if a product is seen as symbolic of his or her identity, then the

consumer often makes different choices from those of others, and even dislikes the product if

it is preferred by the majority. In [38], Hu and Van argue that the word-of-mouth effect for

a product is independent to the users. They also propose that when promoting products,

the viral marketing strategy that boosts the adoption among middle-class customers might

diminish the product popularity among higher-income customers.
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Take consideration of above effects collectively, different users in different groups

have different even opposite views to a product, and there exist some users in the network

who incline to dislike the product. Increasing the number of users being exposed to the

product is not always leading to higher benefit, since if the marketing cascade reaches the

users who tend to dislike the product, they will respond to it negatively, and these negative

effects may offset the positive gains brought by viral marketing and suffer the marketing

firm. The negative effects can come in different forms, like latent decline on brand loyalty

or explicit negative reviews on rating websites.

People may be concerned of how to identify the negative users in the network. This

can be achieved by many means. For example, from Amazon review history, by just taking

the average review points, we can easily identify the users who are more picky and tend

to give harsh reviews. Another more adoptive way is to randomly survey the users and

ask their opinions towards the product, and then use cluster algorithms like K-Means to

analyze everyone’s likelihood of giving bad feedback to the product. We may also take

communities into consideration, for instance, sport cars are less likely to be preferred among

the community of parents since they prefer more spacious and more solid vehicles to carry

their children; It is difficult for the gamers to give positive feedbacks to the light-weight

laptops since the gamers often emphasize the impressive gaming performance which is

lacked on light-weight laptops. In a word, the identification of negative users is feasible,

but it is not the focus of this chapter.

In our chapter, we study on how to integrate the potential positive and negative

user response to the marketing cascade into influence propagation model. Based on this

model, we consider how to maximize the actual benefit, which is the difference of the total

positive response and the total negative response. To be more specific, we make following

contribution.

• We modify the classic widely-used influence model - Independent Cascade (IC) model
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to reflect positive and negative responses. In our model, the users will have initial

positive/negative status to indicate their instinctive inclines to like the product. Once

being exposed to the cascade, the negative users bring negative impact in terms

of negative reviews etc., and they will not spread the cascade any longer. On the

contrary, the positive users will like the product and continue propagating the cascade.

• The problem we study is how to choose the initial adopters (seeds) in the network to

maximize the actually benefit, i.e., the difference of the total positive response and

the total negative response. We call our problem Strengthening the Positive Effect

(SPE) since it is apparently our goal.

• We check the objective function of SPE and find it is non-monotone and non-sub-

modular. What is more, we prove that SPE cannot be solved with any positive

guarantee unless P=NP. Since generally solving SPE with some guarantee is almost

impossible, we break our problem into some special cases. We first investigate the

unweighted and undirected network, and find an almost optimal algorithm for a special

case, and a (1 − c
p
1)-approximation for the general case. For general network, we

give a reasonable constraint and devise a
[
1− e−(1−cp)

]
1−ε
1+ε

-approximation algorithm.

Both c
p
1 and c

p are supermodular curvatures that can be computed polynomially.

• We have tested our solution on real-world social networks of different scales. We

verify that comparing with the heuristic, our solution not only provides traceable

guarantee, but also outperforms it in terms of running time.

4.2 Related Work

There are many works focusing on influence maximization problem. In [47], Kempe

et al. present two widely-used influence cascade models - Linear Threshold (LT) and
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Independence Cascade (IC) models. They prove that the influence function is monotone

and submodular under both models, which means greedy algorithm has good performance.

Since simple greedy proposed in [47] is time consuming, many followup work [50] [21]

[35] focus on enhancing the scalability of greedy solutions. In [15], Borgs et al. make

a breakthrough. They creatively discover the relation between a set’s influence and the

probability that a node uniformly chosen at random reaching a node in this set in the

graph’s transpose. A randomized quasi-linear time algorithm whose guarantee is (1−1/e−ε)

has been proposed, and this work opens the door to discovering scalable algorithms of

influence related problems on large scale networks. In [77] [76], Tang et al. further

optimized the parameters of [15]. Tang et al. in [45] propose a metaheuristic discrete bat

algorithm (DBA) based on the collective intelligence of bat population, they also devise

a probabilistic greedy-based local search strategy based on network topology to enhance

algorithm performance.

Some researchers notice that users in different social groups may have different

interests on a product, therefore propose the influence models that include the user

evaluation, and devise flexible pricing strategies for all individuals instead of just giving

free samples to a representative set. Models of this type are different from what we

pursue here. For example, Michael et al. in [46] present a canonical structure to price

with network effects, which is a set of consumers with different levels of willingness to

pay for a product. In [36] Hartline et al. study revenue maximization, and identify the

influence-and-exploit strategy: which is to initially give free item a chosen set of seeds,

and then extract revenue from the remaining users by giving them discounts. Arthur et

al. [8] consider offering cash-back to encourage a user to spread cascade and giving via

coupons or discounts to encourage a user to adopt the product. Lu et al. [53] extend the

LT model to incorporate the influence-and-exploit strategy, and show that the expected

profit function under their model is submodular but no longer monotone. In [92], Zhu et
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al. generalize the model proposed in [53]. The authors take both profit and influence into

consideration and design effective algorithms. In [63], Pham et al. study the Budgeted

Competitive Influence Maximization problem with both budget and time constraints. In

their model all competitors are conducting a similar strategy.

There are some works that directly consider negative and positive effects for a

marketing cascade propagating within the network [20] [89] [82] [91] [29] [2]. In [20], Chen

et al. propose a model where all users have a same chance p to turn negative when receiving

the marketing cascade. They prove that the total number of users turning positive is

monotone and submodular w.r.t. the number of seeds. Zhang et al. in [89] introduce a

parameter called opinion indicator to each user, this indicator keeps updating when the

cascade keeps propagating. In the last if the indicator exceeds a threshold then the user

becomes positive, otherwise it becomes negative. In [82], Wen et al. propose an analytical

model to present the temporal dynamics of spread such as the time people check newly

arrived messages or forward them. They found that people’s preference and the injection

time of the opposing information are critical to the propagation. Khomami et al. in

[29] propose a concept called the minimum positive influence dominating set (MPIDS).

The authors then prove that by properly choosing the parameters of the algorithm, the

probability of finding the MPIDS can be made as close to unity as possible. In [2], Abebe

et al. give a model where each node has an initial criticality parameter θi which decides

if the node is positive or negative to the product. They consider how to choose seeds to

maximize the payoff which is the difference of the number of positive nodes minus the

number of negative nodes, and give a polynomial solution for the case where there is no

limit on the number of seeds.
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4.3 Preliminary

4.3.1 Independent Cascade (IC) model

In IC model, the social network is presented as a weighted graph (V,E, ωE), where

the edge weights in ωE are in interval (0, 1]. In the beginning there is a set of nodes which

are called the seeds. At time 0, only the seeds are active. At time t, for each node u that

newly becomes active at time t− 1, for each of u’s out-edges (u, v), u will try to activate v

with the success probability wuv where wuv is the weight of (u, v). Once a node is activated

it always keeps active. The cascade terminates until there are no new nodes being activated.

4.3.2 Monotonicity, submodularity, and supermodularity of a set

function

Suppose f is a set function on a base set V , then f maps from 2V to R, where 2V is the

power set of V and R is the set of real numbers. There are three basic properties to describe

set functions: If for any two sets A ⊆ B, f(A) ≤ f(B), then f is monotone increasing;

If for any sets A ⊆ B ⊆ V and element v ∈ V \B, f(A∪{v})− f(A) ≥ f(B∪{v})− f(B),

then f is submodular; If −f is submodular, then f is supermodular.

4.3.3 Supermodular curvatures

Suppose that h is a supermodular set function on base V , we define the supermodular

curvature as

c
p = 1−min

v∈V

h(v)

h(V )− h(V \ v)
.
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4.3.4 Maximizing Monotone Submodular+Supermodular

Functions

Theorem 4.3.1. If f(A) is a set function on base V , and f can be expressed as fb(A)+fp(A)

where fb is submodular and fp is supermodular, then for following problem:

max
A⊆V,|A|≤k

f(A) := fb(A) + fp(A), (4.1)

the greedy algorithm yields multiplicative guarantee of [1 − e−(1−cp)]. If fb = 0, i.e., f is

purely monotone supermodular, then greedy yields (1− c
p), where c

p is the supermodular

curvature of fp.

4.4 Problem Statement

4.4.1 Diffusion Model

We denote the original social network as a graph (V,E, ωE), where V is the set of

nodes, E is the set of edges, and ωE is the set of edge weights that are in interval (0, 1].

Assume there is a set of negative nodes N ∈ V who incline to dislike the product. We call N

the Negative Set, and u ∈ N is called the negative node. The classic IC model is used

as the influence diffusion model, with the exception that the nodes in N will not diffuse

the cascade to their neighbors since they dislike the product. Given a seed set S, for each

node v ∈ V , we use p(S, v) to denote the probability that v turns active to the influence

originated from S, and we replace p(v) for p(S, v) when S is clearly stated in the context.

Definition 4.4.1 (Negative Effect). The negative effect of a seed set S is defined as

π−(S) =
∑

v∈N p(v).
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Definition 4.4.2 (Positive Effect). The positive effect of a seed set S is defined as π+(S) =∑
v∈V \N p(v).

Definition 4.4.3 (Strengthening the Positive Effect Problem (SPE)). Given a social

graph G, a negative set N, and the cost k, to find the seed set |S| = k, such that the benefit

of S:

π(S) = π+(S)− π−(S) (4.2)

is maximized.

The SPE problem is clearly NP-hard. By setting N = ∅, SPE becomes the classic

IC influence maximization (IM) problem, which is NP-hard proved in [47]. In fact,

SPE is harder than IM problems in IC model or any other regular diffusion models. Its

objective function is non-monotone and non-submodular in the simplest undirected and

unweighted graphs, which means traditional algorithm analysis techniques cannot be used

to judge the algorithm’s performance even on simple graphs.

Proposition 4.4.1. The objective function π(S) of SPE is non-monotone, non-submodular,

and non-supermodular.

We will prove Proposition 4.4.1 in the Appendix. What is more, it can be shown

that SPE is much harder than many IM problems that can be resolved within factor of

1− 1/e, since no non-trivial approximation algorithm is possible to be obtained.

Theorem 4.4.1. SPE cannot be approximately solved to any positive factor in polynomial

time.

We use Alg. 1 - GreedMax as one the basic techniques when solving SPE. GreedMax

applies to any set function f .

83



Algorithm 1: GreedMax
input: a set function f and a cost k;
output: a set Ŝ.

1: Ŝ ← ∅, R← V ;
2: for 1 ≤ i ≤ k do
3: v ← arg maxv∈R f({v} ∪ Ŝ)− f(Ŝ);
4: Ŝ ← {v} ∪ Ŝ;
5: R← R \ v;
6: end for
7: return Ŝ.

4.5 Unweighted Undirected Graph

In this section we will try to solve the SPE problem on a relatively ‘simple’ class

of social graphs - unweighted and undirected graphs. Unlike IM problem under IC model

which is trivial on unweighted and undirected graphs, there is no solution with positive

guarantee for SPE problem even on this kind of graphs (please refer to the proof of Theorem

4.4.1 in Appendix).

Although it seems very unlikely for us to accurately solve SPE in acceptable amount

of time, we have two observations to help us devise efficient algorithms:

Observation 1: For any node v /∈ N, if there exists a path from the seed set S to v and

all nodes on this path are from V \ N, then v will be positively activated.

Observation 2: For any node u ∈ N, if all its neighbors are from N, then deleting u from

the graph has no effect on the original SPE problem.

Above observations inspire us for Alg. 2 - Prune, which is used to simplify the

original graph G. First, if we delete all nodes in N and their associated edges in G and a

node u still reaches v in the new graph, then v will definitely be activated by u in G, and

vice versa. Further, after deleting N, the new graph may not be connected anymore, and for

all the nodes within each connected component, they are all mutually reachable. In other

words, the nodes in each connected component are symmetric, choosing any single node as a

seed is enough to activate the whole connected component positively. Meanwhile, any node
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cannot positively activate the nodes in other components, since there is no path consisting

entirely of the nodes in V \ N. Second, we only add back the nodes in N that connect

to some node in V \ N on the original graph G, since if a node in N has no neighbors in

V \ N, then it will never be activated and has nothing to do with SPE ’s objective function.

We define N′ as the set of all the nodes adding back by steps 6 to 9 of Alg. 2. Formally,

N′ = {v ∈ N|∃u ∈ V \ N, (u, v) ∈ E}.

Algorithm 2: Prune
input: G, a unweighted undirected graph, and N, a negative set;
output: G′, a node weighted undirected graph.

1: Delete all nodes in N and their associated edges;
2: Find the connected components C1, C2, · · · , Ct of the remaining graph;
3: U ′ ← ∅, N ′ ← ∅;
4: for 1 ≤ i ≤ t do
5: Contract Ci into a single node u′i with weight wu′i = |Ci|,
6: for v ∈ N do
7: if v was connected to any node u ∈ Ci on G
8: Add an edge between u′i and v, N′ ← N′ ∪ {v};
9: end if

10: end for
11: end for
12: U ′ ← ∪ti=1{u′i}, V ′ ← U ′ ∪ N′;
13: ωV ′ ← the weights of nodes in V ′, wv = 1 for all v ∈ N′;
14: E′ ← the set of all remaining edges;
15: return G′ = {V ′, ωV ′ , E′}.

Since all nodes within a single connected component are symmetric, we further

contract each component into a single node with weight, and this weight is the size of the

component. We further assign the weight 1 to the remaining nodes in N’, then we get the

Pruned Graph.

Definition 4.5.1 (Pruned Graph). Given a graph G = (V,E) and a negative set N, the

resulting node weighted (bipartite) graph G′ = (V ′, ωV ′ , E
′) after applying Prune algorithm

on G is called the Pruned Graph of G.

Note: The pruned graph G′ is bipartite.
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To see this, first we check the nodes u′i in U ′ that coming from contracting Ci,

obviously there is no edge between u′is. Second we check the nodes v ∈ N′, there is no edge

between them since we only add back the edges between v and the nodes in U ′. Therefore,

G′ is bipartite.

On the pruned graph, for u ∈ U ′, define N′(u) = {v ∈ N′|v is connected to u}. The

SPE problem is equivalent to: To find a k-size S ⊆ U ′, such that:

π(S) =
∑
u∈S

wu − | ∪u∈S N′(u)| (4.3)

is maximized.

Proposition 4.5.1. The objective function π(S) of SPE on pruned graph G′ is supermodular.

Although SPE problem cannot be approximately solved to any positive ratio on

unweighted and undirected graphs, it is still possible and inspiring to get some performance

bounds when the graphs satisfy some certain constrains. We use S∗ to denote the optimal

solution. The following theorem tells us that the benefit obtained by GreedMax is only

(k − 1) smaller than the optimal if the pruned graph is a forest. This is a small margin,

since the cost k is often very tiny comparing to the size of the network and the benefit π.

Theorem 4.5.1. If the pruned graph G′ is a forest, then GreedMax is guaranteed to obtain

a solution Ŝ such that

π(Ŝ) ≥ π(S∗)− (k − 1).

The bound is tight.

Comparing with theorem 4.5.1, theorem 4.5.2 applies to more graphs since its

constraint is more relaxed. If the negative set N is not too large nor concentrated too much,

then theorem 4.5.2 is very likely to apply.
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Theorem 4.5.2. If ∀u ∈ U ′, wu ≥ |N′(u)|, then GreedMax is guaranteed to obtain a

solution Ŝ such that

π(Ŝ) ≥ (1− c
p
1)π(S∗),

where c
p
1 is the supermodular curvature of π(S) in (4.3).

4.6 General Weighted Directed Graphs

After discussing how to solve SPE on unweighted and undirected graphs, in this

section we investigate SPE on general (edge) weighted and directed graphs.

In fact, SPE on general graphs is tough. An intuitive solution would be to use

Monte Carlo simulation to estimate π(S), and call GreedMax using this estimation as

the input f . This method applies to any general graph. However, it works slowly and its

performance is impossible to analyze since Monte Carlo simulation is hard to trace.

We would like to design some scalable algorithm for SPE, and if possible, the

algorithm with bound is greatly preferred. However, according to Theorem 4.4.1, there is

no algorithm with positive guarantee. To make things easier, we consider giving the SPE a

constraint, which is |N| ≤ k − 1. The reason why we make this constraint is three-fold: 1)

The negative set N is considered to be the stubborn negative users in the network, and

when we start doing viral marketing, not many users are aware of the product. Therefore

it is reasonable to assume that not many nodes are firmly against it. 2) The cost k is

decided by the viral marketing executor, and the executor can adjust it according to his or

her estimation of |N|. 3) Under this constraint, it is obvious that for any seed set S that

|S| = k, the benefit π(S) ≥ 1, and this is a nice property that we can use to design scalable

algorithms.
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4.6.1 The restricted SPE where |N| ≤ k − 1

We will design a randomized algorithm for the restricted SPE discussed above, and

our idea comes from the concept called reverse reachable set which is initiated in [15]. In

SPE, in order to investigate the existence of negative nodes more accurately, we modify

reverse reachable set and introduce the idea called positive and negative reverse reachable

sets.

Definition 4.6.1 (Positive and Negative Reverse Reachable Sets). A Reverse Reachable

(RR) set for a node v ∈ V is generated by first sampling a graph h from the triggering

model, and then taking the set of nodes in h that can reach v. If v /∈ N, then this is a

positive RR set, denoted by RR+, otherwise it is a negative RR set, denoted by RR−.

Alg. 3 - RR Set Sampling (RRS) is used to randomly generate a RR+ or RR− set.

This sampling algorithm is important because we want the sets to be truly ‘random’, and

step 1 guarantees it. Note that steps 4 and 6 of Alg. 3 is the triggering process of IC model.

Algorithm 3: RRS (RR Set Sampling)

input: G, a general edge weighted graph, and N, a negative set;
output: H, a set of nodes.

1: Randomly choose a node u with probability 1
n , H ← H ∪ {u};

2: do
3: Pick a unchecked node u ∈ H;
4: for e = (v, u) that connected to u do
5: if v is unchecked then
6: Add v to H randomly with probability we;
7: end if
8: Mark u as checked ;
9: end for

10: while H changes;
11: if u ∈ N then return H as a RR− set;
12: else return H as a RR+ set;
13: end if

RR− sets help us to identify the nodes which are highly possible to activate the
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negative nodes, and we should avoid these nodes that frequently appear in RR− sets.

Meanwhile, the nodes frequently appearing in RR+ sets have a good potential to bring

positive effect. To quantify the idea, denote H = H+ ∪ H− the superset of all RR sets

generated, where H+ and H− are the supersets of all RR+ sets and RR− sets respectively.

Suppose H = {H1, H2, · · · , Hρ}, then we define a random variable xi ∈ {+1, 0,−1}, 1 ≤

i ≤ ρ. For a given node set S, if S ∩Hi = ∅ then xi = 0, if S ∩Hi 6= ∅ and Hi ∈ H+ then

xi = +1, else if S ∩Hi 6= ∅ and Hi ∈ H− then xi = −1.

Based on the definition of xi, for the set S and the superset H of ρ generated RR

sets, we denote FH+(S) as the probability that S intersects H+, FH−(S) as the probability

that S intersects H−, and FH(S) as the difference of FH+(S) subtracting with FH−(S), i.e.,

FH(S) = FH+(S)− FH−(S)

=
|{H ∈ H+|H ∩ S 6= ∅}|

|H+|
− |{H ∈ H

−|H ∩ S 6= ∅}|
|H−|

,

then

FH(S) =
1

ρ
·

ρ∑
i=1

xi. (4.5)

Lemma 4.6.1. For a set S ⊆ V , and any superset H of RR sets generating by Alg. 3,

E [FH(S)] =
π(S)

n
.

Note that FH(S) is the statistic we calculate from a randomly generated superset

H, and it is easy to think that the more sample RR sets we have in H, the closer our

calculated FH(S) is to its expectation. However, generating more sample RR sets leads
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to the higher algorithmic time complexity, and following lemma tells us that how many

sample RR sets are required for a reasonable guarantee.

Lemma 4.6.2. For ε, δ ∈ (0, 1), let

ρ′ =
2n · ln(1/δ)

ε2
, (4.6)

then on a superset H containing more than ρ′ RR sets, for any k-size set S, each of

following inequalities stands with at least (1− δ) probability:

n · FH(S) ≤ (1 + ε) · π(S),

(1− ε) · π(S) ≤ n · FH(S).

Lemma 4.6.3. For ε, δ ∈ (0, 1), let

ρ =
2n · (ln 2 + ln(1/δ))

ε2
. (4.7)

Suppose the superset H contains more than ρ RR sets. If the function FH(S) is monotone

increasing, then Alg. 1 returns a (1− e−(1−cp))1−ε
1+ε

solution with 1− δ probability, where c
p

is the supermodular curvature of −FH−(S).

Algorithm 4: BM (Benefit Maximization)

input: G,N, and k, the number of seeds;
output: a set containing k seeds.

1: while |H| ≤ ρ do
// ρ is defined in (4.7)

2: H ← H∪ RRS(G);
3: end while
4: return GreedMax(FH, k).

Note that ρ in (4.7) is a constant that only depends on n and the error parameters
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δ and ε. Denote S∗ the optimal seed set, and OPT the benefit of S∗, in many randomized

algorithms for viral marketing, if ρ is the number of RR sets needed then ρ is often related to

the OPT. However, in SPE we can no longer associate ρ with OPT, since the performance

ratio of GreedMax is now 1− e−(1−cp), and this is not a constant. For the resulting set S,

we have no fixed guarantee of how close π(S) of the solution S is to OPT, and the number

of RR sets that needed to approximate π(S) is actually related to π(S). Therefore OPT

is not sufficient to guarantee the performance bound. We can only use the fact which is

π(S) ≥ 1 for any k-size set S to compute the minimum number of RR sets. Following

summative theorem gives the guarantee for our designed algorithms.

Theorem 4.6.1. For given error ε, δ ∈ (0, 1), Alg. 4 (BM) gives Problem SPE a solution

Ŝ such that π(Ŝ) ≥
[
1− e−(1−cp)

]
1−ε
1+ε
· π(S∗) with probability at least 1− δ if |N| ≤ k − 1

and FH is monotone increasing, where c
p is the supermodular curvature of −FH− . Alg. 4

runs in O(nm · ln 1
δ
· ε−2) expected time.

4.7 Experiments

Datasets. We select three datasets whose sizes are from thousands to hundreds

of millions edges: (Arxiv) GRQC (General Relativity and Quantum Cosmology) [51] is a

citation network, Epinions [66] and Orkut [84] are online social networks. Epinions.com

was a general consumer review site. At Epinions, visitors can read new and old reviews

about a variety of items which can help them to decide on a purchase. Orkut, on the other

hand, was a social networking website. The service was designed to help users meet new

and old friends and maintain existing relationships. Table 4.1 presents the statistics of our

employed datasets. It can be seen that Epinions has over 130K nodes and 840K edges,

while Orkut has over 3M nodes and 110M edges.

Generating propagation probabilities. We need to assign each edge a weight
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Table 4.1: Dataset Statistics

GRQC Epinions Orkut

#Nodes 5K 132K 3M

#Edges 29K 841K 117M

Avg. deg. 5.5 13.4 37.8

as the influence propagation probability. In the case of general graph, we use two methods

to generate the propagation probabilities: 1) Weighted Cascade (WC) model, in which

the probability wuv of edge (u, v) equals 1/d(v), where d(v) is the in-degree of v; 2)

Trivalency (Tri) model, in which the probability for each edge is uniformly at random

chosen from the set {0.1, 0.01, 0.001}. Both above methods are classic ways to determine

the propagation probabilities adopted in many studies like [47], [21] etc.

Other Parameters. There are other parameters that play important roles in our

simulation. One of them is N, the number of negative users. In the case of unweighted and

undirected graph, we alway set |N| = 100. In the case of general graph, we set |N| = k − 1,

where k is the number of seeds to be identified. When testing Alg. 4, we set the error

bounds ε = 0.8 and δ = 1
lnn

.

Table 4.2: Running Time Comparison

GRQC Epinions Orkut

BM, k = 10, Tri 0.12m 61m 341m

MC, k = 10, Tri 43m 511m N/A

BM, k = 10, WC 0.14m 71m 278m

MC, k = 10, WC 51m 723m N/A

Result Analysis. Before we explain the experimental results, note that for each

figure in Figures 4.1-4.3 and 4.4-4.6, the horizontal axis is k, the number of seeds, and the

vertical axis is the running time or benefit (indicated by its caption).

Figures 4.1-4.3 plot BM ’s performance on unweighted and undirected graphs. It
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can be seen that the benefit a single seed mines is not too far away from that of tens of

seeds. To be more specific, the benefit a single seed mines on GRQC achieves 99% of

that 50 seeds mine on the same network. On Epinions, a single seed mines almost 99.8%

benefit that 50 seeds mine, while on Orkut, a single seed achieves 99.8% benefit that 50

seeds mine and 2 seeds achieves 99.99% benefit that 50 seeds mine. The running time,

however, increases faster when we increase the number of seeds. To determine a single seed

it costs 0.02 minutes while it costs more than 0.05 minutes on GRQC. On Epinions, it

costs 30 minutes to identify a seed while it costs 31 minutes to identify 50 seeds. It costs

130 minutes to determine a seed and 132.6 minutes to determine 50 seeds on Orkut. We

also test our algorithm extensively on general graphs. We use BM to identify up to 50

seeds on general graphs, and the results are plotted in Fig. 4.4-4.6. BM only determines

the top seeds, but it does not need or give the actual benefit. In order to test the benefit

as well, we use Alg. 5 shown in the end of the Appendix. Our algorithm BM determines

the top seeds on graphs containing hundreds of millions edges within several hours. It can

be seen that on general graphs, under WC model, comparing with unit graphs, increasing

the number of seeds raises the benefit more evidently. The benefit a single seed mines on

GRQC achieves 56% of that 50 seeds mine on the same network. On Epinions, a single

seed mines almost 15% benefit that 50 seeds mine, while on Orkut, a single seed achieves

4% benefit that 50 seeds mine. Note that there is currently no good heuristic that works

for SPE besides Monte Carlo (MC). Therefore, we compare BM with MC on the running

time to identify k = 10 seeds and plot the result in table 4.2. Note that it takes too long

for MC to find the seeds on Orkut dataset and we put N/A as the running time. We didn’t

compare the benefit since the MC took too much time when we set k greater than 10. At

last we check the curvature c
p on different datasets, and the result is plotted in Table 4.3.

It can be seen that the larger the dataset is, the smaller the curvature is, which means the

algorithm’s theoretical performance guarantee is better.
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Table 4.3: Curvature

GRQC Epinions Orkut

Unweighted undirected graph 0.98 0.82 0.37

General graph 0.99 0.98 0.98

4.8 Conclusion

Many studies confirm that there always exist some users in the network who tend to

be negative to the product, therefore the traditional viral marketing strategy of exposing a

product to as many users in the network as possible may not always bring the best outcome.

To consider this issue, we study the optimization problem called Strengthening the Positive

Effect (SPE).

The objective function of SPE is non-monotone and non-submodular, and cannot

be solved approximately within any positive guarantee. We further investigate SPE in

depth. When the social network is unweighted and undirected, we discover that the almost

optimal polynomial solution exists on a special case, and also find another approximate

result for a more general case. When the network is general with edge weights and edge

directions, we set a reasonable constraint and also design an approximate algorithm. Our

algorithms are tested on real-world datasets and their effectiveness is testified.
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Chapter 5

Conclusion

In this dissertation, we have demonstrated several new approaches for network

performance improvements to combat relentless growth in Internet traffic. In Chapter

2, we have proposed a series of new backpressure-based routing algorithms by means

of incremental expansion of routing choices as needed for packet switching network. In

Chapter 3, we have proposed a novel convex optimization framework based on a new

destination-based multicommodity flow formulation for the allocation of circuits in unified

packet and circuit switched networks. Finally, in Chapter 4, we have presented a new

approach to the influence spreading optimization problem for large social networks that

considers the negative impact of negative users.
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Chapter 6

Appendix

A.1 Proof for Chapter 2

In this section, we use fluid models to prove that the L-BP, A-BP, O-BP and E-BP

algorithms are all throughput optimal.

A.1.1 Modeling and Assumptions

At each timeslot, each node needs to make a schedule to transmit data in the network.

Let S be the set of all possible schedules. Each schedule β = (β
(c)
ab : a, b, c = 1, . . . , N) ∈ S

is a vector in ZN×N×N , where β
(c)
ab gives the amount of commodity c data sent from node

a to node b via link (a, b) under schedule β. It is assumed that β
(c)
cn = 0 for all β ∈ S,

c = 1, . . . , N and n = 1, . . . , N . It is also assumed that S is monotone in the following

sense: if β ∈ ZN×N×N and there exists β′ ∈ S such that β ≤ β′, then β ∈ S. This is

because if β′ is a valid schedule and we decrease the amount of data sent in some of the

links, the resulted schedule must also be a valid one.

We define S(t) ⊂ S as the set of valid schedules given the scheduling strategy and

the systems status at timeslot t. We assume that S(t) maintains the monotonicity of S,
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i.e., β ∈ S(t) if there exists β′ ∈ S(t) such that β ≤ β′. A necessary constraint on S(t) is

that we must have

N∑
b=1

β
(c)
nb ≤ Q(c)

n (t) (A.1)

for all β ∈ S(t) and n, c = 1, . . . , N . For each schedule β ∈ S, we define a “collapsed”

schedule γ(β) = (γ
(c)
n (β) : n, c = 1, . . . , N) ∈ ZN×N where γ

(c)
n (β) =

∑N
b=1 β

(c)
nb −

∑N
a=1 β

(c)
an

is the speed that schedule β empties the backlog in queue Q
(c)
n . Let ΓS ⊂ ZN×N be the set

of all possible collapsed schedules given S. Let < ΓS > be the convex hull of ΓS . Assume

each link (a, b), a, b = 1, . . . , N , has a finite maximal transmission speed, i.e., ∃ R ≥ 0 such

that β
(c)
ab ≤ R for all β ∈ S and a, b, c = 1, . . . , N . Then both S and ΓS are finite sets.

To analyze the stability of our schemes, we first define a family of generalized

max-weighted scheduling schemes as follows. Define the weight W (β,Q(t)) of schedule β

given queue length Q(t) as

W (β,Q(t)) ,
N∑
a=1

N∑
b=1

N∑
c=1

β
(c)
ab [Q(c)

a (t)−Q(c)
b (t)]

At each timeslot, a schedule β ∈ S that solves the following optimization problem will be

selected for activation.

max
β

W (β,Q(t))

s.t. β ∈ S(t)

The baseline (original) backpressure scheme, our modified route-expanding and semi-oblivious

BP schemes all belong to this family of generalized max-weighted scheduling schemes. The

only difference among these schemes is the definition of the valid schedule set S(t) at each

timeslot.
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Let SBP (t), SL(t), SA(t), SO(t), SE(t) be the set of valid schedules at timeslot t

for the baseline backpressure policy, the L-BP policy, the A-BP policy, the O-BP policy

and the E-BP policy respectively.

We have

SBP (t) =

{
β ∈ S

∣∣∣∣ N∑
b=1

β
(c)
nb ≤ Q(c)

n (t),∀n, c = 1, . . . , N

}

SL(t) ⊆ SBP (t)

SA(t) ⊆ SBP (t)

SO(t) ⊆ SBP (t)

SE(t) ⊆ SBP (t)

SL(t) ⊇
{
β ∈ SBP (t)

∣∣∣ β(c)
nb = 0 if Q(c)

n (t) < Lmax,

n, b, c = 1, . . . , N

}
(A.2)

SA(t) ⊇
{
β ∈ SBP (t)

∣∣∣ β(c)
nb = 0 if E(c)

n (t) < Amax,

n, b, c = 1, . . . , N

}
(A.3)

SO(t) ⊇
{
β ∈ SBP (t)

∣∣∣ β(c)
nb = 0 if Z(j)

n (t) < Hmax,

n, b, c = 1, . . . , N, j = 1, . . . ,Mn

}
(A.4)

SE(t) ⊇
{
β ∈ SBP (t)

∣∣∣ β(c)
nb = 0 if Z(j)

n (t) < Hmax,

n, b, c = 1, . . . , N, j = 1, . . . ,Mn

}
(A.5)

In (A.3), E
(c)
n (t) represents the age of the head packet at time t, which is the number

of timeslots that the head packet has waited in Q
(c)
n . In (A.4) and (A.5), Mn is the number

of nodes neighbor to node n.

Let Tβ(t), β ∈ S, be the cumulative number of time slots that schedule β was
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employed by timeslot t. From (A.1) , we have

D
(c)
ab (t) =

∑
β∈S

t∑
`=1

β
(c)
ab · (Tβ(`)− Tβ(`− 1)) (A.6)

To formulate the fluid model, we extend the above discrete time functions to the

continuous time domain. Specifically, for t ∈ [0,+∞), we define

A(c)
n (t) = A(c)

n (btc) n, c = 1, . . . , N

Q(c)
n (t) = Q(c)

n (btc) n, c = 1, . . . , N

D
(c)
ab (t) = D

(c)
ab (btc) + (t− btc)(D(c)

ab (dte)−D(c)
ab (btc)),

a, b, c = 1, . . . , N

Tβ(t) = Tβ(btc) + (t− btc)(Tβ(dte)− Tβ(btc)) β ∈ S

where btc is the largest integer that is smaller than or equal to t and dte is the smallest

integer that is larger than or equal to t.

Assume the arrival process A(t) satisfies a strong law of large numbers (SLLN),

i.e., there exists a constant arrival rate matrix λ = (λ
(c)
n : n, c = 1, . . . , N), such that, with

probability one,

lim
t→∞

A
(c)
n (t)

t
= λ(c)n ∀ n, c = 1, . . . , N (A.7)

Without loss of generality, we assume that λ
(c)
c = 0 for all c = 1, . . . , N for simplicity.
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A.1.2 Basic Fluid Model Equations

We now investigate the stochastic process (Q(t), D(t), T (t)), where

Q(t) ,
{
Q(c)
n (t)

∣∣n, c = 1, 2, . . . , N
}

D(t) ,
{
D

(c)
ab (t)

∣∣ a, b, c = 1, 2, . . . , N
}

T (t) ,
{
Tβ(t)

∣∣ β ∈ S}
Let (Ω,F ,P) be the probability space that this stochastic process is defined on, where

Ω is the sample space, F is a σ-field on Ω, and P is the probability measure on (Ω,F).

We shall sometimes use the notations Q(·, ω), D(·, ω) and T (·, ω) to explicitly denote the

dependency on the sample path ω ∈ Ω.

Now, for each r > 0, we define fluid scaled processes

(
Q̂r(t, ω), D̂r(t, ω), T̂ r(t, ω)

)
,

1

r

(
Q(rt, ω), D(rt, ω), T (rt, ω)

)

Proposition A.1.2.1 (Fluid Model). For each sample path ω ∈ Ω satisfying (A.7) and

any sequence {rn} with rn →∞, there exists a subsequence {rnk} and continuous functions

(Q̂, D̂, T̂ ) with Q̂(0) = 0, such that

(
Q̂rnk (·, ω),D̂rnk (·, ω), T̂ rnk (·, ω)

)
−→

(
Q̂, D̂, T̂

)
u.o.c as k →∞ (A.8)

where the convergence is uniform on compact sets (u.o.c). The three-tuple (Q̂, D̂, T̂ ) is said

to be a fluid limit path of the system. It satisfies the following fluid model equations

Q̂(c)
n (t) = λ(c)n t+

N∑
a=1

D̂(c)
an (t)−

N∑
b=1

D̂
(c)
nb (t)

n, c = 1, . . . , N and n 6= c (A.9)
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Q̂(c)
c (t) = 0 c = 1, . . . , N (A.10)

D̂
(c)
ab (t) =

∑
β∈S

β
(c)
ab T̂β(t) a, b, c = 1, . . . , N (A.11)

∑
β∈S

T̂β(t) = t (A.12)

Q̂(c)
n (t) ≥ 0 n, c = 1, . . . , N

T̂β(0) = 0, T̂β(·) is non-decreasing β ∈ S

T̂β(t)− T̂β(s) ≤ t− s for 0 ≤ s < t β ∈ S

The proof of Proposition 1 is somewhat standard. We refer the reader to [26].

A.1.3 Main Results

We first give the formal definition of throughput optimilities.

Definition A.1.3.1 (Rate Stability). We say the system is rate stable, if with probability

one,

lim
t→∞

∑N
n=1D

(c)
nc (t)

t
=

N∑
n=1

λ(c)n c = 1, . . . , N (A.13)

for any arrival process satisfying (A.7).

Note that the left-hand-side of (A.13) is actually the long-run average rate of

commodity c packets that depart from the network, while the right-hand-side is the

long-run average rate of commodity c packets that arrive to the network. In other words,

the system is guaranteed to achieve 100% throughput whenever it is rate stable.

Definition A.1.3.2 (Throughput Optimal). We say an arrival process A(t) is admissible

if its arrival rate matrix λ belongs to < ΓS >. The system is said to be throughput optimal

if it is rate stable under any admissible arrival process.
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The main results of this section are stated as follows.

Theorem A.1.3.1. The system is throughput optimal when working under the L-BP policy.

Theorem A.1.3.2. The system is throughput optimal when working under the A-BP policy.

Theorem A.1.3.3. The system is throughput optimal when working under the O-BP or

E-BP policy.

We will give the proof of these results using fluid model in the rest of this section.

More specifically, we’ll first prove that their fluid model is weakly stable as defined in

Definition A.1.3.3 and the stability of the original system is then guaranteed by Proposition

A.1.3.1. The detailed proof of Proposition A.1.3.1 is provided in Appendix A.1.3.

Definition A.1.3.3 (Weak Fluid Stability). The fluid model is said to be weakly stable if

for each fluid limit path with Q̂(0) = 0 we have Q̂(t) = 0 for all t ≥ 0.

Proposition A.1.3.1. For a given arrival rate matrix λ, the system is rate stable if the

corresponding fluid model is weakly stable.

Proof of Proposition A.1.3.1

Proof. From our assumptions in Section A.1.1, we know that β
(c)
cn = 0 for all β ∈ S and

n, c = 1, . . . , N . Then by (A.11), we know that D̂
(c)
cn (t) = 0 for all n, c = 1, . . . , N . This

equality will be used in justifying Equation (A.14) below.

Denote N = {1, . . . , N} as the set of nodes in the network. From (A.9) and (A.10),

for each commodity c, we have

N∑
n=1

Q̂(c)
n (t) =

∑
n∈N\{c}

Q̂(c)
n (t)

=
∑

n∈N\{c}

(
λ(c)n t+

N∑
a=1

D̂(c)
an (t)−

N∑
b=1

D̂
(c)
nb (t)

)
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=
∑

n∈N\{c}

λ(c)n t+
∑

n∈N\{c}

N∑
a=1

D̂(c)
an (t)

−
∑

n∈N\{c}

N∑
b=1

D̂
(c)
nb (t)

=
N∑
n=1

λ(c)n t+
∑

n∈N\{c}

N∑
a=1

D̂(c)
an (t)−

N∑
n=1

N∑
b=1

D̂
(c)
nb (t) (A.14)

=
N∑
n=1

λ(c)n t−
N∑
c=1

D̂(c)
nc (t) (A.15)

Equation (A.14) stands because (1) λ
(c)
c = 0 for c = 1, . . . , N from our assumptions in in

Section A.1.1; and (2) D̂
(c)
cn (t) = 0 for n, c = 1, . . . , N .

If the fluid model is weakly stable, by Definition A.1.3.3, we know that
∑N

n=1 Q̂
(c)
n (t) =

0 for all t ≥ 0. Then by (A.15), we have

N∑
c=1

D̂(c)
nc (t) =

N∑
n=1

λ(c)n t

Thus
N∑
c=1

D̂(c),r
nc (t, ω)→

N∑
n=1

λ(c)n t u.o.c as r →∞

In particular,
∑N

c=1 D̂
(c),r
nc (1, ω)→

∑N
n=1 λ

(c)
n as r →∞ or

lim
r→∞

∑N
n=1D

(c)
nc (r)

r
=

N∑
n=1

λ(c)n

which is actually the same to (A.13), proving the proposition.

A.1.4 Proof of Theorems A.1.3.1-A.1.3.3

We first present a lemma that will be used in the proof of Theorems A.1.3.1 - A.1.3.3.

Lemma A.1.4.1. The fluid model defined in Proposition A.1.2.1 is weakly stable if each
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of the fluid limit paths satisfies the following fluid equation.

For each β ∈ S,
d

dt
T̂β(t) = 0 if W (β, Q̂(t)) < max

α∈S
W (α, Q̂(t)) (A.16)

The intuition behind Lemma A.1.4.1 is that a scheduling policy is throughput

optimal if, when the system backlog is very large, the weight of the schedule it generates is

roughly the same with the weight of the schedule generated by the baseline backpressure

policy. The proof of Lemma A.1.4.1 is similar to the proof of Theorem 1 in [26]. For

completeness, we produce a full proof in Appendix A.1.4.

It is then sufficient to prove that each of the fluid limit paths satisfies Eq. (A.16) if

the system works under the L-BP, A-BP, O-BP or E-BP policy. Intuitively, this is true

because when the backlog in the system is very large, the total backlog (and the total

weight of the schedule) in the system would be dominated by the Phase II queues (as the

queue lengths of the Phase I queues are always bounded by a constant). In other words,

the contribution of Phase I queues is negligible when calculating the weight of a schedule.

On the other hand, as Phase II queues always execute the baseline backpressure policy

in our schemes, the weight of the generated schedule should be close to the weight of the

schedule generated by the baseline backpressure policy. The formal proofs of Theorems

A.1.3.1-A.1.3.3 are similar to the proof of Lemma 4 in [27]. For completeness, we produce

a full proof in Appendices A.1.4-A.1.4.

Proof of Lemma A.1.4.1

Proof. The proof is similar to the proof of Theorem 1 in [26]. For completeness, we produce

a full proof here.

It is sufficient to show that the fluid model is weakly stable for any arrival rate

matrix λ that belongs to < ΓS >. Fix an arrival rate matrix λ that belongs to < ΓS >.
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Suppose (Q̂, D̂, T̂ ) is a fluid limit path with |Q̂(0)| = 0. Define a Lyapunov function

f(t) =
N∑
n=1

N∑
c=1

(
Q̂(c)
n (t)

)2

We have f(0) = 0, f(t) ≥ 0 and f(t) = 0⇔ Q̂(t) = 0 for all t > 0. It is then sufficient to

prove that such that f(t) = 0 for all t ≥ 0.

Since λ belongs to < ΓS >, there exist constants pβ ∈ [0, 1], β ∈ S, such that

λ(c)n =
∑
β∈S

pβ · γ(c)n (β) =
∑
β∈S

pβ

(
N∑
b=1

β
(c)
nb −

N∑
a=1

β(c)
an

)
,

c = 1, . . . , N∑
β∈S

pβ ≤ 1 (A.17)

Let Wmax(Q̂(t)) = maxβ∈SW (β, Q̂(t)). For t ≥ 0 we have

Wmax(Q̂(t)) ≥
∑
β∈S

pβW (β, Q̂(t))

=
∑
β∈S

pβ

N∑
a=1

N∑
b=1

N∑
c=1

β
(c)
ab [Q̂(c)

a (t)− Q̂(c)
b (t)]

=
∑
β∈S

pβ

N∑
n=1

N∑
c=1

Q̂(c)
n (t)

(
N∑
b=1

β
(c)
nb −

N∑
a=1

β(c)
an

)

=
N∑
n=1

N∑
c=1

Q̂(c)
n (t) ·

∑
β∈S

pβ

(
N∑
b=1

β
(c)
nb −

N∑
a=1

β(c)
an

)

=
N∑
n=1

N∑
c=1

Q̂(c)
n (t) · λ(c)n (A.18)

Let t be a fixed value such that Q̂(·) is differentiable at t. Let S ′ be the set of schedules

β such that W (β, Q̂(t)) = Wmax(Q̂(t)). Then we have d
dt
W (β, Q̂(t)) = d

dt
Wmax(Q̂(t)) for
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β ∈ S ′ (see proof of Lemma 3.2 of [28]). By (A.12) and (A.16), we have

∑
β∈S′

d

dt
T̂β(t) = 1

It follows that

N∑
n=1

N∑
c=1

Q̂(c)
n (t)

(
N∑
b=1

d

dt
D̂

(c)
nb (t)−

N∑
a=1

d

dt
D̂(c)
an (t)

)

=
N∑
n=1

N∑
c=1

Q̂(c)
n (t)

(
N∑
b=1

∑
β∈S′

β
(c)
nb

d

dt
T̂β(t)

−
N∑
a=1

∑
β∈S′

β(c)
an

d

dt
T̂β(t)

)

=
∑
β∈S′

d

dt
T̂β(t)

N∑
n=1

N∑
c=1

Q̂(c)
n (t)

(
N∑
b=1

β
(c)
nb −

N∑
a=1

β(c)
an

)

=
∑
β∈S′

d

dt
T̂β(t)

N∑
a=1

N∑
b=1

N∑
c=1

β
(c)
ab [Q̂(c)

a (t)− Q̂(c)
b (t)]

=
∑
β∈S′

d

dt
T̂β(t) ·W (β, Q̂(t))

= Wmax(β, Q̂(t))
∑
β∈S′

d

dt
T̂β(t)

= Wmax(β, Q̂(t))

Thus,

d

dt
f(t) = 2

N∑
n=1

N∑
c=1

Q̂(c)
n (t) · d

dt
Q̂(c)
n (t)

= 2
N∑
n=1

N∑
c=1

Q̂(c)
n (t)

(
λ(c)n +

N∑
a=1

d

dt
D̂(c)
an (t)−

N∑
b=1

d

dt
D̂

(c)
nb (t)

)

= 2
N∑
n=1

N∑
c=1

Q̂(c)
n (t)λ(c)n
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− 2
N∑
n=1

N∑
c=1

Q̂(c)
n (t)

(
N∑
b=1

d

dt
D̂

(c)
nb (t)−

N∑
a=1

d

dt
D̂(c)
an (t)

)

= 2

(
N∑
n=1

N∑
c=1

Q̂(c)
n (t)λ(c)n −Wmax(Q̂(t))

)

≤ 0

In other words, we have d
dt
f(t) ≤ 0 for almost every t such that f is differentiable at t.

Since f(0) = 0, it follows that f(t) = 0 for all t ≥ 0 (see, for example, the proof of Lemma

1 of [26]), proving the theorem.

Proof of Theorem A.1.3.1

Proof. It’s sufficient to prove that each of the fluid limit paths satisfies Eq. (A.16) if the

system works under the L-BP policy. The proof is similar to the proof of Lemma 4 in [27].

For completeness, we produce a full proof here.

Suppose (Q̂, D̂, T̂ ) is a fluid limit path. Fix a sample path ω ∈ Ω such that (A.7)

and (A.8) hold. There exists a sequence {rk} with rk →∞ as k →∞, such that

(
Q̂rk(·, ω),D̂rk(·, ω), T̂ rk(·, ω)

)
→
(
Q̂, D̂, T̂

)
u.o.c as k →∞ (A.19)

Fix a time t ≥ 0. Define A(Q̂(t)) = {(a, c) | Q̂(c)
a (t) > 0}. Let α̃ = argmaxα∈SW (α, Q̂(t)).

Define β̃ via

β̃
(c)
ab =


α̃
(c)
ab if (a, c) ∈ A(Q̂(t))

0 otherwise

We have β̃ ∈ S since β̃ ≤ α̃. We now prove that W (β̃, Q̂(t)) = maxα∈SW (α, Q̂(t)). Note
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that

W (α̃, Q̂(t)) =
N∑
a=1

N∑
b=1

N∑
c=1

α̃
(c)
ab [Q̂(c)

a (t)− Q̂(c)
b (t)]

=
N∑
a=1

N∑
b=1

N∑
c=1

α̃
(c)
ab [Q̂(c)

a (t)− Q̂(c)
b (t)] · 1

Q̂
(c)
a (t)=0

+
N∑
a=1

N∑
b=1

N∑
c=1

α̃
(c)
ab [Q̂(c)

a (t)− Q̂(c)
b (t)] · 1

Q̂
(c)
a (t)>0

=
N∑
a=1

N∑
b=1

N∑
c=1

α̃
(c)
ab [0− Q̂(c)

b (t)] · 1
Q̂

(c)
a (t)=0

+
N∑
a=1

N∑
b=1

N∑
c=1

α̃
(c)
ab [Q̂(c)

a (t)− Q̂(c)
b (t)] · 1

Q̂
(c)
a (t)>0

≤
N∑
a=1

N∑
b=1

N∑
c=1

α̃
(c)
ab [Q̂(c)

a (t)− Q̂(c)
b (t)] · 1

Q̂
(c)
a (t)>0

=
N∑
a=1

N∑
b=1

N∑
c=1

β̃
(c)
ab [Q̂(c)

a (t)− Q̂(c)
b (t)] · 1

Q̂
(c)
a (t)>0

=
N∑
a=1

N∑
b=1

N∑
c=1

β̃
(c)
ab [Q̂(c)

a (t)− Q̂(c)
b (t)]

Then we must have

W (β̃, Q̂(t)) = W (α̃, Q̂(t)) = max
α∈S

W (α, Q̂(t)).

Fix a schedule β ∈ S with W (β, Q̂(t)) < W (β̃, Q̂(t)). There exists a constant ε > 0

such that

W (β̃, Q̂(t))−W (β, Q̂(t))〉 ≥ ε, Q̂(c)
a (t) > ε for (a, c) ∈ A(Q̂(t))
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By the continuity of Q̂(·), there exists τ > 0 such that for each s ∈ [t− τ, t+ τ ]

W (β̃, Q̂(s))−W (β, Q̂(s)) ≥ ε

2

Q̂(c)
a (s) >

ε

2
for (a, c) ∈ A(Q̂(s))

Let R be the maximal link speed all over the network as defined in Section A.1.1. By

(A.19), there exists K > 0 such that, for any k > K we have ε
4
rk > max(Lmax, NR) and

for each s ∈ [t− τ, t+ τ ]

∣∣∣∣(W (β̃, Q̂rk(s))−W (β, Q̂rk(s))

)
−
(
W (β̃, Q̂(s))−W (β, Q̂(s))

)∣∣∣∣ ≤ ε

4

∣∣∣Q̂(c),rk
a (s)− Q̂(c)

a (s)
∣∣∣ ≤ ε

4
, for (a, c) ∈ A(Q̂(t))

Thus for k > K and each s ∈ [t− τ, t+ τ ], we have

W (β̃, Q̂rk(s))−W (β, Q̂rk(s)) ≥ ε

4

Q̂(c),rk
a (s) ≥ ε

4
for (a, c) ∈ A(Q̂(t))

Therefore, for each time s ∈ [(t− τ)rk, (t+ τ)rk], we have

W (β̃, Q(s, ω)) > W (β,Q(s, ω)) (A.20)

Q(c)
a (s, ω) ≥ ε

4
rk > max(Lmax, NR) for (a, c) ∈ A(Q̂(t)) (A.21)
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Condition (A.21) implies that schedule β̃ only serves queue that has queue backlog larger

than max(Lmax, NR) throughout time interval [(t− τ)rk, (t+ τ)rk] and the queues it serves

all have sufficient backlog to send. By (A.2), it must be a valid schedule under the L-BP

policy throughout time interval [(t− τ)rk, (t+ τ)rk]. By (A.20), the weight of schedule β

is always less than that of β̃, and thus should never be employed throughout time interval

[(t− τ)rk, (t+ τ)rk]. Therefore, for any u1 ≤ u2, u1, u2 ∈ [(t− τ)rk, (t+ τ)rk] we have

Tβ(u2, ω)− Tβ(u1, ω) = 0

Thus, for any u1, u2 ∈ [(t− τ), (t+ τ)] with u1 ≤ u2, we have

Tβ(u2rk, ω)− Tβ(u1rk, ω) = 0

i.e.,

T̂ rkβ (u2, ω)− T̂ rkβ (u1, ω) = 0

Taking the limit as k →∞, we have

T̂β(u2)− T̂β(u1) = 0

for any u1, u2 ∈ [(t − τ), (t + τ)] with u1 ≤ u2, from which (A.16) follows, proving the

lemma.

Proof of Theorem A.1.3.2

Proof. It is sufficient to prove that each of the fluid limit paths satisfies Eq. (A.16) if the

system works under the A-BP policy. The proof is quite similar to that of Theorem A.1.3.1.
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Similarly, suppose (Q̂, D̂, T̂ ) is a fluid limit path. Fix a sample path ω ∈ Ω such

that (A.7) and (A.8) hold. There exists a sequence {rk} with rk →∞ as k →∞, such that

(
Q̂rk(·, ω),D̂rk(·, ω), T̂ rk(·, ω)

)
→
(
Q̂, D̂, T̂

)
u.o.c as k →∞ (A.22)

Fix a time t ≥ 0. Define A(Q̂(t)) = {(a, c) | Q̂(c)
a (t) > 0}. Let α̃ = argmaxα∈SW (α, Q̂(t)).

Define β̃ via

β̃
(c)
ab =


α̃
(c)
ab if (a, c) ∈ A(Q̂(t))

0 otherwise

We have β̃ ∈ S and W (β̃, Q̂(t)) = maxα∈SW (α, Q̂(t)).

Fix a schedule β ∈ S with W (β, Q̂(t)) < W (β̃, Q̂(t)). There exists a constant ε > 0

such that

W (β̃, Q̂(t))−W (β, Q̂(t))〉 ≥ ε

and Q̂
(c)
a (t) > ε for (a, c) ∈ A(Q̂(t)). By the continuity of Q̂(·), there exists τ > 0 such that

for each s ∈ [t− τ, t+ τ ]

W (β̃, Q̂(s))−W (β, Q̂(s)) ≥ ε

2

Q̂(c)
a (s) >

ε

2
for (a, c) ∈ A(Q̂(s))

Let R be the maximal link speed all over the network as defined in Section A.1.1. By

(A.22), there exists K > 0 such that, for any k > K we have ε
4
rk > max(RAmax, RN),

τ
2
rk > Amax and for each s ∈ [t− τ, t+ τ ]
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∣∣∣∣(W (β̃, Q̂rk(s))−W (β, Q̂rk(s))

)
−
(
W (β̃, Q̂(s))−W (β, Q̂(s))

)∣∣∣∣ ≤ ε

4

∣∣∣Q̂(c),rk
a (s)− Q̂(c)

a (s)
∣∣∣ ≤ ε

4
for (a, c) ∈ A(Q̂(t))

Thus for k > K and each s ∈ [t− τ, t+ τ ], we have

W (β̃, Q̂rk(s))−W (β, Q̂rk(s)) ≥ ε

4

Q̂(c),rk
a (s) ≥ ε

4
for (a, c) ∈ A(Q̂(t))

Therefore, for each time s ∈ [(t− τ)rk, (t+ τ)rk], we have

W (β̃, Q(s)) > W (β,Q(s)) (A.23)

Q(c)
a (s) ≥ ε

4
rk > max(RAmax, RN), for (a, c) ∈ A(Q̂(t)) (A.24)

Condition (A.24) implies that for (a, c) ∈ A(Q̂(t)), the length of queue Q
(c)
a is always

larger than RAmax. Thus the delay of the head-of-line packet in Q
(c)
a is always larger

than Amax throughout time interval [(t − τ)rk + Amax, (t + τ)rk]. Since τ
2
rk > Amax, we

have [(t − τ
2
)rk, (t + τ

2
)rk] ⊂ [(t − τ)rk + Amax, (t + τ)rk]. In other words, schedule β̃

only serves queue with delay of head-of-line packets larger than Amax throughout time

interval [(t− τ
2
)rk, (t + τ

2
)rk] and the queues it serves all have sufficient backlog to send.

By (A.3), it must be a valid schedule under the A-BP policy throughout time interval

[(t− τ
2
)rk, (t+ τ

2
)rk]. By (A.23), the weight of schedule β is always less than that of β̃, and
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thus should never be employed throughout time interval [(t− τ
2
)rk, (t+ τ

2
)rk]. Therefore,

for any u1 ≤ u2, u1, u2 ∈ [(t− τ
2
)rk, (t+ τ

2
)rk], we have

Tβ(u2, ω)− Tβ(u1, ω) = 0

Therefore, for any u1, u2 ∈ [(t− τ
2
), (t+ τ

2
)] with u1 ≤ u2, we have

Tβ(u2rk, ω)− Tβ(u1rk, ω) = 0

i.e.,

T̂ rkβ (u2, ω)− T̂ rkβ (u1, ω) = 0

Taking the limit as k →∞, we have

T̂β(u2)− T̂β(u1) = 0

for any u1, u2 ∈ [(t − τ
2
), (t + τ

2
)] with u1 ≤ u2, from which (A.16) follows, proving the

theorem.

Proof of Theorem A.1.3.3

Proof. We first prove the throughput optimality of O-BP. It is sufficient to prove that each

of the fluid limit paths satisfies the Eq. (A.16) if the system works under the O-BP policy.

The proof is quite similar to that of Theorem A.1.3.1.

Similarly, suppose (Q̂, D̂, T̂ ) is a fluid limit path. Fix a sample path ω ∈ Ω such
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that (A.7) and (A.8) hold. There exists a sequence {rk} with rk →∞ as k →∞, such that

(
Q̂rk(·, ω),D̂rk(·, ω), T̂ rk(·, ω)

)
→
(
Q̂, D̂, T̂

)
u.o.c as k →∞ (A.25)

Fix a time t ≥ 0. Define A(Q̂(t)) = {(a, c) | Q̂(c)
a (t) > 0}. Let α̃ = argmaxα∈SW (α, Q̂(t)).

Define β̃ via

β̃
(c)
ab =


α̃
(c)
ab if (a, c) ∈ A(Q̂(t))

0 otherwise

We have β̃ ∈ S and W (β̃, Q̂(t)) = maxα∈SW (α, Q̂(t)).

Fix a schedule β ∈ S with W (β, Q̂(t)) < W (β̃, Q̂(t)). Similar to the proof of

Theorem A.1.3.1, we can prove that there exist constants τ > 0 and K > 0 such that, for

any k > K and time s ∈ [(t− τ)rk, (t+ τ)rk], we have

W (β̃, Q(s, ω)) > W (β,Q(s, ω)) (A.26)

Q(c)
a (s, ω) > max(Hmax, NR) for (a, c) ∈ A(Q̂(t)) (A.27)

Condition (A.27) implies that schedule β̃ only serves per-destination queues with queue

backlogs larger than max(Hmax, NR) throughout time interval [(t− τ)rk, (t+ τ)rk] and the

queues it serves all have sufficient backlog to send. By (A.4), it must be a valid schedule

under the O-BP policy throughout time interval [(t − τ)rk, (t + τ)rk]. This is because

when (A.27) holds, it also implies that Z
(j)
a > Hmax for the corresponding output queue, as

selected by OSPF. Therefore, for any u1 ≤ u2, u1, u2 ∈ [(t− τ)rk, (t+ τ)rk] we have

Tβ(u2, ω)− Tβ(u1, ω) = 0
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Similar to Theorem A.1.3.1, we can then prove that

T̂β(u2)− T̂β(u1) = 0

for any u1, u2 ∈ [(t − τ), (t + τ)] with u1 ≤ u2, from which (A.16) follows, proving the

throughput optimality of O-BP.

The proof for the throughput optimality of E-BP is almost the same to that of

O-BP except for

Q(c)
a (s, ω) > max(M (c)

a Hmax, NR) for (a, c) ∈ A(Q̂(t)) (A.28)

and substituting (A.4) with (A.5) in the above analysis under Inequality (A.28), where

M
(c)
a ≤ Ma is the subset of all Ma neighbors of node a that are on a shortest path

for commodity c. The analysis holds because when (A.28) holds, it also implies that

Z
(j)
a > Hmax for at least one of the M

(c)
a output queues, even if the content of Q

(c)
a is evenly

distributed over all M
(c)
a output queues in the worst-case.

A.2 Proof for Chapter 4

In the appendix, to make it more readable, on the pruned graph G′ with the node

set U ′ ∪ N′, we use + and − to denote the set operations of union and minus respectively,

use s and {s} exchangeably for a set element s, and use π(s/s′) to denote π(s+ s′)− π(s′).

Also, for any node u ∈ U ′, denote N′(u) as the set of nodes in N′ connecting to u.

Proof of Theorem 4.3.1. This theorem is a loose estimation based on the result proved

in [11], where they show that to maximize the sum of a submodular function and a

supermodular function, greedy algorithm can achieve 1
cb

[1− e−(1−cp)cb ] performance bound

under the cardinality constraint, where cb and c
p are the submodular curvature and
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Figure A.1: A testimony of Proposition 4.4.1

supermodular curvature respectively. Since cb ≤ 1, 1
cb

[1− e−(1−cp)cb ] ≥ [1− e−(1−cp)]. Also,

when f is purely monotone supermodular, then greedy yields (1− c
p) directly according to

[11].

Proof of Proposition 4.4.1. To see this, let us check Figure A.1 where the black nodes

are negative. If we set X = {a} and Y = {a, b}, then it can be verified that π(v1/X) ≤ π(X)

and π(v2/X) ≥ π(X) which means π is non-monotone, π(v1/X) ≤ π(v1/Y ) which means

π is non-submodular, and π(v2/X) ≥ π(v2/Y ) which means π is non-supermodular.

Proof of Proposition 4.5.1. We need to prove for X ⊆ Y and v ∈ U ′ − Y , π(v/X) ≤

π(v/Y ). It can be shown that on the pruned graph, π(v/X) = wv + |N′(X)| − |N′(v +X)|

= wv−|N′(v)−N′(X)|. Therefore, π(v/X) = wv−|N′(v)−N′(X)| ≤ wv−|N′(v)−N′(Y )| =

π(v/Y ), since X ⊆ Y ⇒ N′(X) ⊆ N′(Y )⇒ N′(v)−N′(X) ⊇ N′(v)−N′(X)⇒ |N′(v)−N′(X)|

≥ |N′(v)− N′(Y )|.

Proof of Theorem 4.4.1. Consider two bipartite graphs G and G′. G = (U, V,E), where

U = {u1, · · · , uk, uk+1, · · · , u2k}, V = {v1, · · · , vk}. For 1 ≤ i ≤ k and 2 ≤ j ≤ k, we link

ui and vj with an edge, and then for (k + 1) ≤ i ≤ 2k and 1 ≤ j ≤ k, we link an edge

between ui and vj . G
′ has the same node sets U and V as G has, however, G′ has a different

edge set: for 1 ≤ i ≤ 2k and 1 ≤ j ≤ k, we link ui with vj. For both G and G′, let N = V .

Let R = {u1, · · · , uk}. If we think of SPE on G and G′, and denote π(S) and π′(S)

the benefits of a set S on G and G′ respectively, it can be seen that π(R) = 1, π′(R) =
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0, and π(S) = π′(S) = 0 if and only if S 6= R. Next, we adopt a proof technique used in

[75]. For any algorithm that maximizes π(S), all function evaluations are the same as it

maximizes π′(S), and π′(S) is permutation symmetric. This means, the only way that an

algorithm finds R is the random search. For any polynomial algorithm that searches O(nb)

sets of size k, the probability of this algorithm to find R is O(nb)

(nk)
. Since

(
n
k

)
≥ (n

k
)k, k = n

3
,

and nb = O(3εn) for any small ε > 0, this probability is O(nb)

( n
n/3)
≤ O(nb)

3n/3
= O

(
3−(1/3−ε)n

)
.

Therefore, for any polynomial algorithm, the probability that it finds R for G and returns

the maximum payoff π as 1, or has any positive guarantee, is almost 0.

Proof of Theorem 4.5.1. We define an order of any k-size set S based on π(S) in (4.3).

Let s0 = ∅. The order is {s1, s2, · · · , sk}, where

si = arg max
s∈S−

∑i−1
j=0 sj

π

(
s/

i−1∑
j=0

sj

)
.

In other words, s1 = arg max
s∈S

π(s), s2 = arg max
s∈S−s1

π(s/s1), and so on. This order is

inspired on the steps when we generate a k-size set solution using GreedMax. Suppose under

this order, Ŝ = {ŝ1, · · · , ŝk} and S∗ = {s∗1, · · · , s∗k}. Since Ŝ is obtained by GreedMax, we

have π(ŝ1) ≥ π(s∗1).

We then show π(ŝ1 + ŝ2) ≥ π(s∗1 + s∗2) − 1. First, because of the way GreedMax

works, we must have π(ŝ2/ŝ1) ≥ π(s∗2/ŝ1). Second, for any two sets x and y, π(x/y)

= wx + |N′(y)| − |N′(x + y)| = wx − |N′(x) − N′(y)|. Therefore, π(s∗2/ŝ1) − π(s∗2/s
∗
1) =

|N′(s∗2) − N′(s∗1)| − |N′(s∗2) − N′(ŝ1)| ≥ |N′(s∗2) − N′(s∗1)| − |N′(s∗2)| = −|N′(s∗2) ∩ N′(s∗1)|.

Third, we will show that |N′(s∗2)∩N′(s∗1)| ≤ 1. Otherwise, we will have |N′(s∗2)∩N′(s∗1)| ≥ 2.

Suppose v1 and v2 are two nodes in N′(s∗2) ∩ N′(s∗1), then < s∗1, v1, s
∗
2, v2 > forms a cycle,

which contradicts with our assumption that G′ is a forest. Since |N′(s∗2) ∩ N′(s∗1)| ≤ 1 is

true, we have π(s∗2/ŝ1) − π(s∗2/s
∗
1) ≥ −1.

Similar to the proof above, we can further show that π(ŝ1 + ŝ2 + ŝ3) ≥ π(s∗1 +s∗2 +s∗3)
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Figure A.2: An example with tight bound of Theorem 4.5.1

− 2. In general, we can prove for any 1 ≤ i ≤ k, it must be true that π
(∑i

j=1 ŝj

)
≥

π
(∑i

j=1 s
∗
j

)
− (i− 1). Therefore we have proved π(Ŝ) = π

(∑k
j=1 ŝj

)
≥ π

(∑k
j=1 s

∗
j

)
−

(k − 1) = π (S∗) − (k − 1).

This bound is tight. Check Figure A.2 where the black nodes are the negative nodes

and the numbers left to the circles are the node weights. When k = 3, the GreedMax may

pick {a, b, c} as the seed set and the benefit is 6, however the optimal seed set is {d, e, f}

whose benefit is 8.

Proof of Theorem 4.5.2. For any set S and an arbitrary node ui ∈ U ′, π(ui/S) = wui

− |N′(ui) − N′(S)| ≥ wui − |N′(ui)| ≥ 0 since ∀ui ∈ U ′. This means the benefit π(S) is

monotone increasing. According to proposition 4.5.1 and Theorem 4.3.1, SPE becomes a

maximization problem of a monotone increasing supermodular problem, and GreedMax

makes (1− c
p) guarantee.

Proof of Lemma 4.6.1:

FH(S) = FH+(S)− FH−(S)

=
∑

v∈V \N′

1

n
· Pr[S and v’s RR set intersect]

−
∑
v∈N′

1

n
· Pr[S and v’s RR set intersect]
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=
1

n

 ∑
v∈V \N′

p(v)−
∑
v∈N′

p(v)


=

1

n

[
π+(S)− π−(S)

]
=
π(S)

n
. �

For a superset H = {H1, H2, · · · , Hρ} and a seed set S, we define a random variable

xi ∈ {+1, 0,−1}, 1 ≤ i ≤ ρ. If S ∩ Hi = ∅ then xi = 0, else if S ∩ Hi 6= ∅ and Hi ∈ H+

then xi = +1, else if S ∩Hi 6= ∅ and Hi ∈ H− then xi = −1.

Let a = π(S)/n, then

a = E [FH(S)] . (A.29)

We have following corollaries,

Corollary A.2.1. For ε > 0

Pr

[
θ∑
i=1

xi − θa ≥ ε · θa

]
≤ exp

(
− ε2

2 + 2
3ε
· θa

)
.

Corollary A.2.2. For ε > 0

Pr

[
θ∑
i=1

xi − θa ≤ −ε · θa

]
≤ exp

(
−ε

2

2
· θa
)
.

Proof of Lemma 4.6.2. First we prove n ·FH(S) ≤ (1 + ε) · π(S) is true with probability

at least 1− δ. This is because

Pr [n · FH(S) ≥ (1 + ε) · π(S)]

= Pr [FH(S)− a ≥ εa]

= Pr

 ρ′∑
i=1

xi − ρ′a ≥ ε · ρ′a


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≤ exp

(
− ε2

2 + 2
3ε
· ρ′a

)

≤ exp

(
−ε

2

2
· ρ′ · π(S)

n

)
≤ exp

(
−ε

2

2
· 2n · ln(1/δ)

ε2
· 1

n

)
≤ δ

Similarly, we can prove n ·FH(S) ≥ (1− ε) ·π(S) stands with probability at least 1− δ.

Proof of Lemma 4.6.3. It is not hard to prove both FH+(S) and FH−(S) are submodular

w.r.t. S, therefore FH(S) = FH+(S)− FH−(S) is the summation of a submodular function

and a supermodular function. By Theorem 4.3.1, the greedy algorithm gives a solution

Ŝ such that FH(Ŝ) ≥ [1− e−(1−cp)] FH(S∗H), where S∗H is the set that maximizes FH. By

lemma 4.6.2, (1 + ε) ·π(Ŝ) ≥ FH(Ŝ) with probability (1− δ/2), and FH(S∗) ≥ (1− ε) ·π(S∗)

with probability 1 − δ/2. Conditioning on these two events, π(Ŝ) ≥ 1
1+ε
· FH(Ŝ) ≥ 1

1+ε
·

[1 − e−(1−c
p)] FH(S∗H) ≥ 1

1+ε
· [1 − e−(1−c

p)] FH(S∗) ≥ 1−ε
1+ε
· [1 − e−(1−c

p)] FH(S∗) with

probability 1− δ.

Proof of Theorem 4.6.1. The first half of the theorem is the performance bound, and

it directly comes from Lemma 4.6.3.

In the second half, we prove the time complexity. Denote AVG the expected number

of edges checked by Alg. 3 to generate a RR set, obviously AVG ≤ m. Since Alg. 4

generates ρ RR sets, and the total complexity is ρ · AV G ≤ ρ ·m = 2n·(ln 2+ln(1/δ))
ε2

·m =

O (ln(1/δ) · nm · ε−2). The proof is complete.

In order to approximate the π(S) of a given k-size set S, Alg. 5 - Benefit

Approximation (BA) is devised. It can estimate any benefit π of a given k-size set

S.
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Algorithm 5: BA (Benefit Approximation)

input: G,N, and a node set S;
output: a real number which is the estimated benefit of S.

1: H = ∅, Π← 1;
2: for i from 1 to lg n− 1 do
3: x← n/2i;
4: λ′ = (2 + 2

3ε) ·
(
ln 1

δ + ln lg n
)
· n
ε2

;
5: θi ← λ′/x;
6: while |H| ≤ θi do
7: H ← H∪ RRS(G);
8: end while;
9: if n · FH(S) ≥ (1 + ε) · x then

10: Π← n · FH(S)/(1 + ε);
11: break;
12: end if
13: end for
14: return Π.
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