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The impact of intestinal inflammation on the nutritional 
environment of the gut microbiota

Franziska Faber and Andreas J. Bäumler*

Department of Medical Microbiology and Immunology, School of Medicine, University of California 
at Davis, One Shields Ave; Davis CA 95616, USA

Abstract

The intestinal epithelium is a single cell barrier separating a sterile mucosal tissue from a large 

microbial community dominated by obligate anaerobic bacteria, which inhabit the gut lumen. To 

maintain mucosal integrity, any breach in the epithelial barrier needs to be met with an 

inflammatory host response designed to repel microbial intruders from the tissue, protect the 

mucosal surface and repair injuries to the epithelium. In addition, inflammation induces 

mechanisms of nutritional immunity, which limit the availability of metals in the intestinal lumen, 

thereby imposing new selective forces on microbial growth. However, the inflammatory host 

response also has important side effects. A by-product of producing reactive oxygen and nitrogen 

species aimed at eradicating microbial intruders is the luminal generation of exogenous electron 

acceptors. The presence of these electron acceptors creates a new metabolic niche that is filled by 

facultative anaerobic bacteria. Here we review the changes in microbial nutrient utilization that 

accompany intestinal inflammation and the consequent changes in the composition of gut-

associated microbial communities.
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Introduction

During intestinal inflammation the epithelium plays an important role in mounting responses 

that are aimed at clearing the mucosal surface from microbes. For example, production of 

IFN-γ during inflammation results in the activation of DUOX2 (dual function NADPH 

oxidase 2) [1], NOX1 (NADPH oxidase 1) [2] and iNOS (inducible nitric oxide synthase) 

[3] in epithelial cells. Reactive oxygen species (ROS) produced by DUOX2 and NOX1 and 

reactive nitrogen species (RNS) generated by iNOS create a hostile environment in close 

proximity to the mucosal surface. Furthermore, the pro-inflammatory cytokine interleukin 
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(IL)-22 induces the luminal release of the antimicrobial proteins lipocalin-2, calprotectin, 

RegIIIβ (regenerating islet-derived 3 beta) and RegIIIγ from epithelial cells [4-6].

These epithelial defenses can be augmented by the transmigration of neutrophils into the 

intestinal lumen as the severity of intestinal inflammation increases. Upon transmigration, 

the phagocyte NADPH oxidase (PHOX), superoxide dismutase (SOD) and myeloperoxidase 

(MPO) of neutrophils generate additional ROS in the gut lumen. Subsequent lysis of 

neutrophils in the intestinal lumen releases calprotectin, which constitutes approximately 

40% of their cytoplasmic content [7]. As a result, neutrophils are the main sources of 

luminal calprotectin during severe intestinal inflammation [8].

Some of the antimicrobials released into the intestinal lumen are bacteriocidal, thereby 

protecting the mucosa from infection. For instance, release of the C-type lectin RegIIIγ 

contributes to luminal clearance of opportunistic pathogens, such as Listeria monocytogenes 

or vancomycin-resistant Enterococcus feacium, which are both members of the class Bacilli 

within the phylum Furmicutes [9,10]. Chronic granulomatous disease, an illness caused by 

PHOX-deficiency, illustrates that the generation of ROS by phagocytes is essential for 

preventing recurrent bacterial infections [11-13]. It is thus likely that upon transmigration 

into the lumen, the respiratory burst of neutrophils aids in clearing bacteria from the vicinity 

of the mucosal surface. However, recent evidence suggests that in addition to its 

bacteriocidal effects, the inflammatory host response has also a profound impact on the 

nutritional environment in the gut lumen, which can lead to alterations in the composition of 

gut-associated microbial communities (microbiota). Here we review these novel hypothesis 

and the underlying mechanisms.

Nutritional immunity changes the rules for microbial contestants

One subset of antimicrobial proteins released into the intestinal lumen during inflammation 

functions in limiting the availability of trace elements required for bacterial growth, such as 

iron and zinc, a host defense mechanism known as nutritional immunity. Bacteria acquire 

ferric iron (Fe3+) by releasing high-affinity iron chelators, termed siderophores (reviewed in 

[14]). Enterobactin, a cyclic trimer of N-(2,3-dihydroxybenzoyl)-L-serine, is the siderophore 

produced by most members of the Enterobacteriaceae, a family of facultative anaerobic 

bacteria belonging to the class Gammaproteobacteria within the phylum Proteobacteria 

[15-17]. After chelating iron, the Fe3+-enterobactin complex is transported actively by an 

energy-coupled outer membrane receptor protein into the periplasm. The energy required for 

transporting the Fe3+-enterobactin complex across the outer membrane is provided by the 

proton motive force of the cytoplasmic membrane, which is transmitted to the outer 

membrane via the TonB protein (reviewed in [14]).

Lipocalin-2 prevents bacterial iron acquisition by binding and sequestering enterobactin 

[18-20]. While uptake of Fe3+-enterobactin is a viable strategy for obtaining iron in the non-

inflamed intestine, the epithelial release of lipocalin-2 during conditions of inflammation 

inhibits growth of bacteria relying solely on enterobactin for iron acquisition. Thus, bacteria 

acquiring iron through mechanisms that are not inhibited by lipocalin-2 gain a relative 

luminal growth advantage in the inflamed gut. This concept was first described in 
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Salmonella enterica, a member of the Enterobacteriaceae that secretes enterobactin along 

with a glycosylated derivative of enterobactin, termed salmochelin [21]. Salmochelin is not 

sequestered by lipocalin-2, thereby conferring resistance against this antimicrobial protein 

[22,23]. Deletion of the iroN gene, which encodes the TonB-dependent outer membrane 

siderophore receptor [24], renders S. enterica unable to utilize salmochelin [21]. As a result, 

an S. enterica iroN mutant solely relies on enterobactin for iron-acquisition. Compared to 

wild-type bacteria, growth of a S. enterica iroN mutant in the lumen of the mouse gut is 

reduced in the presence, but not in the absence of intestinal inflammation. Furthermore, S. 

enterica wild type and iroN mutant grow equally well in the inflamed gut of lipocalin-2-

deficient mice [5]. Thus, luminal growth of lipocalin-2 resistant bacteria is favored in the 

inflamed gut, but not in the absence of intestinal inflammation.

A second metal that is sequestered by the host during inflammation through the release of 

antimicrobial proteins into the intestinal lumen is zinc. Calprotectin, a heterodimer 

composed of S100A8 and S100A9, inhibits bacterial growth in tissue by chelating both 

manganese and zinc [25]. Recent studies suggest that the transepithelial migration of 

neutrophils and the subsequent release of calprotectin from dead neutrophils reduce the 

availability of zinc in the intestinal lumen [8]. Zinc is transported across the cytoplasmic 

membrane of S. enterica by the high-affinity ABC (ATP binding cassette) transporter 

ZnuABC [26]. Compared to the S. enterica wild type, luminal growth of a znuA mutant is 

impaired in the inflamed intestine of wild type mice, but not in the inflamed intestine of 

S100A9-deficient mice [8]. These data support the idea that by overcoming the calprotectin-

mediated host zinc sequestration, bacterial high-affinity zinc acquisition confers a luminal 

fitness advantage during colitis.

Above examples illustrate that the inflammatory host response can influence bacterial 

growth by changing the nutritional environment in the intestinal lumen. As a result, bacterial 

metal acquisition strategies that bestow no apparent growth benefit in the healthy gut can 

confer a luminal fitness advantage in the inflamed intestine. In other words, the host 

response can alter the contest rules that govern microbial competition for metals.

Interestingly, reducing the availability of metals brings microbes, which rely on similar iron 

acquisition strategies, into a contest. For example, the commensal Escherichia coli strain 

Nissle 1917, a member of the family Enterobacteriaceae, elaborates four siderophores, 

including enterobactin, salmochelin, aerobactin and yersiniabactin [27-29]. Of these 

siderophores, only enterobactin is sequestered by lipocalin-2. Co-colonization with E. coli 

Nissle 1917 reduces luminal growth of the pathogenic S. enterica in wild-type mice, but not 

in lipocalin-2-deficient mice. Furthermore, co-colonization of mice with a siderophore 

utilization-deficient E. coli Nissle 1917 tonB mutant does not reduce the ability of S. 

enterica to grow in the intestinal lumen [30]. These data suggest that by lowering the 

availability of iron in the lumen, the host inflammatory response can alter the outcome of a 

competition between bacterial species that utilize overlapping siderophore repertoires.
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Microbial metabolism in the healthy large intestine

In addition to conferring nutritional immunity by lowering the availability of metals in the 

intestinal lumen, the host response changes the luminal environment by generating 

inflammation-derived nutrients as a by-product. The resulting bloom of bacterial species that 

can utilize inflammation-derived nutrients can alter the composition of gut-associated 

microbial communities. To understand how inflammation-derived nutrients alter the growth 

conditions in the large bowel, it is important to first grasp the nutrient acquisition and 

utilization strategies that characterize a balanced microbiota, which inhabits the healthy gut.

In healthy individuals, obligate anaerobic bacteria belonging to the classes Bacteroidia 

(phylum Bacteroidetes) and Clostridia (phylum Firmicutes) dominate microbial 

communities inhabiting the anaerobic environment of the lower gastrointestinal tract [31]. 

Since simple carbohydrates and proteins are digested and absorbed in the upper 

gastrointestinal tract, complex carbohydrates (e.g. fiber or mucus carbohydrates) or non-

digestible proteins (e.g. gluten) are the main nutrients supporting growth of Bacteroidia and 

Clostridia in the large bowel. Oxygen or other exogenous electron acceptors are not 

available in the healthy distal gut to support respiration. Thus, microbes rely largely on 

fermentation of carbohydrates and amino acids to generate energy via substrate-level 

phosphorylation and to acquire carbon and nitrogen for the biosynthesis of proteins, 

carbohydrates, lipids and nucleotides.

To maintain redox balance during fermentation, electrons have to be transferred from 

NADH onto organic compounds, such as phosphoenolpyruvate, thereby generating 

metabolic end products that are released. Microbiota-derived fermentation end products that 

commonly accumulate in the gut lumen include formate, acetate, proprionate, butyrate, 

lactate and hydrogen (H2) (Fig. 1A). Some bacteria, such as Bacteroides fragilis, maintain 

redox balance by transferring electrons onto fumarate to generate succinate, a process 

known as fumarate respiration (reviewed in [32]). During this process, B. fragilis fixes host-

derived carbon dioxide (CO2) onto phosphoenolpyruvate to generate oxaloacetate, which is 

converted by reversing reaction of the tricarboxylic acid (TCA) cycle into the endogenous 

electron acceptor fumarate [33]. Succinate is released as a metabolic end product of 

fumarate respiration. Thus fumarate respiration and fermentation have in common that 

metabolically valuable phosphoenolpyruvate is removed from anabolic reactions and 

converted into metabolic end products to maintain redox balance.

Metabolic end products generated by Bacteroidia and Clostridia change the nutritional 

environment for both the host and other intestinal microbes. For example, some metabolic 

end products of Bacteroidia and Clostridia, such as butyrate, confer benefit to the host by 

providing nutrition for colonocytes, which mitochondrially oxidize this compound to carbon 

dioxide [34] (Fig. 1A). Other metabolites, such as hydrogen, are consumed by obligate 

anaerobic sulfate-reducing bacteria. Sulfate-reducing bacteria of the genus Desulfovibrio 

(class Gammaproteobacteria, family Desulfovibrionaceae) in turn generate the genotoxic gas 

hydrogen sulfide (H2S) in the distal gut [35-37]. To avoid toxicity, host colonocytes express 

sulfide oxidases in their apical membrane that oxidize hydrogen sulfide to generate harmless 

thiosulfate (S2O3
2−) [38,39].
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By-products of the host response support anaerobic respiration

Inflammation causes a dramatic change in the nutritional environment in the large intestine 

by generating exogenous electron acceptors. This concept was first established by showing 

that a by-product of neutrophils mounting a respiratory burst in the gut lumen is the 

oxidation of thiosulfate to tetrathionate (S4O6
2−) [40] (Fig. 1B). S. enterica can use 

tetrathionate as a respiratory electron acceptor, a property that has been used empirically in 

clinical laboratories since 1923 to enrich for this pathogen in samples containing competing 

microbes [41]. However, tetrathionate respiration is of biological significance because it 

confers a luminal fitness advantage upon S. enterica in the inflamed intestine, thereby 

resulting in a disruption of the microbiota composition, which is characterized by an 

outgrowth of the pathogen [40]. The uncontrolled growth of S. enterica in the lumen of the 

inflamed gut enhances its transmission by the fecal oral route, thereby placing tetrathionate 

respiration under selection [42].

The finding that the inflammatory host response generates an exogenous electron acceptor in 

the gut lumen suggests that changes in the nutritional environment are a by-product of the 

antimicrobial activity of ROS and RNS. While ROS and RNS create a hostile environment 

in close proximity to the mucosal surface, these radicals are short lived and quickly react to 

form harmless oxidation by-products, such as tetrathionate. In addition to tetrathionate, a 

number of other oxidation by-products can drastically change bacterial growth conditions in 

the anaerobic environment of the large bowel. Nitric oxide (NO) generated by iNOS can 

react with superoxide radicals (O2
.−) produced by host NADPH oxidases to yield the 

bacteriocidal compound peroxynitrite (ONOO−) [43,44]. Peroxynitrite is further converted 

to nitrate (NO3
−) in a reaction catalyzed by carbon dioxide [45]. Through this mechanism, 

intestinal inflammation generates nitrate in the gut lumen [46,47] (Fig. 1B). Furthermore, 

ROS and RNS can oxidize organic sulfides, such as methionine, or tertiary amines, such as 

trimethylamine (TMA), to form the respective S-oxides and N-oxides [48,49]. Nitrate, 

tetrathionate, S-oxides and N-oxides are harmless oxidation products that can serve as 

exogenous electron acceptors for anaerobic respiration (reviewed in [50]). Thus, a by-

product of releasing bacteriocidal ROS and RNS during inflammation is the generation of a 

cocktail of host-derived exogenous electron acceptors that enable microbes to perform 

anaerobic respiration.

The nitrate/nitrite redox couple has a high standard redox potential (E° = 433 mV), which is 

second only to that of the oxygen/water redox couple (E° = 818 mV) (reviewed in [51]). 

Under anaerobic conditions, nitrate is therefore the most potent electron acceptor for energy 

production (reviewed in [50]). Among the phylogenetic groupings that are present within 

gut-associated microbial communities, genes encoding nitrate reductase activity are found 

most commonly within genomes of the facultative anaerobic Enterobacteriaceae [52]. In 

contrast, genes encoding nitrate reductase activity are notably absent in genomes of obligate 

anaerobic bacteria belonging to the Bacteroidia and Clostridia [52]. The generation of host-

derived nitrate during inflammation is thus predicted to favor growth of Enterobacteriaceae, 

because members of this family happen to be more likely to encode the enzymes required 

for nitrate respiration.
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Direct evidence that inflammation-derived nitrate boosts growth of Enterobacteriaceae 

comes from studies on two of its representatives, S. enterica and E. coli. Colitis induced by 

S. enterica infection leads to the production of nitrate in the gut lumen, which in turn 

increases growth of the pathogen by nitrate respiration [53]. To enhance its growth in the gut 

lumen, S. enterica uses motility and chemotaxis to actively seek out metabolic niches that 

contain respiratory electron acceptors, such as nitrate and tetrathionate [54]. Similarly, 

nitrate generated by iNOS during chemically-induced or genetically-induced colitis 

markedly increases the luminal abundance of E. coli by supporting growth of this 

commensal microbe through nitrate respiration [47]. Host-derived nitrate is also generated 

during low-level intestinal inflammation induced by oral antibiotic treatment, thereby 

conferring a nitrate respiration-dependent fitness advantage upon commensal E. coli [55]. It 

has been proposed that the generation of nitrate in the intestinal lumen is one of the 

mechanisms by which antibiotic treatment reduces colonization resistance against 

commensal E. coli and other Enterobacteriaceae [56]. Luminal growth of E. coli is likely 

fueled further by respiration of other inflammation-derived electron acceptors, such as S-

oxides and N-oxides [40]. In summary, the generation of exogenous electron acceptors by 

the inflammatory host response provides Enterobacteriaceae with a decisive luminal fitness 

advantage, which results in their uncontrolled expansion in the large bowel.

Why inflammation-derived electron acceptors favor Enterobacteriaceae

Exogenous electron acceptors enable Enterobacteriaceae to use strategies for maintaining 

redox balance, generating energy and acquiring carbon for biosynthesis of primary 

metabolites that are fundamentally different from those employed by Bacteroidia and 

Clostridia, thereby creating a new metabolic niche for these facultative anaerobic bacteria 

(Fig. 1). There are three advantages the metabolic strategy of Enterobacteriaceae has over 

that employed by Bacteroidia and Clostridia.

First, anaerobic respiration enables Enterobacteriaceae to balance their redox sheet by 

transferring electrons from NADH onto respiratory electron acceptors, such as nitrate, 

thereby preserving phosphoenolpyruvate for anabolic reactions. In contrast, fumarate 

respiration and fermentation performed by Bacteroidia and Clostridia are accompanied by 

the removal of metabolically valuable phosphoenolpyruvate to form metabolic end products 

to maintain redox balance.

Second, Enterobacteriaceae can use metabolic end products of Bacteroidia and Clostridia, 

such as formate or hydrogen, as electron donors to produce energy by anaerobic respiration 

(reviewed in [50]). This process can be performed solely for the purpose of energy 

production. For example, the transfer of electrons from hydrogen onto nitrate is independent 

of both carbon acquisition and maintaining redox balance. The finding that hydrogen 

enhances luminal growth of S. enterica in a mouse model [57], suggests that the ability to 

use metabolic end products of Bacteroidia and Clostridia for the sole purpose of producing 

energy provides a fitness advantage.

Third, anaerobic respiration broadens the spectrum of compounds that can serve as carbon 

sources in the anaerobic environment of the distal gut. During S. enterica infection, 
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intestinal contents are removed by the flushing action of diarrhea, thereby limiting microbial 

nutrition to compounds available in the mucus layer. Phosphatidylethanolamine, the most 

abundant phospholipid of enterocytes [58], is released into the mucus by sloughing and 

subsequently fermented by the microbiota, which produces ethanolamine as one of the end 

products (Fig. 1A). In the presence of an exogenous electron acceptor, such as tetrathionate, 

S. enterica can grow anaerobically on ethanolamine as the sole carbon source [59]. The 

presence of tetrathionate in the inflamed gut enables S. enterica to utilize ethanolamine to 

boost its luminal growth [60]. Collectively, these data suggest that the ability to utilize 

fermentation end products of Bacteroidia and Clostridia as a carbon source for the 

biosynthesis of proteins, carbohydrates, lipids and nucleotides confers a growth advantage 

upon S. enterica.

Conclusions

Intestinal inflammation has an impact on microbial metabolism through two different 

mechanisms. The first is related to the activity of antimicrobial proteins, which are released 

into the intestinal lumen during inflammation. The presence of these antimicrobial proteins 

favors growth of bacteria that are resistant against host nutrient withholding mechanisms 

[5,8]. As a result, nutritional immunity can alter the outcome of a competition between 

individual microbes [30]. A mechanistic understanding of these processes might facilitate 

the rational design of probiotics with increased capacity to exclude enteric pathogens.

The second mechanism influencing microbial metabolism is the generation of exogenous 

electron acceptors as a by-product of the inflammatory host response. In the anaerobic 

environment of the healthy gut, nutrient acquisition strategies of Enterobacteriaceae are 

inferior to the metabolic tactics employed by Bacteroidia and Clostridia (reviewed in [61]). 

However, the generation of exogenous electron acceptors by the inflammatory host response 

creates a new metabolic niche in the gut lumen. Unlike the obligate anaerobic Bacteroidia 

and Clostridia, the facultative anaerobic Enterbacteriaceae possess the enzymes to take 

advantage of the novel opportunities for generating energy, maintaining redox balance and 

acquiring carbon that become available in this new niche. As Enterobatceriaceae fill the 

metabolic niche created by intestinal inflammation, their relative abundance within the 

community increases and the resulting disruption of a balanced microbiota composition is 

known as dysbiosis. A dysbiosis characterized by a bloom of Enterobacteriaceae in the 

lower gastrointestinal tract is the ecological pattern observed most consistently in studies 

describing the changes in microbial communities that accompany gut inflammation 

(reviewed in [62]). A mechanistic understanding of the mechanisms responsible for 

dysbiosis identifies anaerobic respiration as a potential target for intervention strategies 

aimed at restoring a balanced community structure to improve health.
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Abbreviations

DUOX2 dual function NADPH oxidase 2

IFN-γ gamma interferon

IL interleukin

iNOS inducible nitric oxide synthase

MPO myeloperoxidase

NADH nicotinamide adenine dinucleotide

NADPH nicotinamide adenine dinucleotide phosphate

NOX1 NADPH oxidase 1

PHOX phagocyte NADPH oxidase

RegIIIβ regenerating islet-derived 3 beta

RNS reactive nitrogen species

ROS reactive oxygen species

SOD superoxide dismutase

TCA tricarboxylic acid

TMA trimethylamine
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Figure 1. 
The inflammatory host response creates a new metabolic niche in the intestine.

(A) The metabolic niche occupied by obligate anaerobic bacteria in the healthy intestine. 

Clostridia and Bacteroidia degrade complex carbohydrates and proteins in the distal gut to 

form a variety of metabolic end products, which accumulate in the lumen [32]. Furthermore, 

the head groups of phospholipids released by sloughing are degraded to TMA and 

ethanolamine [63]. Hydrogen produced by Clostridia and Bacteroidia fuels the growth of 

sulfate-reducing bacteria (Desulfovibrio), which produce hydrogen sulfide [35-37], a toxic 

gas oxidized by colonocytes to form harmless thiosulfate [38,39]. Butyrate is a fermentation 

product of obligate anaerobic bacteria that serves as nutrient for colonocytes [34]. (B) The 

metabolic niche occupied by facultative anaerobic Enterobacteriaceae in the healthy 

intestine. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) generated by 

the inflammatory host response oxidize luminal compounds (TMA and thiosulfate) to form 

exogenous electron acceptors (trimethylamine N-oxide [TMAO] and tetrathionate, 

respectively) [40,48,49]. Some RNS species are converted into the exogenous electron 

acceptor nitrate in a reaction catalyzed by carbon dioxide (CO2) [45]. The presence of 

exogenous electron acceptors enables Enterobacteriaceae to utilize microbiota-derived 

metabolic end products to generate energy, maintain redox balance and acquire carbon for 

the biosynthesis of primary metabolites.
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