UC Berkeley
SEMM Reports Series

Title
Finite Element Formulation and Solution of Contact-Impact Problems in Continuum Mechanics - I

Permalink
bttgs:ggescholarshiQ.orgéucéiteméStglsOgd
Authors

Hughes, Thomas
Taylor, Robert
Sackman, Jerome

Publication Date
1975-07-01

eScholarship.org Powered by the California Diqgital Library

University of California


https://escholarship.org/uc/item/5tg1s0qn
https://escholarship.org
http://www.cdlib.org/

Structures and Materials Research
.. Department of Civil Engineering

Report No. 757

FINITE ELEMENT
FORMULATION AND SOLUTION OF
CONTACT AND IMPACT PROBLEMS IN
CONTINUUM MECHANICS -I1I

by

Thomas J. Hughes
Robert L. Taylor
Jerome L. Sackman

This report was prepared under subcontract number
N68305-75-C-0004

sponsored by
Civil Engineering Laboratory

Naval Construction Battalion Center
Port Hueneme, California

as part of Funding Document Number
ONR NOOQ14-75-WR-5-0197

Funded by Office of Naval Research
Arlington, Virginia

July 18975


Administrator

Administrator

Administrator

Administrator

Administrator


Table of Contents

ACKkNnOWTedgement. i it it ir i tenasovacasnuonercanacroansnneeserens

B¢ ok oo Lo £ Lok v s o R O OO

I.

IT.

II11.

Iv.

Recently Run Example and Check Problems Using the Hertzian

Contact-Impact Algorithm. ... r ittt cesincsrnnnencnnnas
1. Head Injury Model....oiiiiiiiiiriiiiiieenennnnacans e
a. HaT?ow‘sku11 contacting a rigid surface...............
b. Hollow skull impacf%ng a rigid surface......ceveuunass

¢. Impact of skuli-brain model against a rigid surface...

2. Rectangular Block Impacting a Rigid Surface...............
3. Dynamic Rigid Punch Problems....iviieiiinnrnervonnassnnnns

g, Triangular punCh. . ittt irenranssrnnnsanenannnns

b, Parabolic punch. ..o i it s e e
4. Static Analyses of Germanium Crysta1s.ﬂ ...................
Analysis of Nonlinear Compressible, Incompressible and Nearly-
Incompressible Elastic Bodies.. i iiiaiionnsnnnns
T, Introduction ..ot iiiiiiieeennasonsssnanannns cenen
2. Finite Element Formu1étion for Nonlinear Compressible

E1aStiC BOOIRS, st ittt i tiesesensesnonsesosronnsocnscnsns

3. Finite Element Formulation for Nonlinear Incompressible
and Nearly-Incompressible E]astic BodieS.iienrrnnennnenens
Algorithm for the Two-Dimensional Kinematically Nonlinear
Contact-Impact Problem....eiiiiriiiieinntivarecnssnrnnsacnnnes
T. Introduction and Basic Ideas...cviviinirioernnenrnonnenaens
2. Logic for Determining if a Contact Point Penetrates a
Target Segment......ooviiiiiiiiiiiiiiiiiieaae Cerseaes
3. Location of the Point of Initial Contact............. caren
Frictional Contact TheOry.. e iieeeiraeresnsasacasavennranos veas

References....... v esaacuteaneaensevaerrrrenan tenessessnasasanaanns

6
10
13
13
18
22

25
25

25

27

47
50






i

Acknowledgement

This report was prepared under Subcontract No. N68305-75-C-0004;
sponsored by Civil Engineering Laboratory, Naval Construction Battalion
Center, Port Hueneme, California as part of Funding Document No. NOOO14-
75-WR-5-0197 which was funded by the Office of Naval Research.

The opinions,  findings and conclusions expressed in this publication
are those of the authors and not necessarily those of the Civi] Engineer-
ing Laboratory or the 0ffice of Naval Research,

The authors would 1ike to acknowledge the considerable contributions
of Research Assistants Alain Curnier and Worsak Kancknukulchai to the

work reported upon herein.






Introduction

In" this progress report we describe work completed thus far under
Contract No. N68305-75-C-0004 (Proposal UCB-Eng.-3889). As we frequently
allude to our previous work [1], [2] and [3], it will prove helpful to
the reader to be somewhat familiar with these references.

In Section I we present several recently run check problems using
the Hertzian contaét-impact algorithm. These problems have helped us to
increase the reliability of the Hertzian algorithm, demonstrate its
accuracy and versatility with regard to a wide range of contact-impact
problems, and delimit its range of applicability. )

In Section 1! we describe our work in developing finite element
models for nonlinear compressible, incompressible and nearly-incompressi-
ble elastic bodies. Our theoretical work in this area is completed, and
implementation and check-out is currently in progress.

In Section III we present detailed aTgoritﬁms for determining if,
and where, contact has been made for the kinematically nonlinear case.
This work builds upon the scheme initiated in [2]. Implementation of
these algorithms in FEAP has commenced.

A simple dry friction contact theory is described in Section IV.

The frictionless and no-sTip extremes are special cases of this scheme.

Algorithms are currently being designed for implementing this model in

FEAP, and will be described in succeeding progress reports.



I. Recently Run Example and Check Problems Using the Hertzian
Contact-Impact Algorithm

Se#eral problems demonstrating the effectiveness of the Hertzian
contact impact algorithm have been reported upon previously (see [2] and
[31). In this section we present the results of some recently fun
examples.

1. Head Injury Model

Several contact-impact analyses of an axisymmetric spherical head
model were performed (see [22]). The model consists of a three-layered
skull and encapsulated brain (Fig. I-1). The radius of the brain cavity
R=2.95", the thickness of each hard bone layer is 0.05", and the'th{ék-
ness of the diplogé layer is 0.10". Material properties are taken to be
Tinear elastic and are given in Table I-1. Bilinear displacement finite
e?ements‘were used to model the skull and brain. In the skull, three
layers of elements were used through the thickness and four-point
Gaussian quadrature was employed. The brain elements make use of one-
point quadrature (so-called fluid elements).

a. Hollow skull contacting a rigid surface

The skull was discretized into 51 elements and 7 candidate contact
elements were employed (see Fig. I-2a). The skull is fixed at the
uppermost node and a rigid frictionless surface is pressed into it from
the bottom. The rigid surface, initially just touching the skull, 1is
given an upward motion of .1 inches per.step until a total motion of .5
inches was achieved., Inertial effects were neglected.

Tracings of computer pldtted deformed configurations and contact
pressures (obtained from nodal contact forces by a tributary area

method) are depicted in Fig. I-2b to 2f. Note how the peak centact
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I-1 Axisymmetric spherical head injury model.



Table I-1. Material Properties for Head Injury Model

Property Hard Bone Diploé Brain
K - Bulk Modulus
(}06 osi) 1.333 L1333 .305
G - Shear Modulus
p - Density

2. .2 037

(10" *1b-sec?/in’)
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pressure occurs towards the outer radius of the contact zone. This is
a common feature of shell-like contact phenomena, but quite opposite
that for a homogeneocus elastic sphere {see [2], Section I-1).

b. Hollow skull impacting a rigid surface

The mesh of the previous problem is also used here. The data

are:
At = .05x10 sec (Time step)
B = .25 |
k (Newmark parameters)
y=.5

The uniform initial velocity of the sphere was 352.1in/sec (=20 mph) down-
ward. In this example we were interested in seeing the early-time wave
propagation effects, and thus we employed a time step which is close to
the transit time for a dilatational wave to travel through the thickness
of each skull layer {the transit time for the hard bone Tayer equals
.0456x107° sec). The contact force for the first 100 time steps is pre-
sented in Fig. I-3. The period of oscillation superposed upon the results
is approximately .35)('!0“5 sec, which is very close to the time required
for a dilatational wave to pass through the entire thickness of the

skull and back {i.e., approximately .365x30'5 sec).

c. Impact of skull-brain model against a rigid surface

The mesh for this problem is depicted in Fig. I-4. The modeling
of the skull portion is identical to the previous two cases. Here we
used a time step of .365;(10"5 sec; all other data are the same as for
the previous case. Pressure profiles over the contact surface, obtained _
from the nodal contact forces by a tributary area method, are depicted
in Fig. 1-5. It is interesting to compare these resuits with the
profiles obtained from the dynamic Hertz problem, {3], and the guasi-

static shell problem, case a. In the former case, the peak contact
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I-3 Contact force vs time for a hollow skull impacting a rigid surface.
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I-4 Finite element mesh for impact of skull-brain model against a rigid
surface.
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pressure is located on the axis of symmetry, and in the latter case,
it is towards the periphery of the contact zone, falling off to zero
along the symmetry axis {cf. Fig. I-2). Here, Fig. I-5, results
somewhere in between these extremes is achieved.

2. Rectangular Block Impacting a Rigid Surface

An analysis was performed of a plane strain linear elastic rectangu-
lar block impacting a rigid surface. The finite element mesh is shown

in Fig. I-6. Data are:

p=0.1 (Density)

E = 1000. (Young's modulus) ' -
v=.,3 (Poisson’s ratio)

L= 9. (Length)
At = .002725 (Time step)

g8 = .001001) '

5 (Newmark parameters)
vy = .502 |

The time step is the transit time for a dilatational wave to propagate
the length of one element. Initially the block is traveling at a uniform
velocity of 1. (downward)}. The block impacts the rigid surface at t=0.
Outside the shaded zone (see Fig. I[-7) defined by R=ct, where ¢=366.9 is
the dilatational wave velocity, the exact solution consists of two con-
stant zones, I and 11, separated by the dilatational wave front which
emanates from the initial impact. The circuﬁar wave front is a result
of reflections off the right-hand side (free) boundary.

We were interested in determining the early time results for this
problem which can be compared with the known solution in zone II and
provide a test of the discrete impact conditions. Eight time stéps were

run, allowing the front separating zone I from II to propagate to within
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I-6 Finite element mesh for a
a rigid surface.

plane strain rectangular block impacting
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Wave front diagram for rectangular block impact problem.



one element length of the top surface. Stress results for severa)
elements are depicted in Fig. I-8. In each case the rise of stress
from zero to the exact value is achieved in one time step, and this
value is maintained until the wave from the right-hand boundary reaches
the element. The results corroborate the effectiveness of the discrete
.impact conditions.

A deformed mesh at t=.0163, with displacements magnified by a
factor of 50., js Superposed upon the undeformed mesh in Fig, 1.9, At
this time the plane front has traveled upward through 6 elements. Note
. that bulging along the right-hand side occurs up to this point. The
effect of a frictionless contact surface is evidenced by the disé?ace-
ment to the right of the Tower right-hand corner node,

3. Dynamic Rigid Punch Problems

a. Triangular punch

A rigid triangular punch is driven into a linear elastic half-plane

at constant velocity V=100, (see Fig, I-10). Data are:

P = .01 {Density)

E = 1000. (Young's modulus)

v =3 (Poisson's ratio)

@ = tan" 2 (Punch angle)
At = ,0025 (Time step)
B=.25 )

? {Newmark parameters)

y=.5

Five contact elements were employed. The infitia] mesh configuration and

several deformed configurations are illustrated in Fig. I-11.

13



14

‘wapqoad 3oedut 3d0(4g deinbueldad 404 S3LNSad SSaUA}S 8-I

— O.¢|
o)
N\
— O.m....
~
[
[¥))
—
-t '~ T
m
w
€3]
O'tl-
| |
0O¢ Ol 0
2 Ol¥x JNIL

02 Ol
g O1X ANWIL

Ov-

o¢-

0'¢-

0'1-

ss3yLs fz



15

|
|

z3 J SYMM. ABT ¢

CFTr= T 773777777177 70
(RSO SN S MNP PRSP SNIPIS FIpW SP W
i
1Ly _d_ i i ;
AN I SN RO DO N
T
SIS ' N NN RS NN U ) L
i 1 ; {

. —gm L)

JT7TTTTTITT77777 7777777

DEFORMED CONFIGURATION
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I-G Deformed configuration superposed upon initial configuration for
rectangular block impact problem at time .0163. The displacements
are magnified 50 times.
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1-10 Rigid triangular punch driven into a half-plane at constant
velocity V.
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INITIAL CONFIGURATION

t=.0250

Initial and deformed configurations
problem.

17

t=.0125

t= 0375

[1]

[1]]

for rigid triangular punch
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b. Parabolic punch

A rigid parabolic punch was driven into the half-plane at a constant
acceleration A = 4000. (see Fig. I-12). The surface of the punch is
defined by the eguation z3=z§/8. The remaining data are the same as in
the previous case. The initial mesh configuration and deformed configura-
tions are depicted in Fig. I-13. l

Total contact force for cases a. and b. is known [20] to vary linear-

1y and quadratically, respectively, with time. The results of the finite

element analyses are seen to exhibit this behavior (see Fig. I[-14).

The results for case b. employed a modification to the velocity
impact conditions. Specifically, the velocities of the last time step
prior to impact, af], in €q. (I1I1-8), of [2], were replaced by the velo-
cities of the last iteration prior to impact, ﬁ?. This was done because
the impactor was accelerating, causing the velocities to vary linearly
over the time step. Results using (11-8)1 of {2] although showing the
general trend of Fig. I-14, oscillated quite a bit before settling
down. In general this artifice is not to be recommended; the sharp
impact results of previous problems (namely, the bar problems presented
in [2] and [3] and the block problem of the previous subsection) would
not have been obtained if this was made the rule rather than the excep-
tion. What this problem does emphasize is that more sensitive {i.e.,
higher-order) impact and release conditions are necessary if one is to
avoid taking excessively small time steps during the impact and release
phases of a contact problem. The concept of higher-order impact condi-

tions was alluded to in [3].



)

////j//////j/M %jﬂ/ﬂ///ﬂf —

I1-12 Rigid parabolic punch driven intc a half-plane at constant
acceleration A,

19
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INITIAL CONFIGURATION t=.0125

't=.0250 t=.0375

/]

=

I-13 Initial and deformed configurations for rigid parabolic punch
problem.
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I-14 Total contact force vs time for rigid punch problems.
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4, Static Analyses of Germanium Crystals

We have recently aided a research team of Berkeley physicists
studying electron-hole drops in germanium (see for example [21]) by
performing contact analyses of germanium crystals. Their work has
been featured in lengthy arti¢1es in the San Francisco Chronicle
5/19/75, New York Times 5/19/75, and other major periodicals.
Briefly, their theory indicates that Tong-lived electron-hole drops
will occur around the point of maximum €11 T €33° where £ij are the
infinitesimal strains, in stressed germanium crystals. Their exper-
imental technique enables them to photograph the electron-hole droﬁ
(see Fig. I-15). This was the first direct photographic evidence of

the existence of this phenomenon.

The Hertzian contact algorithm was employed to calculate the

‘strain contours of sample crystals. For example, the following data

were employed to analyze the plane strain configuration illustrated
in Fig. I-16.

Nylon set screw:

£ = 1000. dynes/cm2
v = .3
Germanium crystal:
E = 13850. dynes/cm®
v = .3

The radius of the germanium crystal is 2 mm. The nylon set screw was
driven into the crystal .08 mm, as illustrated in Fig. I-16, and five
of the candidate contact nodes engaged. In Fig. I-16 we also show
contours of €17 " €33° The computed point of maximum €11 " €33 is in
close agreement with the photographed location of the electron-hole

drop {cf. Fig. I-15).
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First photograph of an electron-hole drop in germanium.

I-15
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IT. Analysis of Nonlinear Compressible, Incompressible and Nearly-
Incompressible Elastic Bodies

1. Introduction

The finite element analysis of nonlinear phenomena in solid mechanics
is presently an area of active research. QOur algorithm for nonlinear
contact-impact-prob1ems has been described in previous work (see Chap.

IT of [1], p. 46 of [2], and [31). Although this algorithm is applica-
ble to general nonlinear problems, thus far we have only considered
nonlinearities attributable to the contact area development. 1In the
present work we describe our formulation for nonlinear compressible,
incompressible and nearly-incompressible elastic bodies. As is well
known, the incompressible and nearly-incompressible cases require special
care in the development of numerical formulations. The background for
this problem and our approach are described in Section I1-3. This work
relies heavily on the formulation for the compressible case which we

now proceed to describe.

2. Finite Element Formulation for Nonlinear Compressible Elastic
Bodies

Recall form [11, [2] and [3] that it is only necessary to construct
the mass matrix M, vector of elastic forces E{E)s vector of external
toads E, and tangent stiffness matrix DE(E) to perform nonlinear analy-
sis. As in [1], we work in terms of the initial configuration B of the
body in question. Our present notation is consistent with that of [1],
Section 2, except that we work in terms of cartesian components for
concreteness. Let Po denote the density in the initial configuration
and let Ar be that part of 3B, the boundary of B, upon which tractions
are prescribed. Let Ta represent the prescribed Piola-Kirchhoff

tractions, Fa the extrinsic body force and xa=xa{XA t) the position
%
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at time t of the materia’l particle located at Xa in the initial
configuration. The deformation gradients are denoted by xa,A=3xa/3xA
and @{xa’A) is the strain energy per unit volume of the initial con-
figuration. Throughout we employ the summation convention with regard
to repeated indices (e.q., X3¥3"%1Y1 + x2y2+x3y3). A superposed dot
indicates time differentiation holding XA fixed (e.q., ia is the accelera-
tion) and Gxa indicates the variation of X, - Finally pAa represents
the first Piola-Kirchhoff stress tensor.

Upon application of standard discretization procedures (see (4D,

the quantities -

é Po ia Gxa ds, (11-1)
[P, &x, , dz, (11-2)
B Aa Ta,A
B AT

and

8X ds, _ (11-4)

£AAaBb buy a %y .8

_ a2 . . .
where AAaBb = 3 @/3xa,A axb,B is the elasticity tensor and Au, are
displacement increments, correspond to Mu, g(g), R and DK(E)'AE
respectively. Thus for a given elastic material (characterized via
] 1 +hn 1 itd 3] =1 {
Y(xa,A), say) *he quantities Paa o@/?xa,A and AAaBb can be determined

and programmed into a finite element computer code. A1l other aspects

of the analysis are standard and need not be considered further here.
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We note that all geometric and material nonlinearities are encompassed
in this simple formulation.

3. Finite fle.ent Formulation for Nonlinear Incompressible and
Nearly-Incompressible Elastic Bodies

When one passes to the incompressible 1imit in the theory of
elasticity, a special formulation is required (see Truedell and Noll
[5] for background). A pressure-like variable is introduced as an un-
known and, concomftant}y, an additional equation, restricting the motion
to be isochoric, must be satisfied. The pressure-like variable is in-
terpreted as the force which maintains this constraint.

In principle, the usual formulation of nonlinear elasticity cdvers
all other unconstrained cases. However, it has been discovered in the
application of finite element methods that, for nearly-incompressible
cases,* numerical problems are encountered with the usual formulation
of the theory. Within the context of the linear theory, these problems
have been dealt with in two ways. |

The first method is to reformulate the linear equations for the
compressible case in a way reminiscent of the incompressible case {see
Herrmann and Toms [6], Herrmann [7], Taylor, Pister and Herrmann 8], Key
[9], and Hughes and Allik [10] for background and applications along
these lines). What one does is to consider the stress a function of the
- strain and a mean-pressure variable. The constitutive equation relating
the dilatation to the mean-pressure variable then must be satisfied in-
dependently. With a judicious choice of interpolation functions for

the displacements and mean pressure, an effective numerical scheme can

An example of how one may characterize the nearly-incompressible case
is provided by assuming .45 < v < .5, where v is Poisson's ratio, in
classical isotropic elasticity.
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be developed. This approach is equally valid for the compressible and
incompressible cases. The variational formulation of this theory may

be yiewed as a special case of Reissner's theorem, since only a part of
the stress (i.e., the mean pressure) is considered to be independent.

We wish to emphasize here that this formulation, although capable of
yielding successful numerical algorithms, is no panacea. This fact,
although known for some time, does not seem to be widely appreciated.

1f one is naive in the use of this method it can lead to results equally
bad as those obtained by the standard formulation. What one must do

is employ “inconsistent” interpolation functions for the dﬁsp?aceménts
and mean pressure to avoid degenerating to the standard formulation

(see [10] for elaboration and numerical examples). This method has been
used successfully on a wide range of engineering problems (see [61-[10]
and references therein).

Recently, Fried [11] has provided insight into what goes wrong with
the usual formulation for the linear isotropic case. As a remedy he
suggests using "inconsistent” numerical integration rules for the de-
viatoric and dilatational parts of the strain energy. This technique
brings about a similar end as that of the "inconsistent" interpolation
functions used in conjunction with the previous]y described formulation.
Computations performed by Naylor [12] yield results consistent with
Fried's theory.

In the nonlinear case similar numerical problems are anticipated.
Thus alternative formulations are called for (see Oden [13],1ding, Pister
and Taylor [14], and Argyris, Dunne, Angelopoulos and Bichat [153, for
work already done in this area). The natural thing to do is to attempt

generalizations of the methods described above. Our original intention
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was to do this for the mean-pressure-variable formulation (see [16]).
However, in the course of developing this method, we have become convinced
that it is advantageous instead to adopt a generalization of the approach
proposed by Fried. We do this for practical rather than theoretical
reasons as either approach is, in principle, capable of handling the
nearly-incompressible and incompressible cases. The main practical
advantage of Fried's idea is that is involves only a minor {but delicate!)
modification of the usual displacement formulation for the compressible
case and thus results in a smaller system of equations than that as-
sociated with the mean-pressure-variable formulation. The computational
effort saved because of this promises to be cansiderable in nonlinear
analysis. In addition, the tangent stiffness matrix (for the non-con-
tact case) is positive definite in a stable configuration, whereas in

the mean-pressure-variable formulation it is always indefinite.

Our generalization of Fried's idea for the nonlinear case turns
out to be extremely easy to implement. On the other hand, the mean-

- pressure-variable formulation poses some potentially insurmountable
implementation problems.

We will first describe how the nearly-incompressible case can be
handled within the general scheme of Section 2, then show how incompres-
sible problems can be reduced to nearly-incompressible ones.

70 discuss the nearly-incompressible case it is convenient to
introduce a specific constitutive equation. Consider a strain energy

function defined by

=172 Min 3)% + 4 . (11-5)
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where A and u are material parameters, Jﬁdet(xa,A) and EABﬁT/Z(CAB-GAB)
is the Lagrangian strain tensor, in which CABzXa,Axa,B and 5AB is the
Kronecker delta. The first and second Pigla-Kirchhoff stress tensors,

corresponding to 2, are given by

. ad - _
PAa = 5;% A A(InJ)XA,a + 2u EAB xa,B’ (11-6)
and
_ 3 . -1
S = = A(an)g AB + 2u EAB ’ (11-7)

-1

respectively, where *(XA a) = (xa A) and (g']AB) = (CAB)']. The

elasticity tensor corresponding to & is given by

Anags = M(Xa aXg,p = (TM9IXg pXg o) u(8a%s c*b,c ¥ *b,A%a,8
(11-8)

+ ZﬁabEAB) .

The following features make this model useful for evaluating the
effectiveness of the nearly-incompressib]e-finite element procedure to
he described subsequently:

(i) It is isotropic with respect to the reference configuration

(this can be seen by replacing X3, A in the definition of ¢

by xa,BQBA’ where OBA is an orthogonal tensor, and observing

"~ that ¢(Xa’A) = an,BQBA))'

We use the notation (aij) to denote the matrix whose components are
a...
1]
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(i) The linearized approximations of the constitutive equations
(I1-6) and (II-7) about the initial configuration yield the
familiar relation of classical linear isotropic elasticity;

namely

Tab = e &, + 2u €.

cc ab

in which Tab represents the Cauchy stress tensor and €ab

the infinitesimal strain tensor.

(1i1) The parameter ) allows continuous control of the compressi-
bility. As i+, the boundary value problem in question ap-
proaches one for which the material is incompressible (i.e.,
Jz1). This permits numerical experiments over the entire
range of compressibility. We shall explicate this further
when discussing the incompressible case.

{iv) The model is extremely simple and proherly invariant with

respect to rigid motions.

We say this model exhibits compressible behavior when A and u are
of the same order of magnitude. When A is an order of magnitude, or
more, greater than p we say this model exhibits nearly-incompressible
behavior. In the latter case, standard finite element formulations
become i11-behaved. A heuristic reason for this is as follows. When
- A is large, the motion of a finite element is restrained to be almost
volume preserving, Thus a finite number of constraints are imposed
upon the freedom of each element. Upon assembling the elements the
total number of constraints generally exceeds the total number of degrees
of freedom, thus causing a “locking" of the structure (see Nagtegaal,

Parks and Rice [17] and Argyris et al. [15] for concrete examples of
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this phenomenon). The obvious remedy is to reduce the number of con-
straints per element. The simplest way of achievying this for the materi-
al defined by (II-5) is to use lower-order quadrature formulas for the
terms in (1I-2) and (II-4) involving AX.

For example, consider the standard isoparametric four-node quadri-
lateral {see [4] for details). Whereas 2x2 Gaussian guadrature is
generally used for this element, in the present circumstances only one-
point quadrature (the centroid) should be used for the X terms. This
results in only one constraint upon the motion of the element and thus
near-incompressibility is satisified in the mean. The behavior of p@is
element should be similar {if not identical) to the constant mean
pressure-bilinear displacements model, employed with success by Hughes
and A11ik [10]. One-point quadrature could be used for all terms if
the appearance of the "keystone" mode [22], also known as the "hour-glass"
mode, could be prevented.

Thus for constitutive models for which there exists identifiable
parameters such as A, which impose constraints upon the motion, under-
integrating the A terms remedies the locking which occurs in finite
elements.

For the eight-node serendipity element (see Zienkiewicz, Taylor
and Too [18]), 2x2 Gussian quadrature for all terms is anticipated to
yield good results for the hear?y—incompressible case. Thus this ele-
ment is suitable for cases in which there is no easily identifiable
parameter such as A.

On the.other nand, if it is desired to use the four-ncde element in
conjunction with a material without an easily identified incompressibili-

ty parameter, then a s1ightly more general strategy must be adopted.
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The idea again is to release some of the constraints within the element.
This can be done as follows. Let the volume preserving part of Xy p

be denoted by xa,A , 1.e.,

R

a,A Xa A’ (11-9)

clearly det(xa A) = 1, Then split the integrands of (II-2) and (I1-4)

in the following way:

_ 4173 - 1
pAa Gxa,A =4 PAa éxa.A 3 6xb,b PAa Xa A,
273 ~An
Apagb 2Ua,p % B = 97 T Anapp 8Uy 8 b8
5173 .
*3 Auc,c AAaBb *a,A be,B
3173 R
* 3 8% ¢ Anagb a,a *b,B
+ l-Au 8x A X %
9 ““¢,c “"d,d "AaBb "a,A”b,B °’
where
S Uk 1
Sxa =9 T (xy a3 Oy X ) s
. - =173 1
Bug q =9 77 (duy -y AU X )

Wherever J appears after the decomposition (1I1-9) is employed {e.g.,
in PAa or AAaBb) replace it by lower-order interpolation. The same

process should be carried out for Au and &x For the four-

a,a a,a’
node quadrilateral element, these guantities should be set equal to
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their values at the centroid. Thus even for the most complicated
material model numerical integration techniques can be empioyed effec-
tively for the case of near incompressibility.

We will now show how the incompressible case may be reduced to the
nearly-incompressible case. The constitutive equation for an incom-

pressible material is given by

~

Paa = P *a,a * Pha,

or (11-10)

~

A
Sag = P € ag ¥ Sas,

where PAa and SAB depend only on the motion. The variable p is to be
determined by way of the solution to the boundary-value problem, which

takes the form

P +p F_ =p X
Aa,A 0 a o "a in 3,
= 1
Xy = Xa on Ax,
X. = X K
a oa in 8,
Xa = Voa ‘

where PAa js defined by (II-EO)}, NA represents the unit outward
normal to 3B, Ax s that part of 38 upon which the motion is prescribed
to be X, x0a=cSaAXA represents the initial positions of the points 1in

B and V.. is the given initial velocity. We wish to replace this

oa
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problem by a nearly-incompressible one. To do this we satisfy the
condition J=1 by replacing p by -AInd. Then for each A the problem

we solve fits into the forma* of the nearly-incompressiblie case. Selec-
ting A appropriately depends upon the finite elements being used, the
mesh and material properties (see Fried [11] for a discussion). Since
Ind = -p/A, as i+, Ind»0, implying J»1. In an analysis, an acceptable
compressibility error can be achieved by picking A several orders of
magnitude (say 3 or 4) larger than other material properties (e.g., p

in {11-5}).
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I11. Algorithm for the Two-Dimensional Kinematically Nonlinear Contact-
Impact Problem

1. Introduction and Basic Ideas

Static and dynamic aspects of the Hertzian algorithm have been
treated in [1], [2] and [3]. In [2] we described the basic ideas of
the kinematically nonlinear scheme; namely, the form of the contact
element matrices and the structure of the global matrices. In the present
section, we extend these developments by describing the detailed algori-
thm for deciding when,and where, contact has been made for the two-di-
mensional case. Due to its geometric simplicity, only very simple Jogic
is required to attain this end in the Hertzian case {see for example
pp. 33-34 of [2]). However,in the kinematically nonlinear case the
geometry is much more complicated and one must proceed more systematical=-
1y.

We first review some of the basic notions introduced in [23,
Section [I1I-3. We assume that there are N1(N2, respectively) candidate
contact nodes associated with body 1 (2, resp.). Without loss of

generality, we assume N < NZ. To each of the candidate contact nocdes

1

of body 1, we assign a contact force vector 1. , i=1,2,...,N .

T These

are to be interpreted in the same way as in the Hertzian case, i.e.,
the T vector field consists of Dirac delta functions located at the
nodal points of body 1.

In the present work, we shall call body 1 the contactor {or im-
pactar) and body 2 the target. We assume the target consists of a
finite number of open, or closed, directed segments {see Fig. I1I1-1).

If the total number of segments equals n, then we must have
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2
Ni'"'

i TH OPEN TARGET SEGMENT )

j TH CLOSED TARGET SEGMENT

ITI-1 Typical target segments.
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The ncdes of the ith segment are connected by straight Tines (element
boundaries) in the fashion 1 to 2, 2 to 3,..., N?-] to Nf. In case the
ith segment is closed, nodes N? and 1 are also connected by a straight
line, whereas if it is open they are not. For an open segment, nodes

1 and N? are called boundary points, and nodes 2Z,..., N?-i are called
interior points. For a closed segment all nodes are classified as
interior points. We lay down the restriciton that each segment must
contain a minimum of three nodes.

The direction of the i%"

segment is defined as follows. Let 1-
and 2 denote the first two nodes of the segment. The vector 212 con-
necting 1 to 2 and pointing towards 2 defines the direction of the
entire segment. The direction of a segment enahles us to determine
whether a candidate contact point has penetrated the target. The de-

tails of this procedure are treated in the next section.

2. Logic for Determining if a Contact Point Panetrates a Target
Segment

After each iteration in an analysis we must determine whether or

not any candidate contact nodes have penetrated a target segment. tLet
P denote the location of candidate contact node kin {1,...,N]}, and

let Q,R,S dencte the locations of consecutive target nodes &-1, &, +1,
where % designates an interior node of some segment. We assume that
the entire 1ist of interior target nodes has been searched and k is

found to be the closest to 2 at the end of the ith

iteration during
some time step {see Fig. III-2). Henceforth we will use superscripts
to indicate iteration numbers. Thus IiPi-Ril! is the minimum distance
between Pi and all interior target nodes. For Pi the interior of the

target is defined to be that part of the plane consisting of the two
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N

\INTEREOR

111-2 Typical configuration for candidate contact point (P} and target
segment reference point (R). ‘
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straight lines emanating from Ri through Qi and Si and extending to
infinity, and all points to the right of these lines with respect to
the target direction. The exteriar is the remaining portion of the
plane {see Fig.III-2 for the analogous set-up for P,Q,R and S). At
the end of an iteration, if Pi is in the interior of the target we say
that tentative contact has been made. To determine if this has oc-
curred we employ the following algorithm (see Fig. 1II-2 for notation).
Let 5 = (P;Q,R,S) and define "Test" as indicated in Fig III-3. If

the cutcome of "Test" is true (T) then Pi is exterior to the target,
whereas if the outcome is false (F) Pi is in the interior and tent;tive
contact has been made. In the latter case further calculations are
required to determine if indeed contact has occurred* and, if so, where.

This is dealt with in the next section.

A candidate contact node can enter the interior without passing
through the target, e.g., by "sneaking" around a boundary node.
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n<—"nas

IIT-3 Test to decide if a candidate contact point is interior or

exterior to the target.
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3. Location of the Point of Initial Contact

Our technique for carrying out this calculation is best presented
in a flowchart {see Fig. III-4). What follows is a brief description of
the main steps. The routine requires the input parameters imax and-jmax,
which are the maximum number of iterations allowed to determine the ap-
proximate location of a contact point, and the maximum number of changes
of target reference node allowed, respectively. We loop on the candidate
contact noedes k=3,...,N1 and extract 2, the nearest interior target node
to k. Then we determine if tentative contact has been made. If this is
the case we next employ a binary search procedure to determine a good
approximation to the configuration (5) at which initial contact was
actually made. With this configuration determined, we ascertain whether
P actually contacted the segment QRS ([a|<l) or did not {(laf>1). 1In the
former case we set up the tangent stiffness and right-hand side according-
1y, whereas in the latter we may try another reference point and repeat
the calculation. However, if the maximum number of changes of reference
has been reached or the new reference point is a boundary point, we assume
no contact has been made.

If it is determined that candidate contact node k is in contact,
then we set the tangent stiffness for contactor k, target 2,2+1 for the
computed value of a. Compatibility is enforced by setting the right-hand
side on the basis of 55.

On the other hand, if it is determined that candidate contact node

k is not in contact, then we set 1 in the appropriate diagonal element

_of the tangent stiffness and 0 in the right-hand side.
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11I-4 Flowchart
Sheet 1/4.

for the kinematically nonlinear contact algorithm.
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11I-4 Flowchart for the kinematically nonlinear contact algorithm.
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III-4 Flowchart for the kinematically nonlinear contact algorithm.

Sheet 3/4.
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11I-4 Flowchart for the kinematically nonlinear contact algorithm.
Sheet 4/4.
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IV¥. Fricitonal Contact Theory

Tn this section we present a very simple frictional contact theory.
In subsequent progress reports we will describe an algorithm for this
theory and its implemention in FEAP.

Assume the bodies BT and 32, at a fixed time t, are in the configu-
rations b and bz, respectively, and are in contact along c. Consider a
point X in ¢ and let T be the traction vector at x with respect to b1
(see Fig. IV-1). Let n be the unit outward normal vector of b3 at x.

~

Since the bodies are in contact at x we assume

def.
’[ =

0 T.n < 0, (compression).

The tangential part of 1 is given by

. x*
We assume given a positive constant f called the coefficient of friction .

To simplify subsequent writing et

g=-"f1 3
clearly g > 0. Define the relative tangential displacement and velocity

1

of » with respect to bz, at x, by

~S ~5 ~S

v
~5 ~5 ~8

#
-
1
-
-

respectively. With these definitions, Coulomb's theory of friction may

f can depend on x and t without essential complications.
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be stated as follows (see [19]):
(1) Static case.
If H.T.s“<9’ then U, = 0.
IfllrS[{=g, then there exists a number 320 such that Y = -At,

(i.e., YU points in the direction opposite Is)'

(ii) Dynamic case.

IfIIEJ|<9= then v, = 0.

Iflizsll=g, then there exists a number X\>0 such that V.= -At..

Note that if f is formally taken to be +=, then Coulomb's theory cor-
responds to the perfect-friction {no-slip) case, whereas if =0, then

" the theory reduces to the frictionless case.



IV-1

Contact configuration.
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