## Lawrence Berkeley National Laboratory

**LBL Publications** 

## Title

Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen

Permalink https://escholarship.org/uc/item/5tg5c39t

**Journal** New Phytologist, 194(4)

## **Authors**

Olson, Ake Aerts, Andrea Asiegbu, Fred <u>et al.</u>

## **Publication Date**

2012-03-28

## Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen

Åke Olson<sup>1</sup>, Andrea Aerts<sup>2</sup>, Fred Asiegbu<sup>3</sup>, Lassaad Belbahri<sup>4</sup>, Ourdia Bouzid<sup>5</sup>, Anders Broberg<sup>6</sup>, Björn Canbäck<sup>1</sup>, Pedro M. Coutinho<sup>7</sup>, Dan Cullen<sup>8</sup>, Kerstin Dalman<sup>1</sup>, Giuliana Deflorio<sup>9</sup>, Linda T.A. van Diepen<sup>10</sup>, Christophe Dunand<sup>11</sup>, Sébastien Duplessis<sup>12</sup>, Mikael Durling<sup>1</sup>, Paolo Gonthier<sup>13</sup>, Jane Grimwood<sup>14</sup>, Carl Gunnar Fossdal<sup>15</sup>, David Hansson<sup>6</sup>, Bernard Henrissat<sup>7</sup>, Ari Hietala<sup>15</sup>, Kajsa Himmelstrand<sup>1</sup>, Dirk Hoffmeister<sup>16</sup>, Nils Högberg<sup>1</sup>, Timothy Y. James<sup>10</sup>, Magnus Karlsson<sup>1</sup>, Annegret Kohler<sup>12</sup>, Ursula Kües<sup>17</sup>, Yong-Hwan Lee<sup>18</sup>, Yao-Cheng Lin<sup>19</sup>, Mårten Lind<sup>1</sup>, Erika Lindquist<sup>2</sup>, Vincent Lombard<sup>7</sup>, Susan Lucas<sup>2</sup>, Karl Lundén<sup>1</sup>, Emmanuelle Morin<sup>12</sup>, Claude Murat<sup>12</sup>, Jongsun Park<sup>18</sup>, Tommaso Raffaello<sup>3</sup>, Pierre Rouzé<sup>19</sup>, Asaf Salamov<sup>2</sup>, Jeremy Schmutz<sup>14</sup>, Halvor Solheim<sup>15</sup>, Jerry Ståhlberg<sup>20</sup>, Heriberto Vélëz<sup>1</sup>, Ronald P. de Vries<sup>5,21</sup>, Ad Wiebenga<sup>21</sup>, Steve Woodward<sup>9</sup>, Igor Yakovlev<sup>15</sup>, Matteo Garbelotto<sup>22</sup>, Francis Martin<sup>12</sup>, Igor V. Grigoriev<sup>2</sup>, Jan Stenlid<sup>1</sup>,

- 1. Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Box 7026, Ullsväg 26, 750 05 Uppsala, Sweden
- 2. US DOE Joint Genome Institute, Walnut Creek, CA 94598, USA
- Department of Forest Ecology, PO Box 27 Latokartanonkaari 7, 00014 University of Helsinki, Helsinki, Finland
- 4. Laboratory of Soil Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000 Neuchâtel, Switzerland
- 5. Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, the Netherlands
- Department of Chemistry, Swedish University of Agricultural Sciences, Box 7015, 750 05 Uppsala, Sweden
- 7. AFMB UMR 6098 CNRS/UI/UII, Case 932, 163 Avenue de Luminy 13288 Marseille cedex 9, France
- 8. Forest Products Laboratory, Madison, WI 53726, USA
- Department of Plant and Soil Science, Institute of Biological and Environmental Sciences, University of Aberdeen, Cruickshank Building, St. Machar Drive, Aberdeen, AB24 3UU, Scotland UK
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Laboratory of Cell Surfaces and Plant Signalisation 24, University Paul Sabatier (Toulouse III), UMR5546- CNRS, Chemin de Borde-Rouge, BP 42617, Auzeville 31326 Castanet-Tolosan, France
- 12. UMR INRA-UHP 'Interactions Arbres/Micro-Organismes' IFR 110 'Genomique, Ecophysiologie et Ecologie Fonctionnelles' INRA-Nancy 54280 Champenoux, France

- Department of Exploitation and Protection of Agricultural and Forest Resources (Di. Va. P. R. A.) – Plant Pathology, University of Torino, Via L. da Vinci 44, I-10095 Grugliasco, Italy
- 14. HudsonAlpha Institute for Biotechnology, 601 Genome Way Huntsville, AL 35806, USA
- 15. Norwegian Forest and Landscape Institute, Høgskoleveien 8, NO-1432 Ås, Norway
- 16. Pharmaceutical Biology, Friedrich-Schiller-Universität Jena, Winzerlaer Str. 2, 07745 Jena, Germany
- 17. Büsgen-Institute, Section Molecular Wood Biotechnology and Technical Mycology, University of Göttingen, Büsgenweg 2, D-37077 Göttingen, Germany
- Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea
- 19. VIB Department of Plant Systems Biology, Ghent University, Bioinformatics and Evolutionary Genomics, Technologiepark 927, B-9052 Gent, Belgium
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, Husargatan 3, 751 24 Uppsala, Sweden
- 21. CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, the Netherlands
- 22. University of California, 338 Hilgard Hall Berkeley CA 94720 USA

#### JUNE 2012

The work conducted by the U.S. Department of Energy Joint Genome Institute is supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231

#### DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor The Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or The Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or The Regents of the University of California.

## Insight into trade-off between wood decay and parasitism from the genome of a

### fungal forest pathogen

Åke Olson<sup>1#</sup>, Andrea Aerts<sup>8</sup>, Fred Asiegbu<sup>2</sup>, Lassaad Belbahri<sup>18</sup>, Ourdia Bouzid<sup>20</sup>, Anders Broberg<sup>21</sup>, Björn Canbäck<sup>1</sup>, Pedro M. Coutinho<sup>4</sup>, Dan Cullen<sup>17</sup>, Kerstin Dalman<sup>1</sup>, Giuliana Deflorio<sup>14</sup>, Linda T.A. van Diepen<sup>15</sup>, Christophe Dunand<sup>12</sup>, Sébastien Duplessis<sup>3</sup>, Mikael Durling<sup>1</sup>, Paolo Gonthier<sup>22</sup>, Jane Grimwood<sup>9</sup>, Carl Gunnar Fossdal<sup>5</sup>, David Hansson<sup>21</sup>, Bernard Henrissat<sup>4</sup>, Ari Hietala<sup>5</sup>, Kajsa Himmelstrand<sup>1</sup>, Dirk Hoffmeister<sup>11</sup>, Nils Högberg<sup>1</sup>, Timothy Y. James<sup>15</sup>, Magnus Karlsson<sup>1</sup>, Annegret Kohler<sup>3</sup>, Ursula Kües<sup>7</sup>, Yong-Hwan Lee<sup>13</sup>, Yao-Cheng Lin<sup>6</sup>, Mårten Lind<sup>1</sup>, Erika Lindquist<sup>8</sup>, Vincent Lombard<sup>4</sup>, Susan Lucas<sup>8</sup>, Karl Lundén<sup>1</sup>, Emmanuelle Morin<sup>3</sup>, Claude Murat<sup>3</sup>, Jongsun Park<sup>13</sup>, Tommaso Raffaello<sup>2</sup>, Pierre Rouzé<sup>6</sup>, Asaf Salamov<sup>8</sup>, Jeremy Schmutz<sup>9</sup>, Halvor Solheim<sup>5</sup>, Jerry Ståhlberg<sup>16</sup>, Heriberto Vélëz<sup>1</sup>, Ronald P. de Vries<sup>19,20</sup>, Ad Wiebenga<sup>19</sup>, Steve Woodward<sup>14</sup>, Igor Yakovlev<sup>5</sup>, Matteo Garbelotto<sup>10\*</sup>, Francis Martin<sup>3\*</sup>, Igor V. Grigoriev<sup>8\*</sup>, Jan Stenlid<sup>1\*</sup>

# To whom correspondence should be addressed

\* These authors contributed to this work as senior authors

**1** Department of Forest Mycology and Pathology, Swedish University of Agricultural Sciences, Box 7026, Ullsväg 26, 750 05 Uppsala, Sweden

**2** Department of Forest Ecology, PO Box 27 Latokartanonkaari 7, 00014 University of Helsinki, Finland

**3** UMR INRA-UHP "Interactions Arbres/Micro-Organismes" IFR 110 "Genomique, Ecophysiologie et Ecologie Fonctionnelles" INRA-Nancy 54280 Champenoux, France **4** AFMB UMR 6098 CNRS/UI/UII, Case 932, 163 Avenue de Luminy 13288 Marseille cedex 9, France

**5** Norwegian Forest and Landscape Institute, Høgskoleveien 8, NO-1432 Ås, Norway **6** VIB Department of Plant Systems Biology, Ghent University, Bioinformatics and Evolutionary Genomics, Technologiepark 927, B-9052 Gent, Belgium,

7 Institute for Forest Botany, University of Göttingen, Büsgenweg 2, 37077 Göttingen, Germany

8 US DOE Joint Genome Institute, Walnut Creek, CA 94598, USA

**9** HudsonAlpha Institute for Biotechnology, 601 Genome Way Huntsville, AL 35806, USA

10 University of California, 338 Hilgard Hall Berkeley CA 94720 USA,

**11** Pharmaceutical Biology, Friedrich-Schiller-Universität Jena, Winzerlaer str. 2, 07745 Jena, Germany

**12** University Paul Sabatier (Toulouse III), UMR5546- CNRS, Laboratory of Cell Surfaces and Plant Signalisation 24, Chemin de Borde-Rouge, BP 42617, Auzeville 31326 Castanet-Tolosan, France

**13** Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Korea

**14** University of Aberdeen, Institute of Biological and Environmental Sciences, Department of Plant and Soil Science, Cruickshank Building, St. Machar Drive, Aberdeen, AB24 3UU, Scotland UK

**15** Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA

**16** Department of Molecular Biology, Swedish University of Agricultural Sciences, Box 590, Husargatan 3, 751 24 Uppsala, Sweden

17 Forest Products Laboratory, Madison, WI 53726, USA

**18** Laboratory of Soil Biology, University of Neuchâtel, Rue Emile Argand 11, CH-2000 Neuchâtel, Switzerland

**19** CBS-KNAW Fungal Biodiversity Centre, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands

20 Microbiology, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands,

**21** Department of Chemistry, Swedish University of Agricultural Sciences, Box 7015, 750 05 Uppsala, Sweden

**22** Department of Exploitation and Protection of Agricultural and Forest Resources (Di. Va. P. R. A.) – Plant Pathology, University of Torino, Via L. da Vinci 44, I-10095 Grugliasco, Italy

# Insight into trade-off between wood decay and parasitism from the genome of a fungal forest pathogen

#### Abstract

- Parasitism and saprotrophic wood decay are two fungal strategies fundamental for succession and nutrient cycling in forest ecosystems. An opportunity to assess trade-off between these strategies is provided by the major forest pathogen and wood decayer *Heterobasidion annosum sensu lato*.
- We report on the annotated genome sequence and transcript profiling as well as quantitative trait loci mapping of one member of the species complex; *H. irregulare.* Quantitative trait loci critical for pathogenicity and rich in transposable elements, orphan and secreted genes, were identified.
- A wide range of cellulose degrading enzymes is expressed during wood decay. In contrast, pathogenic interaction between *H. irregulare* and pine engages fewer carbohydrate active enzymes, but involves an increase in pectinolytic enzymes, transcription modules for oxidative stress, and secondary metabolite production.
- Our results show a trade-off in terms of constrained carbohydrate decomposition and membrane transport capacity during interaction with living host. The findings establish that saprotrophic wood decay and necrotrophic parasitism involve two distinct yet overlapping processes.

#### Introduction

Fungi are heterotrophs that play several distinctive roles in ecosystems as saprotrophs, parasites of plants and animals, and mutualistic symbionts of photosynthetic organisms. Generally, each species is specialized in one of these strategies although recent findings indicate that there might be partial physiological capacity overlap among fungi with different primary trophic strategies (Vasiliauskas *et al.*, 2007; Newton *et al.*, 2010). The use of more than one strategy by a single species might convey flexibility towards local changes in environment and competition with other organisms, as well as access to a wider ecological niche but is likely to result in a trade-off in terms of constrained use of its full genomic capacity under specific environmental conditions.

The *Heterobasidion annosum sensu lato* (s.l.) is a cosmopolitan fungal pathogen in conifer forests. In 1995 the economic losses were in the order of €600 million annually to forest owners in Europe through tree mortality and wood decay (Woodward *et al.*, 1998). Although the economic consequences for North America forestry are less well documented, they are expected to be of similar magnitude. The frequency of root rot is increasing with about 23% per decade in managed forests in northern Europe (Thor et al., 2005). In addition to threaten forest health this white rot fungus also causes massive release of  $CO_2$  by decaying wood, thus representing a major threat to coniferous forests' ability to serve as a natural carbon sink. The species complex is comprised of three Eurasian (Heterobasidion annosum sensu stricto (s.s.), Heterobasidion parviporum and Heterobasidion abietinum) and two North American (Heterobasidion occidentale and *Heterobasidion irregulare*) species, each with a different but overlapping host range (Niemelä & Korhonen, 1998; Otrosina & Garbelotto, 2010). Infections by *Heterobasidion* spp. are initiated in fresh wounds or newly created tree stump surfaces followed by spread via root to root infection through living bark and subsequent decay of and survival in the root and trunk of standing trees (Woodward et al., 1998). This infection cycle relies on mechanisms for both saprotrophic wood decay and pathogenic interactions with a living host, allowing us to study potential trade-off between the two trophic strategies. The switch between saprotrophy and parasitism could be associated with an activation of distinct gene sets for the two growth modes, or governed by

6

differential regulation of common metabolic processes. A major goal of this genomic study was to identify key elements in the molecular repertoire required for balancing the two trophic strategies.

#### **Materials and Methods**

#### Selection of *H. irregulare* strain and isolation of genomic DNA and RNA

The sequenced *H. irregulare* strain TC 32-1 (Chase, 1985) is well characterized and have been used in many studies, e.g. the strain constitute one of the monokaryotic parental isolates in a genetic hybrid AO8, used for generating the mapping population for the *H. annosum* (s.l.) genetic linkage map (Lind *et al.*, 2005). Already published ESTs (expressed sequence tags) from the TC32-1 strain were available (Karlsson *et al.*, 2003). In addition, a BAC library of 2,688 clones was made by BIO S&T Inc.according to their standard protocols. DNA was extracted using established methods (Sambrook & Russell, 2001) and extractions of total RNA were performed according to CTAB and phenol/chloroform methods (Karlsson *et al.*, 2003).

#### Genome sequencing, assembly, and annotation

All sequencing reads for the whole genome shotgun sequencing were collected with standard Sanger sequencing protocols on ABI 3730XL capillary sequencing machines at the Department of Energy Joint Genome Institute in Walnut Creek, California. Three different sized libraries were used as templates for the plasmid subclone sequencing process and both ends were sequenced. 214,143 reads from the 2.7 kb sized library, 192,768 reads from the 6.0 kb sized library, and 63,168 reads from a 39.1 kb fosmid library were sequenced (Table S1).

A total of 406,752 reads were assembled using a modified version of Arachne v.20071016 (Jaffe *et al.*, 2003) with parameters maxcliq1=100, correct1\_passes=0 and BINGE\_AND\_PURGE=True. This produced 53 scaffold sequences, with L50 of 2.2 Mb (the length of the scaffold that separates the top half (N50) of the assembled genome

from the rest), 19 scaffolds larger than 100 kb, and total scaffold size of 33.9 Mb. Each scaffold was screened against bacterial proteins, organelle sequences and GenBank and removed if found to be a contaminant. Additional scaffolds were removed if the scaffold contained only unanchored rDNA sequences. The final draft whole genome shotgun assembly contained scaffolds that cover 33.1 Mb of the genome with a contig L50 of 127.0 kb and a scaffold L50 of 2.2 Mb (Table S2).

#### **Genome improvement**

All genome improvement reactions were performed at the HudsonAlpha Genome Sequencing Center in Huntsville, Alabama. In order to improve and finish the genome of *H. irregulare*, the whole genome shotgun assembly was broken into scaffold size pieces and each scaffold piece was reassembled with phrap (Green, 1999). The scaffold pieces were then finished using a Phred/Phrap/Consed pipeline (Gordon *et al.*, 1998). Initially, all low quality regions and gaps were targeted with computationally selected sequencing reactions completed with 4:1 BigDye terminator: dGTP chemistry (Applied Biosystems). These automated rounds included directed primer walking on plasmid subclones using custom primers.

After the completion of the automated rounds each assembly were manually inspected. Further reactions were manually selected to complete the genome. These reactions included additional custom primer walks on plasmid subclones or fosmids using 4:1 BigDye terminator:dGTP chemistry. Smaller repeats in the sequence were resolved by transposon-hopping 8kb plasmid clones. To fill large gaps, resolve larger repeats or to resolve chromosome duplications and extend into chromosome telomere regions shotgun sequencing and finishing of BAC fosmid clones were used. During the course of the improvement project, 5,376 BAC ends were sequenced to add additional contiguity. Finally, the sequences were compared to markers on the available genetic map (Lind *et al.*, 2005) and two map joins were made based on map evidence. Each assembly were validated by independent quality assessment that included a visual examination of subclone paired ends and visual inspection of discrepancies containing high quality sequence and all remaining low quality areas. All available EST resources were also placed on the assembly to ensure completeness.

#### cDNA library construction and sequencing

*H. irregulare* TC 32-1 poly A+ RNA was isolated from total RNA for two RNA samples; RNA1 - cells grown in Liquid Hagem-medium (Stenlid, 1985) and RNA2 - cells grown in Liquid high nitrogen MMN-medium (Marx, 1969) using the Absolutely mRNA Purification kit and manufacturers instructions (Stratagene, La Jolla, CA). cDNA synthesis and cloning was a modified procedure based on the "SuperScript plasmid system with Gateway technology for cDNA synthesis and cloning" (Invitrogen, Carsbad, CA). 1-2 µg of poly A+ RNA, reverse transcriptase SuperScript II (Invitrogen) and oligo dT-NotI primer (5' GACTAGTTCTAGATCGCGAGCGGCCGCCCT15VN 3') were used to synthesize first strand cDNA. Second strand synthesis was performed with E. coli DNA ligase, polymerase I, and RNaseH followed by end repair using T4 DNA polymerase. The SalI adaptor (5' TCGACCCACGCGTCCG and 5' CGGACGCGTGGG) was ligated to the cDNA, digested with NotI (New England Biolabs, Ipswich, MA), and subsequently size selected by gel electrophoresis (1.1% agarose). Size ranges of cDNA were cut out of the gel for the RNA1 sample yielding two cDNA libraries (JGI library codes CCPA for range 0.6k-2kb and CCOZ for the range >2kb), and JGI library codes CCPC and CCPB (same respective sizes) for the RNA2 sample. The cDNA inserts were directionally ligated into the SalI and NotI digested vector pCMVsport6 (Invitrogen). The ligation was transformed into ElectroMAX T1 DH10B cells (Invitrogen).

Library quality was first assessed by randomly selecting 24 clones and PCR amplifying the cDNA inserts with the primers M13-F (5' GTAAAACGACGGCCAGT) and M13-R (5' AGGAAACAGCTATGACCAT) to determine the fraction of insertless clones. Colonies from each library were plated onto agarose plates (254mm plates from Teknova, Hollister, CA) at a density of approximately 1000 colonies per plate. Plates were grown at 37 °C for 18 hours after which individual colonies were picked and each used to inoculate a well containing LB media with appropriate antibiotic in a 384 well plate (Nunc, Rochester, NY). Clones in 384 well plates were grown at 37 °C for 18 hours. Contained plasmid DNA for sequencing was produced by rolling circle amplification (Templiphi, GE Healthcare, Piscataway, NJ). Subclone inserts were sequenced from both ends using primers complementary to the flanking vector sequence (Fw: 5' ATTTAGGTGACACTATAGAA, Rv: 5' TAATACGACTCACTATAGGG) and Big Dye terminator chemistry and then run on ABI 3730 instruments (Applied Biosystems, Foster City, CA).

#### EST sequence processing and assembly

A total of 40,807 ESTs including; 8,840 from CCPA, 8,759 from CCOZ, 13,280 from CCPC, 8,263 from CCPB and 1,665 from external sources were processed through the JGI EST pipeline (ESTs were generated in pairs, a 5' and 3' end read from each cDNA clone). To trim vector and adaptor sequences, common sequence patterns at the ends of ESTs were identified and removed using an internally developed tool. Insertless clones were identified if either of the following criteria were met: >200 bases of vector sequence at the 5' end or less than 100 bases of non-vector sequence remained. ESTs were then trimmed for quality using a sliding window trimmer (window = 11 bases). Once the average quality score in the window was below the threshold (Q15) the EST was split and the longest remaining sequence segment was retained as the trimmed EST. EST sequences with less than 100 bases of high quality sequence were removed. ESTs were evaluated for the presence of polyA or polyT tails (which if present were removed) and the EST reevaluated for length, removing ESTs with less than 100 bases remaining. ESTs consisting of more than 50% low complexity sequence were also removed from the final set of "good ESTs". In the case of resequencing the same EST, the longest high quality EST was retained. Sister ESTs (end pair reads) were categorized as follows: if one EST was insertless or a contaminant then by default the second sister was categorized as the same. However, each sister EST was treated separately for complexity and quality scores. Finally, EST sequences were compared to the Genbank nucleotide database in order to

identify contaminants; non-desirable ESTs such as those matching rRNA sequences were removed.

For clustering, ESTs were evaluated with malign, a kmer based alignment tool, which clusters ESTs based on sequence overlap (kmer = 16, seed length requirement = 32, alignment ID  $\geq$  98%). Clusters of ESTs were further merged based on sister ESTs using double linkage. Double linkage requires that 2 or more matching sister ESTs exist in both clusters to be merged. EST clusters were then each assembled using CAP3 (Huang & Madan 1999) to form consensus sequences. For cluster consensus sequence annotation, the consensus sequences were compared to Swissprot using blastx and the hits were reported. Clustering and assembly of all 33,539 ESTs resulted in 10,126 consensus sequences and 1,503 singlets.

#### Whole-genome exon oligoarray

The *Heterobasidion irregulare* custom-exon expression array (4 x 72K) manufactured by Roche NimbleGen Systems Limited (Madison, WI)

(http://www.nimblegen.com/products/exp/index.html) contained five independent, nonidentical, 60-*mer* probes per gene model coding sequence. For 12,199 of the 12,299 annotated protein-coding gene models probes could be designed. For 19 gene models no probes could be generated and 81 gene models shared all five probes with other gene models. Included in the array were 916 random 60-*mer* control probes and labelling controls. For 2032 probes, technical duplicates were included on the array.

Total RNA was extracted using CTAB/phenol/chloroform and LiCl precipitation. The RNA was DNase I treated and cleaned with Qiagen RNA cleanup Kit. Arrays were performed from *H. irregulare* mycelium grown in liquid MMN medium (three biological replicates), from cambial zone of necrotic bark of pines inoculated with *H. irregulare* (21dpi; three biological replicates), from fruiting bodies collected in California (four biological replicates) as well as from *H. irregulare* grown on wood shavings from pine (four biological replicates), grown in liquid medium amended with lignin (Kraft Pine

lignin B 471003-500G; SIGMA-Aldrich) (2 biological replicates) and growth in liquid medium amended with cellulose from Spruce (22182-KG Fluka; SIGMA-Aldrich) (2 biological replicates). Cultures were harvested after 3 weeks of incubation 22 °C in darkness.

Total RNA preparations were amplified using the SMART PCR cDNA Synthesis Kit (Clontech) according to the manufacturer's instructions. Single dye labeling of samples, hybridization procedures, data acquisition, background correction and normalization were performed at the NimbleGen facilities (NimbleGen Systems, Reykjavik, Iceland) following their standard protocol. Microarray probe intensities were quantile normalized across all chips. Average expression levels were calculated for each gene from the independent probes on the array and were used for further analysis. Raw array data were filtered for non-specific probes (a probe was considered as non-specific if it shared more than 90% homology with a gene model other than the gene model it was made for) and renormalized using the ARRAYSTAR software (DNASTAR, Inc. Madison, WI, USA). For 621 gene models no reliable probe was left. A transcript was deemed expressed when its signal intensity was three-fold higher than the mean signal-to-noise threshold (cut-off value) of the random oligonucleotide probes present on the array (50 to 100 arbitrary units). Gene models with an expression value higher than three-fold the cut-off level were considered as transcribed. The maximum signal intensity values were ~65000 arbitrary units. A Student *t*-test with false discovery rate (FDR) (Benjamini-Hochberg) multiple testing correction was applied to the data using the ARRAYSTAR software (DNASTAR). Transcripts with a significant p-value (<0.05) were considered as differentially expressed. The complete expression dataset is available as series (accession number GSE30230) at the Gene Expression Omnibus at NCBI (http://www.ncbi.nlm.nih.gov/geo/).

#### **Genome annotation**

The *H. irregulare* genome was annotated using the JGI annotation pipeline, which takes multiple inputs (scaffolds, ESTs, and known genes) and runs several analytical tools for

gene prediction and annotation, and deposits the results in the JGI Genome Portal (http://www.jgi.doe.gov/Heterobasidion) for further analysis and manual curation. Genomic assembly scaffolds were masked using RepeatMasker (Smit et al., 1996-2010) and the RepBase library of 234 fungal repeats (Jurka et al., 2005). Using the repeatmasked assembly, several gene prediction programs falling into three general categories were used: 1) ab initio - FGENESH (Salamov & Solovyev, 2000); GeneMark (Isono et al., 1994), 2) homology-based - FGENESH+; Genewise (Birney & Durbin, 2000) seeded by BLASTx (Altschul et al., 1990) alignments against GenBank's database of nonredundant proteins (NR: http://www.ncbi.nlm.nih.gov/BLAST/), and 3) EST-based -EST\_map (http://www.softberry.com/) seeded by EST contigs. Genewise models were extended where possible using scaffold data to find start and stop codons. EST BLAT alignments (Kent, 2002) were used to extend, verify, and complete the predicted gene models. The resulting set of models was then filtered for the best models, based on EST and homology support, to produce a non-redundant representative set. This representative set of 11,464 gene models was subject to further analysis and manual curation. Measures of model quality include proportions of the models complete with start and stop codons (86% of models), consistent with ESTs (48% of models) and supported by similarity with proteins from the NCBI NR database (70% of models) (Table S3). About 90% of the models showed expression in at least one of the conditions (growth in liquid MMN medium, cambial zone of necrotic bark of pines inoculated with H. irregulare, fruiting bodies, *H. irregulare* growth on wood shavings from pine, growth in liquid medium amended with lignin or cellulose) analyzed in the NimbleGen array. Characteristics of predicted genes are listed in Table S4. Multigene families were predicted with the Markov clustering algorithm (Enright et al., 2002) to cluster the proteins, using BLASTp alignment scores between proteins as a similarity metric. Orthologs with other sequenced basidiomycete genomes were determined based on best bi-directional blast hits (Table S5).

All predicted gene models were functionally annotated using SignalP (Nielsen *et al.*, 1997), TMHMM (Melen *et al.*, 2003), InterProScan (Zdobnov & Apweiler, 2001), BLASTp (Altschul *et al.*, 1990) against nr, and hardware-accelerated double-affine

13

Smith-Waterman alignments (deCypherSW;

http://www.timelogic.com/decypher\_sw.html) against SwissProt (http://www.expasy.org/sprot/), KEGG (Kanehisa *et al.*, 2008), and KOG (Koonin *et al.*, 2004). KEGG hits were used to assign EC numbers (http://www.expasy.org/enzyme/), and Interpro and SwissProt hits were used to map GO terms (http://www.geneontology.org/). Functional annotations are summarized in Table S6. The top 30 PFAM domains are listed in Table S7. Community-wide manual curation of the automated annotations was performed by using the web-based interactive editing tools of the JGI Genome Portal (http://www.jgi.doe.gov/Heterobasidion) to assess predicted gene structures, assign gene functions, and report supporting evidence.

### **Results** Genome structure

Using a whole genome shotgun approach, the 33.6 MB genome of *H. irregulare* (formerly *H. annosum* North American P-type) was sequenced to 8.5 X coverage. Genome improvement, finishing and gap closure resulted in 33,649,967 bp with an estimated error rate of less than 1 error in 100,000 base pairs. The genome is represented in 15 scaffolds ranging in size from 3,591,957 to 8087 bp. Six of the scaffolds represent complete chromosomes with sequence spanning from telomere to telomere. Seven other scaffolds have an identified telomere only at one end (Fig. 1, Supporting Information). The final assembly statistics are shown in Table S8.

The published linkage map (Lind *et al.*, 2005) was anchored to the sequenced genome using Simple Sequence Repeats (SSR) markers designed from the genome sequence and evenly distributed across the scaffolds (Fig. 1). Segregation analysis of 179 sequence and SSR markers supported a genome organized into 14 chromosomes which is consistent with pulsed-gel electrophoresis data (Anderson *et al.*, 1993). The linkage map was used to locate quantitative trait loci (QTL) for pathogenicity, growth rate and fungal interactions (Olson, 2006; Lind *et al.*, 2007a; Lind *et al.*, 2007b) onto the genome sequence, allowing identification of the genes in the targeted regions.

Transposable elements (TEs) comprised 16.2% of the *H. irregulare* genome which were not uniformly distributed across the scaffolds (P<0.05) (Fig. S1 and S2). The Gypsy-like elements were the most frequent TE, corresponding to 9.3% of the assembly. Class II TIR represented the second most frequently categorized elements (1.1%) while 3.7% of the genome comprised TEs belonging to unknown families. The insertion age of full length LTRs shows that *H. irregulare* underwent a recent transposon activity which peaked at an estimated 0.2 Mya and an old activity that occurred at 4-8 Mya (Fig. S3, Supporting Information). The genome of *H. irregulare* contains 100,467 SSRs corresponding to on average 2895 SSR/MB with a distribution about twice as dense in the intergenic as in the intragenic regions (Fig. S2). High frequencies of tri- and hexarepeats, which are less likely to cause frameshift mutations than SSR's with other repeat unites, were found in exonic regions as well as in the 5' UTRs and regions immediately upstream from genes, indicating a possible role of these repeats in overall gene expression (Table S9).

The mitochondrial genome (mt-genome), shown to influence *H. irregulare* virulence (Olson & Stenlid, 2001), spans 114,193 bp and is one of the largest sequenced in fungi. In addition to genes coding for proteins of the oxidative phosphorylation system, we found 14 intron-containing genes, two genes and two pseudogenes probably derived from a mitochondrial plasmid and six non-conserved hypothetical genes (Table S10).

A total of 11,464 gene models have been predicted in *H. irregulare* with half of them shared across Basidiomycotina (Table S5 and S11-S15). The transcription factor distribution comparable with other fungal taxa and the signal transduction pathway are conserved (Fig. S8 – S10). The largest gene families include transporters and signaling domains (MFS, p450, WD40, protein kinases) (Table S7). Sequenced ESTs and microarray analysis supported 90% of the predicted genes. In the microarray experiment, 1615 gene models showed differential expression among probes representing a particular gene model in a given growth condition, indicating alternative gene model structure to those predicted or alternative splice variants present (Supporting Information). In

15

genomic regions rich in TE, such models were more abundant (Fig. 1). A relatively small fraction (59%) of the gene models in the TE-rich regions compared to the total genome showed similarity to other genes from NCBI. However, the existence of most gene models without homology was verified by ESTs or microarray expression data.

The sexual cycle in *H. irregulare* is controlled by *Mat-A* genes similar to that of other bipolar Agaricomycetes, but the mating type locus may encode either a novel class of *MAT* protein or a highly derived homeodomain transcription factor (Supporting Information). The *MAT–A* locus was found on the largest chromosome and displayed extensive locally conserved gene order with other Agaricomycetes (Fig. S5). A second locus was also identified, encoding a cluster of five pheromone receptor genes and three putative pheromone genes homologous to the genes (*MAT-B*) controlling nuclear behavior and communication in other basidiomycetes. As predicted under the intense balancing selection observed at *MAT* loci, we found that *MAT-A* was highly polymorphic, whereas *MAT-B* genes were not. In a segregation analysis of a progeny array of *H. irregulare*, the putative *MAT-A* genes, but not the putative *MAT-B* genes, co-segregated with mating type demonstrating that the mating is controlled by the MAT-A and not MAT-B locus in this bipolar fungus (Fig. S6).

#### Wood degradation machinery

*Heterobasidion irregulare* showed a broad spectrum of carbohydrate active enzymes. The number of glycoside hydrolase (GH), polysaccharide lyase (PL) and carbohydrate esterase (CE) genes is comparable with the white rotter *Phanerochaete chrysosporium* and the mycorrhizal symbiont *Laccaria bicolor* but smaller than in the saprotrophs *Coprinopsis cinerea* and *Schizophyllum commune*, and in the pathogen *Magnaporthe oryzae* (Table S16). However, *H. irregulare* is almost as well equipped regarding gene families involved specifically in plant cell wall degradation as *S. commune* and *C. cinerea*, encoding the enzymes required to digest cellulose, hemicellulose (xyloglucan and its side chains), and pectin and its side chains (Table S17). In contrast, *H. irregulare* has a limited potential for degradation of a second hemicellulose structure, xylan, with only two xylanases from family GH10 and none from family GH11 (Table S17). *H*. *irregulare* possesses two GH29 fucosidase genes that might act on living/fresh material and two GH5 (β-mannanases) that may have a role in softwood hemicellulose degradation since softwood is known to contain large proportion of glucomannan (Wiedenhoeft & Miller, 2005).

Growth of *H. irregulare* on various carbohydrate substrates correlated well with its enzymatic repertoire (Supporting Information). For example, as suggested by the presence of an invertase (GH32) gene, a feature shared with many phytopathogens (Parrent *et al.*, 2009), *H. irregulare* thrives on sucrose. Enzymes active on cell wall polymers were prominent during transcriptome analysis; of the 282 carbohydrate-active enzymes present in the *H. irregulare* genome, 36 are more than two fold up-regulated (P<0.05) during early wood degradation. This subset is dominated by putative cellulose degrading enzymes in the groups GH1, GH5, GH6, GH7, GH10, GH12, GH45 and GH61 (Supporting Information, Table S18). The pectate lyase and pectin hydrolase (GH28), both up-regulated upon early wood decay of pine, are likely to act on the middle lamellae in a softwood specific manner. Hemicellulose of wood fibres can be degraded by GH5 and GH10, of which five and two members, respectively, were up-regulated. In addition, 14 sugar transporters showed elevated transcript levels during wood degradation as compared to liquid culture growth (Table S18).

Oxidative enzymes implicated in ligninolysis by white rot fungi include lignin peroxidase, manganese peroxidase, glyoxal oxidase and laccase (Hatakka, 1994). With its eight Mn-peroxidases and lack of lignin peroxidases *H. irregulare* has a lower peroxidase potential than *P. chrysosporum* (Fig. S11, Table S19) but a higher number of phenol oxidases and laccases, 18 and 5, respectively. To generate H<sub>2</sub>O<sub>2</sub>, *H. irregulare* possesses 17 quinone oxidoreductases, 5 glyoxal oxidases, 34 glucose-methanol-choline oxidoreductases and four Mn-superoxide dismutases (Supporting Information, Fig. S12, Table S19).

Generally, genes involved in oxidative lignocellulose degradation showed a lower expression level than carbohydrate hydrolysing enzymes during wood degradation (Table S18). However, when compared to growth in liquid medium, some of these genes were significantly up-regulated: one of the eight *H. irregulare* Mn-peroxidase genes was expressed three fold higher during wood degradation than in liquid medium. Two of the five glyoxal oxidase genes were significantly up-regulated and one of the GMC-oxidoreductase genes showed 15 fold higher expression levels, whereas only one of the laccase genes was moderately up-regulated. The gene for cellobiose dehydrogenase responsible for the oxidation of cellobiose was up-regulated 14 fold (Table S18). Lipids and proteins are minor constituents of softwood but, being easily digestible substrates, they may be of importance in the early stages of wood colonization. During *H. irregulare* degradation of pine sapwood, lipase and protease genes showed significantly higher expression compared to the liquid culture conditions.

#### Pathogenicity

*Heterobasidion* spp. are recognized as producers of at least 10 different secondary metabolites which are produced both in axenic cultures and during interaction with plants and other fungi (Sonnenbichler *et al.*, 1989). Genome analysis using a secondary metabolite unique regions finder (SMURF) web-tool

(http://www.jcvi.org/smurf/index.php) and manual curation identified solitary and clustered putative natural product genes (Table S20, S21). The genome of *H. irregulare* contained genes for three polyketide synthases (PKS), 13 nonribosomal peptide synthetase like (NRP-like) enzymes, 3 terpene cyclases and several tailoring enzymes, including one dimethylallyltryptophan synthase (DMATS) predicted to be involved in secondary metabolite production. The phytotoxins fomannosin and fomannoxin were accumulated in culture filtrates of *H. irregulare* (Fig. 2) and terpene cyclase (fomannosin) and DMATS (fomannoxin) genes were identified in the genome (Supporting Information, Table S20).

Three genes encode members of the small (~150 aa) secreted protein family Ceratoplatanin (CP) (Supporting Information) originally identified in *Ceratocystis platani* (Pazzagli *et al.*, 1999) (Fig. S7). During interaction with host tissue, necrotrophic plant pathogens produce reactive oxygen species (ROS) that contribute to the host mediated oxidative stress and facilitate infection. For the production of ROS, fungi utilize NADPH oxidase homologues (NOx) and ferric reductase (FRe) (Gessler *et al.*, 2007). NOxs are necessary for superoxide generation during developmental processes, whereas FRes are required to acquire iron from the infected host, and are potentially related to pathogenicity since this gene family of seven members in *H. irregulare* is large compared to in non-pathogenic basidiomycetes (Supporting Information).

Transcriptome analysis showed that 55 of the 250 most highly expressed genes during pathogenic interaction had secretion signal sequences, and 18 of these encode enzymes putatively active in carbohydrate degradation (Supporting Information, Table S22). Sixty-two genes were differentially expressed (P<0.05) in the pathogenic interaction compared to growth on defined liquid medium with 47 up- and 15 down-regulated (Supporting Information, Table S23). Sixteen differentially expressed genes encode proteins which were predicted to be secreted. among which there are five likely to act on carbohydrate substrates (PL1, GH5, GH28, CE16, CBM1), one lipase, two oxidases active on saccharide molecules. The remaining eight with secretion signal showed no similarity with any protein of known function. Two of the differentially expressed genes with secretion signal had conserved four transmembrane domains which suggest a membrane localisation.

By re-mapping virulence data from Lind and colleagues (Lind *et al.*, 2007a) we located three major QTL regions important for pathogenic interactions with Norway spruce and Scots pine, one on scaffold 1 and two on scaffold 12 (Fig. 1). These QTL regions include 178, 142 and 299 predicted gene models, in respectively scaffold, out of which one third had an expression distinct from background and showed no cross-hybridization with plant transcripts (Fig. 3). Transcriptional data from mycelia grown in cambium limited the virulence candidates within the QTLs to a handful of significantly (P<0.05) differentially expressed genes The most highly up-regulated ones were a high affinity sugar transporter (70 fold) present in QTL 2 on scaffold 12. In this QTL, a gene model with no sequence homology was found with 4 fold higher expressed in mycelia grown in cambium compared to liquid culture (Fig. 3). In QTL 1 on scaffold 1their was one gene

model with no sequence homology which was significantly lower expressed in mycelia grown on pine compared to in liquid media and a putative flavin containing Baeyer-Villiger monooxygenase, with 9.4 fold higher expressed during infection (Fig. 3). This type of monooxygenase is needed for one of the biosynthetic steps required for the synthesis of phytotoxin fomannosin making it a very strong pathogenicity candidate. Two overlapping secondary metabolite clusters harboring altogether 43 gene models were located in the QTL region on scaffold 12. The clusters include three NRPS (3, 4 and 11), several oxidative enzymes and transport proteins (Table S21). Furthermore, the sequence similarities of the QTL regions to other Basidiomycota genomes were low (Supporting Information) and the frequency of orphan genes was higher than in other parts of the genome (53% and 34%, respectively). Also transposable element density was higher within the pathogenicity QTLs than in other parts of the genome (Fig. 1).

Two way hierarchical cluster analysis of mean gene expression showed that the biological samples were separated according to if mycelia had been grown together with wood components or not (Fig. 4). Mycelia grown in the cambial zone show a distinct pattern in the heat map indicating that interaction with living tissue is very different from the other growth conditions analyzed. Cluster 3, represent a fruit body specifically expressed gene models (Fig. 4). The gene models higher expressed during interaction with living tissue are represented in cluster 1 and 5 (Fig. 4). In cluster 13 gene models are grouped together that are higher expressed in contact with wood components compared with the expression in fruit body and mycelia grown in liquid media (Fig. 4).

Global transcript profiling demonstrated that genes induced during saprotrophic wood degradation but not upon interaction with living host tissue represent a trade-off between the two trophic strategies (Table S24, S25). Gene expression during saprotrophic growth on wood showed highest correlations with gene expression during growth on cellulose and lignin, but much lower with that in the fruiting body. Gene expression during growth in cambial zone of pine showed an intermediate correlation to the levels in wood (Table 1). The number of significantly (P<0.05) higher expressed genes was highest during saprotrophic growth in

cambial zone of pine (Fig. 5). The majority of genes higher expressed during growth in cambial zone of pine were also significantly (P<0.05) higher expressed during growth on wood and include pectinolytic enzymes and part of the cellulolytic capacity (Fig. 5). The significantly (P<0.05) higher expressed genes during growth in cambial zone of pine and in fruit body are distinct while some overlap can be found between fruit body and saprotrophic growth on wood.

#### Discussion

The forest pathogen and wood decayer *H. annosum* (s.l.) uses two ecological strategies; parasitism and saprotrophic wood decay. During the life cycle it infects and lives within standing conifer trees but it also continues colonizing and degrading the dead tissue. Our analyses of gene expression during these two trophic stages reveal a trade-off in terms of restricted energy acquisition. Fewer genes encoding carbohydrate active enzymes and transporters are expressed during pathogenic growth than during saprotrophic wood decay, indicating that the fungus is not using its full capacity for energy acquisition during tissue triggered an expanded metabolic repertoire involving genes associated with e.g., toxin production, protection against plant defenses, handling low oxygen pressure, and other abiotic stresses. We conclude that there is a trade-off present between maximal nutritional gain and access to a different ecological niche that the fungus has to balance.

Gene expression during saprotrophic growth on wood correlated the most with expression during growth on cellulose and lignin, but just intermediately so with expression during growth in cambial zone of pine. Presumably, *H. irregulare* detects wood as a source of cellulose-derived energy, whereas living tissue only partly function in this manner. The genes induced specifically during infectious growth enable *H. irregulare* to access energy sources, such as carbon bound in macro molecules of living organisms, unavailable to other organisms with which it would otherwise compete.

Re-mapping of two different virulence measurements on two hosts, pine and spruce, revealed three major regions on two chromosomes to be involved, harboring 178, 142

and 299 gene models, respectively. These regions are characterized by a high number of transposable elements and orphan genes with no homologues genes reported from other species. These orphan models constitute a resource for the exploration of novel enzymatic functions and biological mechanisms. Together the enrichment in orphan genes and repetitive elements indicates that these are highly dynamic regions with high evolutionary rate. The characteristics, with high number of orphan genes and many repetitive elements, in these regions are comparable with the effector regions identified in *Phytophthora infestans* (Haas *et al.*, 2009).

Transposable elements are not equally distributed within and among the chromosomes. The major TE's observed are younger than 12 Mya and the decrease detected probably reflects element deterioration leading to loss of ability to detect older elements. Since TE proliferation within the pathogenicity QTLs is clearly younger than speciation (Fig. S3) (Dalman *et al.*, 2010), we hypothesize that transposon activity may have contributed to shaping the species specific characteristics of *H. irregulare*. Transposable elements have been implicated to co-locate with important factors for pathogenicity also in other pathosystems, eg. *Phytophthora infestans* (Cuomo *et al.*, 2007; Haas *et al.*, 2009).

Transcriptome analyses combined with QTL approach proved to be a powerful approach to reduce the number of candidate virulence genes of the QTL regions. Gene models who are present in QTL regions for virulence and significantly up-regulated during pathogenic interaction with pine are strong candidates. Three candidate genes fulfill the criteria; a sugar transporter, a monooxygenase and a gene model without homology to known genes. Since the QTLs are based on a mapping population derived from a cross between *H. irregulare* and *H. occidentale*, these genes are the main candidates to explain the difference in virulence between the species. As host specificity probably plays an important role in speciation, these genes could constitute a crucial step towards understanding the separation of *H. annosum* (s.l.) into separate species.

Hybrids between *H. irregulare* and *H. occidentale* showed that the mitochondria had an influence on pathogenicity in these species (Olson & Stenlid, 2001). Analysis of the

mitochondrial genome also revealed the largest mt-genome among fungal sequences so far, containing 24 gene models in addition to those involved in oxidative phosphorylation. These genes constitute interesting candidates for the mitochondrial connection to virulence.

The *H. irregulare* genome shows a great potential for both saprotrophic and biotrophic lifestyles. It encodes a wide arsenal of enzymes required to digest cellulose, hemicellulose and pectin, making it almost as well equipped regarding plant cell wall degradation as obligate saprotrophs such as *S. commune* and *C. cinerea*. In contrast to *P. chrysosporum*, *H. irregulare* possesses two GH29 fucosidase genes that might act on living/fresh material and two GH5 ( $\beta$ -mannanases) that may have a role in softwood-specific glucomannan-degradation. Furthermore, *H. irregulare* growth on sucrose correlated well with the presence of an invertase (GH32) gene, a feature shared with many phytopathogens. Sucrose is one of the major sugars found in fresh pine stump surface (Asiegbu, 2000) and the capacity to utilize it during the initial phase of colonization might provide *H. irregulare* with a selective advantage compared to saprotrophs lacking invertase activity, which could help explain why *H. annosum* spp. are so competitive in industrially managed forests.

Analysis of culture filtrates revealed presence of fomannosin and fomannoxin while genome analysis identified terpene cyclase and DMATS, possible involved in the respective synthesis of these known phytotoxins. In addition genes predicted to be involved in production of other secondary metabolites were identified. The presence of genes for putative PKS, NRPS-like enzymes and halogenase, however, implies that the biosynthetic capacity of *H. irregulare* has not been fully explored, as to date, no polyketides, non-ribosomal peptides or halogenated compounds have been identified.

#### Conclusion

*Heterobasidion irregulare* is an economically vastly important non-model organisms with a uniquely strong potential for versatility between pathogenic interaction and wood decay. Key enzymes and pathways of these central processes come within reach by our genomic approach. Comparing growth on dead and living tissue, we reveal a switch in gene expression during living host interaction towards toxin production, protection against plant defenses and handling abiotic stress, at the expense of carbohydrate decomposition and membrane transport capacity. Combining QTL and transcriptome analyses proved a powerful approach to elucidate gene sets involved in important phenotypic traits of a species. The virulence QTL regions are characterized by overrepresentation of transposable elements, orphan and secreted genes. We demonstrated that a limited number of genes fulfill the criteria of both being located within a QTL and significantly differentially expressed during host interaction compared to in liquid media. Some of these genes encode proteins that are linked to secondary metabolite production. This approach enabled the identification of new candidate pathogenicity factors, whilst at the same time limited the number.

#### Acknowledgements

The work conducted by the U.S. Department of Energy Joint Genome Institute and was supported by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. Financial support from the Swedish Foundation for Strategic Research is gratefully acknowledged.

#### **Authors Information**

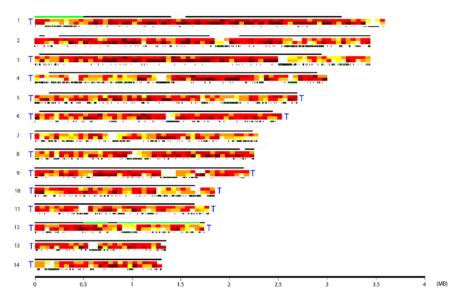
Assembly and annotations of the *H. irregulare* genome are available from JGI Genome Portal at <u>http://www.jgi.doe.gov/Heterobasidion</u> and deposited at DDBJ/EMBL/GenBank under the accession [TO BE PROVIDED UPON PUBLICATION]. The complete expression dataset is available as series (accession number GSE30230) at the Gene Expression Omnibus at NCBI (<u>http://www.ncbi.nlm.nih.gov/geo/</u>).

#### References

- Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. *Journal Molecular Biology* 215: 403–410.
- Anderson M, Kasuga T, Mitchelson K. 1993. A partial physical karyotype of *Heterobasidion annosum*. In: Johansson M, Stenlid J, eds. Proceedings of the eighth International Conference on Root and Butt Rots, Wik, Sweden and Haikko, Finland, 303-313.
- Asiegbu FO. 2000. Adhesion and development of the root rot fungus (*Heterobsidion annosum*) on conifer tissue: effects of spore and host surface constituents. *FEMS Microbiology Ecology* 33: 101-110.
- 4. **Birney E, Durbin R. 2000.** Using GeneWise in the Drosophila annotation experiment. *Genome Research* **10**: 547-548.
- Chase TE. 1985. Genetics of sexuality and speciation in the fungal forest pathogen Heterobasidion annosum. PhD thesis, University of Vermont, Burlington, VT, USA.
- Cuomo CA, Güldener U, Xu JR, Trail F, Turgeon BG, Di Pietro A, Walton J D, Ma LJ, Baker SE, Rep M. *et al.* 2007. The *Fusarium graminearum* genome reveals a link between localized polymorphism and pathogen specialization. *Science* 317: 1400-1402.
- Dalman K, Olson Å, Stenlid J. 2010. Evolutionary history of the conifer root rot fungus *Heterobasididion annsosum sensu lato*. *Molecular Ecology* 19: 4979– 4993.
- 8. Enright AJ, Van Dongen S, Ouzounis CA. 2002. An efficient algorithm for large-scale detection of protein families. *Nucleic Acids Research* 30: 1575-1584.
- 9. Gessler NN, Aver'yanov AA, Belozerskaya TA. 2007. Reactive oxygen species in regulation of fungal development. *Biochemistry (Mosc)* 72: 1091-1109.
- Gordon D, Abajian C, Green P. 1998. Consed: A Graphical Tool for Sequence Finishing. *Genome Research* 8: 195-202.
- 11. **Green P. 1999.** Phrap, version 0.990329. http://phrap.org.

- Haas B, Kamoun S, Zody MC, Jiang RHY, Handsaker RE, Cano LM,
   Grabherr M, Kodira CD, Raffaele S, Torto-Alalibo T. *et al.* 2009. Genome sequence and analysis of the Irish potato famine pathogen *Phytophthora infestans*. *Nature* 461: 393-398.
- Hatakka A. 1994. Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation. *FEMS Microbiology Review*. 13: 125-135.
- Huang X, Madan A. 1999. CAP3: A DNA Sequence Assembling Program. *Genome Research* 9: 868-877.
- 15. **Isono K, McIninch JD, Borodovsky M. 1994.** Characteristic features of the nucleotide sequences of yeast mitochondrial ribosomal protein genes as analyzed by computer program GeneMark. *DNA Research* **1**: 263-269.
- Jaffe DB, Butler J, Gnerre S, Mauceli E, Lindblad-Toh K, Mesirov JP, Zody MC, Lander ES. 2003. Whole-genome sequence assembly for mammalian genomes: Arachne 2. *Genome Research* 13: 91-6.
- Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz
   J. 2005. Repbase Update, a database of eukaryotic repetitive elements. Cytogenet.
   *Genome Research* 110: 462–467.
- Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T. 2008. KEGG for linking genomes to life and the environment. *Nucleic Acids Research* 36: 480–484.
- Karlsson M, Olson Å, Stenlid J. 2003. Expressed sequences from the basidiomycetous tree pathogen *Heterobasidion annosum* during early infection of Scots pine. *Fungal Genetics and Biology* 39: 51–59.
- 20. Kent WJ. 2002. BLAT--the BLAST-like alignment tool. *Genome Research* 12: 656-664.
- 21. Koonin EV, Fedorova ND, Jackson JD, Jacobs AR, Krylov DM, Makarova KS, Mazumder R, Mekhedov SL, Nikolskaya AN, Rao BS. 2004. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes. *Genome Biology* 5: R7.

- 22. Lind M, Dalman K, Stenlid J, Karlsson B, Olson Å. 2007. Identification of quantitative trait loci affecting virulence in the basidiomycete *Heterobasidion annosum* s.l. *Current Geneicst* **52**: 35-44.
- 23. Lind M, Olson Å, Stenlid J. 2005. An AFLP-marker based genetic linkage map of *Heterobasidion annosum* locating intersterility genes. *Fungal Genetics and Biology* **42**:519-527.
- 24. Lind M, Stenlid J, Olson Å. 2007. Genetics and QTL mapping of somatic incompatibility and intraspecific interactions in the basidiomycete *Heterobasidion annosum* s.l. *Fungal Genetics and Biology* **44**: 1242-1251.
- 25. **Marx DH. 1969.** The influence of ectomycorrhizal fungi on the resistance of pine roots to pathogenic infections. *Phytopathology* **59:** 153-163.
- 26. **Melen K, Krogh A, von Heijne G. 2003.** Reliability measures for membrane protein topology prediction algorithms. *Journal Molecular Biology* **327**: 735-744.
- 27. Newton AC, Fitt BDL, Atkins SD, Walters, DR, Daniell TJ. 2010.
   Pathogenesis, parasitism and mutualism in the trophic space of microbe-plant interactions. *Trends in Microbiol.* 18: 365-373..
- Nielsen H, Engelbrecht J, Brunak S, von Heijne G. 1997. Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites.
   *Protein Engineering* 10: 1-6.
- 29. Niemelä T, Korhonen K. 1998. Taxonomy of the Genus Heterobasidion. In: Woodward S, Stenlid J, Karjalainen R, Hüttermann A, eds. Heterobasidion annosum. Biology, Ecology, Impact and Control. Wallingford, UK: CAB International, 1–25.
- 30. Olson Å. 2006. Genetic linkage between growth rate and the intersterility genes S and P in the basidiomycete *Heterobasidion annosum* sensu lato. *Mycoogical Research* 110: 979-984.
- 31. **Olson Å, Stenlid J. 2001.** Mitochondrial control of fungal hybrid virulence. *Nature* **411**: 438.
- Otrosina WJ, Garbelotto M. 2010. *Heterobasidion occidentale* sp. nov. and *Heterobasidion irregulare* nom. nov.: A disposition of North American Heterobasidion biological species. *Fungal Bioogyl* 114:16-25.


- 33. Parrent JL, James TY, Vasaitis R, Taylor AFS. 2009. Friend or foe? Evolutionary history of glycoside hydrolase family 32 genes encoding for sucrolytic activity in fungi and its implications for plant-fungal symbioses. *BMC Evolutionary Biology* 9: 1-16.
- 34. Pazzagli L, Cappugi G, Manao G, Camici G, Santini A, Scala A. 1999. Purification of cerato-platanin, a new phytotoxic protein from *Ceratocystis fimbriata f. sp. platani. Journal of Biological Chemistry* 274: 24959-24964.
- Salamov AA, Solovyev VV. 2000. Ab initio gene finding in Drosophila genomic DNA. *Genome Research* 10: 516-522.
- Sambrook J, Russell DW. 2001. Molecular Cloning: A Laboratory Manual. New York, NY, USA: Cold Spring Harbor Laboratory Press.
- 37. Smit AFA, Hubley R, Green P. 1996-2010. RepeatMasker Open-3.0.
- 38. Sonnenbichler J, Bliestle IM, Peipp H, Holdenrieder O. 1989. Secondary fungal metabolites and their biological activity, I. isolation of antibiotic compounds from cultures of *Heterobasidion annosum* synthesized in the presence of antagonistic fungi or host plant cells. *Biological Chemistry* 370: 1295-1303.
- Stenlid J. 1985. Population structure of *Heterobasidion annosum* as determined by somatic incompatibility, sexual incompatibility, and isoenzyme patterns. *Canadian Journal of Botany* 63: 2268-2273.
- 40. Thor M, Ståhl G, Stenlid J. 2005. Modeling root rot incidences in Sweden using tree, site and stand variables. *Scandinavian Journal of Forest Research* 20: 165-176.
- 41. Vasiliauskas R, Menkis A, Finlay R, D, Stenlid J. 2007. Wood-decay fungi in fine living roots of conifer seedlings. *New Phytologist* 174: 441-446.
- 42. Woodward S, Stenlid J, Karjalainen R, Huttermann A. 1998. *Heterobasidion annosum. Biology, Ecology, Impact and Control.* Wallingford, UK: CAB International.
- 43. **Zdobnov EM, Apweiler R. 2001.** InterProScan--an integration platform for the signature-recognition methods in InterPro. *Bioinformatics* **17**: 847-848.

| Condition        | Lignin | Cellulose           | Wood   | Fruit body | Cambial |
|------------------|--------|---------------------|--------|------------|---------|
|                  |        |                     |        |            | zone    |
| Lignin           | 1      | 0.6934 <sup>a</sup> | 0.7256 | 0.2965     | 0.5328  |
| Cellulose        |        | 1                   | 0.7365 | 0.2244     | 0.4880  |
| Wood             |        |                     | 1      | 0.3699     | 0.6158  |
| Fruit body       |        |                     |        | 1          | 0.2489  |
| Cambial          |        |                     |        |            | 1       |
| zone             |        |                     |        |            |         |
| a r <sup>2</sup> |        |                     |        |            |         |
| NJ 2500          |        |                     |        |            |         |

**Table 1.** Correlation of global gene expression under different growth conditions.

N=3590

#### **Figure legends**



**Figure 1.** The 14 postulated chromosomes of *Heterobasidion irregulare*. The upper black bar of each chromosome denotes linkage map coverage, with pathogeniticy QTLs marked in green. The wide yellow-to-brown bar describes gene density (upper half) and gene model quality (lower half) for every 50 kB segment of the sequence. Gene density is calculated in number of gene models, ranging from over 27 (brown) to under 10 (white). Gene model quality is calculated based on microarray experiments using five probes for each gene model. The color indicates the percentage of models where all five probes hybridized, ranging from 100% (brown) to below 10% (white). The lowest bar of each chromosome indicates transposon regions, as per masked by RepeatMasker. Blue Ts stands for an identified telomere region in the corresponding chromosome end.

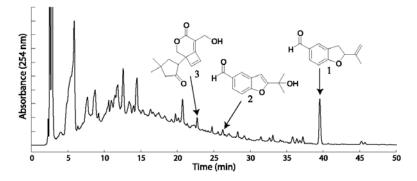
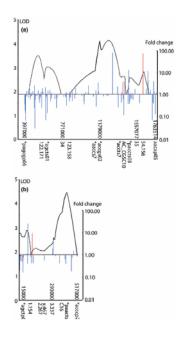




Figure 2. Preparative gradient reversed-phase HPLC chromatogram of H. irregulare mono

culture filtrate after solid phase extraction. Selected identified compounds are shown; fomannoxin (1) ( $t_R$  39.5), 5-formyl-2-(isopropyl-1´-ol)benzofuran (2) ( $t_R$  26.2) and fomannosin (3) ( $t_R$  22.7).



**Figure 3.** The QTL regions on scaffolds 12 (A) and 1 (B), and within them the up- or down-regulated gene models during mycelial growth in cambium compared to growth in liquid culture. Left y-axis denotes LOD value for QTL effect, with the horizontal bar (LOD 1.9) indicating 5% level of significance. Right y-axis has a logarithmic scale of fold change for gene models, where 1 indicates no change in expression level above background. Blue vertical bars indicate gene models with fold changes not significantly different from background level; red bars indicate models with fold changes significantly (P<0.05) different from background. Bottom x-axis shows the markers of the QTL regions and their scaffold positions (bp). The QTL-curve is adjusted to fit physical distance between the markers rather than genetic distance.

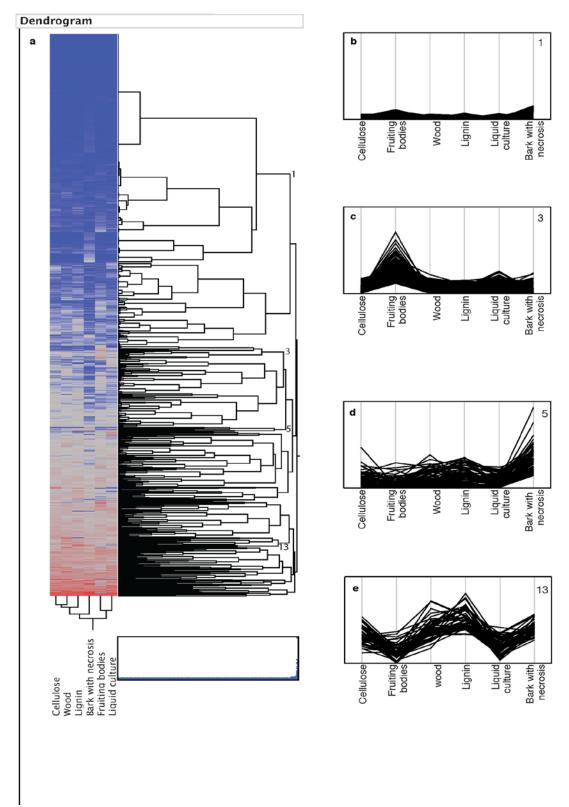
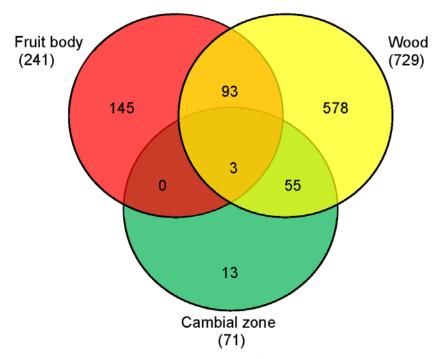
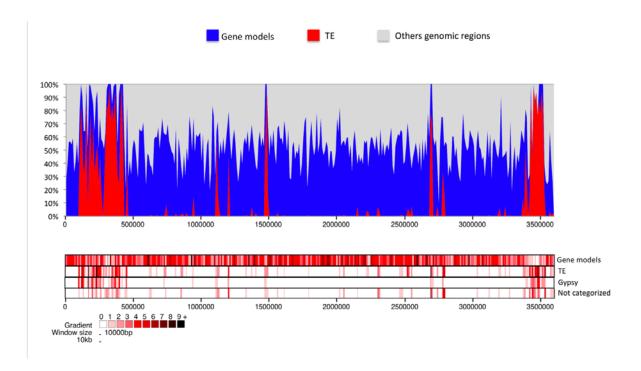




Figure 4. Two-way Ward's hierarchical cluster of the normalized microarray mean

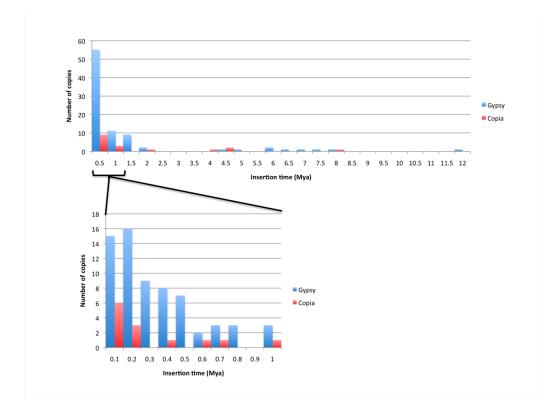
expression, cluster 1, 3, 5 and 13 marked. Parallel plots of B, cluster 1, C, cluster 3, D, cluster 5 and E cluster 10.



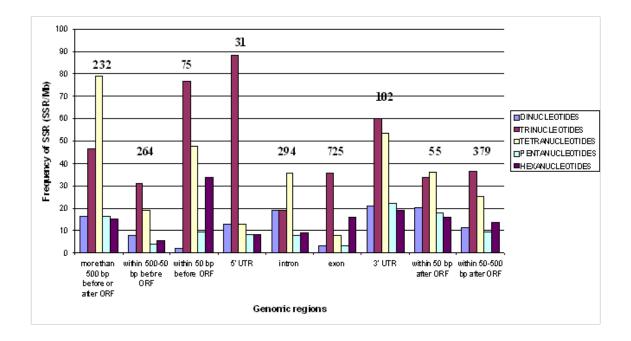
**Figure 5.** Venn diagram showing the number of significantly up-regulated, unique and common, genes in *H. irregulare* during mycelial growth in wood, growth in cambial zone of pine or in fruit body, compared to gene expression from mycelia grown in liquid culture.


## Supporting figures:

| Figure 1.  | The diversity and distribution of class I and class II transposable elements in <i>H. irregulare</i> .                  |
|------------|-------------------------------------------------------------------------------------------------------------------------|
| Figure 2.  | Genomic landscape of <i>H. irregulare</i> .                                                                             |
| Figure 3.  | Estimated time since the major LTR retrotransposon activity in the <i>H</i> . <i>irregulare</i> genome.                 |
| Figure 4.  | Frequency of SSRs in selected genome fractions of <i>Heterobasidion irregulare</i> .                                    |
| Figure 5.  | Comparative map of gene order surrounding the <i>MAT-A</i> locus in representative Agaricomycetes.                      |
| Figure 6.  | Cosegregation of the <i>MAT-A</i> region ( <i>MIP</i> ) and mating type among a progeny array of <i>H. irregulare</i> . |
| Figure 7.  | Unrooted phylogram of Cp protein family including the three <i>Heterobasidion irregulare</i> proteins.                  |
| Figure 8.  | TF family distribution across fungal taxa.                                                                              |
| Figure 9.  | Ste50 proteins from basidiomycota and ascomycota.                                                                       |
| Figure 10. | Phylogenetic analysis of the adenylatecyclase proteins from basidiomycota, ascomycota and oomycota.                     |
| Figure 11. | Phylogenetic analysis of class II peroxidases from various fungal taxa.                                                 |
| Figure 12. | Alignment of five <i>H. irregulare</i> protein models and the <i>P. chrysosporium glx1</i> .                            |
|            |                                                                                                                         |

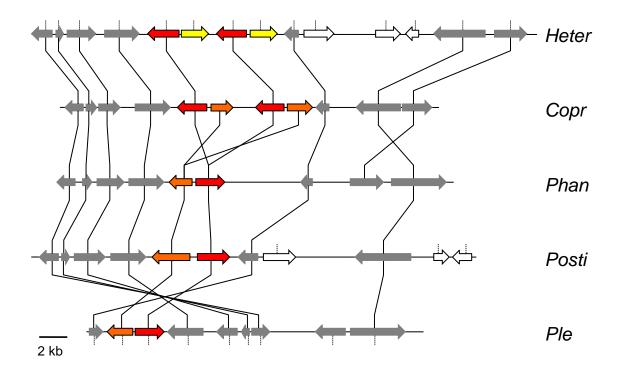

| Classificati | ion                  | Structure        | Number of Consensus Sequences | Number of Occurrences | % Assembly Coverage |
|--------------|----------------------|------------------|-------------------------------|-----------------------|---------------------|
| Order        | Superfamily          |                  |                               |                       |                     |
| Class I (ret | rotransposons)       |                  |                               |                       |                     |
| LTR          | Copia                | GAG AP INT RT RH | 3 (17)*                       | 184                   | 0.84                |
|              | Gypsy                | GAG AP RT RH INT | 16 (90)*                      | 1,639                 | 9.28                |
|              | Others LTR           |                  | 4                             | 23                    | 0.03                |
| Non LTR      |                      |                  | 5                             | 152                   | 0.24                |
| LINE         |                      | ORF1 ORF2        | 2                             | 30                    | 0.07                |
| Class II (D  | NA-transposons) – Su | ibclass 1        |                               |                       |                     |
| TIR          | PIF-Harbinger        | Tase*            | 1                             | 49                    | 0.10                |
|              | Others TIR           |                  | 7                             | 341                   | 0.95                |
| Class II (D  | NA-transposons) – Su | ibclass 2        |                               |                       |                     |
| Helitron     | Helitron             | RPA Y2 HEL       | 6                             | 196                   | 0.64                |
| Elements n   | ot categorized       |                  | 225                           | 2,654                 | 3.67                |
| Total        |                      |                  | 379**                         | 5,328                 | 16.21               |

#### Supplementary Figure 1. The diversity and distribution of class I and class II

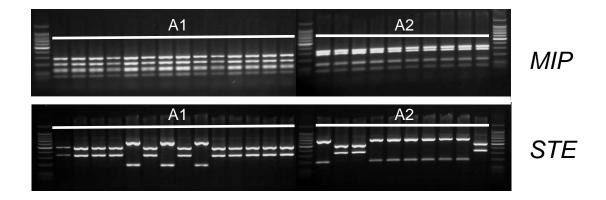

**transposable elements in** *H. irregulare*. The putative elements TE structures are depicted according to (Wicker et al., 2007). The number of TE occurrences and the % genome coverage were identified with RepeatMasker (www.repeatmasker.org) using the 379 consensus sequences (\*\*) corresponding to the 272 consensus sequences coming from the RepeatScout/REPCLASS pipeline and the 90 *Gypsy/Ty3*-like Full length elements (\*) and 17 to *Copia/Ty1*-like (\*) Full length elements identified by LTR\_STRUC (Mc Carthy & Mc Donald, 2003).



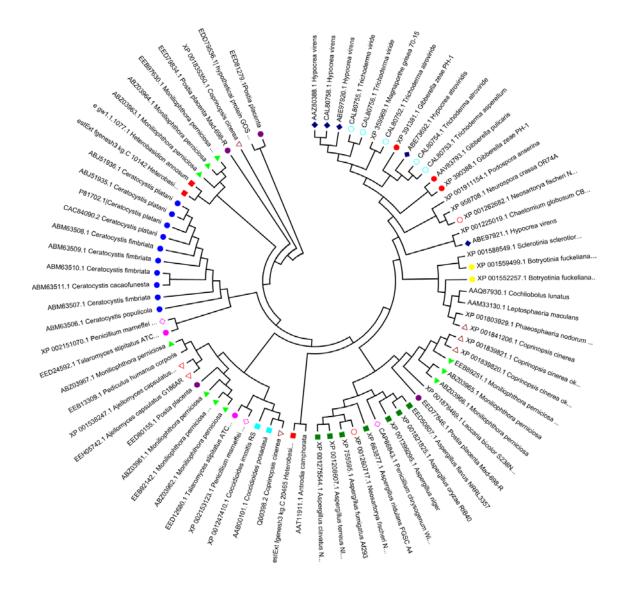
**Supplementary Figure 2. Genomic landscape of** *H. irregulare***.** Area charts quantify transposable elements, genes models and others genomic regions in 10,000 bp windows on the scaffold 1. The y axis represents the percentage of base pairs corresponding to TE (red), genes (blue), and other regions and gaps (grey) in 10,000-bp sliding windows. Heat maps tracks detail the distribution of selected elements (Gene models; TE, transposable elements; Gypsy, LTR-Retrotransposons gypsy and not categorized elements). The maps are realized counting the number of elements in 10,000 bp windows on the scaffold 1. The density has been calculated with Perl and Python scripts available at INRA TuberDB (http://mycor.nancy.inra.fr/IMGC/TuberGenome/).



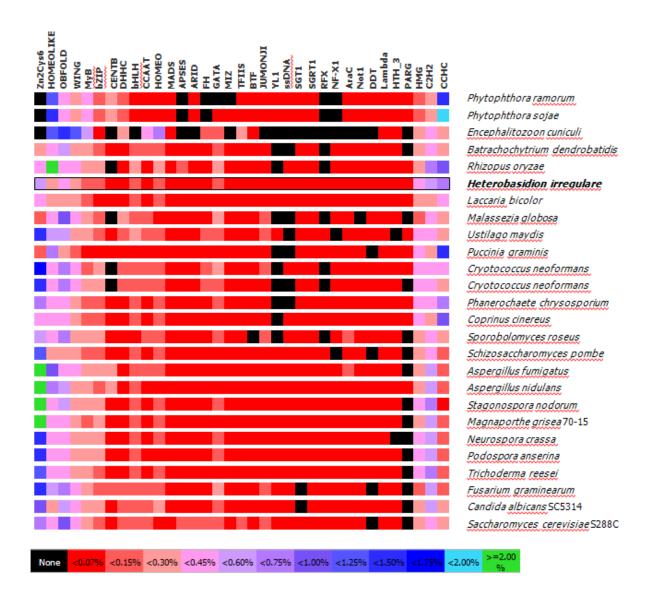

Supplementary Figure 3. Estimated time since the major LTR retrotransposon activity in the *H. irregulare* genome. Consensus full-length copies of the Gypsy and Copia elements are shown. A substitution mutation rate of  $1.3 \times 10^{-8}$  was used (Ma & Bennetzen 2004).




## Supplementary Figure 4. Frequency of SSRs in selected genome fractions of


*Heterobasidion irregulare*. Numbers represent the absolute frequency of SSRs in each fraction of the 10 largest scaffolds.

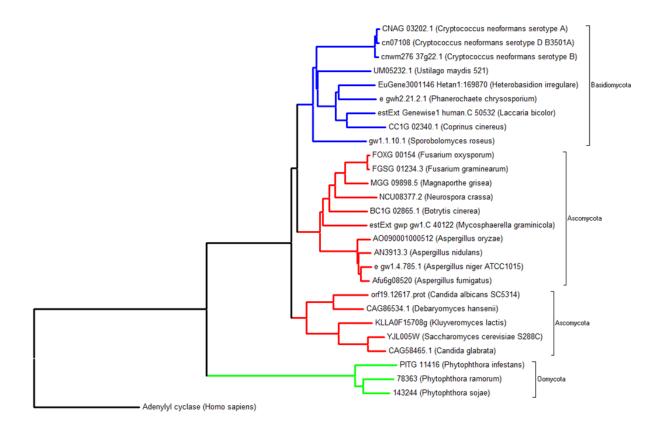



**Supplementary Figure 5.** Comparative map of gene order surrounding the *MAT-A* locus in representative Agaricomycetes. Lines connect homologous genes. Arrows indicate order of transcription. Grey genes represent those conserved (found near *MAT-A*) in all species, white genes represent those that are not completely conserved, red genes represent the HD1 homeodomain encoding genes, and the orange genes represent the HD2 homeodomain encoding genes. The genes of the *H. irregulare MAT* locus that are located where the HD2 genes are found in other Agaricomycetes are shown in yellow as these *H. irregulare* genes appear to lack the characteristic HD2 DNA-binding domain.

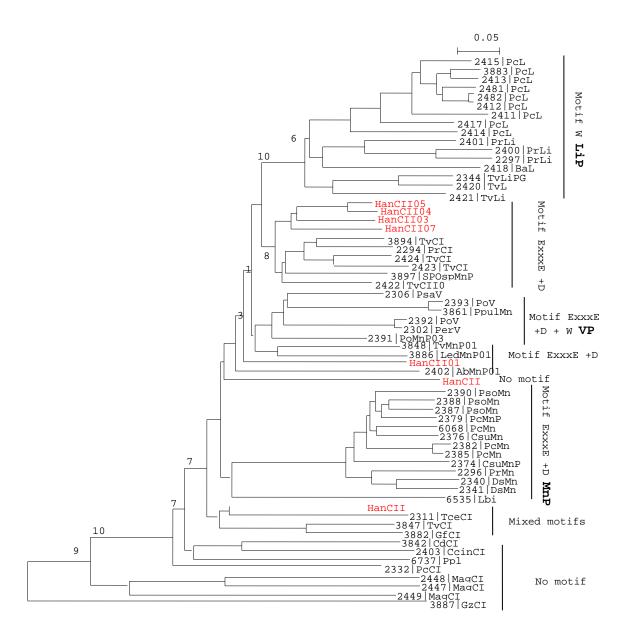


Supplementary Figure 6. Cosegregation of the *MAT-A* region (*MIP*) and mating type among a progeny array of *H. irregulare*. In the top panel the segregation of the 24 isolates at the *MIP* locus is shown, and the bottom panel shows the segregation at the *STE3.3* locus. Homokaryons were assigned to two mating types (A1 or A2) based on heterokaryon formation by pairings on malt extract agar. Genotypes at the putative *MAT-A* region were determined by PCR amplification of the *MIP* gene followed by digestion with *Rsa*I, and genotypes at the putative *MAT-B* region were determined by amplification of a pheromone receptor (*STE3.3*) and digestion with *Aci*I.




**Supplementary Figure 7. Unrooted phylogram of Cp protein family including the three** *Heterobasidion irregulare* **proteins.** A total of 77 protein sequences were retrieved from GenBank, edited and aligned using ClustalW, and the unrooted phylogram was prepared using the neighbor-joining method (MEGA 3.1). Protein sequences accession number and species of origin are indicated.




**Supplementary Figure 8. TF family distribution across fungal taxa.** The matrix of transcription factor configuration from 26 fungal and oomycete genomes. The Legend reflects the proportion of each TF family members against total proteome. *Heterobasidon irregulare* genome is marked as bold and black box

|                                    | AFu2g17130                          |
|------------------------------------|-------------------------------------|
| Aspergillus fumigatus              | H17252.3                            |
| Aspergillus nidulans               |                                     |
| Aspergillus niger ATCC1015         | Fgenestd_pm_C_scafFold_20000009     |
| Aspergillus oryzae                 | A00901.020001.04                    |
| Botrytis cinerea                   | 8016.07505.1                        |
| Candida albicans SC5314            | orf19.9204.prot                     |
| Candida glabrata                   | CH057908.1                          |
| Debaryomyces hansenii              | CH087421.1                          |
| Fusarium graminearum               | F656_04101.3                        |
| Fusarium oxysporum                 | F000_11534                          |
| Kluyveromyces lactis               | NLLA0C01386g                        |
| Magnaporthe grisea                 | HGG_06199.5                         |
| Mycosphaerella graminicola         | estExt_fgenesh2_pg.C_20250          |
| Neurospora crassa                  | NCU00495.2                          |
| Saccharomyces cerevisiae S288C     |                                     |
| Schizosaccharomyces pombe          | NP_593283.1                         |
| Coprinus cinereus                  |                                     |
| Cryptococcus neoformans serotype A |                                     |
| Cryptococcus neoformans serotype D |                                     |
| Cryptococcus neoformans serotype B | cn-wa276_190-g35.1                  |
| Laccaria bicolor                   | eu2.lbscf0002g05260                 |
| Phanerochaete chrysosporium        | fgenesh1_pg.C_scaffold_3000315      |
| Ustilago maydis 521                |                                     |
| Heterobasidion irregulare          | EuGene6000601 (Hetan1:172671) Ste50 |

Supplementary Figure 9. Ste50 proteins from basidiomycota and ascomycota. Light-Bluebox = SAMdomain, redbox = kinasedomain, orangebox = SH3domain



Supplementary Figure 10. Phylogenetic analysis of the adenylatecyclase proteins from basidiomycota, ascomycota and oomycota.



**Supplementary Figure 11. Phylogenetic analysis of class II peroxidases from various fungal taxa.** Protein sequences corresponding to accession numbers and protein names can be found in the PeroxiBase (<u>http://peroxibase.toulouse.inra.fr/</u>). Class II-like protein sequences from non-lignolytic fungi (*Magnaporthe grisea* and *Gibberella zeae*) were used to root the tree.

| Hetan.44757.CR02.pro<br>Hetan.56441.CR02.pro<br>Hetan.123144.CR01.pro | RDLAWNGHTTPGSTVPSTFTPYYVPPGTKSYDSHSPLVHYSGKWTDSYSRSYVGKTLRSTSQVKSVVRFTFTGTGIEWFGNTDKRHGIANVYLDGKLVQHVDAYSSVARKQQRVFWDFN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | L 141<br>- 19<br>- 19<br>- 19    |
|-----------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|
| Hetan.44757.CR02.pro<br>Hetan.56441.CR02.pro<br>Hetan.123144.CR01.pro | APAAS<br>PLGRHTIKIINSGRKSSRATGNLIDIDAFVVTQGHIRYRQSVPLQASPRVQPQVSNAVAQPQPQNLAQDSQQISAQWLLQQKGS-TGVH/MQLAIISPSHALVVGKVEHN-PLTVDGHP<br>- ATX&GTTEEVCD-TLVS,MMWFLQREGKVTLQKKEEN-PTQVWGHP-<br>- ATX&GTTEEVCD-TLVS,MMWFLQREGKVTLLGKEEN-PTQVWGHP-<br>- QKAGSFEQVGD-TLVS,MMMFLQREGKVTLUKKEN-PTQJWGHP-<br>- ANTDSUTAPPQPAQ                                                                                                                                                                                                                                                                                                                                                                                                             | A 259<br>A 65<br>A 64<br>A 79    |
| Hetan.123144.CR01.pro                                                 | NGALWOLDTSTVRPLSVLTDSFCASGALLSNGTMVSMGGTPGGTGGDVAAPPGNQAIRIFEPCASP-SGDGCTLFEDPATVHLLEERWYPSSVRIFDG<br>NAALYNLNTHANKPLRVQSNSFCAGGTFLGVGTNIVVGGNPVVESHTAADFGDADGLQAIRLLEPGDSD-DADOCALFEDHARLRMASAGWYNTVLRSSDG<br>NAAWNDVETRKATIMDVQTNPFCAAGHHLPNGSFATFGGNGATPSTGGEIGSVKYDGYAASYDETYKDYDGRTSRITTFDGDGLTSDFCLWYDGNDGFXMQKQGWYTGAESLDDG<br>YAAVMAIATKYTANUQTNPFCAAGHHLPNGSFATFGGNGATPSTGGEIGSVKYDGYAASYDETYKDYDGRTSRITTFDGDGLTSDFCTWYDSNGCHWQKQWWTGAESLDDG<br>YAAVMAIATKYTANUQTNPFCAAGHHL-PNGSFATFGGNGASIS-FGGNGUSSASFDATQOYDGTAIRITTPGGDLTSDFCTWYDSNGCHWQKHWYPGCEDLADG<br>NAAMEYSLGSNAGRUMDIVTNSFCAVTNCTWINVGGNQAIT-TGGAAAPDQVGASGPYHDPDALPPSRLTPCDDGNCDWTLVADMSTRWYPSLETLDGG<br>DLTLVDDFSLAWHEMHVKTUVFCSGSLV_PDKAGRIINVGGWSHPSTT | S 361<br>S 183<br>S 181<br>S 179 |
| Hetan.44757.CR02.pro<br>Hetan.56441.CR02.pro<br>Hetan.123144.CR01.pro | LMIIGGSHVLTPFYNVDPAN-SFEFEPSKEQTPRESAFLERSLPANLFPRAFALPDGTVFIVANNQSIIYDIEKNTETILPDIPNGVRVTNP<br>AMIMGGSTKGGWNN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M 459<br>A 283<br>A 290<br>A 272 |
| Hetan.44757.CR02.pro<br>Hetan.56441.CR02.pro<br>Hetan.123144.CR01.pro | DGSAILLPLSPR-DEIPEVLVCGGSTADTSLPSTSLSSQHPATSQCSRIKLTPEGIKAGNQVEHMLEARMMPELVHVPNGQI-ITNGAGTGFAALSAVADPVGN<br>TUTALLPLSSDNDYTA'ILLCGGSSIDAKA'WDISSQDPASBQCSRMV_NDAGQAGWQVEQMPEARTMDAVLLPTCKI_IVNGAGSGISGYGNKDQVGS<br>SGANAMLPLTPKNNYTTYTV-FCGGSNDYDBANGNYSMPMINTFDYPASADO'QHLTAERLDGSAPYTEQDDMHITTRTNGGFUALDGTMI VLNGGNNTHGYSTATGGTATGGEMMUM<br>SGATAMLPLTPKNNYTTYTV-FCGGSNDYDBANGNYSPPNINTFDYPASADO'QHITPKTNGCHVAUPUGTVGGTHGGTIALDRIKKLVLNGGNGATGANTTAGYTATGGFU<br>SGGTVMLPLTPANNYTTYTV-FCGGSNIKONQUTNMDIAIYPASBSGVQTSPDISNSYKSUDPLPARTMGNLVLLPTCQULLNGANTGVGGTGG                                                                                                                                                              | S 564<br>S 403<br>S 410<br>S 376 |
| Hetan.56441.CR02.pro<br>Hetan.123144.CR01.pro                         | NADHPYLTPSLYTPDAPLGKRISNAGMPTTTIPRMYHSTVTLTQOGNEFIGGNNPNMMFTPPCTPGIKEPSELRIETLDPPEMERSRPALLTMPEKLKEG-Q&VTVPITIPSDLK<br>NAANPYLTPVLTDPTLPSGRESSGMESSSTERLYHSIATLTPNGDIMIAGSNPNLDRSEVQFGTEYRVEWITPPMTADRVVLDRVPTWIGFG-EDWKLQVKLPSNGK<br>LASGPAGRPAVYNPNAFXGSRWSNAGEASSKIARLYHSATLLADQSVFVAGSNPNVDYNTSTIFTTYKAEIFYDSYEDAP-TRKPTGWRTISYGGDPFDITIPASS<br>LAAAPYQGPALTYMSNAFXGSRWSTAGEDISSIARLYHSATLLADQSVFVAGSNPNVDYNDTTIFTTYKAEIFYDSYEDAP-TRKPTGWRTISYGGDPFDITIPAS<br>YAGQPIFEPVMINFGAPSGSRWSTAGEDISSIARLYHSATLLADQSVFVAGSNPNVDYNDTFYPTEYRVEFYDSYENARRPEPRGLPSQ.SYGGEYFNVSIQKDDMFG-D<br>LAADPNLTALLYDFTQFIGQRTSILNTIVARLYHSETLLTDGRVLTTSDPQTNPDGTPKEPEEMKVEVYDRMVTYDGSFNITETDWSYGGQYQTITLLHHGTTS                                  | - 673<br>N 518<br>N 525<br>T 489 |

### Supplementary Figure 12. Alignment of five *H. irregulare* protein models and the *P.*

*chrysosporium glx1*. Secretion signals have been removed, as has 4 N-terminal repeats of the WSC domain from *cro5*. Yellow highlights agreement with the *P. chrysosporium* sequence.

### **Supporting Tables:**

- Table S1. Genomic libraries included in the *H. irregulare* genome assembly and their respective assembled sequence coverage levels in the whole genome shotgun assembly.
- Table S2. Summary statistics of the draft whole genome shotgun assembly of *H. irregulare*before screening and removal of organelles and contaminating scaffolds.
- Table S3. Predicted gene models in *H. irregulare* and supporting lines of evidence.
- Table S4. Characteristics of predicted gene models in *H. irregulare*.
- Table S5. Number of orthologs between *H. irregulare* and 6 other basidiomycetes.
- Table S6. Functional annotation of *H. irregulare* proteins.
- Table S7. Top 30 Pfam domains in *H. irregulare* proteome.
- Table S8. Statistics of the *H. irregulare* assembly.
- Table S9. Total length (bp per megabase of DNA) of fully standardized di- and tri- nucleotide repeats in different genomic regions of the *H. irregulare* genome and of other fungal genomes.
- Table S10. Protein coding genes, rRNA genes and introns in the mt-genome of *H. irregulare*.
- Table S11. Distribution of ROS related proteins among various fungal species.
- Table S12. Comparison of numbers of genes putatively involved in lignin degradation in the genomes of several wood degrading basidiomycete fungi.
- Table S13. Distribution of genes coding for membrane transporter families in *H. irregulare*, and comparison with other sequenced basidiomycetes.
- Table S14. Distribution of genes coding for proteinase families in *H. irregulare*, and comparison with other sequenced basidiomycetes
- Table S15. Distribution of proteinase family members in *H. irregulare*.
- Table S16. Summary of glycoside hydrolases (GH), polysaccharide lyases (PL) and carbohydrate esterases (CE) genes in *H. irregulare*.
- Table S17. Carbohydrate active enzymes of *H. irregulare* active on plant cell walls.
- Table S18. Gene models up-regulated >10 fold during *H. irregulare* growth on wood.

- Table S19. Location and characteristics of gene models putatively involved in lignin degradation in the *H. irregulare* genome.
- Table S20. Annotated putative natural product genes in the *H. irregulare* genome.
- Table S21. Putative natural product gene clusters in the *H. irregulare* genome.
- Table S22. The 250 highest expressed gene models during *H. irregular* growth in cambialzone of necrotic bark tissue.
- Table S23. Gene models up-regulated during *H. irregulare* growth in cambial zone of necrotic bark tissue.
- Table S24. Number of carbohydrate active enzymes significantly up-regulated during H.*irregulare* growth in wood and in cambial zone of necrotic bark tissue.
- Table S25. Number of transporters significantly up-regulated during *H. irregulare* growth in wood and in cambial zone of necrotic bark tissue.

Supplementary Table 1. Genomic libraries included in the *H. irregulare* genome assembly and their respective assembled sequence coverage levels in the whole genome shotgun assembly.

| Library Type | Average Insert<br>Size | Read<br>Number | Assembled<br>Sequence<br>Coverage (X) |
|--------------|------------------------|----------------|---------------------------------------|
| 3kb          | 2,716                  | 214,143        | 3.71                                  |
| 8kb          | 6,012                  | 192,768        | 3.56                                  |
| Fosmid       | 39,125                 | 63,168         | 0.96                                  |
| Total        |                        | 470,079        | 8.23                                  |

Supplementary Table 2. Summary statistics of the draft whole genome shotgun assembly of *H. irregulare* before screening and removal of organelles and contaminating scaffolds.

| Size      | Scaffolds | Contigs | Scaffold Size | <b>Base pairs</b> | Non-gap |
|-----------|-----------|---------|---------------|-------------------|---------|
| 5120      | (#)       | (#)     | ( <b>bp</b> ) | ( <b>bp</b> )     | (%)     |
| 5,000,000 | 0         | 0       | 0             | 0                 | 0.00    |
| 2,500,000 | 4         | 193     | 13,417,098    | 13,220,956        | 98.54   |
| 1,000,000 | 14        | 540     | 31,427,294    | 30,865,195        | 98.21   |
| 500,000   | 15        | 566     | 32,363,004    | 31,754,554        | 98.12   |
| 250,000   | 18        | 601     | 33,597,426    | 32,962,627        | 98.11   |
| 100,000   | 19        | 602     | 33,715,914    | 33,081,115        | 98.12   |
| 50,000    | 19        | 602     | 33,715,914    | 33,081,115        | 98.12   |
| 25,000    | 20        | 603     | 33,751,153    | 33,116,354        | 98.12   |
| 10,000    | 24        | 608     | 33,803,041    | 33,168,110        | 98.12   |
| 5,000     | 30        | 615     | 33,845,098    | 33,209,682        | 98.12   |
| 2,500     | 45        | 640     | 33,896,119    | 33,255,494        | 98.11   |
| 1,000     | 51        | 646     | 33,904,916    | 33,264,291        | 98.11   |
| 0         | 53        | 648     | 33,905,970    | 33,265,345        | 98.11   |

## Supplementary Table 3. Predicted gene models in *H. irregulare* and supporting lines of evidence.

| Gene models (#)           | 11,464 |
|---------------------------|--------|
| Complete* gene models (%) | 86     |
| With homology support (%) | 70     |
| With Pfam domains (%)     | 44     |
| With EST support (%)      | 48     |

\* With start and stop codons.

## Supplementary Table 4. Characteristics of predicted gene models in *H. irregulare*.

|                             | Average | Median |
|-----------------------------|---------|--------|
| Gene length (bp)            | 1601    | 1283   |
| Protein length (aa)         | 379     | 303    |
| Exon frequency per gene (#) | 5.39    | 4      |
| Exon length (bp)            | 232     | 145    |
| Intron length (bp)          | 82      | 60     |

Supplementary Table 5. Number of orthologs between *H. irregulare* and 6 other basidiomycetes.

|                  | Orthologs (#) | Identity* (%) |
|------------------|---------------|---------------|
| S. commune       | 6109          | 57            |
| C. cinerea       | 6076          | 56            |
| L. bicolor       | 5975          | 59            |
| P. chrysosporium | 5576          | 60            |
| C. neoformans    | 4533          | 46            |
| U. maydis        | 4154          | 45            |

\* Amino acid identity.

| Supplementant | Table 6 Functional   | annotation of II                    | inneaulane protoing         |
|---------------|----------------------|-------------------------------------|-----------------------------|
| Subblementary | таріе о. гипсиона    | $\square$ annotation of $\square$ . | <i>irregulare</i> proteins. |
| Suppremental  | I WOLG OF I WHENDING |                                     | n comme proteinst           |

| Classification | Proteins # (%) | Categories # |
|----------------|----------------|--------------|
| KOG            | 6698 (58%)     | 3204         |
| GO             | 5718 (50%)     | 2185         |
| EC             | 2238 (20%)     | 664          |
| Pfam           | 5942 (52%)     | 2306         |

| PfamID         | Hetan* | Сорсі | Cneof | Lacbi | Pchr | Umay | Scom | PfamName      |
|----------------|--------|-------|-------|-------|------|------|------|---------------|
| PF07690        | 143    | 111   | 161   | 101   | 141  | 90   | 181  | MFS_1         |
| PF00067        | 129    | 122   | 5     | 69    | 113  | 19   | 106  | p450          |
| <b>PF00400</b> | 115    | 109   | 90    | 122   | 109  | 90   | 113  | WD40          |
| PF00069        | 102    | 111   | 81    | 120   | 106  | 79   | 116  | Pkinase       |
| PF00096        | 94     | 60    | 24    | 57    | 35   | 28   | 95   | zf-C2H2       |
| PF00271        | 77     | 91    | 71    | 99    | 59   | 65   | 91   | Helicase_C    |
| PF00106        | 62     | 50    | 38    | 48    | 84   | 45   | 114  | adh_short     |
| PF00076        | 61     | 59    | 56    | 65    | 50   | 51   | 65   | RRM_1         |
| PF00646        | 59     | 178   | 17    | 122   | 70   | 17   | 199  | F-box         |
| PF00172        | 58     | 42    | 75    | 69    | 35   | 86   | 79   | Zn_clus       |
| PF00023        | 50     | 92    | 17    | 25    | 20   | 15   | 29   | Ank           |
| PF00097        | 50     | 38    | 30    | 55    | 28   | 34   | 53   | zf-C3HC4      |
| PF01266        | 45     | 25    | 28    | 20    | 35   | 18   | 36   | DAO           |
| PF00270        | 44     | 52    | 42    | 56    | 33   | 42   | 64   | DEAD          |
| PF01370        | 43     | 26    | 21    | 24    | 50   | 18   | 42   | Epimerase     |
| PF04082        | 42     | 38    | 60    | 45    | 36   | 31   | 57   | Fungal_trans  |
| PF00083        | 41     | 23    | 62    | 37    | 39   | 28   | 53   | Sugar_tr      |
| PF00248        | 40     | 22    | 20    | 21    | 53   | 14   | 56   | Aldo_ket_red  |
| PF02985        | 40     | 38    | 37    | 41    | 42   | 37   | 39   | HEAT          |
| PF01494        | 39     | 22    | 7     | 14    | 31   | 9    | 40   | FAD_binding_3 |
| PF00004        | 39     | 38    | 31    | 34    | 39   | 28   | 39   | AAA           |
| PF08240        | 37     | 29    | 27    | 28    | 47   | 24   | 40   | ADH_N         |
| PF05199        | 36     | 35    | 2     | 11    | 32   | 10   | 21   | GMC_oxred_C   |
| PF00732        | 35     | 36    | 2     | 9     | 31   | 10   | 21   | GMC_oxred_N   |
| PF00107        | 35     | 28    | 24    | 21    | 52   | 22   | 44   | ADH_zinc_N    |
| PF07993        | 34     | 18    | 16    | 17    | 29   | 16   | 32   | NAD_binding_4 |
| PF00226        | 33     | 32    | 23    | 36    | 22   | 26   | 27   | DnaJ          |
| PF00153        | 33     | 35    | 33    | 35    | 34   | 36   | 33   | Mito_carr     |
| PF08477        | 32     | 34    | 28    | 54    | 32   | 33   | 33   | Miro          |
| PF00515        | 32     | 31    | 22    | 36    | 23   | 25   | 25   | TPR_1         |
| PF07719        | 32     | 39    | 23    | 33    | 27   | 27   | 29   | TPR_2         |
| PF00005        | 32     | 43    | 34    | 43    | 50   | 38   | 45   | ABC_tran      |

Supplementary Table 7. Top 30 Pfam domains in *H. irregulare* proteome and 6 other basidiomycetes.

\* Hetan = *Heterobasidion irregular*, Copci = *Coprinopsis cinereus*, Cneof = *Cryptococcus neoformans*, Lacbi = *Laccaria bicolor*, Pchr = *Phanerochaete chrysosporium*, Umay = *Ustilago maydis*, Scom = *Schizophyllum commune* 

## Supplementary Table 8. Statistics of the *H. irregulare* assembly.

| Main genome scaffold (#)             | 15    |
|--------------------------------------|-------|
| Main genome contig (#)               | 18    |
| Main genome scaffold sequence (Mb)   | 33.6  |
| Main genome contig sequence (Mb)     | 33.6  |
| Main genome scaffold N/L50 (Mb)      | 6/2.6 |
| Main genome contig N/L50 (Mb)        | 6/2.3 |
| Number of scaffolds > 50 KB          | 14    |
| Main genome in scaffolds > 50 KB (%) | 100   |

| Motif | H. iri | regulare           | 2       |       |       |       | Fungi | 1                  |         |       |
|-------|--------|--------------------|---------|-------|-------|-------|-------|--------------------|---------|-------|
|       | All    | Inter <sup>2</sup> | Introns | Exons | 5'UTR | 3'UTR | All   | Inter <sup>2</sup> | Introns | Exons |
| AC    | 41     | 53                 | 102     | 10    | 76    | 79    | 81    | 140                | 511     | 2     |
| AG    | 42     | 46                 | 123     | 9     | 89    | 110   | 58    | 136                | 140     | _     |
| AT    | 16     | 22                 | 48      | 1     | -     | 26    | 133   | 279                | 362     | 2     |
| CG    | 27     | 21                 | 57      | 24    | -     | 26    | _     | _                  | _       | _     |
| AAC   | 26     | 17                 | 10      | 26    | 63    | 263   | 108   | 104                | 145     | 107   |
| AAG   | 20     | 27                 | 5       | 16    | 72    | 57    | 59    | 84                 | 34      | 55    |
| AAT   | 11     | 26                 | 5       | -     | -     | -     | 119   | 162                | 537     | 34    |
| ACC   | 53     | 42                 | 17      | 63    | 299   | 148   | 36    | 60                 | 14      | 26    |
| ACG   | 128    | 88                 | 79      | 174   | 198   | 218   | 12    | 6                  | _       | 12    |
| ACT   | 17     | 16                 | 53      | 5     | 105   | 33    | 15    | 30                 | _       | 5     |
| AGC   | 108    | 82                 | 52      | 144   | 152   | 175   | 55    | 19                 | 103     | 67    |
| AGG   | 65     | 50                 | 31      | 88    | 67    | 108   | 31    | 34                 | 45      | 27    |
| ATC   | 14     | 26                 | -       | 4     | 190   | -     | 32    | 43                 | 53      | 22    |
| CCG   | 125    | 73                 | 105     | 170   | 274   | 222   | 18    | 8                  | 20      | 26    |

Supplementary Table 9. Total length (bp per megabase of DNA) of fully standardized di- and tri- nucleotide repeats in different genomic regions of the *H. irregulare* genome and of other fungal genomes.

 $^{-1}$  data from Toth et al. (2000).

<sup>2</sup> Intergenic region.

## Supplementary Table 10. Protein coding genes, rRNA genes and introns in the mtgenome of *H. irregulare*.

| Gene          | Feature | Strand | Start | Stop  | Note                                                      |
|---------------|---------|--------|-------|-------|-----------------------------------------------------------|
| rnl           | rRNA    | +      | 145   | 5845  | Large subunit 23S ribosomal RNA                           |
|               | intron  | +      | 2245  | 3852  | Intron in rnl                                             |
| io-rnl        | CDS     | +      | 2963  | 3823  | Intronic putative GIY-YIG endonuclease                    |
| cox1          | CDS     | +      | 7850  | 23343 | cytochrome c oxidase subunit 1                            |
|               | intron  | +      | 8123  | 9438  | Intron 1 of cox1                                          |
|               | intron  | +      | 9549  | 10785 | Intron 2 of cox1                                          |
| io-cox1I2     | CDS     | +      | 9574  | 10683 | Intronic putative LAGLIDADG endonuclease                  |
|               | intron  | +      | 11015 | 12443 | Intron 3 of cox1                                          |
| io-cox1I3     | CDS     | +      | 11037 | 12047 | Intronic putative LAGLIDADG endonuclease                  |
|               | intron  | +      | 12537 | 16413 | Intron 4 of cox1                                          |
| io-cox1I4a    | CDS     | +      | 12546 | 13439 | Intronic putative 2xLAGLIDADG endonuclease                |
| io-cox1I4b    | CDS     | +      | 14048 | 15037 | Intronic putative 2xLAGLIDADG endonuclease                |
| io-cox1I4c    | CDS     | +      | 15093 | 15592 | Intronic putative endonuclease                            |
| ps-io-cox1I4d | CDS     | +      | 15756 | 16302 | Intronic putative pseudo LAGLIDADG endonuclease           |
|               | intron  | +      | 16489 | 17766 | Intron 5 of cox1                                          |
| io-cox1I5     | CDS     | +      | 16504 | 17703 | Intronic putative LAGLIDADG endonuclease                  |
|               | intron  | +      | 17859 | 18868 | Intron 6 of cox1                                          |
| io-cox1I6     | CDS     | +      | 17965 | 18819 | Intronic putative 2xLAGLIDADG endonuclease                |
|               | intron  | +      | 19025 | 20327 | Intron 7 of cox1                                          |
| io-cox1I7     | CDS     | +      | 19556 | 20320 | Intronic putative GIY-YIG endonuclease                    |
|               | intron  | +      | 20379 | 21605 | intron 8 of cox1                                          |
| io-cox1I8     | CDS     | +      | 20484 | 21173 | Intronic putative 2xLAGLIDADG endonuclease                |
|               | intron  | +      | 21804 | 23058 | Intron 9 of cox1                                          |
| io-cox1I9     | CDS     | +      | 22023 | 22772 | Intronic putative 2xGIY-YIG endonuclease                  |
| rns           | rRNA    | +      | 23941 | 25862 | 16S ribosomal RNA                                         |
| cox2          | CDS     | +      | 28421 | 31918 | Cytochrome c oxidase subunit 2                            |
|               | intron  | +      | 28655 | 30115 | Intron 1 of cox2                                          |
|               | intron  | +      | 30572 | 31852 | Intron 2 of cox2                                          |
| atp8          | CDS     | +      | 32525 | 32683 | ATP synthase protein 8                                    |
| nc-ORF6       | CDS     | +      | 33776 | 35113 | Three transmembrane regions found by InterProScan.        |
| ppl2          | CDS     | +      | 35371 | 36093 | Putative plasmid protein 2                                |
| nad4L         | CDS     | +      | 37665 | 37940 | NADH-ubiquinone oxidoreductase chain 4L                   |
| nad5          | CDS     | +      | 39025 | 42400 | NADH-ubiquinone oxidoreductase chain 5                    |
|               | intron  | +      | 39742 | 41143 | Intron of nad5                                            |
| nad6          | CDS     | +      | 44999 | 45616 | NADH-ubiquinone oxidoreductase chain 6                    |
| nc-ORF5       | CDS     | +      | 46939 | 47874 | Three transmembrane regions found by InterProScan.        |
| nc-ORF4       | CDS     | +      | 51526 | 51948 | No transmembrane regions found by InterProScan.           |
| nc-ORF3       | CDS     | -      | 52918 | 53775 | Two transmembrane regions found by InterProScan.          |
| nc-ORF2       | CDS     | -      | 54527 | 55276 | Three transmembrane regions found by InterProScan.        |
| prt_nad2      | CDS     | -      | 55334 | 55552 | N-terminal part of NADH-ubiquinone oxidoreductase chain 2 |
| rps3          | CDS     | -      | 57959 | 59218 | Putative ribosomal protein subunit 3                      |
| nad2          | CDS     | +      | 60691 | 62421 | NADH dehydrogenase subunit 2                              |
| nad3          | CDS     | +      | 62421 | 62780 | NADH dehydrogenase subunit 3                              |
| nad1          | CDS     | +      | 65252 | 69492 | NADH-ubiquinone oxidoreductase chain 1                    |
|               | intron  | +      | 65645 | 67411 | Intron 1 of nad1                                          |
|               | intron  | +      | 67676 | 69132 | Intron 2 of nad1                                          |

| cob       | CDS    | + | 71194  | 84090  | Cytochrome b                                      |
|-----------|--------|---|--------|--------|---------------------------------------------------|
|           | intron | + | 71395  | 73309  | Intron 1 of cob                                   |
|           | intron | + | 73394  | 74192  | Intron 2 of cob                                   |
|           | intron | + | 74287  | 76437  | Intron 3 of cob                                   |
|           | intron | + | 76474  | 78607  | Intron 4 of cob                                   |
| io-cobI4a | CDS    | + | 76540  | 77298  | Intronic putative endonuclease                    |
| io-cobI4b | CDS    | + | 77447  | 78133  | Intronic putative LAGLIDADG endonuclease          |
|           | intron | + | 78779  | 80274  | Intron 5 of cob                                   |
|           | intron | + | 80494  | 82023  | Intron 6 of cob                                   |
|           | intron | + | 82069  | 83803  | Intron 7 of cob                                   |
| atp9      | CDS    | + | 86234  | 86455  | ATP synthase A chain subunit 9                    |
| nad4      | CDS    | + | 87065  | 88522  | NADH-ubiquinone oxidoreductase chain 4            |
| atp6      | CDS    | + | 94023  | 94808  | ATP synthase A chain subunit 6                    |
| cox3      | CDS    | + | 99317  | 102611 | cytochrome oxidase subunit 3                      |
|           | intron | + | 99770  | 101340 | Intron 1 of cox3                                  |
| io-cox3I1 | CDS    | + | 99923  | 100458 | Intronic putative LAGLIDADG endonuclease          |
|           | intron | + | 101647 | 102552 | Intron 2 of cox3                                  |
| nc-ORF1   | CDS    | + | 102632 | 104398 | Five transmembrane regions found by InterProScan. |
| ppl1      | CDS    | + | 106576 | 107316 | Putative plasmid protein 1                        |
| ps-dpo1   | CDS    | - | 108422 | 110487 | Pseudo DNA-directed DNA polymerase 1              |
| ps-dpo2   | CDS    | - | 110675 | 112915 | Pseudo DNA-directed DNA polymerase 2              |

Supplementary Table 11. Distribution of ROS related proteins among various fungal species.

|               | Trophic strategy | Animal Prx (LDS) | Catalase | DyP-type Prx | Haloperox (haem-non<br>haem) | Non-animal Prx (class<br>I) CP-CcP-hybrid | Class II (LiP-MnP-<br>VP-CII) | Alkylhydroperoxidase<br>D like | Glutathion | Peroxiredoxin | NOx-Fre | Total seq |
|---------------|------------------|------------------|----------|--------------|------------------------------|-------------------------------------------|-------------------------------|--------------------------------|------------|---------------|---------|-----------|
| Ascomycota    |                  |                  |          |              |                              |                                           |                               |                                |            |               |         |           |
| Gibze         | NP               | 3-1              | 4        | ns           | 5                            | 3-2-1                                     | 1                             | 2                              | 1          | 4             | 3-1     | (31)      |
| Basidiomycota |                  |                  |          |              |                              |                                           |                               |                                |            |               |         |           |
| Copci         | S                | 2                | 4        | 2            | 3                            | ns-1-2                                    | 1                             | 1                              | 1          | 5             | 2-2     | (26)      |
| Hetan         | NP               | 2                | 3        | 1            | 5                            | ? -1-4                                    | 7                             | ?                              | ?          | 5             | 2-7     | (32)      |
| Lacbi         | Sy               | 2                | 1        | 2            | 4                            | ns-1-1                                    | 1                             | 1                              | 1          | 5             | 2-ns    | (20)      |
| Pchr          | S                | 3                | 5        | ns           | 3+2                          | ns-1-ns                                   | 9-51                          | Ns                             | 1          | 6             | 2-1     | (39)      |
| Pospl         | S                | 2                | 4        | 2            | 5                            | ns-1-ns                                   | 1                             | Ns                             | 2          | 5             | 4-ns    | (26)      |
| Umay          | BP               | 1                | ns       | ns           | 3                            | 1-2-ns                                    |                               | 2                              | 1          | 5             | ns-2    | (17)      |

Gibze = Gibberella zeae, Copci = Coprinopsis cinereus, Hetan = Heterobasidion irregulare, Lacbi = Laccaria bicolor, Pchr = Phanerochaete chrysosporium, Umay = Ustilago maydis, Pospl = Postia placenta; S = saprotroph; P = pathogen; NP = necrotrophic pathogen; BP = biotrophic pathogen; HP = hemotrophic pathogen; Sy: symbiont. ns = no sequence found; ? = lack of sequence probably due to incomplete genome or real absence of sequence.

|                | Hetan        | Pchr | Lacbi | Pospl | Copci       |
|----------------|--------------|------|-------|-------|-------------|
| mcos           | 18           | 5    | 14    | 7     | 17          |
| mnp            | 8            | 16   | 1     | 0     | 1           |
| cros           | 5            | 6    | 9     | 3     | 6           |
| mnsod          | 4            | 3    | 3     | 1     | 2           |
| qor            | 17           | 23   | 17    | 13    | 4           |
| nor            | 3            | 9    | 1     | 8     | 2           |
| sqor           | 1            | 1    | 1     | 0     | 1           |
| nuor           | 1            | 1    | 1     | 0     | 8           |
| *aao, gor, chd | 34 (16+11+7) | 34   | 14    | 21    | 13 (11+1+1) |
| pdh            | —            | —    | —     | —     | 6           |
| akr            | 22           | 24   | 12    | 21    | 18          |

Supplementary Table 12. Comparison of numbers of genes putatively involved in lignin degradation in the genomes of several wood degrading basidiomycete fungi.

Hetan = *Heterobasidion irregulare*, Pchr = *Phanerochaete chrysosporium*, Lacbi = *Laccaria bicolor*, *Pospl* = *Postia placenta*, Copci = *Coprinopsis cinerea*;

\* - classification differing among different sources

**mcos -** Multi copper oxidases (includes laccases)

**mnp** – Manganese peroxidase (Fungal peroxidase)

**cros** - Copper radical oxidases (includes glyoxal oxidase, *glx*)

mnsod - Manganese superoxide dismutases

**qor** - quinone oxidoreductase

**nor -** NADP-dependent oxidoreductase

sqor - sulfide:quinone oxidoreductase

nuor - NADH:ubiquinone oxidoreductase

**aao** - aryl-alcohol oxidase

gor - glucose-methanol-choline (GMC) oxidoreductase

**chd** - choline dehydrogenase

akr - Aldo-keto reductase

pdh - pyranose dehydrogenase

# Supplementary Table 13. Distribution of genes coding for membrane transporter families in *H. irregulare*, and comparison with other sequenced basidiomycetes.

| Transporter Type Family                                                                              | Hann <sup>1</sup> | Pplac <sup>2</sup> | Lbic <sup>3</sup> | Ccin <sup>3</sup> | Pchrys <sup>3</sup> | Cneo <sup>3</sup> | Umay <sup>3</sup> |
|------------------------------------------------------------------------------------------------------|-------------------|--------------------|-------------------|-------------------|---------------------|-------------------|-------------------|
| ATP-Dependent                                                                                        |                   |                    |                   |                   |                     |                   |                   |
| ABC (ATP-binding Cassette)                                                                           | 35                | 67                 | 53                | 47                | 45                  | 32                | 38                |
| ArsAB (Arsenite-Antimonite Efflux Family)                                                            | 2                 | 2                  | 1                 | 1                 | 1                   | 1                 | 1                 |
| F-ATPase (F-type, V-type and A-type ATPase)                                                          | 55                | 57                 | 23                | 22                | 21                  | 25                | 19                |
| MPT (Mitochondrial Protein Translocase)                                                              | 20                | 11                 | 18                | 16                | 13                  | 18                | 14                |
| P-ATPase (P-type ATPase)                                                                             | 23                | 31                 | 24                | 16                | 25                  | 15                | 18                |
| Sec (General Secretory Pathway)                                                                      | 17                | 15                 | 8                 | 10                | 8                   | 10                | 8                 |
| TOTAL ATP-Dependent Proteins                                                                         | 152               | 183                | 127               | 112               | 113                 | 101               | 98                |
| Ion Channels                                                                                         |                   |                    |                   |                   |                     |                   |                   |
| Amt (Ammonium Transporter)                                                                           | 2                 | 4                  | 8                 | 4                 | 2                   | 2                 | 2                 |
| Annexin                                                                                              | 0                 | 0                  | 1                 | 2                 | 0                   | 1                 | 1                 |
| ClC (Chloride Channel)                                                                               | 3                 | 4                  | 3                 | 3                 | 3                   | 3                 | 2                 |
| Mid1 (Yeast Stretch Activated, Cation-Selective, Ca <sup>2+</sup> Channel)                           | 1                 | 1                  | 1                 | 1                 | 1                   | 1                 | 1                 |
| MIP (Major Intrinsic Protein)                                                                        | 3                 | 3                  | 7                 | 2                 | 8                   | 1                 | 5                 |
| MIT (CorA Metal Ion Transporter)                                                                     | 4                 | 4                  | 5                 | 4                 | 5                   | 1                 | 3                 |
| MPP (Mitochondrial and Plastid Porin)                                                                | 1                 | 1                  | 1                 | 1                 | 1                   | 1                 | 1                 |
| MscS (Small Conductance Mechanosensitive Ion Channel)                                                | 3                 | 2                  | 3                 | 3                 | 3                   | 1                 | 3                 |
| NSCC2 (Non-selective Cation Channel-2)                                                               | 1                 | 1                  | 1                 | 1                 | 1                   | 2                 | 1                 |
| TRP-CC (Transient Receptor Potential Ca <sup>2+</sup> Channel)                                       | 3                 | 2                  | 2                 | 3                 | 3                   | 4                 | 2                 |
| VIC (Voltage Gated Ion Channel)                                                                      | 4                 | 8                  | 4                 | 3                 | 2                   | 3                 | 2                 |
| TOTAL Ion Channels                                                                                   | 25                | 30                 | 36                | 27                | 29                  | 20                | 23                |
| Secondary Transporters                                                                               | -                 |                    |                   |                   |                     |                   |                   |
| AAAP (Amino Acid/Auxin Permease)                                                                     | 4                 | 3                  | 5                 | 4                 | 6                   | 8                 | 9                 |
| ACR3 (Arsenical resistance-3)                                                                        | 1                 | 1                  | 3                 | 1                 | 1                   | 1                 | 1                 |
| AE (Anion Exchanger)                                                                                 | 1                 | 2                  | 2                 | 1                 | 1                   | 1                 | 1                 |
| APC (Amino Acid-Polyamine Organication)                                                              | 20                | 34                 | 28                | 14                | 19                  | 15                | 15                |
| ArAE (Aromatic Acid Exporter)                                                                        | 1                 | 2                  | 1                 | 1                 | 1                   | 2                 | 2                 |
| CaCA (Ca <sup>2+</sup> Cation Antiporter)                                                            | 7                 | 5                  | 7                 | 7                 | 7                   | 5                 | 4                 |
| CCC (Cation-Chloride Cotransporter)                                                                  | 0                 | 0                  | 0                 | 0                 | 0                   | 0                 | 1                 |
| CDF (Cation Diffusion Facilitator)                                                                   | 4                 | 8                  | 8                 | 5                 | 4                   | 5                 | 5                 |
| CHR (Chromate Ion Transporter)                                                                       | 0                 | 0                  | 4                 | 3                 | 0                   | 0                 | 1                 |
| CNT (Concentrative Nucleoside Transporter)                                                           | 1                 | 1                  | 1                 | 1                 | 1                   | 0                 | 1                 |
| CPA (Monovalent Cation:Proton Antiporter-1 and -2)                                                   | 6                 | 10                 | 7                 | 7                 | 5                   | 3                 | 6                 |
| DASS (Divalent Anion:Na <sup>+</sup> Symporter)                                                      | 1                 | 1                  | 1                 | 1                 | 1                   | 1                 | 1                 |
| DMT (Drug/Metabolite Transporter)                                                                    | 9                 | 7                  | 10                | 11                | 10                  | 11                | 10                |
| ENT (Equilibrative Nucleoside Transporter)                                                           | 4                 | 2                  | 1                 | 1                 | 0                   | 1                 | 1                 |
| FNT (Formate-Nitrite Transporter)                                                                    | 1                 | 0                  | 0                 | 0                 | 1                   | 0                 | 1                 |
| GPH (Glycoside-Pentoside-Hexuronide: Cation Symporter)                                               | 2                 | 2                  | 2                 | 2                 | 2                   | 2                 | 2                 |
| GUP (Glycerol Uptake)                                                                                | 1                 | 1                  | 1                 | 1                 | 1                   | 0                 | 1                 |
| KUP (K <sup>+</sup> Uptake Permease)                                                                 | 1                 | 2                  | 1                 | 0                 | 2                   | 0                 | 0                 |
| LCT (Lysosomal Cystine Transporter)                                                                  | 1                 | 0                  | 0                 | 0                 | 0                   | 1                 | 1                 |
| MC (Mitocondrial Carrier)                                                                            | 31                | 36                 | 36                | 34                | 34                  | 34                | 36                |
| MFS (Major Facilitator Superfamily)                                                                  | 140               | 145                | 96                | 97                | 130                 | 159               | 89                |
| MOP (Multidrug/Oligosaccharidyl-lipid/Polisaccharide                                                 | 3                 | 2                  | 6                 | 2                 | 3                   | 2                 | 2                 |
| Flippase)<br>MTC (Mitochondrial Tricarboxylate Carrier)                                              | 2                 | 2                  | 0                 | 0                 | 0                   | 1                 | 1                 |
|                                                                                                      | 2                 | 3<br>15            |                   | 0                 | 0<br>9              | 1<br>8            | 1                 |
| NCS (Nucleobase:Cation Symporter-1 and -2)<br>NiCoT (Ni <sup>2+</sup> -Co <sup>2+</sup> Transporter) | 8                 |                    | 14                | 5                 | 9                   |                   | 5                 |
| Nramp (Metal ion ( $Mn^{2+}$ -Iron) Transporter)                                                     | 1                 | 0<br>2             | 1                 | 1<br>1            | 1 2                 | 1                 | 1                 |
| OPT (Oligopeptide Transporter)                                                                       | 2<br>11           | 20                 | 10                | 10                | 17                  | 6                 | 1<br>7            |
| Oxal (Cytochrome Oxidase Biogenesis)                                                                 |                   | 20                 | 10                |                   | 17                  | 1                 |                   |
| PiT (Inorganic Phosphate Transporter)                                                                | 1<br>4            | 10                 | 1 0               | 1<br>3            | 1 0                 | 1                 | 1                 |
|                                                                                                      | -                 |                    |                   | 2                 |                     | 1                 |                   |
| POT (Proton-dependent Oligopeptide Transporter)<br>RND (Resistance-Nodulation-Cell Division)         | 1<br>0            | 1                  | 2<br>1            | 2<br>1            | 1                   | 1                 | 1                 |
| SSS (Solute:Sodium Symporter)                                                                        | 0<br>3            | 0<br>8             | 1 2               | 1                 | 1<br>2              | 1                 | 1<br>3            |
|                                                                                                      |                   | 8<br>4             | 2<br>5            |                   | 4                   | 23                |                   |
| SulP (Sulfate Permease)                                                                              | 3<br>7            | 4                  | 5                 | 3<br>2            | 4                   | 3<br>2            | 3                 |
| TDT (Telurite-resistance/Dicarboxylate Transporter)<br>Trk (K <sup>+</sup> Transporter)              | 4                 | 3<br>2             | 1 2               | 2                 | 2                   | 2                 | 1                 |
| ZIP (Zinc-Iron Permease)                                                                             | 4                 | 23                 | 2<br>5            | 2<br>4            | 2<br>6              | 2<br>4            | 1 2               |
| TOTAL Secondary Transporters                                                                         | 4<br>290          | 336                | <b>300</b>        | 245               | <b>299</b>          | 302               | 238               |
| TOTAL Secondary Transporters                                                                         | 290               | 330                | 300               | 243               | 299                 | 302               | 430               |

| Incompletely Characterized Transport Systems       |     |     |     |     |     |     |     |
|----------------------------------------------------|-----|-----|-----|-----|-----|-----|-----|
| ATP-E (ATP Exporter)                               | 1   | 1   | 1   | 1   | 1   | 0   | 1   |
| Ctr (Copper Transporter)                           | 3   | 2   | 4   | 3   | 3   | 2   | 3   |
| Ductin (Putative Ductin Channel)                   | 2   | 2   | 3   | 3   | 3   | 2   | 1   |
| FP (Ferroportin)                                   | 1   | 1   | 2   | 0   | 1   | 1   | 1   |
| ILT (Iron/Lead Transporter)                        | 1   | 1   | 2   | 0   | 1   | 3   | 1   |
| LTE (Lipid-Translocating Exporter-I and -II)       | 4   | 4   | 7   | 3   | 9   | 8   | 4   |
| MgtE (Mg <sup>2+</sup> Transporter-E)              | 1   | 1   | 2   | 1   | 0   | 1   | 1   |
| MHP (Metal Homeostasis Protein)                    | 2   | 1   | 1   | 2   | 2   | 1   | 1   |
| MnHP (Mn <sup>2+</sup> Homeostasis Protein)        | 1   | 1   | 0   | 0   | 1   | 1   | 0   |
| PF27                                               | 1   | 1   | 4   | 1   | 1   | 1   | 1   |
| PLI (Phospholipid Importer)                        | 1   | 1   | 1   | 1   | 1   | 1   | 1   |
| PPI (Protein Importer)                             | 9   | 7   | 8   | 7   | 4   | 6   | 6   |
| SHP (Stress-Induced Hydrophobic Peptide)           | 4   | 2   | 5   | 3   | 2   | 4   | 3   |
| YaaH (ATO)                                         | 1   | 1   | 2   | 3   | 1   | 3   | 3   |
| TOTAL Incompletely Characterized Transport Systems | 32  | 26  | 42  | 28  | 30  | 34  | 27  |
| TOTAL TRANSPORTER PROTEINS                         | 499 | 575 | 505 | 412 | 471 | 457 | 386 |

Family names are based on the Transport Classification Database (http://www.tcdb.org).

Abbreviations: Hann = Heterobasidion irregulare; Pplac = Postia placenta; Lbic = Laccaria bicolor; Ccin =

*Coprinopsis cinerea*; Pchrys = *Phanerochaete chrysosporium*; Cneo = *Cryptococcus neoformans*; Umay = *Ustilago maydis*. <sup>1</sup> = http://genome.jgi-psf.org/Hetan1/Hetan1.home.html <sup>2</sup> = http://genome.jgi-psf.org/Pospl1/Pospl1.home.html, <sup>3</sup> = Martin et al. 2008 doi:10.1038/nature06556

| Peptidase Type       | Hann <sup>1</sup> | Lbic <sup>2</sup> | Pplac <sup>3</sup> | Pchrys <sup>4</sup> | Ccin <sup>5</sup> |
|----------------------|-------------------|-------------------|--------------------|---------------------|-------------------|
| Aspartic peptidases  | 12                | 18                | 22                 | 6                   | 27                |
| Cysteine peptidases  | 18                | 22                | 22                 | 18                  | 24                |
| Glutamic peptidases  | 0                 | 0                 | 2                  | 11                  | 0                 |
| Metallo peptidases   | 39                | 51                | 35                 | 28                  | 54                |
| Serine peptidases    | 25                | 27                | 24                 | 18                  | 20                |
| Threonine peptidases | 12                | 18                | 8                  | 12                  | 7                 |
| Total                | 106               | 136               | 113                | 93                  | 132               |

Supplementary Table 14. Distribution of genes coding for proteinase families in *H. irregulare*, and comparison with other sequenced basidiomycetes

Classification based on the MEROPS Database (http://merops.sanger.ac.uk/)

1 Hann = Heterobasidion irregulare, 2 Lbic = Laccaria bicolor, 3 Pplac = Postia placenta, 4 Pchrys = Phanerochaete chrysosporium, 5 Ccin = Coprinopsis cinerea.

| Family                                                                                                                                                                                                                                                                                                  | Hann <sup>1</sup>                                                                                                     | Lbic <sup>2</sup>                                                                                                          | Pplac <sup>3</sup>                                                                                                                         | Pchrys <sup>4</sup>                                                                                                                                                                                                                                                                                                    | Ccin <sup>5</sup>                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|
| Aspartic                                                                                                                                                                                                                                                                                                | 10                                                                                                                    | 15                                                                                                                         | 20                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                           |
| A1                                                                                                                                                                                                                                                                                                      | 10                                                                                                                    | 15                                                                                                                         | 20                                                                                                                                         | 1                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                           |
| A2                                                                                                                                                                                                                                                                                                      | 0                                                                                                                     | 1                                                                                                                          | 0                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                           |
| A11                                                                                                                                                                                                                                                                                                     | 1                                                                                                                     | 1                                                                                                                          | $0 \\ 2$                                                                                                                                   | 4                                                                                                                                                                                                                                                                                                                      | 22                                                                                                                                          |
| A22B                                                                                                                                                                                                                                                                                                    | 1<br>12                                                                                                               | 1<br>18                                                                                                                    | 2                                                                                                                                          | l                                                                                                                                                                                                                                                                                                                      | 0                                                                                                                                           |
| <b>Total</b><br>Family                                                                                                                                                                                                                                                                                  | Hann <sup>1</sup>                                                                                                     | Lbic <sup>2</sup>                                                                                                          | 22<br>Pplac <sup>3</sup>                                                                                                                   | 6<br>Dohmus <sup>4</sup>                                                                                                                                                                                                                                                                                               | 27<br>Ccin <sup>5</sup>                                                                                                                     |
| Cysteine                                                                                                                                                                                                                                                                                                | паш                                                                                                                   | LDIC                                                                                                                       | Pplac                                                                                                                                      | Pchrys <sup>4</sup>                                                                                                                                                                                                                                                                                                    | Cem                                                                                                                                         |
| C1B                                                                                                                                                                                                                                                                                                     | 1                                                                                                                     | 2                                                                                                                          | 3                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                           |
| C1B<br>C2                                                                                                                                                                                                                                                                                               | 1                                                                                                                     | 2<br>1                                                                                                                     | 3<br>2                                                                                                                                     | 1<br>0                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                           |
| C12                                                                                                                                                                                                                                                                                                     | 1                                                                                                                     | 1 3                                                                                                                        | $\frac{2}{2}$                                                                                                                              | 03                                                                                                                                                                                                                                                                                                                     | 3<br>3                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                         | 1                                                                                                                     | 3                                                                                                                          |                                                                                                                                            | 3                                                                                                                                                                                                                                                                                                                      |                                                                                                                                             |
| C13                                                                                                                                                                                                                                                                                                     | 1                                                                                                                     | 1                                                                                                                          | 1                                                                                                                                          | 1<br>1                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                           |
| C15<br>C19                                                                                                                                                                                                                                                                                              | 0                                                                                                                     | 0<br>3                                                                                                                     | 2<br>1                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                      | $\begin{array}{c} 0\\ 2\end{array}$                                                                                                         |
| C19<br>C44                                                                                                                                                                                                                                                                                              | 4                                                                                                                     | 5<br>2                                                                                                                     | 4                                                                                                                                          | 4                                                                                                                                                                                                                                                                                                                      |                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                         | 3<br>0                                                                                                                |                                                                                                                            | 4                                                                                                                                          | 1<br>1                                                                                                                                                                                                                                                                                                                 | 2                                                                                                                                           |
| C45<br>C48                                                                                                                                                                                                                                                                                              | $0\\2$                                                                                                                | 03                                                                                                                         | 1<br>1                                                                                                                                     | 1 2                                                                                                                                                                                                                                                                                                                    | 0<br>3                                                                                                                                      |
| C50                                                                                                                                                                                                                                                                                                     | 2<br>1                                                                                                                | 2                                                                                                                          | 1                                                                                                                                          | 2<br>1                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                           |
| C54                                                                                                                                                                                                                                                                                                     | 1                                                                                                                     | <u>_</u><br>1                                                                                                              | 1                                                                                                                                          | 1                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                         | 1                                                                                                                     | 1 2                                                                                                                        | 1<br>1                                                                                                                                     | 1<br>1                                                                                                                                                                                                                                                                                                                 | 1                                                                                                                                           |
| C56                                                                                                                                                                                                                                                                                                     | 1                                                                                                                     | <u>_</u>                                                                                                                   | 1<br>1                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                      | 5                                                                                                                                           |
| C86                                                                                                                                                                                                                                                                                                     | 1                                                                                                                     | 1                                                                                                                          | 1                                                                                                                                          | 0                                                                                                                                                                                                                                                                                                                      | 1                                                                                                                                           |
| C64-C85-C88<br><b>Total</b>                                                                                                                                                                                                                                                                             | 1<br>18                                                                                                               | 1<br>22                                                                                                                    | 1<br>22                                                                                                                                    | 1<br>18                                                                                                                                                                                                                                                                                                                | 1<br>24                                                                                                                                     |
| Family                                                                                                                                                                                                                                                                                                  | Hann <sup>1</sup>                                                                                                     | Lbic <sup>2</sup>                                                                                                          | Pplac <sup>3</sup>                                                                                                                         | Pchrys <sup>4</sup>                                                                                                                                                                                                                                                                                                    | Ccin <sup>5</sup>                                                                                                                           |
| 1 ann y                                                                                                                                                                                                                                                                                                 | 1141111                                                                                                               |                                                                                                                            |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                        | CUII                                                                                                                                        |
| Glutamic                                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                                                            | 1 prue                                                                                                                                     | <b>1 cm</b> y s                                                                                                                                                                                                                                                                                                        |                                                                                                                                             |
| Glutamic<br>G1                                                                                                                                                                                                                                                                                          | 0                                                                                                                     | 0                                                                                                                          | 2                                                                                                                                          | 11                                                                                                                                                                                                                                                                                                                     | 0                                                                                                                                           |
| Glutamic<br>G1<br>Family                                                                                                                                                                                                                                                                                |                                                                                                                       |                                                                                                                            |                                                                                                                                            |                                                                                                                                                                                                                                                                                                                        |                                                                                                                                             |
| Glutamic<br>G1<br>Family<br>Metallo                                                                                                                                                                                                                                                                     | 0<br>Hann <sup>1</sup>                                                                                                | 0                                                                                                                          | 2<br>Pplac <sup>3</sup>                                                                                                                    | 11<br>Pchrys <sup>4</sup>                                                                                                                                                                                                                                                                                              | 0                                                                                                                                           |
| Glutamic<br>G1<br>Family<br>Metallo<br>M1                                                                                                                                                                                                                                                               | 0<br>Hann <sup>1</sup><br>2                                                                                           | 0<br>Lbic <sup>2</sup>                                                                                                     | 2<br>Pplac <sup>3</sup>                                                                                                                    | 11<br>Pchrys <sup>4</sup><br>2                                                                                                                                                                                                                                                                                         | 0<br>Ccin <sup>5</sup>                                                                                                                      |
| Glutamic<br>G1<br>Family<br>Metallo<br>M1<br>M3A                                                                                                                                                                                                                                                        | 0<br>Hann <sup>1</sup><br>2<br>2                                                                                      | 0<br>Lbic <sup>2</sup>                                                                                                     | 2<br>Pplac <sup>3</sup><br>4<br>2                                                                                                          | 11<br>Pchrys <sup>4</sup><br>2<br>2                                                                                                                                                                                                                                                                                    | 0<br>Ccin <sup>5</sup>                                                                                                                      |
| Glutamic<br>G1<br>Family<br>Metallo<br>M1<br>M3A<br>M12A                                                                                                                                                                                                                                                | 0<br>Hann <sup>1</sup><br>2                                                                                           | 0<br>Lbic <sup>2</sup>                                                                                                     | 2<br>Pplac <sup>3</sup><br>4<br>2<br>0                                                                                                     | 11<br>Pchrys <sup>4</sup><br>2                                                                                                                                                                                                                                                                                         | 0<br>Ccin <sup>5</sup>                                                                                                                      |
| Glutamic<br>G1<br>Family<br>Metallo<br>M1<br>M3A<br>M12A<br>M12B                                                                                                                                                                                                                                        | 0<br>Hann <sup>1</sup><br>2<br>2                                                                                      | 0<br>Lbic <sup>2</sup>                                                                                                     | 2<br>Pplac <sup>3</sup><br>4<br>2                                                                                                          | 11<br>Pchrys <sup>4</sup><br>2<br>2                                                                                                                                                                                                                                                                                    | 0<br>Ccin <sup>5</sup>                                                                                                                      |
| Glutamic<br>G1<br>Family<br>Metallo<br>M1<br>M3A<br>M12A<br>M12B<br>M13                                                                                                                                                                                                                                 | 0<br>Hann <sup>1</sup><br>2<br>2                                                                                      | 0<br>Lbic <sup>2</sup>                                                                                                     | 2<br>Pplac <sup>3</sup><br>4<br>2<br>0                                                                                                     | 11<br>Pchrys <sup>4</sup><br>2<br>2                                                                                                                                                                                                                                                                                    | 0<br>Ccin <sup>5</sup>                                                                                                                      |
| Glutamic<br>G1<br>Family<br>Metallo<br>M1<br>M3A<br>M12A<br>M12B<br>M13<br>M14                                                                                                                                                                                                                          | 0<br>Hann <sup>1</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>1                                                             | 0<br>Lbic <sup>2</sup><br>1<br>2<br>1<br>1<br>1<br>1<br>1                                                                  | 2<br>Pplac <sup>3</sup><br>4<br>2<br>0<br>0<br>1<br>1<br>1                                                                                 | 11<br>Pchrys <sup>4</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                           | 0<br>Ccin <sup>5</sup><br>1<br>2<br>0<br>1<br>1<br>1<br>1                                                                                   |
| Glutamic<br>G1<br>Family<br>Metallo<br>M1<br>M3A<br>M12A<br>M12B<br>M13<br>M14<br>M16                                                                                                                                                                                                                   | 0<br>Hann <sup>1</sup><br>2<br>2                                                                                      | 0<br>Lbic <sup>2</sup>                                                                                                     | 2<br>Pplac <sup>3</sup><br>4<br>2<br>0<br>0                                                                                                | 11<br>Pchrys <sup>4</sup><br>2<br>2                                                                                                                                                                                                                                                                                    | 0<br>Ccin <sup>5</sup>                                                                                                                      |
| GlutamicG1FamilyMetalloM1M3AM12AM12BM13M14M16M17                                                                                                                                                                                                                                                        | 0<br>Hann <sup>1</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>1                                                             | 0<br>Lbic <sup>2</sup><br>1<br>2<br>1<br>1<br>1<br>1<br>1                                                                  | 2<br>Pplac <sup>3</sup><br>4<br>2<br>0<br>0<br>1<br>1<br>1                                                                                 | 11<br>Pchrys <sup>4</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>1                                                                                                                                                                                                                                                           | 0<br>Ccin <sup>5</sup><br>1<br>2<br>0<br>1<br>1<br>1<br>1                                                                                   |
| Glutamic<br>G1<br>Family<br>Metallo<br>M1<br>M3A<br>M12A<br>M12B<br>M13<br>M14<br>M16<br>M17<br>M18                                                                                                                                                                                                     | 0<br>Hann <sup>1</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>1                                                             | 0<br>Lbic <sup>2</sup><br>1<br>2<br>1<br>1<br>1<br>1<br>1<br>7<br>1<br>1                                                   | 2<br>Pplac <sup>3</sup><br>4<br>2<br>0<br>0<br>1<br>1<br>3                                                                                 | 11<br>Pchrys <sup>4</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>3<br>1<br>1<br>1                                                                                                                                                                                                                                            | 0<br>Ccin <sup>5</sup><br>1<br>2<br>0<br>1<br>1<br>1<br>1<br>6                                                                              |
| GlutamicG1FamilyMetalloM1M3AM12AM12BM13M14M16M17M18M19                                                                                                                                                                                                                                                  | 0<br>Hann <sup>1</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>1                                                             | 0<br>Lbic <sup>2</sup><br>1<br>2<br>1<br>1<br>1<br>1<br>7<br>1<br>1<br>1<br>0                                              | 2<br>Pplac <sup>3</sup><br>4<br>2<br>0<br>0<br>1<br>1<br>3                                                                                 | 11<br>Pchrys <sup>4</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>3<br>1                                                                                                                                                                                                                                                      | 0<br>Ccin <sup>5</sup><br>1<br>2<br>0<br>1<br>1<br>1<br>1<br>6<br>1<br>1<br>1<br>1                                                          |
| GlutamicG1FamilyMetalloM1M3AM12AM12BM13M14M16M17M18M19M20                                                                                                                                                                                                                                               | 0<br>Hann <sup>1</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>1<br>1<br>1                     | 0<br>Lbic <sup>2</sup>                                                                                                     | 2<br>Pplac <sup>3</sup><br>4<br>2<br>0<br>0<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>1<br>1                                                   | 11<br>Pchrys <sup>4</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>3<br>1<br>1<br>0<br>1                                                                                                                                                                                                                                       | 0<br>Ccin <sup>5</sup><br>1<br>2<br>0<br>1<br>1<br>1<br>1<br>6<br>1<br>1<br>1<br>1<br>1<br>1                                                |
| GlutamicG1FamilyMetalloM1M3AM12AM12BM13M14M16M17M18M19M20M22                                                                                                                                                                                                                                            | 0<br>Hann <sup>1</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>1<br>2                          | 0<br>Lbic <sup>2</sup><br>1<br>2<br>1<br>1<br>1<br>1<br>1<br>7<br>1<br>1<br>0<br>2<br>2                                    | 2<br>Pplac <sup>3</sup><br>4<br>2<br>0<br>0<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>1<br>3                                              | 11<br>Pchrys <sup>4</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>3<br>1<br>1<br>3<br>1<br>1<br>0<br>1<br>2                                                                                                                                                                                                                   | 0<br>Ccin <sup>5</sup><br>1<br>2<br>0<br>1<br>1<br>1<br>1<br>6<br>1<br>1<br>1<br>1<br>1<br>2                                                |
| GlutamicG1FamilyMetalloM1M3AM12AM12BM13M14M16M17M18M19M20M22M24                                                                                                                                                                                                                                         | 0<br>Hann <sup>1</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>1<br>2<br>5                     | 0<br>Lbic <sup>2</sup><br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>7<br>1<br>1<br>0<br>2<br>2<br>5                               | 2<br>Pplac <sup>3</sup><br>4<br>2<br>0<br>0<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>1<br>3<br>3<br>3                                         | 11<br>Pchrys <sup>4</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>1<br>3<br>1<br>1<br>0<br>1<br>2<br>2                                                                                                                                                                                                                        | 0<br>Ccin <sup>5</sup><br>1<br>2<br>0<br>1<br>1<br>1<br>1<br>6<br>1<br>1<br>1<br>1<br>1<br>2<br>3                                           |
| GlutamicG1FamilyMetalloM1M3AM12AM12BM13M14M16M17M18M19M20M22M24M28                                                                                                                                                                                                                                      | 0<br>Hann <sup>1</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>1<br>2<br>5<br>3                | 0<br>Lbic <sup>2</sup><br>1<br>1<br>1<br>1<br>1<br>1<br>7<br>1<br>1<br>0<br>2<br>2<br>5<br>4                               | 2<br>Pplac <sup>3</sup><br>4<br>2<br>0<br>0<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>3<br>3<br>1<br>1                                    | 11<br>Pchrys <sup>4</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>1<br>3<br>1<br>1<br>0<br>1<br>2<br>2<br>1                                                                                                                                                                                                                   | 0<br>Ccin <sup>5</sup><br>1<br>2<br>0<br>1<br>1<br>1<br>1<br>6<br>1<br>1<br>1<br>1<br>2<br>3<br>13                                          |
| GlutamicG1FamilyMetalloM1M3AM12AM12BM13M14M16M17M18M19M20M22M24M28M35                                                                                                                                                                                                                                   | 0<br>Hann <sup>1</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>2<br>5<br>3<br>1                | 0<br>Lbic <sup>2</sup>                                                                                                     | 2<br>Pplac <sup>3</sup><br>4<br>2<br>0<br>0<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>3<br>3<br>1<br>1<br>0                               | 11<br>Pchrys <sup>4</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>1<br>3<br>1<br>1<br>0<br>1<br>2<br>2                                                                                                                                                                                                                        | 0<br>Ccin <sup>5</sup><br>1<br>2<br>0<br>1<br>1<br>1<br>1<br>6<br>1<br>1<br>1<br>1<br>2<br>3<br>13<br>1<br>3                                |
| Glutamic           G1           Family           Metallo           M1           M3A           M12A           M12B           M13           M14           M16           M17           M18           M19           M20           M24           M28           M35           M36                             | 0<br>Hann <sup>1</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>1<br>2<br>5<br>3<br>1<br>2      | 0<br>Lbic <sup>2</sup><br>1<br>2<br>1<br>1<br>1<br>1<br>1<br>7<br>1<br>1<br>0<br>2<br>2<br>5<br>4<br>2<br>5<br>4<br>2<br>6 | 2<br>Pplac <sup>3</sup><br>4<br>2<br>0<br>0<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>3<br>3<br>1<br>1<br>1<br>3<br>3<br>1<br>0<br>2           | 11<br>Pchrys <sup>4</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>1<br>3<br>1<br>1<br>0<br>1<br>2<br>2<br>1                                                                                                                                                                                                                   | 0<br>Ccin <sup>5</sup><br>1<br>2<br>0<br>1<br>1<br>1<br>1<br>6<br>1<br>1<br>1<br>1<br>2<br>3<br>13<br>1<br>8                                |
| Glutamic           G1           Family           Metallo           M1           M3A           M12A           M12B           M13           M14           M16           M17           M18           M19           M20           M22           M24           M35           M36           M38               | 0<br>Hann <sup>1</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>1<br>2<br>5<br>3<br>1<br>2<br>1 | 0<br>Lbic <sup>2</sup><br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>7<br>1<br>1<br>0<br>2<br>2<br>5<br>4<br>2<br>6<br>2           | 2<br>Pplac <sup>3</sup><br>4<br>2<br>0<br>0<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>3<br>3<br>1<br>1<br>1<br>3<br>3<br>1<br>0<br>2<br>1 | 11<br>Pchrys <sup>4</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>1<br>3<br>1<br>1<br>0<br>1<br>2<br>2<br>1<br>0<br>1<br>2<br>2<br>1<br>0<br>1<br>1<br>1                                                                                                                                                                      | 0<br>Ccin <sup>5</sup><br>1<br>2<br>0<br>1<br>1<br>1<br>1<br>6<br>1<br>1<br>1<br>1<br>2<br>3<br>13<br>1<br>8<br>0                           |
| Glutamic           G1           Family           Metallo           M1           M3A           M12A           M12B           M13           M14           M16           M17           M18           M19           M20           M22           M24           M35           M36           M38           M41 | 0<br>Hann <sup>1</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>2<br>5<br>3<br>1<br>2<br>1<br>2      | 0<br>Lbic <sup>2</sup><br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>2<br>2<br>5<br>4<br>2<br>6<br>2<br>2           | 2<br>Pplac <sup>3</sup><br>4<br>2<br>0<br>0<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>3<br>3<br>1<br>0<br>2<br>1<br>3                     | 11           Pchrys <sup>4</sup> 2           0           1           1           3           1           0           1           2           0           1           2           1           0           1           0           1           0           1           0           1           0           1           3 | 0<br>Ccin <sup>5</sup><br>1<br>2<br>0<br>1<br>1<br>1<br>1<br>1<br>6<br>1<br>1<br>1<br>1<br>2<br>3<br>13<br>1<br>3<br>13<br>1<br>8<br>0<br>2 |
| Glutamic           G1           Family           Metallo           M1           M3A           M12A           M12B           M13           M14           M16           M17           M18           M19           M20           M22           M24           M35           M36           M38               | 0<br>Hann <sup>1</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>1<br>2<br>5<br>3<br>1<br>2<br>1 | 0<br>Lbic <sup>2</sup><br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>1<br>0<br>2<br>2<br>5<br>4<br>2<br>6<br>2                | 2<br>Pplac <sup>3</sup><br>4<br>2<br>0<br>0<br>1<br>1<br>1<br>3<br>1<br>1<br>1<br>1<br>3<br>3<br>1<br>1<br>1<br>3<br>3<br>1<br>0<br>2<br>1 | 11<br>Pchrys <sup>4</sup><br>2<br>2<br>0<br>1<br>1<br>1<br>1<br>3<br>1<br>1<br>0<br>1<br>2<br>2<br>1<br>0<br>1<br>2<br>2<br>1<br>0<br>1<br>1<br>1                                                                                                                                                                      | 0<br>Ccin <sup>5</sup><br>1<br>2<br>0<br>1<br>1<br>1<br>1<br>6<br>1<br>1<br>1<br>1<br>2<br>3<br>13<br>1<br>8<br>0                           |

Supplementary Table 15. Distribution of proteinase family members in *H. irregulare*.

| M48                            | 1                 | 1                 | 1                  | 1                   | 1                 |
|--------------------------------|-------------------|-------------------|--------------------|---------------------|-------------------|
| M49                            | 1                 | 1                 | 1                  | 1                   | 1                 |
| M50A                           | 1                 | 1                 | 0                  | 0                   | 0                 |
| M56                            | 1                 | 0                 | 1                  | 1                   | 1                 |
| M67                            | 3                 | 3                 | 1                  | 1                   | 3                 |
| M76                            | 1                 | 1                 | 1                  | 1                   | 1                 |
| M77                            | 0                 | 2                 | 2                  | 0                   | 2                 |
| Total                          | 39                | 51                | 35                 | 28                  | 54                |
| Family                         | Hann <sup>1</sup> | Lbic <sup>2</sup> | Pplac <sup>3</sup> | Pchrys <sup>4</sup> | Ccin <sup>5</sup> |
| Serine                         |                   |                   | - 1                | - • <i>j</i> ~      | 0.000             |
| S8-S53                         | 10                | 7                 | 9                  | 2                   | 2                 |
| S9                             | 2                 | 6                 | 4                  | 2                   | 4                 |
| S10                            | 5                 | 4                 | 2                  | 5                   | 4                 |
| S14                            | 1                 | 1                 | - 1                | 1                   | 1                 |
| S16                            | 2                 | 2                 | 1                  | 2                   | 2                 |
| S26B                           | 1                 | 2                 | 1                  | 1                   |                   |
| S28                            | 1                 | $\frac{2}{2}$     | 2                  | 3                   | 3                 |
| S20<br>S33                     | 1                 | 1                 | 2                  | 1                   | 2                 |
| S54                            | 1                 | 1                 | 1                  | 0                   | 1                 |
| S59                            | 1                 | 1                 | 1                  | 1                   | 1                 |
| Total                          | 25                | 27                | 24                 | 18                  | 20                |
| Family                         | Hann <sup>1</sup> | Lbic <sup>2</sup> | Pplac <sup>3</sup> | Pchrys <sup>4</sup> | Ccin <sup>5</sup> |
| Threonine                      |                   | Loic              | I plue             | I em ys             | Cem               |
| T1                             | 8                 | 11                | 3                  | 8                   | 4                 |
| T2                             | 1                 | 3                 | 1                  | 1                   | 0                 |
| T3                             | 2                 | 3                 | 3                  | 2                   | 2                 |
| T5                             | - 1               | 1                 | 1                  | 1                   | 1                 |
| Total                          | 12                | 18                | 8                  | 12                  | 7                 |
| <u>Classification based on</u> |                   |                   |                    | 14                  | /                 |

Classification based on the MEROPS Database (http://merops.sanger.ac.uk/) 1 Hann = Heterobasidion irregulare, 2 Lbic = Laccaria bicolor, 3 Pplac = Postia placenta, 4 Pchrys = Phanerochaete chrysosporium, 5 Ccin = Coprinopsis cinerea.

**Supplementary Table 16.** Summary of glycoside hydrolases (GH), polysaccharide lyases (PL) and carbohydrate esterases (CE) genes in *Heterobasidion irregulare*.

|        | GH  | PL | CE |
|--------|-----|----|----|
| H_irre | 179 | 7  | 18 |
| P_chry | 181 | 4  | 17 |
| L_bico | 163 | 7  | 17 |
| C_cine | 211 | 13 | 51 |
| S_comm | 240 | 16 | 30 |
| M_gris | 232 | 5  | 49 |

H\_irre = *Heterobasidion irregulare* 

P\_chry = *Phanerochaete chrysosporium* 

L\_bico = *Laccaria bicolor* 

C\_cine = *Coprinopsis cinerea* 

S\_comm = *Schizophyllum commune* 

M\_gris = *Magnaporthe grisea* 

| Cazy     | Substrate   |       |     |     |      |      |     |     |     |
|----------|-------------|-------|-----|-----|------|------|-----|-----|-----|
| family   |             | Hetan | Lac | Cop | Phan | Cryp | Ust | Mag | Gib |
| GH9      | CW          | 1     | 1   | 1   | 1    | 1    | 1   | 0   | 0   |
| GH1      | CW (b-glyc) | 2     | 0   | 2   | 2    | 0    | 0   |     |     |
| GH2      | CW (b-glyc) | 3     | 2   | 2   | 2    | 0    | 1   |     |     |
| GH5 with | CW (b-glyc) | 3     | 1   | 1   | 4    | 1    | 0   | 1   | 1   |
| CBM1     |             |       |     |     |      |      |     |     |     |
| GH6      | PCW (cell)  | 1     | 0   | 5   | 1    | 0    | 0   | 3   | 1   |
| GH7      | PCW (cell)  | 1     | 0   | 7   | 9    | 0    | 0   | 6   | 2   |
| GH12     | PCW (cell)  | 4     | 3   | 1   | 2    | 0    | 0   |     |     |
| GH45     | PCW (cell)  | 2     | 0   | 0   | 0    | 0    | 3   | 1   | 1   |
| GH61     | PCW (cell)  | 10    | 8   | 33  | 14   | 1    | 0   | 17  | 15  |
| GH67     | PCW (cell)  | 0     | 0   | 0   | 0    | 0    | 0   | 1   | 1   |
| GH74     | PCW (cell)  | 1     | 0   | 1   | 4    | 0    | 0   | 1   | 1   |
| GH10     | PCW (hemi)  | 2     | 0   | 5   | 6    | 0    | 2   | 5   | 5   |
| GH11     | PCW (hemi)  | 0     | 0   | 6   | 1    | 0    | 1   | 5   | 3   |
| GH27     | PCW (hemi)  | 4     | 1   | 0   | 3    | 0    | 1   |     |     |
| GH29     | PCW (hemi)  | 2     | 0   | 0   | 0    | 0    | 0   |     |     |
| GH35     | PCW (hemi)  | 4     | 1   | 0   | 3    | 0    | 1   |     |     |
| GH43     | PCW (pect + | 4     | 0   | 4   | 4    | 0    | 4   | 19  | 16  |
|          | hemi)       |       |     |     |      |      |     |     |     |
| GH51     | PCW (hemi)  | 1     | 0   | 1   | 2    | 1    | 2   | 3   | 2   |
| GH53     | PCW (hemi)  | 1     | 0   | 1   | 1    | 0    | 0   |     |     |
| Total    |             | 45    | 16  | 69  | 58   | 3    | 15  | 62  | 48  |
| DI 1     |             |       |     |     |      |      |     |     |     |
| PL1      | PCW (pect)  | 2     | 0   | 1   | 0    | 0    | 1   | 2   | 9   |
| PL3      | PCW (pect)  | 0     | 0   | 2   | 0    | 0    | 0   | 1   | 7   |
| PL4      | PCW (pect)  | 1     | 0   | 2   | 0    | 1    | 0   | 1   | 3   |
| PL9      | PCW (pect)  | 0     | 0   | 0   | 0    | 0    | 0   | 0   | 1   |
| GH28     | PCW (pect)  | 8     | 6   | 3   | 4    | 1    | 1   | 3   | 6   |

Supplementary Table 17. Carbohydrate active enzymes of *H. irregulare* active on plant cell walls.

| GH78  | PCW (pect) | 2  | 0  | 0 | 1 | 2 | 0 |   |    |
|-------|------------|----|----|---|---|---|---|---|----|
| GH88  | PCW (pect) | 1  | 2  | 1 | 1 | 0 | 0 | 1 | 1  |
| GH105 | PCW (pect) | 2  | 0  | 0 | 0 | 1 | 1 |   |    |
| CE8   | PCW (pect) | 3  | 3  | 0 | 2 | 0 | 1 | 1 | 5  |
| CE12  | PCW (pect) | 2  |    |   |   |   |   |   |    |
| Total |            | 21 | 11 | 9 | 8 | 5 | 4 | 9 | 32 |

GH = Glycoside hydrolases, PL = Polysaccharide lyases, CE = Carbohydrate esterases, CW = Cell Wall, b-glyc =  $\beta$ -glycans, PCW = Plant Cell Wall, cell = cellulose, hemi = hemicellulose, pect = pectin; Hetan = *H. irregulare*, Lac = *L. bicolor*, Cop = *C. cinerea*, Phan = *P. chrysosporium*, Cryp = *C. neoformans*, Ust = *U. maydis*, Mag = *M. oryzae*, Gib = G. zeae.

Supplementary Table 18. Gene models up-regulated >10 fold during *H. irregulare* growth on wood.

| Protein | Fold    | Description                                   |
|---------|---------|-----------------------------------------------|
| Id.     | change* |                                               |
| 105463  | 4785    | Glycosyl hydrolase family 61                  |
| 56987   | 129     | Glycosyl hydrolase family 12                  |
| 105739  | 117     | No homology                                   |
| 103225  | 109     | No homology                                   |
| 63436   | 104     | Major Facilitator Superfamily                 |
| 150359  | 88      | FMN-dependent dehydrogenase                   |
| 63659   | 85      | Glycosyl hydrolase family 61                  |
| 162562  | 78      | Glycosyl hydrolase family 5                   |
| 170185  | 64      | No homology                                   |
| 166613  | 62      | Glycosyl hydrolase family 61                  |
| 16710   | 59      | No homology                                   |
| 152014  | 55      | Glycosyl hydrolases family 28                 |
| 56288   | 53      | Glycosyl hydrolase family 10                  |
| 66839   | 53      | Glycosyl hydrolase family 5                   |
| 151850  | 52      | CBM_1, Fungal cellulose binding domain        |
| 119225  | 47      | No homology                                   |
| 68200   | 40      | No homology                                   |
| 104663  | 33      | Pectate lyase                                 |
| 60114   | 29      | Glycosyl hydrolases family 6                  |
| 163101  | 27      | No homology                                   |
| 42739   | 26      | No homology                                   |
| 104355  | 26      | No homology                                   |
| 64914   | 25      | No homology                                   |
| 14009   | 23      | No homology                                   |
| 145812  | 23      | D-isomer specific 2-hydroxyacid dehydrogenase |
| 11264   | 23      | Aldehyde dehydrogenase                        |
| 126699  | 23      | Sugar transporter                             |
| 62185   | 22      | Sugar transporter                             |

| 100630 | 21 | No homology                            |
|--------|----|----------------------------------------|
| 125540 | 21 | CBM_1, Fungal cellulose binding domain |
| 153627 | 21 | No homology                            |
| 55110  | 19 | Sugar transporter                      |
| 100706 | 19 | No homology                            |
| 166634 | 18 | Ribonuclease                           |
| 62980  | 18 | No homology                            |
| 46058  | 17 | No homology                            |
| 66540  | 17 | Ammonium Transporter                   |
| 120243 | 15 | GMC oxidoreductase                     |
| 168850 | 15 | No homology                            |
| 107549 | 15 | No homology                            |
| 108555 | 15 | CBM_1, Fungal cellulose binding domain |
| 157537 | 14 | GMC oxidoreductase                     |
| 115868 | 14 | No homology                            |
| 156676 | 14 | Oligopeptide transporter protein       |
| 64810  | 14 | Major Facilitator Superfamily          |
| 103640 | 13 | No homology                            |
| 163743 | 13 | No homology                            |
| 64799  | 12 | No homology                            |
| 157104 | 12 | Homogentisate 1,2-dioxygenase          |
| 65311  | 12 | No homology                            |
| 101612 | 12 | No homology                            |
| 44734  | 12 | No homology                            |
| 106301 | 12 | No homology                            |
| 120363 | 12 | Glycosyl Hydrolase Family 88           |
| 43914  | 12 | RNA 3'-terminal phosphate cyclase      |
| 66331  | 12 | G-protein alpha subunit                |
| 11198  | 11 | Amino acid permease                    |
| 52318  | 11 | Glycosyl hydrolase family 1            |
| 152576 | 11 | No homology                            |
| 157157 | 10 | Major Facilitator Superfamily          |

| 156533 | 10 | ATPase family associated with various cellular |
|--------|----|------------------------------------------------|
|        |    | activities                                     |

\* Fold change between *H. irregulare* samples grown on wood vs. liquid culture (P>0.05).

|                 | 1                                        |                   |                    |                |                |
|-----------------|------------------------------------------|-------------------|--------------------|----------------|----------------|
| Gene            | Gene model                               | Protein<br>ID     | Number<br>of exons | Length<br>(bp) | Length<br>(aa) |
| Multi coppe     | r oxidases                               |                   | <u> </u>           |                |                |
| HaLcc1          | EuGene17000143                           | 165789            | 17                 | 2485           | 534            |
| HaLcc2          | estExt_Genewise<br>1.C_41971             | 35202             | 14                 | 2361           | 530            |
| HaLcc3          | EuGene17000142                           | 165788            | 17                 | 2556           | 542            |
| HaLcc4          | Genemark.4263_<br>g                      | 103190            | 19                 | 2608           | 534            |
| HaLcc5          | Genemark.4967_<br>g                      | 103894            | 18                 | 2500           | 514            |
| HaLcc6          | EuGene11000363                           | 163392            | 21                 | 2708           | 543            |
| HaLcc7          | YAI_1_e_gw1.4.<br>259.1                  | 181088            | 18                 | 2567           | 535            |
| HaLcc8          | Genewise1Plus.C<br>_130048               | 67601             | 13                 | 2213           | 518            |
| HaLcc9/<br>Fet3 | estExt_Genewise<br>1Plus.C_100189        | 66247             | 10                 | 2483           | 629            |
| HaLcc10         | EuGene5000736                            | 172039            | 17                 | 2487           | 539            |
| HaLcc11         | YAI_e_gw1.4.27<br>2.1                    | 181060            | 18                 | 2638           | 525            |
| HaLcc12         | YAI_EuGene160<br>00107                   | 181063            | 17                 | 2506           | 535            |
| HaLcc13         | dfl_EuGene16000<br>086                   | 181233/<br>127340 | 21                 | 2688           | 533            |
| HaLcc14         | fgenesh2_pg.C_sc<br>affold_11000009      | 119423            | 21                 | 3147           | 675            |
| HaLcc15         | estExt_fgenesh2_<br>pm.C_110017          | 157048            | 22                 | 3094           | 649            |
| HaLcc16         | YAI_estExt_Gene<br>wise1Plus.C_800<br>82 | 181064            | 10                 | 2715           | 617            |
| HaLcc17         | EuGene5000719                            | 172022            | 5                  | 827            | 174            |
| HaLcc18         | dfl_dfl_EuGene4<br>001229                | 181231            | 17                 | 2536           | 534            |
| Manganese j     | peroxidases                              |                   | ·                  |                |                |

Supplementary Table 19. Location and characteristics of gene models putatively involved in lignin degradation in the *H. irregulare* genome.

## (Fungal peroxidases)

| (Fungal pero | oxidases)                               |                   |    |      |     |
|--------------|-----------------------------------------|-------------------|----|------|-----|
| HaMnP1       | Genemark.7162_<br>g                     | 106089            | 11 | 1659 | 362 |
| HaMnP2       | YAI_EuGene900<br>0355                   | 181068            | 11 | 1641 | 362 |
| HaMnP3       | Genemark.2444_                          | 101371            | 11 | 1663 | 365 |
| HaMnP4       | g<br>YAI_estExt_fgen<br>esh3_kg.C_30117 | 181069            | 10 | 1668 | 349 |
| HaMnP5       | Genemark.2653_                          | 101580            | 11 | 1617 | 357 |
| HaMnP6       | Genemark.9449_                          | 108376            | 18 | 2018 | 362 |
| HaMnP7       | fgenesh2_pm.C_s<br>caffold 14000147     | 127157            | 11 | 1644 | 362 |
| HaMnP8       | YAI_e_gw1.7.44                          | 181106/<br>51741  | 7  | 934  | 183 |
| Quinone oxi  | doreductases                            |                   | I  | I    | I   |
| HaQOR1       | fgenesh2_pm.C_s<br>caffold_1000182      | 121361<br>(99223) | 6  | 1333 | 343 |
| HaQOR2       | YAI_gw1.12.856.                         | 181092            | 5  | 1336 | 371 |
| HaQOR3       | estExt_fgenesh3_<br>kg.C_20245          | 145876            | 7  | 2008 | 346 |
| HaQOR4       | estExt_Genewise<br>1Plus.C_50858        | 63899             | 6  | 1374 | 351 |
| HaQOR5       | estExt_Genewise<br>1Plus.C_30278        | 61341             | 9  | 1995 | 338 |
| HaQOR6       | e_gw1.2.1473.1                          | 43155             | 6  | 1319 | 354 |
| HaQOR7       | fgenesh2_pm.C_s<br>caffold_4000019      | 123437            | 6  | 1387 | 354 |
| HaQOR8       | EuGene4000635                           | 170620            | 6  | 1010 | 242 |
| HaQOR9       | estExt_Genewise<br>1.C_20172            | 31829             | 8  | 1819 | 366 |
| HaQOR10      | estExt_Genewise<br>1.C_21879            | 32896             | 6  | 1432 | 343 |
| HaQOR11      | estExt_fgenesh2_<br>pm.C_20683          | 154626            | 6  | 2770 | 344 |
| HaQOR12      | estExt_fgenesh2_<br>pm.C_40576          | 155493            | 9  | 1527 | 338 |
| HaQOR13      | Genemark.9115_g                         | 108042            | 6  | 1293 | 332 |
|              | ~                                       | I                 | l  | I    | 1   |

| HaQOR14     | Genemark.9116_                     | 108043             | 4  | 1440 | 394 |
|-------------|------------------------------------|--------------------|----|------|-----|
| HaQOR15     | g<br>e_gw1.13.610.1                | 56575<br>(126886)  | 5  | 1312 | 352 |
| HaQOR16     | estExt_fgenesh3_<br>kg.C_30410     | 146509             | 5  | 1748 | 356 |
| HaQOR17     | estExt_fgenesh2_<br>pg.C_20719     | 150317             | 6  | 1922 | 367 |
| HaQOR18     | estExt_fgenesh2_<br>pm.C_130083    | 157553             | 5  | 1483 | 350 |
| HaQOR19     | estExt_fgenesh2_<br>pm.C_170054    | 157950             | 7  | 1449 | 261 |
| HaQUI       | estExt_Genewise<br>1Plus.C_170060  | 68456              | 6  | 2210 | 546 |
| HaNOR1      | estExt_fgenesh3_<br>kg.C_110174    | 148544             | 10 | 1692 | 343 |
| HaNOR2      | Genemark.9103_                     | 108030             | 10 | 1527 | 348 |
| HaNOR3      | estExt_fgenesh2_<br>pm.C_130077    | 157548             | 9  | 1663 | 344 |
| HaNuOR      | estExt_Genewise<br>1Plus.C_30173   | 61275              | 7  | 2081 | 496 |
| HaSQOR      | estExt_Genewise<br>1.C_20532       | 32066              | 9  | 1961 | 448 |
| Copper radi | cal oxidases                       | I                  | I  | 1    |     |
| HaCRO1      | e_gw1.2.104.1                      | 44268<br>(42959)   | 3  | 2464 | 783 |
| HaCRO2      | estExt_fgenesh3_<br>kg.C_30237     | 146345<br>(44757)  | 6  | 2268 | 662 |
| HaCRO3      | fgenesh2_pm.C_s<br>caffold_3000347 | 123144             | 12 | 2740 | 638 |
| HaCRO4      | e_gw1.13.461.1                     | 56441<br>(67755)   | 4  | 2558 | 788 |
| HaCRO5      | estExt_fgenesh2_<br>pm.C_90119     | 156743<br>(181081) | 15 | 4031 | 997 |
|             | thanol-choline                     |                    |    |      |     |
| (GMC) oxido | oreductases                        |                    | 1. | I    |     |
| HaAAO1      | estExt_Genewise<br>1Plus.C_41984   | 63456              | 16 | 2641 | 597 |
| HaAAO2      | estExt_Genewise<br>1Plus.C_50835   | 63889              | 11 | 2542 | 637 |
| HaAAO3      | estExt_Genewise<br>1.C_80752       | 37439              | 11 | 2619 | 613 |
|             |                                    |                    |    |      |     |

| HaAAO4  | estExt_Genewise<br>1Plus.C_90792    | 66113             | 10 | 2345 | 601 |
|---------|-------------------------------------|-------------------|----|------|-----|
| HaAAO5  | Genemark.4765_<br>g                 | 103692            | 11 | 2508 | 655 |
| HaAAO6  | estExt_Genewise<br>1.C 130445       | 39531             | 9  | 2299 | 608 |
| HaAAO7  | EuGene12000294                      | 163945<br>(55943) | 11 | 2616 | 646 |
| HaAAO8  | EuGene12000295                      | 163946            | 10 | 2355 | 621 |
| HaAAO9  | estExt_Genewise<br>1Plus.C_130459   | 67820             | 9  | 2295 | 601 |
| HaAAO10 | fgenesh2_pg.C_sc<br>affold_13000100 | 120243            | 11 | 2512 | 592 |
| HaAAO11 | estExt_Genewise<br>1Plus.C_130206   | 67689             | 12 | 2683 | 605 |
| HaChD1  | EuGene8000607                       | 174306            | 1  | 2584 | 668 |
| HaChD2  | estExt_fgenesh2_<br>pg.C_50196      | 151291            | 13 | 2885 | 707 |
| HaChD3  | estExt_fgenesh2_<br>pg.C_100028     | 152387            | 23 | 3663 | 556 |
| HaChD4  | estExt_fgenesh2_<br>pm.C_60042      | 155866            | 8  | 3261 | 693 |
| HaChD5  | estExt_fgenesh2_<br>pm.C_70087      | 156219            | 10 | 2634 | 608 |
| HaChD6  | estExt_Genewise<br>1Plus.C_41986    | 63458             | 17 | 3169 | 608 |
| HaChD7  | Genemark.4807_<br>g                 | 103734            | 20 | 3019 | 627 |
| HaGOrl  | estExt_fgenesh3_<br>kg.C_100019     | 148218            | 25 | 3391 | 602 |
| HaGOr2  | estExt_fgenesh3_<br>kg.C_130049     | 148859            | 6  | 1185 | 258 |
| HaGOr3  | dfl_EuGene90004<br>81               | 181240            | 26 | 3340 | 656 |
| HaGOr4  | Genemark.8837_<br>g                 | 107764            | 11 | 2571 | 643 |
| HaGOr5  | EuGene10000119                      | 162514            | 14 | 2582 | 621 |
| HaGOr6  | Genemark.3400_<br>g                 | 102327            | 17 | 2925 | 613 |
| HaGOr7  | e_gw1.5.100.1                       | 49580             | 5  | 2097 | 593 |
| HaGOr8  | estExt_Genewise<br>1Plus.C_160207   | 68439             | 10 | 2338 | 612 |

| HaGOr9      | e_gw1.11.644.1                                    | 54732              | 15 | 3212 | 666 |
|-------------|---------------------------------------------------|--------------------|----|------|-----|
| HaGOr10     | Genemark.7344_                                    | 106271             | 23 | 3234 | 518 |
|             | g                                                 |                    |    |      |     |
| HaGOr11     | EuGene9000612                                     | 174960             | 25 | 3267 | 629 |
| HaGOr12     | estExt_fgenesh3_<br>kg.C_130107                   | 148913             | 22 | 4326 | 609 |
| HaGOr13     | EuGene7000149                                     | 173088             | 19 | 3151 | 628 |
| HaGOr14     | Genemark.4871_                                    | 103798             | 12 | 2609 | 661 |
|             | g                                                 |                    |    |      |     |
| HaGOr15     | e_gw1.4.1199.1                                    | 48370              | 16 | 3064 | 621 |
| HaGOr16     | Genemark.4868_                                    | 103795             | 12 | 2601 | 655 |
|             | g                                                 |                    |    |      |     |
| Manganese s | uperoxide                                         |                    |    |      |     |
| dismutases  |                                                   |                    |    |      |     |
| HaMnSOD1    | EuGene8000020                                     | 173719<br>(65281)  | 4  | 874  | 206 |
| HaMnSOD2    | fgenesh2_pg.C_sc<br>affold_5000056                | 116985             | 11 | 1481 | 268 |
| HaMnSOD3    | EuGene5000065                                     | 171368             | 8  | 1186 | 221 |
| HaMnSOD4    | EuGene4001014<br>(estExt_fgenesh3<br>_kg.C_40430) | 170999<br>(146931) | 3  | 1210 | 368 |

| Annotated<br>function                               | Protein<br>ID    | Scaffold | CDS<br>start       | CDS<br>end         | Protein<br>length<br>(aa) | Domain<br>organization<br>(PKS and NRPS) | Prelimina<br>ry<br>designati<br>on |
|-----------------------------------------------------|------------------|----------|--------------------|--------------------|---------------------------|------------------------------------------|------------------------------------|
| Polyketide<br>synthase                              |                  |          |                    |                    |                           |                                          |                                    |
|                                                     | 50938            | 7        | 280777             | 287533             | 2026                      | KS-AT-ACP-TE/CYC<br>(wA-type)            | pks1                               |
|                                                     | 174227<br>174228 | 8<br>8   | 1445471<br>1451692 | 1450470<br>1456389 | 1537<br>1452              | A-PCP-KS<br>KS-Red-AT-ACP                | pks2<br>pks3                       |
| Prenyl<br>transferase<br>(DMATS-type)               | 108351           | 14       | 285796             | 287319             | 455                       |                                          | ppt4                               |
| Prenyl<br>transferase<br>(UbiA-type)                |                  |          |                    |                    |                           |                                          |                                    |
|                                                     | 47794            | 4        | 2361132            | 2362408            | 360                       |                                          | ppt1                               |
|                                                     | 142593<br>37087  | 5<br>8   | 667698<br>293985   | 669322<br>295311   | 328<br>327                |                                          | ppt2<br>ppt3                       |
| Terpene cyclase                                     | 181194           | 6        | 502645             | 503864             | 314                       |                                          | eve1                               |
|                                                     | 115814           | 3        | 1514452            | 1515667            | 308                       |                                          | cyc1<br>cyc2                       |
|                                                     | 169607           | 3        | 2401190            | 2402411            | 310                       |                                          | cyc3                               |
| Halogenase                                          | 101100           | 10       | 1 4077 60          | 1 4000 40          | 505                       |                                          | 1 14                               |
|                                                     | 181189<br>181184 | 10<br>10 | 1487768<br>1425026 | 1489943<br>1427204 | 525<br>530                |                                          | hal1<br>hal2                       |
|                                                     | 181191           | 5        | 1919369            | 1921555            | 536                       |                                          | hal3                               |
|                                                     | 181192           | 10       | 504204             | 507385             | 568                       |                                          | hal4                               |
|                                                     | 174229           | 8        | 1456740            | 1458853            | 536                       |                                          | hal5                               |
| Nonribosomal<br>peptide<br>synthetase-like<br>genes |                  |          |                    |                    |                           |                                          |                                    |
|                                                     | 66316            | 10       | 567244             | 571769             | 1420                      | A-PCP-Red                                | lys2                               |
|                                                     | 65036<br>173809  | 7<br>8   | 1253120<br>288211  | 1257095<br>292432  | 988<br>1080               | A-PCP-Red<br>A-PCP-Red                   | nps1                               |
|                                                     | 1/3809           | 8<br>10  | 1493229            | 292432<br>1497466  | 1080                      | A-PCP-Red                                | nps2<br>nps3                       |
|                                                     | 162913           | 10       | 1430512            | 1434727            | 1092                      | A-PCP-Red                                | nps4                               |
|                                                     | 171239           | 4        | 2888033            | 2891777            | 1005                      | A-PCP-Red                                | nps5                               |
|                                                     | 171317           | 5        | 22961              | 26757              | 1099                      | A-PCP-Red                                | nps6                               |
|                                                     | 171792           | 5        | 1518523            | 1523053            | 1297                      | A-PCP-Red                                | nps7                               |

Supplementary Table 20. Annotated putative natural product genes in the *H. irregulare* genome.

|                              | 45017<br>53480<br>57251<br>66488<br>153301 | 3<br>9<br>14<br>10<br>15 | 3168510<br>17660<br>479146<br>1391587<br>487439 | 3172948<br>21951<br>483397<br>1395814<br>491529 | 1070<br>1065<br>1091<br>1089<br>1043 | A-PCP-Red<br>A-PCP-Red<br>A-PCP-Red<br>A-PCP-Red<br>A-PCP-Red | nps8<br>nps9<br>nps10<br>nps11<br>nps12 |
|------------------------------|--------------------------------------------|--------------------------|-------------------------------------------------|-------------------------------------------------|--------------------------------------|---------------------------------------------------------------|-----------------------------------------|
| Transcriptional<br>regulator | 51550                                      | 7                        | 291575                                          | 294289                                          | 711                                  |                                                               | zfp1                                    |
| Abbreviations fo             | or domains a                               | re: KS =                 | = keto synthas                                  | se, $AT = acy$                                  | l transfera                          | se, $ACP = acyl$                                              |                                         |

Abbreviations for domains are: KS = keto synthase, AT = acyl transferase, ACP = acyl carrier protein, TE = thioesterase, CYC = cyclase, A = adenylation domain, PCP = peptidyl carrier protein, Red = reductase.

| Protein ID | Gene<br>position <sup>1</sup> | Scaffold | Putative function                | Preliminary designation |
|------------|-------------------------------|----------|----------------------------------|-------------------------|
| Cluster 1  | 1                             |          |                                  |                         |
|            |                               |          | C2HC type Zn finger              |                         |
| 118599     | -5                            | 8        | Transcription factor             |                         |
| 174231     | -4                            | 8        | No homology                      |                         |
|            |                               |          | Major facilitator superfamily    |                         |
| 52305      | -3                            | 8        | transporter                      |                         |
| 118597     | -2                            | 8        | No homology                      |                         |
| 174229     | -1                            | 8        | Halogenase                       | hal5                    |
| 174228     | 0                             | 8        | Polyketide synthase              | pks3                    |
| 174227     | 1                             | 8        | Polyketide synthase              | pks2                    |
| Cluster 2  |                               |          |                                  |                         |
|            |                               |          | Major facilitator superfamily    |                         |
| 53871      | -2                            | 10       | transporter                      |                         |
|            |                               |          | Phenylalanine and histidine      |                         |
| 66536      | -1                            | 10       | ammonia-lyase                    |                         |
|            |                               |          | Nonribosomal peptide             | nps3                    |
| 106754     | 0                             | 10       | synthetase                       | -                       |
|            |                               |          | Hydroxyindole-O-                 |                         |
| 66532      | 1                             | 10       | methyltransferase                |                         |
| 181189     | 2                             |          | Halogenase                       | hal1                    |
|            |                               |          | Isoprenylcysteine carboxyl       |                         |
| 38264      | 3                             | 10       | methyltransferase                |                         |
| 54099      | 4                             | 10       | Cytochrome b/b6                  |                         |
|            |                               |          | Translation initiation factor 3, |                         |
| 53908      | 5                             | 10       | subunit g                        |                         |
| 162935     | 6                             | 10       | No homology                      |                         |
|            |                               |          | Cystathionine beta-              |                         |
| 38257      | 7                             | 10       | lyases/gamma-synthases           |                         |
|            |                               |          | Major facilitator superfamily    |                         |
| 126108     | 8                             | 10       | transporter                      |                         |
| 66519      | 9                             | 10       | No homology                      |                         |
| 106746     | 10                            | 10       | No homology                      |                         |
|            |                               |          | Major facilitator superfamily    |                         |
| 148353     | 11                            | 10       | transporter                      |                         |
| Cluster 3  |                               |          |                                  |                         |
| 120490     | -14                           | 14       | Cytochrome c heme-binding        |                         |
| 67962      | -13                           | 14       | Glucose/ribitol dehydrogenase    |                         |
| 120488     | -12                           | 14       | ATP-NAD/AcoX kinase              |                         |
| 164833     | -11                           | 14       | No homology                      |                         |
| 164832     | -10                           | 14       | No homology                      |                         |
| 164831     | -9                            | 14       | No homology                      |                         |
| 157674     | -8                            | 14       | No homology                      |                         |
|            |                               |          | Glycosyltransferase Family 1     |                         |
| 148995     | -7                            | 14       | protein                          |                         |

Supplementary Table 21. Putative natural product gene clusters in the *H. irregulare* genome.

| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                        | 5     10       4     10       3     10       2     10       4     10                                                                                                                                                                                                                                               | 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0 | transporter<br>No homology<br>No homology<br>Major facilitator superfamily<br>transporter<br>No homology<br>HpcH/HpaI aldolase<br>No homology<br>No homology<br>Cytochrome P450<br>monooxygenase<br>No homology<br>Amino acid transporter<br>Amino acid transporter<br>Cytochrome P450<br>monooxygenase<br>No homology<br>Major facilitator superfamily<br>transporter<br>Phenylalanine and histidine<br>ammonia-lyase<br>Nonribosomal peptide | cpm34<br>cpm20 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 165320       7         Cluster 5       -16         126108       -16         66519       -15         106746       -14         148353       -13         119355       -12         66514       -11         162925       -10         27192       -9         21632       -8         157009       -7         162920       -6         162918       -4         119348       -3         54234       -2 | 5       10         4       10         3       10         2       10         2       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10 | 0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0         0                     | No homologyNo homologyMajor facilitator superfamilytransporterNo homologyHpcH/HpaI aldolaseNo homologyNo homologyOkohomologyCytochrome P450monooxygenaseNo homologyAmino acid transporterAmino acid transporterCytochrome P450monooxygenaseNo homologyAmino acid transporterCytochrome P450monooxygenaseNo homologyMajor facilitator superfamilytransporterPhenylalanine and histidine                                                         |                |
| 165320       7         Cluster 5       -16         126108       -16         66519       -15         106746       -14         148353       -13         119355       -12         66514       -11         162925       -10         27192       -9         21632       -8         157009       -7         162910       -6         162918       -4         119348       -3                        | 5       10         4       10         3       10         2       10         2       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                  | No homologyNo homologyMajor facilitator superfamilytransporterNo homologyHpcH/HpaI aldolaseNo homologyNo homologyCytochrome P450monooxygenaseNo homologyAmino acid transporterAmino acid transporterCytochrome P450monooxygenaseNo homologyAmino acid transporterCytochrome P450monooxygenaseNo homologyMajor facilitator superfamilytransporter                                                                                               |                |
| 165320       7         Cluster 5       -16         126108       -16         66519       -15         106746       -14         148353       -13         119355       -12         66514       -11         162925       -10         27192       -9         21632       -8         157009       -7         162910       -6         162918       -4         119348       -3                        | 5       10         4       10         3       10         2       10         2       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10 | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                  | No homologyNo homologyMajor facilitator superfamilytransporterNo homologyHpcH/HpaI aldolaseNo homologyNo homologyCytochrome P450monooxygenaseNo homologyAmino acid transporterAmino acid transporterCytochrome P450monooxygenaseNo homologyAmino acid transporterAmino acid transporterNo homologyMajor facilitator superfamily                                                                                                                |                |
| 165320       7         Cluster 5       -16         126108       -16         66519       -15         106746       -14         148353       -13         119355       -12         66514       -11         162925       -10         27192       -9         21632       -8         157009       -7         162920       -6         162919       -5         -4       162918                        |                                                                                                                                                                                                                                                                                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                         | No homologyNo homologyMajor facilitator superfamilytransporterNo homologyHpcH/HpaI aldolaseNo homologyNo homologyOkohomologyCytochrome P450monooxygenaseNo homologyAmino acid transporterAmino acid transporterCytochrome P450monooxygenaseNo homologyAmino acid transporterAmino acid transporterNo homologyNo homologyNo homology                                                                                                            |                |
| 165320       7         Cluster 5       -16         126108       -16         66519       -15         106746       -14         148353       -13         119355       -12         66514       -11         162925       -10         27192       -9         21632       -8         157009       -7         162920       -6         162919       -5         -4       162918                        |                                                                                                                                                                                                                                                                                                                    | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                         | No homologyNo homologyMajor facilitator superfamilytransporterNo homologyHpcH/HpaI aldolaseNo homologyNo homologyCytochrome P450monooxygenaseNo homologyAmino acid transporterAmino acid transporterCytochrome P450monooxygenase                                                                                                                                                                                                               |                |
| 165320       7         Cluster 5       -16         126108       -16         66519       -15         106746       -14         148353       -13         119355       -12         66514       -11         162925       -10         27192       -9         21632       -8         157009       -7         162920       -6         162919       -5         -4                                     | 5       10         6       10         7       10         8       10         9       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                             | No homologyNo homologyMajor facilitator superfamilytransporterNo homologyHpcH/HpaI aldolaseNo homologyNo homologyOkohomologyCytochrome P450monooxygenaseNo homologyAmino acid transporterAmino acid transporterCytochrome P450                                                                                                                                                                                                                 |                |
| 165320       7         Cluster 5       -16         126108       -16         66519       -15         106746       -14         148353       -13         119355       -12         66514       -11         162925       -10         27192       -9         21632       -8         157009       -7         162920       -6         162919       -5                                                | 5       10         6       10         7       10         8       10         9       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10                                         | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                             | No homology<br>No homology<br>Major facilitator superfamily<br>transporter<br>No homology<br>HpcH/HpaI aldolase<br>No homology<br>No homology<br>Cytochrome P450<br>monooxygenase<br>No homology<br>Amino acid transporter<br>Amino acid transporter                                                                                                                                                                                           |                |
| 165320       7         Cluster 5       -16         126108       -16         66519       -15         106746       -14         148353       -13         119355       -12         66514       -11         162925       -10         27192       -9         21632       -8         157009       -7         162920       -6                                                                        | 5       10         4       10         3       10         2       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10         10       10                                                                                | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                       | No homologyNo homologyMajor facilitator superfamilytransporterNo homologyHpcH/HpaI aldolaseNo homologyNo homologyOkohomologyCytochrome P450monooxygenaseNo homologyAmino acid transporter                                                                                                                                                                                                                                                      | cpm34          |
| 165320       7         Cluster 5       -16         126108       -16         66519       -15         106746       -14         148353       -13         119355       -12         66514       -11         162925       -10         27192       -9         21632       -8         157009       -7                                                                                                | 5     10       4     10       3     10       2     10       10     10       10     10       10     10       10     10       10     10       10     10       10     10                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                 | No homologyNo homologyMajor facilitator superfamilytransporterNo homologyHpcH/HpaI aldolaseNo homologyNo homologyNo homologyCytochrome P450monooxygenaseNo homology                                                                                                                                                                                                                                                                            | cpm34          |
| 165320       7         Cluster 5       -16         66519       -15         106746       -14         148353       -13         119355       -12         66514       -11         162925       -10         27192       -9         21632       -8                                                                                                                                                 | 5       10         4       10         3       10         2       10         10       10         10       10         10       10         10       10         10       10         10       10                                                                                                                        | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                      | No homology<br>No homology<br>Major facilitator superfamily<br>transporter<br>No homology<br>HpcH/HpaI aldolase<br>No homology<br>No homology<br>Cytochrome P450<br>monooxygenase                                                                                                                                                                                                                                                              | cpm34          |
| 165320       7         Cluster 5       -16         126108       -16         66519       -15         106746       -14         148353       -13         119355       -12         66514       -11         162925       -10         27192       -9                                                                                                                                               | 5     10       4     10       3     10       2     10       10     10       10     10                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                | No homology<br>No homology<br>Major facilitator superfamily<br>transporter<br>No homology<br>HpcH/HpaI aldolase<br>No homology<br>No homology<br>Cytochrome P450                                                                                                                                                                                                                                                                               | cpm34          |
| 165320       7         Cluster 5       -16         126108       -16         66519       -15         106746       -14         148353       -13         119355       -12         66514       -11         162925       -10         27192       -9                                                                                                                                               | 5     10       4     10       3     10       2     10       10     10       10     10                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                | No homologyNo homologyMajor facilitator superfamilytransporterNo homologyHpcH/HpaI aldolaseNo homologyNo homologyNo homology                                                                                                                                                                                                                                                                                                                   |                |
| 165320       7         Cluster 5       -16         126108       -16         66519       -15         106746       -14         148353       -13         119355       -12         66514       -11         162925       -10                                                                                                                                                                      | 5     10       4     10       3     10       2     10       10     10                                                                                                                                                                                                                                              | 0<br>0<br>0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                     | No homology<br>No homology<br>Major facilitator superfamily<br>transporter<br>No homology<br>HpcH/HpaI aldolase<br>No homology                                                                                                                                                                                                                                                                                                                 |                |
| 165320       7         Cluster 5       -16         126108       -16         66519       -15         106746       -14         148353       -13         119355       -12         66514       -11                                                                                                                                                                                               | 5     10       4     10       3     10       2     10       4     10                                                                                                                                                                                                                                               | 0<br>0<br>0<br>0<br>0                                                                                                                                                                                                                                                                               | No homology<br>No homology<br>Major facilitator superfamily<br>transporter<br>No homology<br>HpcH/HpaI aldolase                                                                                                                                                                                                                                                                                                                                |                |
| 165320       7         Cluster 5       7         126108       -16         66519       -15         106746       -14         148353       -13         119355       -12                                                                                                                                                                                                                         | 5 10<br>4 10<br>8 10<br>2 10                                                                                                                                                                                                                                                                                       | 0<br>0<br>0<br>0                                                                                                                                                                                                                                                                                    | No homology<br>No homology<br>Major facilitator superfamily<br>transporter<br>No homology                                                                                                                                                                                                                                                                                                                                                      |                |
| 165320       7         Cluster 5       7         126108       -16         66519       -15         106746       -14         148353       -13                                                                                                                                                                                                                                                  | 5 10<br>4 10<br>8 10                                                                                                                                                                                                                                                                                               | 0<br>0<br>0                                                                                                                                                                                                                                                                                         | No homology<br>No homology<br>Major facilitator superfamily<br>transporter                                                                                                                                                                                                                                                                                                                                                                     |                |
| 165320     7       Cluster 5     -16       126108     -16       66519     -15       106746     -14                                                                                                                                                                                                                                                                                           | 5 10<br>4 10                                                                                                                                                                                                                                                                                                       | 0                                                                                                                                                                                                                                                                                                   | No homology<br>No homology<br>Major facilitator superfamily                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 165320     7       Cluster 5     7       126108     -16       66519     -15                                                                                                                                                                                                                                                                                                                  | 5 10                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                   | No homology<br>No homology                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 165320     7       Cluster 5     7       126108     -16       66519     -15                                                                                                                                                                                                                                                                                                                  | 5 10                                                                                                                                                                                                                                                                                                               | 0                                                                                                                                                                                                                                                                                                   | No homology                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| 165320     7       Cluster 5     7       126108     -16                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                     | 1                                                                                                                                                                                                                                                                                                                                                                                                                                              |                |
| 165320 7<br>Cluster 5                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                    | <u></u>                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 165320 7                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                     | Major facilitator superfamily                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| 165320 7                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
|                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                   | bisphosphate-binding protein                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| 127261 6                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                    | _                                                                                                                                                                                                                                                                                                   | Phosphatidylinositol 4,5-                                                                                                                                                                                                                                                                                                                                                                                                                      |                |
| 1070(1                                                                                                                                                                                                                                                                                                                                                                                       | 15                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                   | transporter                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
|                                                                                                                                                                                                                                                                                                                                                                                              | 1.                                                                                                                                                                                                                                                                                                                 | F                                                                                                                                                                                                                                                                                                   | Inorganic phosphate                                                                                                                                                                                                                                                                                                                                                                                                                            |                |
| 165322 5                                                                                                                                                                                                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                   | subunit                                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| 165200 5                                                                                                                                                                                                                                                                                                                                                                                     | 1.0                                                                                                                                                                                                                                                                                                                | -                                                                                                                                                                                                                                                                                                   | Mitochondrial ATP synthase g                                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| 149146 4                                                                                                                                                                                                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                 | 3                                                                                                                                                                                                                                                                                                   | Uricase (urate oxidase)                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
|                                                                                                                                                                                                                                                                                                                                                                                              | 15                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     | Rac1 GTPase                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
|                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                     | transporter Page CTPage                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| 165326 2                                                                                                                                                                                                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                   | Major facilitator superfamily                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| 103327 1                                                                                                                                                                                                                                                                                                                                                                                     | 1.                                                                                                                                                                                                                                                                                                                 | J                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 165327 1                                                                                                                                                                                                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     | No homology other model                                                                                                                                                                                                                                                                                                                                                                                                                        |                |
| 153301 0                                                                                                                                                                                                                                                                                                                                                                                     | 15                                                                                                                                                                                                                                                                                                                 | 5                                                                                                                                                                                                                                                                                                   | Nonribosomal peptide<br>synthetase                                                                                                                                                                                                                                                                                                                                                                                                             | 111/512        |
| Clustel 4                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                     | Nonribosomal pontida                                                                                                                                                                                                                                                                                                                                                                                                                           | nps12          |
| <b>Cluster 4</b>                                                                                                                                                                                                                                                                                                                                                                             | 14                                                                                                                                                                                                                                                                                                                 | +                                                                                                                                                                                                                                                                                                   | type)                                                                                                                                                                                                                                                                                                                                                                                                                                          |                |
| 108351 0                                                                                                                                                                                                                                                                                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                   | Prenyl transferase (DMATS-                                                                                                                                                                                                                                                                                                                                                                                                                     | ppt4           |
| 127040 -1                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                                                                                                                                                                                                                 | +                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                | nnt/           |
| 127040 1                                                                                                                                                                                                                                                                                                                                                                                     | 1 /                                                                                                                                                                                                                                                                                                                | 4                                                                                                                                                                                                                                                                                                   | Branched chain<br>aminotransferase                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| 57258 -2                                                                                                                                                                                                                                                                                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                 | +                                                                                                                                                                                                                                                                                                   | HpcH/HpaI aldolase                                                                                                                                                                                                                                                                                                                                                                                                                             |                |
| 12246-357258-2                                                                                                                                                                                                                                                                                                                                                                               | 14                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     | Flavoprotein monooxygenase                                                                                                                                                                                                                                                                                                                                                                                                                     |                |
| 127042 -4                                                                                                                                                                                                                                                                                                                                                                                    | 14                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                |                |
| 107040                                                                                                                                                                                                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                  | 4                                                                                                                                                                                                                                                                                                   | Probably part of the transporter model 67959                                                                                                                                                                                                                                                                                                                                                                                                   |                |
| 67959 -5                                                                                                                                                                                                                                                                                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                   | transporter                                                                                                                                                                                                                                                                                                                                                                                                                                    |                |
| (7050 5                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                    | 4                                                                                                                                                                                                                                                                                                   | Major facilitator superfamily                                                                                                                                                                                                                                                                                                                                                                                                                  |                |
| 57513 -6                                                                                                                                                                                                                                                                                                                                                                                     | 14                                                                                                                                                                                                                                                                                                                 | 4                                                                                                                                                                                                                                                                                                   | Flavoprotein monooxygenase                                                                                                                                                                                                                                                                                                                                                                                                                     |                |

| 36468     | -3 | 7  | Cell cycle-associated protein  |       |
|-----------|----|----|--------------------------------|-------|
| 147551    | -4 | 7  | transporter                    |       |
|           |    |    | Major facilitator superfamily  |       |
| Cluster 8 |    |    |                                |       |
| 173809    |    |    | synthetase                     |       |
|           | 0  | 8  | Nonribosomal peptide           | nps2  |
| 37087     | -1 | 8  | Prenyl transferase (UbiA-type) | ppt3  |
| 51948     | -2 | 8  | protein                        |       |
|           |    |    | Glycosyltransferase Family 90  |       |
| 125388    | -3 | 8  | protein Sir2                   |       |
|           |    |    | Silent information regulator   |       |
| 37090     | -4 | 8  | No homology                    |       |
| 105355    | -5 | 8  | Metallopeptidase               |       |
| 65351     | -6 | 8  | transporter                    |       |
|           |    |    | Major facilitator superfamily  |       |
| 125392    | -7 | 8  | Trehalase                      |       |
| 37098     | -8 | 8  | Purine-cytosine permease       |       |
| 37102     | -9 | 8  | ABC transporter                | abc2  |
| Cluster 7 |    |    | · ·                            |       |
| 35213     | 4  | 4  | transporter                    |       |
|           | -  |    | Major facilitator superfamily  |       |
| 155628    | 3  | 4  | No homology                    |       |
| 171237    | 2  | 4  | Aryl-alcohol dehydrogenase 1   | aad1  |
| 171238    | 1  | 4  | Aryl-alcohol oxidase 1         | aao1  |
| 171239    | 0  | 4  | synthetase                     |       |
|           |    |    | Nonribosomal peptide           | nps5  |
| 63463     | -1 | 4  | transporter                    |       |
|           |    |    | Major facilitator superfamily  |       |
| 103253    | -2 | 4  | transporter                    |       |
|           |    |    | Major facilitator superfamily  |       |
| 47230     | -3 | 4  | methyltransferase              |       |
| -         |    |    | Farnesyl cysteine-carboxyl     |       |
| Cluster 6 |    |    |                                |       |
| 66488     |    |    | synthetase                     |       |
|           | 11 | 10 | Nonribosomal peptide           | nps11 |
| 162898    | 10 | 10 | No homology                    |       |
| 119335    | 9  | 10 | No homology                    |       |
| 106724    | 8  | 10 | No homology                    |       |
| 119338    | 7  | 10 | No homology                    |       |
| 106727    | 6  | 10 | No homology                    |       |
| 162904    |    | 10 | No homology                    |       |
| 162905    |    | 10 | No homology                    |       |
| 152523    |    | 10 | No homology                    |       |
| 106730    | 5  | 10 | No homology                    |       |
| 66494     | 4  | 10 | No homology                    |       |
| 66497     | 3  | 10 | Amino acid transporter         |       |
| 181184    | 2  | 10 | Halogenase                     | hal2  |
| 157005    | 1  | 10 | O-methyltransferase, family 2  |       |

|     |                                                        | Mob1-1                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |                                                        | Zinc finger/binuclear cluster                                                                                                                                                                                                                                                                                                 | zfp1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -2  | 7                                                      | •                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -1  | 7                                                      |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0   | 7                                                      |                                                                                                                                                                                                                                                                                                                               | pks1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -12 | 9                                                      | Polyprenyl synthetase                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                        | <u> </u>                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| ,   |                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -8  | 9                                                      |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -   | -                                                      |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | -                                                      |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                        |                                                                                                                                                                                                                                                                                                                               | gst1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| -2  |                                                        |                                                                                                                                                                                                                                                                                                                               | 5001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1   |                                                        |                                                                                                                                                                                                                                                                                                                               | nps9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 0   | 9                                                      |                                                                                                                                                                                                                                                                                                                               | npsy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1   |                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2   | 9                                                      |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 2   |                                                        | 1                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 3   | 9                                                      |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                        | The opposition monooxygenuse                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                        | Major facilitator superfamily                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -11 | 11                                                     | · · ·                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                        | *                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -8  | 11                                                     |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 0   |                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -5  | 11                                                     |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 5   |                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -4  | 11                                                     |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                        | -                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -2  | 11                                                     |                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -1  | 11                                                     | GTPase                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                        |                                                                                                                                                                                                                                                                                                                               | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| -1  | 11                                                     | Fatty acid synthase, Acyl-                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | -1       7         0       7         1       7         2       7         -12       9 $-11$ 9 $-12$ 9 $-11$ 9 $-12$ 9 $-11$ 9 $-12$ 9 $-11$ 9 $-10$ 9 $-9$ 9 $-8$ 9 $-7$ 9 $-6$ 9 $-5$ 9 $-4$ 9 $0$ 9 $1$ 9 $2$ 9 $3$ 9 $4$ 9 $-11$ 11 $-9$ 11 $-8$ 11 $-7$ 11 $-8$ 11 $-7$ 11 $-6$ 11 $-7$ 11 $-6$ 11 $-7$ 11 $-6$ 11 $-2$ 11 | -27Zinc finger/binuclear cluster<br>transcriptional regulator-17Halotolerance protein HAL307Polyketide synthase17No homology27Glucose/ribitol dehydrogenase-129Polyprenyl synthetase-119Transcription factor-109No homology-99Probably part of 65736Glycoside Hydrolase Family<br>16 proteinGlycoside Hydrolase Family<br>16 protein-79No homology-69No homology-59Methyltransferase-49No homology-39Glutathione S-transferase-29No homology-19No homology |

<sup>1</sup> Position in relation to the putative natural product backbone gene, by definition assigned position 0.

Supplementary Table 22. The 250 highest expressed gene models during *H. irregular* growth in cambial zone of necrotic bark tissue.

| Protein | Relativ     | Signal  |                                            |
|---------|-------------|---------|--------------------------------------------|
| Id.     | expression* | peptide | Description of model                       |
| 37102   | 51569       | NO      | ABC-2 type transporter                     |
| 27192   | 51053       | YES     | No homology                                |
| 125826  | 50943       | NO      | GMC oxidoreductase                         |
| 149112  | 47321       | NO      | Aldo/keto reductase family                 |
| 67711   | 43642       | NO      | No homology                                |
| 171070  | 43007       | NO      | No homology                                |
| 145367  | 41854       | YES     | Protein priA                               |
| 148906  | 41772       | YES     | No homology                                |
| 149208  | 41461       | YES     | Pectate lyase                              |
| 124093  | 41026       | NO      | No homology                                |
| 165326  | 40899       | NO      | Major Facilitator Superfamily              |
| 60386   | 40812       | NO      | Major intrinsic protein                    |
| 107421  | 40677       | NO      | No homology                                |
| 148898  | 39637       | YES     | No homology                                |
| 44857   | 38616       | NO      | Alcohol dehydrogenase                      |
| 157374  | 38299       | NO      | Cytochrome P450                            |
|         |             |         | Peroxisomal multifunctional beta-oxidation |
| 156457  | 37960       | NO      | protein                                    |
| 172978  | 37442       | YES     | Glycosyl hydrolases family 43              |
| 147528  | 37366       | NO      | No homology                                |
| 23076   | 37100       | YES     | No homology                                |
| 60674   | 36974       | YES     | No homology                                |
| 150620  | 36751       | YES     | No homology                                |
| 51382   | 36343       | YES     | No homology                                |
| 163830  | 36006       | YES     | Glycosyl hydrolases family 16              |
| 163550  | 35827       | YES     | Lipase                                     |
| 59424   | 35395       | NO      | Major Facilitator Superfamily              |
| 145525  | 34652       | NO      | No homology                                |
| 145128  | 34359       | NO      | Metallopeptidase family                    |
| 106809  | 34093       | NO      | Sugar transporter                          |
| 149091  | 33817       | NO      | No homology                                |
| 121815  | 33600       | YES     | SCP-like extracellular protein             |
| 155598  | 33550       | NO      | Cytochrome P450                            |
| 147966  | 33522       | YES     | Cytochrome P450                            |
| 156364  | 33479       | YES     | Rhamnogalacturonase B                      |
| 38882   | 33322       | NO      | No homology                                |
| 168124  | 33141       | NO      | No homology                                |
| 43846   | 33109       | NO      | No homology                                |
| 154644  | 32935       | NO      | Alcohol dehydrogenase                      |
| 148394  | 32877       | NO      | Aldo/keto reductase family                 |
| 121927  | 32753       | NO      | Oligopeptide transporter protein           |

| 156898  | 32593 | NO   | Short chain dehydrogenase                |
|---------|-------|------|------------------------------------------|
| 148033  | 32434 | NO   | No homology                              |
| 63331   | 32432 | NO   | Major Facilitator Superfamily            |
| 140638  | 32279 | NO   | No homology                              |
| 172384  | 32167 | YES  | Lipase                                   |
| 33761   | 31819 | NO   | No homology                              |
| 155703  | 31809 | NO   | Lactate/malate dehydrogenase             |
| 33779   | 31698 | NO   | ABC transporter                          |
| 145132  | 31648 | NO   | No homology                              |
| 33584   | 31548 | NO   | Mitochondrial carrier protein            |
| 153952  | 31260 | NO   | Amino acid permease                      |
| 52607   | 31206 | NO   | Translation initiation factor 2          |
| 164295  | 31166 | YES  | No homology                              |
| 59167   | 30962 | NO   | Short chain dehydrogenase                |
| 45732   | 30909 | YES  | Pectinesterase                           |
| 35992   | 30879 | YES  | 2-nitropropane dioxygenase               |
| 171688  | 30830 | NO   | No homology                              |
| 157588  | 30786 | NO   | Profilin                                 |
| 36572   | 30568 | YES  | Glycosyl hydrolases family 15            |
| 146869  | 30461 | NO   | Thiolase                                 |
| 147851  | 30412 | NO   | ATP synthase                             |
| 46342   | 30394 | NO   | ABC transporter                          |
| 51894   | 30170 | NO   | Major intrinsic protein                  |
| 116432  | 30075 | NO   | NARE associated Golgi protein            |
| 64350   | 29827 | NO   | Serine/threonine protein phosphatase 2A, |
| 50287   | 29709 | NO   | Lipase                                   |
| 66138   | 29292 | NO   | No homology                              |
| 60313   | 29195 | NO   | Transcription factor                     |
| 170624  | 29168 | NO   | No homology                              |
| 34308   | 29168 | NO   | Ribosomal protein L6                     |
| 115608  | 29016 | YES  | No homology                              |
| 154023  | 28920 | NO   | No homology                              |
| 40228   | 28753 | YES  | No homology                              |
| 145190  | 28738 | NO   | No homology                              |
| 116097  | 28706 | NO   | ATP synthase subunit 5                   |
| 149037  | 28675 | NO   | Heat shock 70 kDa protein                |
| 168597  | 28443 | YES  | No homology                              |
| 117225  | 28334 | YES  | Glycosyl hydrolases family 35            |
| 68439   | 28298 | YES  | GMC oxidoreductase                       |
| 146825  | 28271 | NO   | Alcohol dehydrogenase                    |
| 43178   | 28169 | NO   | No homology                              |
| 60207   | 28061 | NO   | Dihydrodipicolinate synthetase family    |
| 39116   | 27963 | NO   | Flavin-binding monooxygenase-like        |
| 155393  | 27903 | NO   | Ubiquitin-like protein                   |
| 155395  | 27860 | YES  | Glycosyl hydrolases family 43            |
| 104663  | 27800 | YES  | Pectate lyase                            |
| 10-1003 | 21155 | I LO | r cetate ryase                           |

| 0.000  | 077.40 | NO  |                                     |
|--------|--------|-----|-------------------------------------|
| 36368  | 27742  | NO  | Small heat-shock protein            |
| 145747 | 27687  | YES | No homology                         |
| 37087  | 27665  | NO  | UbiA prenyltransferase              |
| 156257 | 27524  | NO  | Ribosomal protein S12               |
| 124845 | 27297  | NO  | RNA polymerase                      |
| 35598  | 27226  | NO  | Mitochondrial carrier protein       |
| 174003 | 27211  | YES | Major Facilitator Superfamily       |
| 65379  | 27158  | NO  | 2OG-Fe(II) oxygenase superfamily    |
| 46789  | 27066  | NO  | Snf7                                |
| 156198 | 27043  | NO  | No homology                         |
| 163187 | 27012  | NO  | Terpene synthase family             |
| 127058 | 27004  | NO  | N-Acetylglucosamine kinase          |
| 49485  | 27001  | NO  | No homology                         |
| 145402 | 26944  | NO  | Aminotransferase                    |
| 156868 | 26837  | NO  | Histone promoter control 2          |
| 47144  | 26725  | NO  | Arylacetamide deacetylase           |
| 146651 | 26476  | NO  | Alcohol dehydrogenase               |
| 34945  | 26455  | NO  | Ribosomal protein S7                |
| 122349 | 26452  | NO  | Porin                               |
| 37838  | 26446  | NO  | Sugar transporter                   |
| 39439  | 26414  | NO  | Ribosomal L38                       |
| 143978 | 26354  | YES | No homology                         |
| 62388  | 26265  | NO  | Tubulin                             |
| 146308 | 26203  | NO  | No homology                         |
| 127052 | 26110  | NO  | Acyl-CoA synthetase                 |
| 102951 | 26102  | NO  | No homology                         |
| 67107  | 26098  | YES | Sugar transporter                   |
| 62354  | 26098  | NO  | ATP-dependent RNA helicase          |
| 103048 | 26093  | NO  | Myosin tail                         |
| 154319 | 26071  | NO  | 1,3-beta-glucan synthase            |
| 63020  | 26060  | YES | No homology                         |
| 155912 | 26020  | YES | No homology                         |
| 165638 | 26010  | NO  | No homology                         |
| 145565 | 25951  | NO  | No homology                         |
| 67106  | 25946  | NO  | No homology                         |
| 147426 | 25829  | NO  | No homology                         |
| 144624 | 25767  | NO  | No homology                         |
| 146577 | 25641  | NO  | Tubulin                             |
| 147705 | 25561  | YES | No homology                         |
| 59548  | 25507  | NO  | NADH-cytochrome b-5 reductase       |
| 57540  | 25507  | 110 | Mitochondrial import inner membrane |
| 64392  | 25480  | NO  | translocase                         |
| 32273  | 25475  | YES | Glycosyl hydrolases family 13       |
| 66401  | 25452  | NO  | SURF4                               |
| 156970 | 25362  | NO  | Major Facilitator Superfamily       |
| 16804  | 25302  | NO  | Ribosomal L28                       |
| 1000-  | 23311  | 110 | Nibobolilui 1/20                    |

| 148542           | 25276          | YES       | No homology                                       |
|------------------|----------------|-----------|---------------------------------------------------|
| 156245           | 25238          | NO        | No homology                                       |
| 145946           | 25199          | NO        | Phosphoglycerate kinase                           |
| 146268           | 25179          | NO        | Phosphatase                                       |
| 108009           | 25179          | NO        | Ribosomal_L14                                     |
| 166682           | 25139          | NO        | Alkaline phytoceramidase                          |
| 148178           | 25071          | NO        | No homology                                       |
| 63221            | 25011          | NO        | No homology                                       |
| 33983            | 24915          | NO        | G-protein alpha subunit                           |
| 152014           | 24746          | YES       | Glycosyl hydrolases family 28                     |
| 165049           | 24740          | NO        | No homology                                       |
| 36254            | 24704          | NO        | Vesicle coat complex COPI                         |
| 28158            | 24684          | NO        | Heat shock factor binding protein                 |
| 100407           | 24604          | NO        | Transport protein particle                        |
| 148443           | 24004 24579    | NO        | Tubulin                                           |
| 28098            | 24549          | NO        | NADH-ubiquinone oxidoreductase                    |
| 63493            | 24537          | YES       | Aspartyl protease                                 |
| 153265           | 24337          | YES       | No homology                                       |
| 35032            | 24471          | YES       | No homology                                       |
| 66839            | 24464          | YES       | Glycosyl hydrolase family 5                       |
| 148291           | 24404          | NO        | S-adenosyl-L-homocysteine hydrolase               |
| 173445           | 24424 24332    | NO        | No homology                                       |
| 173443           | 24332          | NO        | Farnesyl cysteine-carboxyl methyltransferase      |
| 166472           | 24282          | NO        | No homology                                       |
| 174738           | 24191<br>24144 | NO        | No homology                                       |
| 39599            | 24144 24119    | NO        |                                                   |
| 62758            | 24119          | NO        | Aldehyde dehydrogenase<br>Ribosomal L29           |
| 169660           | 24114 24112    | NO        |                                                   |
| 62256            | 24112<br>24018 | NO        | No homology<br>Proteasome                         |
|                  | 24018<br>24015 | YES       |                                                   |
| 154292           |                |           | No homology                                       |
| 172869           | 24009          | NO<br>NO  | No homology                                       |
| 154939<br>167124 | 23960          | NO<br>NO  | Transcriptional regulatory protein<br>No homology |
|                  | 23872<br>23796 | NO<br>VES |                                                   |
| 147192           |                | YES       | No homology                                       |
| 148179           | 23681          | NO<br>VES | No homology                                       |
| 145578           | 23587          | YES       | Glycosyl hydrolases family 72                     |
| 53076            | 23526          | NO<br>NO  | Glycosyl hydrolase family 5                       |
| 36688            | 23506          | NO<br>NO  | No homology<br>Dibassenal gratein L12             |
| 140881           | 23485          | NO<br>NO  | Ribosomal protein L13                             |
| 60007<br>21216   | 23463          | NO<br>NO  | S-adenosylmethionine synthetase                   |
| 31216            | 23459          | NO<br>NO  | Short chain dehydrogenase                         |
| 64341<br>146700  | 23438          | NO<br>NO  | Sterol O-acyltransferase                          |
| 146709           | 23437          | NO<br>NO  | Chitin synthase                                   |
| 99958<br>145857  | 23405          | NO<br>NO  | No homology                                       |
| 145857           | 23345          | NO<br>NO  | Succinyl-CoA:alpha-ketoacid-CoA transferase       |
| 156180           | 23326          | NO        | No homology                                       |

| 124018 | 23314 | NO  | Ribosomal protein L12                      |
|--------|-------|-----|--------------------------------------------|
| 156489 | 23259 | NO  | NADH-ubiquinone oxidoreductase             |
| 152200 | 23258 | NO  | 20S proteasome                             |
| 155263 | 23238 | YES | Glycosyl hydrolases family 13              |
| 62621  | 23236 | NO  | Exosomal 3'-5' exoribonuclease             |
| 59062  | 23151 | YES | No homology                                |
| 35295  | 23141 | NO  | Aconitate hydratase                        |
| 116059 | 23011 | NO  | No homology                                |
| 36248  | 23000 | NO  | Ubiquitin-protein ligase                   |
| 149420 | 22986 | NO  | NADH-ubiquinone oxidoreductase             |
| 166956 | 22962 | NO  | No homology                                |
| 31921  | 22951 | NO  | Arginase                                   |
| 39297  | 22803 | YES | Aspartyl protease                          |
|        |       |     | Putative voltage-gated potassium channel   |
| 145167 | 22735 | NO  | subunit beta                               |
| 39125  | 22706 | NO  | Triose-phosphate Transporter               |
| 152726 | 22538 | NO  | No homology                                |
| 146873 | 22447 | NO  | Aldehyde dehydrogenase                     |
| 145534 | 22411 | YES | No homology                                |
| 155410 | 22410 | NO  | No homology                                |
| 147551 | 22314 | NO  | Major Facilitator Superfamily              |
|        |       |     | Cyclophilin type peptidyl-prolyl cis-trans |
| 151860 | 22283 | NO  | isomerase                                  |
| 31144  | 22177 | YES | No homology                                |
| 118397 | 22163 | YES | Glycosyl hydrolases family 28              |
| 146647 | 22142 | NO  | Ribosomal protein L6                       |
| 145615 | 22064 | NO  | No homology                                |
| 67127  | 22055 | NO  | Ribosomal S13                              |
| 38002  | 22030 | NO  | Dienelactone hydrolase                     |
| 58715  | 22015 | NO  | Aldo/keto reductase                        |
| 147624 | 22006 | NO  | No homology                                |
| 155557 | 21906 | NO  | Major Facilitator Superfamily              |
| 59095  | 21860 | NO  | No homology                                |
| 156524 | 21805 | NO  | Peroxidase                                 |
| 154562 | 21801 | NO  | Ras family                                 |
| 146969 | 21621 | NO  | No homology                                |
| 105902 | 21570 | NO  | No homology                                |
|        |       |     | Alpha-ketoglutarate-dependent sulfonate    |
| 63766  | 21544 | NO  | dioxygenase                                |
| 57035  | 21488 | NO  | No homology                                |
| 157155 | 21401 | NO  | GTP-binding protein                        |
| 153948 | 21398 | NO  | No homology                                |
| 151475 | 21385 | NO  | Ergosterol biosynthesis                    |
| 33531  | 21028 | NO  | Ribosomal L39                              |
| 146879 | 20993 | NO  | No homology                                |
| 31323  | 20921 | NO  | Amino acid transporters                    |
| 154587 | 20848 | NO  | Nuclear transport factor 2                 |
|        | -     |     | 1                                          |

| 155889 | 20705 | YES | Cytochrome P450                              |
|--------|-------|-----|----------------------------------------------|
| 145422 | 20647 | NO  | Ribosomal L22                                |
| 147722 | 20547 | NO  | F-actin capping protein                      |
| 157976 | 20454 | NO  | Oligopeptide transporter protein             |
| 109183 | 20421 | NO  | 2OG-Fe(II) oxygenase superfamily             |
| 154589 | 20217 | NO  | ABC transporter                              |
| 54368  | 20193 | NO  | No homology                                  |
| 65589  | 20163 | NO  | Cytochrome P450                              |
| 148385 | 20145 | NO  | Hydrolase/acyltransferase                    |
| 62415  | 20125 | NO  | ABC transporter                              |
| 64200  | 20074 | NO  | Fatty acid hydroxylase superfamily           |
| 125540 | 20008 | YES | CBM_1, Fungal cellulose binding domain       |
| 61998  | 19749 | NO  | Sugar transporter                            |
| 38469  | 19724 | NO  | Terpene synthase                             |
| 100446 | 19362 | NO  | No homology                                  |
| 145932 | 19216 | NO  | Cell cycle control protein                   |
| 62632  | 19143 | NO  | Ribosomal L18                                |
| 35255  | 19045 | NO  | Glutathione S-transferase                    |
| 62063  | 18941 | YES | Glycosyl hydrolase family 5                  |
| 45491  | 18843 | NO  | 2-methylcitrate dehydratase                  |
| 43930  | 18741 | NO  | Adenylate kinase                             |
| 147116 | 18493 | NO  | Arylacetamide deacetylase                    |
| 66891  | 18297 | NO  | Alpha-methylacyl-CoA racemase                |
| 65927  | 18241 | NO  | Protein kinase                               |
| 105516 | 18182 | NO  | No homology                                  |
| 126495 | 17491 | NO  | Arginase                                     |
| 151850 | 17418 | YES | CBM_1, Fungal cellulose binding domain       |
| 173293 | 17327 | NO  | Transmembrane amino acid transporter protein |
| 65276  | 17080 | YES | No homology                                  |

\* Relative expression of gene model during *H. irregulare* growth on bark in units.

## Supplementary Table 23. Gene models up-regulated during *H. irregulare* growth in cambial zone of necrotic bark tissue.

| Protein ID | Signal peptide | Fold<br>change* | Description                                                                                           |  |
|------------|----------------|-----------------|-------------------------------------------------------------------------------------------------------|--|
| 104663     | YES            | 44              | candidate pectin lyase, Polysaccharide Lyase Family 1 protein                                         |  |
| 152014     | YES            | 39              | Glycoside Hydrolase Family 28 protein, polygalacturonase                                              |  |
| 66839      | YES            | 38              | Glycoside Hydrolase Family 5 protein, endo-b-1,4-glucanase; N-terminal CBM1 module                    |  |
| 115608     | YES            | 12              | No homology                                                                                           |  |
| 145796     | YES            | 12              | No homology                                                                                           |  |
| 125540     | YES            | 11              | Carbohydrate-Binding Module Family 1 protein                                                          |  |
| 108555     | YES            | 8               | Carbohydrate Esterase Family 16 protein                                                               |  |
| 35715      | YES            | 4               | Lipase, class 3                                                                                       |  |
| 153265     | YES            | 4               | No homology                                                                                           |  |
| 118836     | YES            | 4               | No homology                                                                                           |  |
| 61332      | YES            | 4               | No homology                                                                                           |  |
| 148906     | YES            | 3               | No homology                                                                                           |  |
| 150620     | YES            | 3               | No homology                                                                                           |  |
| 37721      | YES            | 3               | Proteins containing the FAD binding domain, FAD linked oxidase                                        |  |
| 51382      | YES            | 3               | No homology                                                                                           |  |
|            |                | 2               | Glucose dehydrogenase/choline dehydrogenase/mandelonitrile                                            |  |
| 68439      | YES            |                 | lyase (GMC oxidoreductase family)                                                                     |  |
| 102296     | NO             | 31              | No homology                                                                                           |  |
| 117358     | NO             | 18              | No homology                                                                                           |  |
| 14009      | NO             | 14              | No homology                                                                                           |  |
| 153301     | NO             | 12              | L-aminoadipate-semialdehyde dehydrogenase                                                             |  |
| 154438     | NO             | 10              | No homology                                                                                           |  |
| 58532      | NO             | 9               | Flavin-containing monooxygenase                                                                       |  |
| 64810      | NO             | 9               | Major facilitator superfamily                                                                         |  |
| 31733      | NO             | 6               | Peroxisomal 3-ketoacyl-CoA-thiolase P-44/SCP2                                                         |  |
| 124446     | NO             | 6               | Aldehyde dehydrogenase                                                                                |  |
| 59167      | NO             | 5               | Mitochondrial/plastidial beta-ketoacyl-ACP reductase                                                  |  |
| 154885     | NO             | 5               | Flavoprotein monooxygenase, Aromatic-ring hydroxylase                                                 |  |
| 60207      | NO             | 5               | Dihydrodipicolinate synthase-like protein                                                             |  |
| 67622      | NO             | 5               | Major facilitator superfamily                                                                         |  |
| 157466     | NO             | 4               | Mandelate racemase/muconate lactonizing enzyme                                                        |  |
| 105333     | NO             | 4               | No homology                                                                                           |  |
| 169569     | NO             | 4               | FOG: Zn-finger, C2H2 type                                                                             |  |
| 37838      | NO             | 3               | MFS sugar transporter                                                                                 |  |
| 149017     | NO             | 3               | Glyoxylate/hydroxypyruvate reductase (D-isomer-specific 2-<br>hydroxy acid dehydrogenase superfamily) |  |
| 146825     | NO             | 3               | Alcohol dehydrogenase, class III;                                                                     |  |
| 63331      | NO             | 2               | Major facilitator superfamily                                                                         |  |
| 169461     | NO             | 2               | Isoflavone reductase                                                                                  |  |
| 149112     | NO             | 2               | Aldo/keto reductase family proteins                                                                   |  |
| 58654      | NO             | 2               | andidate lipase/esterase from carbohydrate esterase family CE10                                       |  |
| 151860     | NO             | 2               | Peptidyl-prolyl cis-trans isomerase                                                                   |  |
| 145565     | NO             | 2               | No homology                                                                                           |  |
| 45919      | NO             | 2               | No homology                                                                                           |  |

\* Fold change between *H. irregulare* samples grown on bark vs. liquid culture (P>0.05).

Supplementary Table 24. Number of carbohydrate active enzymes significantly upregulated during *H. irregulare* growth in wood and in cambial zone of necrotic bark tissue.

| Cazy family | Substrate | On wood | On bark | Trade off* |
|-------------|-----------|---------|---------|------------|
| CBM1        |           | 2       | 1       | 1          |
| GH3         | b-glyc    | 1       | 0       | 1          |
| GH5         | b-glyc    | 2       | 1       | 1          |
| GH6         | Cell      | 1       | 0       | 1          |
| GH10        | Hemi      | 2       | 1       | 1          |
| GH12        | Cell      | 1       | 1       | 0          |
| GH61        | Cell      | 3       | 0       | 3          |
| GH74        | Cell      | 1       | 0       | 1          |
| GH28        | Pect      | 1       | 1       | 0          |
| GH43        | Pect/Hemi | 1       | 1       | 0          |
| PL1         | Pect      | 1       | 1       | 0          |
| CE16        |           | 1       | 1       | 0          |

GH = Glycoside hydrolases, PL = Polysaccharide lyases, CE = Carbohydrate esterases, bglyc =  $\beta$ -glycans, cell = cellulose, hemi = hemicellulose, pect = pectin;

\* Trade off defined as the number of genes expressed on wood but not in bark.

## Supplementary Table 25. Number of transporters significantly up-regulated during *H. irregulare* growth in wood and in cambial zone of necrotic bark tissue.

|                     | On wood | On bark | Trade off* |
|---------------------|---------|---------|------------|
| MFS1                | 12      | 4       | 8          |
| Sugar transport     | 6       | 1       | 5          |
| ABC                 | 2       | 0       | 2          |
| Oligopeptide        | 3       | 0       | 3          |
| AA permease         | 1       | 0       | 1          |
| Nuclioside permease | 3       | 0       | 3          |

\* Trade off defined as the number of genes expressed on wood but not in bark.