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elicited activation in heavy drinking smokers
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Lara A. Raya,c,d,*

aDepartment of Psychology, University of California, Los Angeles, Los Angeles, CA 90095, United 
States
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cDepartment of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los 
Angeles, CA 90095, United States

dBrain Research Institute, University of California, Los Angeles, Los Angeles, CA 90095, United 
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Abstract

Background: There is a strong bidirectional relationship between the use of alcohol and 

cigarettes which results in various challenges for treating those who co-use both substances. 

While varenicline and naltrexone each have FDA-approval for nicotine and alcohol use disorder, 

respectively, there is evidence that their clinical benefit may extend across the two disorders. 

Critically, the effect of combined varenicline and naltrexone on neural reactivity to alcohol cues 

among heavy drinking smokers has not yet been studied. Probing the effect of the combination 

therapy on alcohol cue-reactivity may give insight to the mechanisms underlying its efficacy.

Methods: Forty-seven heavy drinking smokers enrolled in two medication studies were 

randomized to receive varenicline alone (n = 11), varenicline plus naltrexone (n = 11), or placebo 

(n = 25). Participants completed an fMRI alcohol cue-reactivity task and rated their in-scanner 

alcohol craving. Whole-brain analyses examined the effect of medication on alcohol cue-elicited 

neural response.
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Results: Varenicline plus naltrexone attenuated alcohol cue-elicited activation in mesolimbic 

regions relative to varenicline alone and to placebo (Z > 2.3, p < 0.05). The combination 

varenicline and naltrexone group also endorsed lower in-scanner alcohol craving relative to 

varenicline alone group (p = 0.04).

Conclusions: These findings provide evidence for the benefit of combined therapy of 

varenicline and naltrexone over varenicline alone for the attenuation of alcohol cue-elicited 

neural activation. This study provides a preliminary proof-of-mechanism for this combination 

pharmacotherapy and suggests that naltrexone may be driving the reductions in cue-elicited 

alcohol craving in the brain. Further clinical studies using the combined therapy to treat heavy 

drinking smokers are warranted.
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1. Introduction

Alcohol and cigarettes are two of the most frequently used recreational substances in the 

US. Results from the 2019 National Survey on Drug Use and Health (NSDUH) revealed 

that 25.8% of individuals reported engaging in a binge drinking episode (≥4 drinks per 

occasion for females, ≥5 drinks per occasion for males), and 6.3% reported engaging in 

heavy drinking defined as binge drinking on 5 or more days in the past month (U.S. 

Department of Health and Human Servies, 2019). The same survey also found that over the 

past month 18.1% reported cigarette use, with 10.7% of adults reported daily cigarette use 

(U.S. Department of Health and Human Servies, 2019). Critically, smokers are more likely 

to have an alcohol use disorder (AUD) than non-smokers, and the majority of individuals 

with an AUD smoke (Cross et al., 2017). Notably, over the last 5 years the use of e-cigarettes 

(“vaping”) has increased among adolescents and young adults (Chadi et al., 2019; Grant 

et al., 2019). The “gateway” hypothesis suggests that youth who otherwise would not have 

used tobacco products are using e-cigarettes (Barrington-Trimis et al., 2016; Dutra and 

Glantz, 2017), and the use of e-cigarettes is increasing intentions to use traditional cigarettes 

compared to those who never smoked any type of cigarette (Bunnell et al., 2015). E-cigarette 

use has been associated with progression to traditional cigarette use among adolescents and 

young adults (Leventhal et al., 2015; Primack et al., 2015). The high rate of co-use, and 

potential for an increase in cigarette users stemming from youth who are using e-cigarettes, 

underscores the importance of directing attention to this unique group of smokers who are 

also heavy drinkers.

The concurrent use of alcohol and cigarettes impacts motivation for using the respective 

substance. A recent overview of effects of alcohol and nicotine in the human laboratory 

environment summarized how alcohol use increases urge to smoke and decreases time 

to initiate smoking behavior, while nicotine increases alcohol craving and decreases the 

subjective effects of alcohol (Verplaetse and McKee, 2017). These effects of nicotine on 

alcohol use have been observed even with use of a transdermal nicotine patch increasing 

the positive effects of alcohol (Kouri et al., 2004). Alcohol has a dose-dependent effect on 

smoking behavior as greater quantities of alcohol have also been associated with earlier 
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initiation of smoking behavior that was partially mediated by smoking urge (Kahler et 

al., 2014). In the natural environment, momentary assessment has also demonstrated that 

alcohol increases craving for cigarettes and greater satisfaction with the most recent cigarette 

(Piasecki et al., 2011, 2008). A recent examination of momentary influences on traditional 

cigarette use found greater odds of alcohol use was associated with traditional cigarette 

use, whereas greater tobacco cravings among women was predictive of use of an electronic 

nicotine delivery system product such as e-cigarettes (Berg et al., 2019). While less is 

known about the associations between e-cigarettes and alcohol used concurrently, another 

recent study found that alcohol consumption increased use of traditional cigarettes more 

than e-cigarettes, with participants reporting significantly greater pleasure from traditional 

cigarettes (Thrul et al., 2019). The strong associations between alcohol and cigarettes 

on predictors of use demonstrate a strong bidirectional relationship between these two 

substances.

This bidirectional relationship results in various challenges for treating those who co-use 

alcohol and cigarettes. For individuals attempting to quit smoking, smoking lapses that 

involve alcohol have been shown to be qualitatively different than those not involving 

alcohol, and consuming alcohol at moderate doses was associated with a 4 times greater 

risk of a smoking lapse (Kahler et al., 2010). Further, heavy drinking has been associated 

with significantly lower rates of smoking cessation (Kahler et al., 2009). A prospective 

analysis of drinking and smoking lapses found that higher urges to smoke, decreased 

positive affect, and lower confidence to resist smoking preceded smoking lapses (Holt et al., 

2012). Analysis of the time-varying effects of alcohol on smoking lapses demonstrated that 

association between drinking and smoking lapse peaked early in smoking abstinence, then 

declined, highlighting how interventions to prevent alcohol-related relapses early during a 

smoking quit attempt could be beneficial (Dermody and Shiffman, 2020). Extending into 

existing treatments, heavy drinking smokers have been shown to be less responsive to 

pharmacological treatments for smoking cessation (Roche et al., 2016).

Varenicline, an α4β2 nicotinic acetylcholine receptor partial agonist, is the most effective 

pharmacotherapy for smoking cessation (Anthenelli et al., 2016), with an estimated 1 in 8 

patients reaching smoking abstinence at 1-year follow-up (Cahill et al., 2007). Studies have 

shown that in addition to its smoking cessation benefits, varenicline may also reduce alcohol 

consumption (Litten et al., 2013; O’Malley et al., 2018). Naltrexone, an opioid receptor 

antagonist, is an FDA-approved pharmacotherapy for alcohol use disorder (Anton et al., 

2006; Donoghue et al., 2015), which has been shown to increases smoking cessation rates, 

particularly among heavy drinking smokers (Fridberg et al., 2014; King et al., 2009). While 

varenicline and naltrexone each have FDA-approval for nicotine and alcohol use disorder, 

respectively, there is evidence that their clinical benefit may extend across the two disorders.

Varenicline and naltrexone have individually been examined in functional neuroimaging 

studies of daily smokers and heavy drinkers. In smokers, varenicline increased activation 

in the dorsal anterior cingulate, medial frontal cortex, and dorsolateral prefrontal cortex 

during emotional processing (Loughead et al., 2013) and working memory (Loughead et 

al., 2010) tasks. Varenicline has also shown to decrease activation to smoking cues in the 

ventral striatum and medial orbitofrontal cortex (Franklin et al., 2011), and to reduce neural 
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response to alcohol cues in the medial orbitofrontal cortex (Schacht et al., 2014). Recently, 

varenicline was found to decrease activation in striato-cortico-limbic regions associated with 

motivation and incentive salience of alcohol (Vatsalya et al., 2015).

Whereas the majority of varenicline neuroimaging studies have focused on smoking 

outcomes, the literature on naltrexone and neural activation to alcohol cues is more 

substantial (Grodin and Ray, 2019). Naltrexone has been shown to reduce ventral striatal 

activation to alcohol cues in alcohol-dependent individuals (Myrick et al., 2008; Schacht et 

al., 2017), and this effect predicted treatment outcomes, such that individuals with greater 

reduction in VS cue-reactivity while receiving naltrexone experienced less heavy drinking 

in the following 14 weeks (Schacht et al., 2017). Extended-release naltrexone attenuated the 

salience of alcohol-related cues, decreasing cue-reactivity in the orbital, cingulate, inferior 

and medial frontal gyri (Lukas et al., 2013a, b). Moreover, naltrexone reduced alcohol 

cue-reactivity in the left putamen, and high neural reactivity to alcohol cues in the left 

putamen predicted both NTX response and relapse risk (Bach et al., 2020).

While naltrexone and varenicline have each been studied using functional neuroimaging 

methods, the combined use of varenicline and naltrexone remains under-studied. Preliminary 

research from our group found that combined varenicline and low-dose naltrexone (i.e., 25 

mg) was associated with reduced neural response to cigarette cues in the bilateral anterior 

cingulate cortex as compared to placebo and to naltrexone alone in a sample of heavy-

drinking daily smokers (Ray et al., 2015). All three medication conditions (varenicline, 

naltrexone, and their combination) also suppressed smoking cue-elicited activation in the 

left nucleus accumbens, compared to placebo (Ray et al., 2015). Critically, the effect of 

combined varenicline and naltrexone on neural reactivity to alcohol cues among heavy 

drinking smokers has not yet been studied.

The current neuroimaging study was part of a randomized, double-blind, parallel group, 

superiority trial of treatment with varenicline plus naltrexone compared to varenicline alone, 

in outpatient heavy drinking smokers seeking treatment for smoking cessation and drinking 

reduction. This study found a reduction in drinks per drinking day in the varenicline plus 

naltrexone group compared to the varenicline alone group across the 12-week treatment 

phase (Ray et al., 2021). A subset of participants in the parent clinical trial completed an 

alcohol cue-reactivity neuroimaging paradigm to test the effect of combined varenicline and 

naltrexone compared to varenicline alone and placebo on neural alcohol cue reactivity. As 

the primary trial did not include a placebo group, we also included a placebo group from 

a separate trial which used the same alcohol cue-reactivity paradigm. Given our previous 

neuroimaging work and the results of the main study trial, we hypothesized that individuals 

treated with combined varenicline and naltrexone would show attenuated mesocorticolimbic 

activation to alcohol cues, relative to individuals treated with varenicline alone, and relative 

to those treated with placebo.
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2. Materials and methods

2.1. Participants

A total of 47 individuals (22–65, 16 females) participated in this study. They were recruited 

for 2 separate projects which were approved by the University of California, Los Angeles 

Institutional Review Board. In both studies, participants completed the Alcohol Cues Task 

(Schacht et al., 2011) during fMRI using identical neuroimaging procedures while under 

treatment of an active medication or placebo. Participants from study 1 (n = 22) were part of 

a 26-week randomized clinical trial of varenicline alone versus varenicline plus naltrexone 

for smoking cessation and drinking reduction in a community sample of heavy drinking 

smokers (Ray et al., 2021; ClinicalTrials.gov identifier: NCT02698215). Neuroimaging was 

added to study 1 in March 2018; participants meeting MRI eligibility criteria were invited to 

participate in the neuroimaging portion of the study. Participants from study 2 (n = 25) were 

part of a 2-week randomized clinical trial of ibudilast for drinking reduction in a community 

sample of heavy drinkers (Grodin et al., 2021; ClinicalTrials.gov identifier: NCT03489850); 

only individuals treated with placebo were included in the current study. Neuroimaging data 

was collected from the majority of placebo participants in study 2 (25/28).

Participants for both studies were recruited through print, radio, social media, and mass 

transit advertisements. Participants were screened for initial eligibility over the telephone; 

eligible participants were invited to the laboratory for an in-person intake screening. In 

both studies participants were required to meet the definition of heavy drinking set by 

the National Institute of Alcohol Abuse and Alcoholism: >14 drinks/week for men and 

>7 drinks/week for women, in the 30 days prior to screening. Both studies excluded 

participants with past year DSM-5 diagnoses of substance use disorder (excluding alcohol), 

lifetime diagnoses of schizophrenia, bipolar disorder, or any psychotic disorder, and 

clinically significant alcohol withdrawal symptoms, as indicated by a score ≥ 10 on the 

Clinical Institute Withdrawal Assessment of Alcohol Scale, Revised (CIWA-Ar) (Sullivan 

et al., 1989). Neuroimaging exclusion criteria for both studies were: claustrophobia, non-

removable ferromagnetic objects in body; and serious head injury or prolonged period of 

unconsciousness (>30 min). Participants were also excluded if they had a medical condition 

thought to interfere with safe participation and if they reported recent use of medications 

contraindicated with varenicline or varenicline plus naltrexone (study 1) or ibudilast (study 

2). Women of a childbearing age had to be practicing effective contraception and could not 

be pregnant or nursing. For study 1 participants were also required to smoke ≥5 cigarettes 

per day and to have a carbon monoxide reading ≥4 ppm to verify smoker status. Both studies 

required a physical exam with the study physician which included vital signs, E.K.G., and 

clinical laboratory exams to ensure medical eligibility. At each in-person visit, participants 

were required to have a breath alcohol concentration of 0.00 mg/dL, test negative on a urine 

toxicology screen for all drugs of abuse (except cannabis), and test negative on a pregnancy 

test (women only). Blood pressure and heart rate were assessed at screening and at each 

visit.
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2.2. Assessments

Participants completed a series of assessments for eligibility and individual differences. 

These measures included the Structured Clinical Interview for DSM-5 (SCID-5)(First et 

al., 2015) to assess for alcohol use disorder (AUD) and other substance use disorders, the 

CIWA-Ar (Sullivan et al., 1989) to evaluate alcohol withdrawal symptoms, the Fagerstrom 

Test for Nicotine Dependence (FNTD)(Heatherton et al., 1991) which measures nicotine 

dependence severity, the Alcohol Use Disorder Identification Test (AUDIT)(Saunders et al., 

1993), which assess severity of alcohol use problems, and the 30-day Timeline Followback 

Interview (TLFB)(Sobell and Sobell, 1992) for alcohol, cigarettes, and cannabis. From 

the TLFB interview the following items were calculated: total number of alcoholic drinks 

consumed over 30 days, drinks per drinking day, total number of cigarettes smoked over 30 

days, and cigarettes per smoking day.

2.3. Neuroimaging procedures

Neuroimaging for both studies took place at the UCLA Center for Cognitive Neuroscience 

on a 3.0 T Siemens Prisma Scanner (Siemens Medical Solutions USA, Inc., Malvern, PA). 

The neuroimaging visit took place on study day 10–14 for Study 1 and on study day 8 for 

Study 2. A T2-weighted, high-resolution matched-bandwidth (MBW) anatomical scan (time 

to repetition (TR) = 5000 ms, time to echo (TE) =34 ms, flip angle = 90°, voxel size: 1.5 mm 

× 1.5 mm × 4 mm, field of view (FOV) = 192 mm2, 34 slices, ~1.5 min) and a T1-weighted 

magnetization-prepared rapid gradient-echo (MPRAGE) sequence (TR = 2530 ms, TE =1.74 

ms, time to inversion = 1260 ms, flip angle = 7°, voxel size: 1 mm3, FOV = 256 mm2, ~6.2 

min) were acquired for co-registration to the functional data. A T2*-weighted echo planar 

imaging (EPI) scan (TR = 2200 ms, TE =35 ms, flip angle = 90°, FOV = 192 mm, slices = 

36, 3.0 mm, ~12 min) was acquired to examine the blood oxygen-level dependent (BOLD) 

signal during the alcohol cue reactivity task.

2.4. Alcohol cue reactivity task

Participants completed a 720-s-long alcohol cue-reactivity task (Schacht et al., 2011), 

in which they were presented with 24 pseudo-randomly interspersed blocks of alcoholic 

beverage images (ALC), non-alcoholic beverage images (BEV), blurred images to serve as 

visual controls, and a fixation cross. Each block was composed of 5 individual pictures of 

the same type, each presented for 4.8 s, for a total of 24-seconds. Each block was followed 

by a 6-second washout period during which participants reported on the urge to drink using 

an MRI compatible 4-button response pad (ratings ranged from 1 to 4, with 1 representing 

no craving and 4 representing high craving, with each response reflected by a colored button 

on the response pad). Alcoholic beverage blocks were distributed between images of beer, 

wine, and liquor (2 of each).

2.5. Neuroimaging processing

Preprocessing followed conventional procedures as implemented in FMRIB Software (FSL 

v6.0.1 http://www.fmrib.ox.ac.uk/fsl). This included motion correction, high-pass temporal 

filtering (100-second cut-off), and smoothing with a 5-mm full-width, half-maximum 

Gaussian kernel (Jenkinson et al., 2002). Functional and structural data were skull-stripped 
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to remove non-brain tissue. Each subject’s functional images were registered to their MBW, 

followed by their MPRAGE using affine linear transformations, and then were normalized 

to the Montreal Neurological Institute (MNI) 152-brain-average template through non-linear 

registration (Andersson et al., 2007).

2.6. Data analysis

A series of analyses of variance (ANOVAs) were conducted as omnibus tests comparing the 

medication groups on continuous demographic and clinical measures. Similarly, chi-square 

tests were used to compare medication groups on categorical measures. Tukey-Kramer 

t-tests were used to follow-up significant omnibus ANOVAs to identify the specific group 

differences. Group comparison analyses were conducted in SPSS 26.

For the neuroimaging data, whole-brain statistical analysis was performed using FSL’s 

FEAT software (Woolrich et al., 2001). The primary contrast of interest, ALC vs. BEV, was 

defined in the first-level models for each subject. FSL’s FLAME 1 (Woolrich et al., 2004) 

was used to conduct group-level analyses. Specifically, a 1-way ANOVA was conducted 

to evaluate the main effect of group (VAR, VAR + NTX, PLAC) on alcohol cue-elicited 

brain activation. Follow-up analyses evaluated group differences. Z-statistic images were 

thresholded using a cluster threshold of Z > 2.3 and a (corrected) cluster significance 

threshold of p = .05 (Worsley et al., 2001). Age, AUDIT total scores, and smoking status 

were examined as potential covariates in separate whole brain analyses. Only age was a 

significant covariate for the whole-brain analysis and is reported below.

For the exploratory alcohol craving analysis, the peak alcohol craving during the scan was 

collected for each participant. Given the significant differences between VAR alone and 

VAR + NTX on alcohol cue-elicited neural activation, the effect of the combination of 

medications compared to varenicline alone on alcohol craving was examined using a t-test.

3. Results

3.1. Participants

There were significant differences between groups on several clinical and demographic 

characteristics. Specifically, the placebo group was younger, had fewer smokers, and had 

less severe nicotine dependence compared to active medication groups (VAR and VAR + 

NTX). Regarding alcohol use, the groups did not differ on quantity or frequency of drinks 

or on AUDIT scores. There were no significant differences between the active medication 

groups on any demographic or clinical variable (see Table 1).

3.2. Alcohol cue reactivity – whole brain analysis

There was a significant main effect of group on alcohol cue reactivity in several reward-

associated brain regions, including the medial prefrontal cortex (mPFC), cingulate, and 

caudate (see Table 2 and Fig. 1A). To probe this main effect, a series of post-hoc tests were 

conducted to localize group differences. Specifically, the VAR group showed significantly 

greater alcohol cue-elicited activation in the caudate and thalamus as compared to the 

combined VAR + NTX group (see Table 2 and Fig. 1B). The PLAC group also showed 
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significantly greater alcohol cue reactivity relative to the VAR + NTX group in a cluster 

extending from the parahippocampus to the thalamus (see Table 2 and Fig. 1C). There 

were no significant differences between the VAR group and the placebo group. The average 

alcohol vs. beverage activation for each group can be found in the Supplementary Materials 

(Table S1 and Figure S1).

Age was a significant covariate, such that age was positively correlated with increased 

activation in the left superior parietal lobule when viewing alcohol vs. beverage cues. There 

were no regions which showed a significant negative correlation with age and activation.

In order to ensure that medication effects were specific to alcohol cues and not a blunting 

of activation to all cue types, analyses were performed to examine whole-brain activation 

to alcohol and non-alcoholic beverage cues separately. For alcohol cues alone, there was a 

significant activation in mesocorticolimbic reward circuitry and occipital/temporal circuitry 

across all participants (Table S2). Each group had significant activation to alcohol cues in 

broad visual, temporal, and prefrontal circuitry (Table S2). The VAR group had significantly 

greater alcohol cue activation in the insula and putamen relative to the VAR + NTX group 

(Table S2 and Figure S2). For beverage cues alone, there was a significant activation in 

mesocorticolimbic reward circuitry occipital/temporal circuitry across all participants (Table 

S3). Similar to the alcohol cue results, each group had significant activation to non-alcoholic 

beverage cues in broad visual, temporal, and prefrontal circuitry (Table S3). The VAR 

group had significantly greater alcohol cue activation in the insula and postcentral gyrus 

relative to the VAR + NTX group, while the VAR + NTX group had greater activity in the 

lateral occipital cortex (Table S3 and Figure S3). The VAR group had significantly greater 

activation in the pre- and postcentral gyrus and insula relative to the placebo group (Table S3 

and Figure S3). The VAR + NTX group had significantly greater activation in the superior 

and middle frontal gyrus, occipital cortex, and precentral gyrus relative to placebo (Table S3 

and Figure S3).

3.3. Alcohol craving

The medication groups (VAR + NTX and VAR) significantly differed on peak in-scanner 

alcohol craving (t(1,18) = 2.24, p = 0.04), such that the combined VAR + NTX group had 

lower ratings than the VAR alone group (VAR alone craving = 3.00 ± 1.05; VAR + NTX 

craving = 2.00 ± 0.94; range 1–4). Only 1 participant endorsed the highest craving rating in 

the combined VAR + NTX group (9.09%); while 4 participants in the monotherapy group 

reported the highest level of craving (36.36%). The peak craving rating for the medication 

group was 2.56 ± 1.16; with 7 participants endorsing the highest craving rating (28%). 

There were no significant differences between either medication group and placebo on peak 

craving ratings.

4. Discussion

This neuroimaging study investigated the effect of combined varenicline and naltrexone 

compared to varenicline alone and placebo on the neural response to alcohol cues in heavy 

drinking smokers. Results revealed that that the combination of varenicline and naltrexone 

attenuated alcohol cue-elicited neural responses in mesolimbic reward circuitry relative to 
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varenicline alone and placebo. The combined medication also reduced in-scanner alcohol 

craving relative to varenicline alone. This finding is consistent with results from the larger 

randomized controlled trial, which found a reduction in drinks per drinking day in the 

combined medication group, compared to varenicline only (Ray et al., 2021). Together these 

preliminary findings are in line with the notion that the combination of varenicline plus 

naltrexone may reduce craving for alcohol and neural activation to alcohol, versus control, 

cues in the mesolimbic pathway.

As hypothesized, the brain localization of the cue-reactivity attenuation effects largely 

aligned with previous neuroimaging literature on these medications. Both varenicline and 

naltrexone have individually been shown to affect neural activation in corticolimbic (Schacht 

et al., 2014; Loughead et al., 2013; Lukas et al., 2013a,b) and striatal (Vatsalya et al., 

2015; Bach et al., 2020) reward-associated regions. Furthermore, the separate alcohol and 

non-alcoholic beverage cue analyses indicate that these results are not due to a blunting 

of overall reward response or medication-induced somnolence, as both medication groups 

showed a significant brain activation to non-alcoholic beverage cues alone. Additionally, 

reduced alcohol cue-reactivity in these mesocorticolimbic regions aligns with previous 

research in which combined varenicline and naltrexone attenuated neural reactivity to 

smoking cues (Ray et al., 2015). Consistent with the role of functional neuroimaging 

studies in medications development (Grodin and Ray, 2019), this study provides a proof-

of-mechanism for this combination pharmacotherapy and suggests that naltrexone may be 

driving the reductions in cue-elicited alcohol craving in the brain. The potential mechanism 

driving these effects may be dopamine related. In rodent models, the co-administration 

of nicotine and alcohol in the ventral tegmental area results in an additive effect on the 

release of dopamine in the nucleus accumbens (Tizabi et al., 2002), indicating that alcohol’s 

reinforcing effects may be partially mediated through nicotinic receptors in the ventral 

tegmental area. Naltrexone has been shown to decrease striatal dopamine (Benjamin et al., 

1993; Gonzales and Weiss, 1998). Therefore, the combination of varenicline and naltrexone 

may reduce dopamine in the striatum, resulting in a decrease in alcohol cue-elicited 

neural activation. Furthermore, cue-induced craving was significantly lower in the combined 

varenicline and naltrexone group relative to the varenicline alone group. These preliminary 

findings are in line with previous work investigating the effect of varenicline, naltrexone, 

and their combination on alcohol craving. Naltrexone has been shown to consistently 

blunt alcohol craving across cue-reactivity paradigms (Davidson et al., 1999a, b; Lukas 

et al., 2013a,b; McCaul et al., 2000a,b; Monti et al., 1999a,b; Ooteman et al., 2007a,b). 

Findings with varenicline have been mixed. A human laboratory study found that varenicline 

blunted alcohol cue-elicited craving (Roberts et al., 2017a,b); while a recent multisite trial 

of varenicline found no benefit of varenicline in reducing cue-induced alcohol craving 

(Miranda et al., 2020a,b). A human laboratory study of the combination of varenicline and 

naltrexone in heavy drinking smokers found no medication effects on alcohol craving after 

12 h of nicotine abstinence (Ray et al., 2014a,b); however, this effect was not primed with an 

alcohol cue. Of note, the ratings of craving in the study were limited to a range of 1–4 and it 

is possible that the lower craving found in the combined medication group may not reflect a 

biologically-relevant difference between the medication groups, particularly as only a small 

portion of the study sample endorsed the highest level of craving.
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Outside of the neuroimaging literature, these findings also support recent work indicating 

that naltrexone may be a more efficacious treatment for individuals with an AUD who 

also smoke cigarettes. In individuals who with AUD who smoke cigarettes, NTX decreased 

percent heavy drinking days compared to placebo (Anton et al., 2018; Schacht et al., 

2017), and in a separate study increased percent days abstinent and reduced drinking-

related consequences (Fucito et al., 2012). Importantly, these effects were not present in 

non-smoking individuals with AUD treated with NTX. Similar effects have been seen in 

smoking cessation studies, where NTX has been shown to reduce heavy drinking rates in 

treatment-seeking smokers who also drink heavily (Fridberg et al., 2014; King et al., 2009; 

O’Malley et al., 2009).

While this study is preliminary, it is important to note that this study advances the field 

through its investigation of potential concurrent treatment of smoking and heavy drinking. 

The majority of studies in the field focus on the treatment of single disorders and often 

have strict exclusion criteria (Blanco et al., 2008). While smoking is often not exclusionary 

in AUD treatment trials, there have been few studies which try to concurrently treat both 

smoking and alcohol using a single medication or a combination of pharmacotherapies. 

Given that a major goal of clinical studies is to translate to clinical practice, these studies, 

including fMRI pharmacotherapy studies, should enroll representative samples with co-

occurring health conditions, which may help accelerate the acceptance and use of evidence-

based treatments in clinical settings. Due to the limited number (<10%) of participants in our 

sample that used e-cigarettes, we cannot say with certainty that our results could extend to 

the co-use of e-cigarettes and alcohol. Initial evidence suggests there may be some overlap 

between the co-use of alcohol and traditional versus e-cigarettes (Hershberger and Cyders, 

2017). However, various differences exist, such as e-cigarette accessibility to adolescents, 

social acceptability of e-cigarettes, and differences in the “high” from e-cigarettes versus 

traditional cigarettes (Hershberger and Cyders, 2017). These are all key factors that could 

impact the effects of medication on cue-elicited activation in mesolimbic regions. Given that 

many e-cigarette users transition to traditional cigarettes (Leventhal et al., 2015; Primack et 

al., 2015), these results are still highly relevant to smokers broadly and future studies could 

examine the effects of medication on alcohol cue-elicited neural response among alcohol 

and e-cigarette users.

This study should be interpreted in the context of its strengths and weaknesses. Strengths 

include the use of neuroimaging in a combination pharmacotherapy trial and the enrollment 

of a heavy drinking smoking sample. The main limitation of this study is its small sample 

size, particularly for the active treatment groups, which lead these findings to be classified 

as preliminary. Another study limitation is the lack of an active smoking cue condition, 

given that the study population consisted of heavy drinking smokers. Future studies with 

co-using samples should use alcohol cue reactivity neuroimaging paradigms that include 

a smoking cue condition and a combined alcohol and smoking cue condition to fully 

investigate the combination of varenicline and naltrexone in larger samples. Additionally, 

the placebo group was included from a separate pharmacotherapy study, as the main 

combination pharmacotherapy trial was a superiority trial and did not include a placebo 

arm. This resulted in the individuals in the placebo group not matching in age or smoking 

severity measures relative to the varenicline alone and varenicline plus naltrexone groups. 

Grodin et al. Page 10

Drug Alcohol Depend. Author manuscript; available in PMC 2022 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Finally, in-scanner craving was measured using a 4-point visual analogue scale measured 

using a 4-button response box, which may have limited our ability to assess a full range of 

craving (i.e., a ceiling effect). Future studies should include a craving measurement with a 

wider range to better capture craving elicited during this task.

In conclusion, these preliminary results advance medication development for heavy drinking 

smokers, suggesting that the combination of varenicline and naltrexone is superior to 

monotherapy alone in attenuating alcohol-cue elicited mesolimbic activation and alcohol 

craving. Further study of the combination of these pharmacotherapies in heavy drinking 

smokers, a difficult to treat population, are warranted.
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Fig. 1. Whole-Brain Alcohol vs. Beverage Results.
(A) There was a main effect of group on activation to alcohol vs, beverage cues in the 

medial prefrontal cortex, cingulate gyrus, caudate, and midbrain. (B) The varenicline only 

group had higher activation to alcohol vs. beverage cues in the caudate and thalamus relative 

to the varenicline + naltrexone group. (C) The placebo group had higher activation to 

alcohol vs. beverage cues in the thalamus, parahippocampus, and hippocampus, relative to 

the varenicline + naltrexone group. Z-statistic maps are whole-brain cluster corrected, Z > 

2.3, p = .05. Coordinates are in Montreal Neurological Institute space. Brain is displayed in 

radiological convention (L=R).
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