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Abstract 
Here we present a new Explainable AI (XAI) method to probe 
the functional partition in AI models by comparing features 
attended to at different layers with human attention driven by 
diverse task demands. We applied this method to explain an 
object detector Yolo-v5s in multi-category and single-category 
object detection tasks. We found that the model’s neck showed 
higher similarity to human attention during object detection, 
indicating a reliance on diagnostic features in the neck, whereas 
its backbone showed higher similarity to attention during 
passive viewing, indicating salient local features encoded. 
With this understanding of its functional partition, using Yolo-
v5s as a model for human cognition, our comparative analysis 
against human attention when providing explanations for 
object detection revealed that humans attended to a 
combination of diagnostic and salient features during 
explaining multi-category general object detection but attended 
to mainly diagnostic features when explaining single-category 
human/vehicle detection in driving scenarios.  
Keywords: object detection; explainable AI; human attention; 
eye tracking; deep learning 

Introduction 
Nowadays, artificial intelligence (AI) has achieved 
outstanding performance in many computer vision tasks such 
as image classification and object detection. However, the 
black-box nature of deep neural networks (DNN) has 
obscured their internal decision-making mechanisms (Rudin, 
2019). This impacts both machine learning scientists’ 
evaluation of models and human users’ trust in the system, 
which drives an increasing demand for model interpretability 
and explanations that are accessible to humans (Mittelstadt et 
al., 2019; Hsiao et al., 2021). Many explainable AI (XAI) 
methods thus have been developed. In computer vision, a 
prevalent strategy involves generating saliency maps that 
highlight features attended to by AI, through gradient-based 
or perturbation-based methods (Adadi & Berrada, 2018). 
However, these methods typically offer limited information 
about the model's functioning. For example,  the convention 
of Grad-CAM (Selvaraju et al., 2020), a commonly used 
gradient-based XAI method, is to backpropagate to the last 
convolutional layer to provide a coarse localization map of 
features relevant to the model’s output (Molnar, 2020), 
whereas the functional role of representations developed in 
different layers are often unclear. 

Recently, a new concept of XAI, Artificial Cognition (Rit-
ter et al., 2017; Taylor & Taylor 2021), has been proposed to 
approach the black box of DNNs by adapting the experi-
mental traditions with which cognitive psychologists have 

long been addressing the similar black-box challenge in stud-
ying the human mind. It utilizes experimental psychology ap-
proaches to the understanding of machine behavior or DNNs 
(Goodfellow et al., 2009; Rajalingham et al., 2018; Richard-
Webster et al., 2018). For example, Ritter et al. (2017) con-
ducted experiments analogous to the shape bias tests well-
established in human word learning to one-shot word learn-
ing models and identified a similar bias. Volokitin et al. (2017) 
examined different mechanisms of the visual crowding effect 
in DNNs with different architectures. These attempts showed 
the potential of experimental psychology methods in inter-
preting DNNs.   

The feasibility of applying cognitive psychology method-
ologies to XAI arises from both the objectives of XAI and the 
parallels between human and artificial neural architectures. 
With the motivation to improve human understanding and 
trust in machine behavior, Miller (2017) argued for the need 
to evaluate XAI explanations with human data based on so-
cial sciences findings on what people require and expect in 
explanations. At the same time, the shared hierarchical and 
distributed processing properties of neuronal and artificial 
neural networks naturally lead us to invoke references from 
the knowledge representations in the human brain to compre-
hend AI (Cichy et al., 2016). 

Specifically, findings on the hierarchical and functional 
structure of the human brain have inspired the study of the 
architecture of DNNs. The human visual cortex exemplifies 
the hierarchical structure involving multiple levels of feature 
abstraction and the functional distributions of human cogni-
tion for a complicated task. Low-level visual features, such 
as orientations and contours, are encoded by the neurons in 
the primary visual cortex (V1), and neurons in higher-level 
regions along the hierarchy respond to more complex features 
such as shape and depth. There is also a functional division 
into the dorsal and ventral pathways for spatial location and 
object identification functions, respectively (Prinz, 2012). 
Then, the inferior temporal area contained specialized re-
gions for different object categories.  

One representative case of regional specialization is the fu-
siform face area (FFA), first identified by Kanwisher et al. 
(1997) as a specialized module for face perception by com-
paring brain activations when participants were presented 
with face stimuli vs. other types of stimuli. It has also been 
evidenced by extensive behavioral, neuropsychology, and 
other brain-imaging studies (Puce et al., 1996; see Kanwisher 
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& Yovel, 2009 for a review). Meanwhile, researchers have 
debated on the actual function of the FFA, such as whether it 
is specialized for stimuli on which individuals have expertise, 
by comparing brain activation when participants performed 
different tasks associated with different levels of expertise 
(Bilalić et al., 2013; Gauthier et al., 2000; Gauthier, 2017; 
Righi et al., 2013). These examinations illustrated well how 
experimental investigations and empirical discussions on the 
functional partitioning of the brain enhanced our understand-
ing of the information-processing mechanisms underlying the 
human mind (Kanwisher, 2017).  

Analogous to the hierarchical representations for object 
recognition in the human brain, deep learning AI model’s en-
hanced performance stems from multiple layers of feature ab-
straction (Bengio et al. 2013). However, in contrast to hu-
mans who are general problem solvers capable of performing 
different tasks to allow the use of experimental approaches to 
infer the functional organization of the brain., AI models typ-
ically are trained to perform a particular task, and thus we are 
unable to use exactly the same approach as human studies to 
examine their functional partitioning. However, since hu-
mans have the flexibility to perform different functions/tasks, 
if we know humans’ information use when they perform dif-
ferent functions/tasks, we can use this knowledge to probe the 
functions of the representations developed at different layers 
of a deep learning AI model through similarity analysis.   

Accordingly, here we proposed a new XAI method that 
uses the similarity of the important features used by AI at 
different layers to human attention when performing different 
functions/tasks on the input stimuli to probe the functional 
role of different layers in the AI model. As a proof of concept, 
here we focused on Yolo-v5s, a representative one-stage 
object detection model (Ultralytics 2021). We first obtained 
saliency maps highlighting features associated with AI’s 
decisions using FullGrad-CAM  (Liu et al., 2023) and  
ODAM (Zhao & Chan, 2023), two gradient-based methods 
derived from Grad-CAM with higher faithfulness and 
plausibility for explaining object detection models, from 
different layers in Yolo-v5s. To probe the functional role of 
different layers, we collected human attention data when they 
performed different tasks on the input images, including 
passive-viewing, object detection, and explanation  (i.e., 
providing explanations of how a particular target is detected). 
As human attention is shown to be driven by task demands 
(Hsiao & Chan, 2023; Henderson, 2017), these tasks would 
result in different attention maps: In passive-viewing, human 
attention generally follows bottom-up saliency on interesting 
regions; in object detection, participants need to accumulate 
sufficient positive information indicating the existence of a 
target; in explanation, participants may attend to all positive 
and negative (i.e., discriminative) features relevant to 
identifying the target. We then examined the similarity of the 
human attention maps to the saliency maps obtained from 
different layers of the AI model, with the layers with the 
highest similarity to each task forming a functional 
partitioning of the model. In Study 1, we tested this method 
using images from Microsoft Common Objects in COntext 

(MSCOCO) dataset (Lin et al., 2014) to understand the 
functional partitioning of the layers in the AI model. In Study 
2, we used a harder dataset, BDD-100K, a popular database 
for object detection during autonomous driving with 
occluded and degraded targets (Yu et al., 2020), to examine 
how the task demand change could help us further understand 
the functional partitioning of the model. 

Study 1: General Object Detection 

Methods 
AI Model In this study, we used a Yolo-v5s model pre-
trained on the MSCOCO dataset.  

To investigate the functional partition across different 
stages in object detectors, we selected the last layers from 17 
functional modules in Yolo-v5s, including all bottleneck 
blocks and convolutional blocks. We will present the similar-
ity scores between Yolo-v5s and human attention in different 
tasks for all 17 layers. However, in this paper, the last four 
layers in the neck (F14-17 in Figure 1) were excluded from 
the statistical analysis and inference about layers’ functional 
roles, as they are not directly comparable to human attention. 
The neck of Yolo-v5s functions to integrate features at dif-
ferent scales and outputs three feature maps to separate pre-
diction heads for detecting small, medium, and large objects 
in an image, respectively. During the detection of a small ob-
ject proposed by the small-object detecting head (Head 1), the 
feature map was output earlier from a middle layer in the neck 
(F13) and was sent to Head 1 through an immediate connec-
tion. This resulted in an empty saliency map at F17 due to the 
zero gradients with respect to Head 1. Therefore, in multi-
object detection, a low similarity between saliency maps from 
F17 and human attention during detection could be attributed 
to the layer ignoring the object (because of its scale) instead 
of differences in the patterns of features attended by AI & 
humans, assuming that humans have successfully detected all 
targets. 

 

 

Figure 1: Three pathways in Yolo-v5s to detect small, 
medium, and large objects. Numbers in black indicate the 
original order of the functional modules. Module numbers 

in blue are the functional naming we used in this paper. 
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Human Attention Data Participants. We recruited a 
sample of 118 participants aged 18 to 37 (M = 21.67; SD = 
3.78; 91 females) with normal or corrected-to-normal vision. 
59 of them (42 females) participated in the object detection 
task and explanation task, and 59 (49 females) participated in 
the passive viewing task.  

Materials & Apparatus.  The materials consisted of 160 
images from the MSCOCO dataset. In 80 classes, we used 
two test images containing the object. Two extra images were 
selected and used in practice trials. For human experiments, 
we resized and padded the images to ensure the object for 
explanation was large enough for participants to view. 
Specifically, if the largest side of that object is smaller than 
230 pixels, the images were resized, and we downscaled 
images with big objects so that objects had similar sizes 
across all images. We cropped the images so that the object’s 
position in the cropped image is relatively the same as in the 
original image. All images had a 1270 x 784 resolution, and 
we kept the original width-height ratio and resized the width 
or height to fit 1270 or 784. The boundaries are padded with 
a transparent background. To generate XAI saliency maps, 
we used the same images under these operations without the 
extra padding at boundaries. 

The programs were built using SR Research Experiment 
Builder (version 2.3.38) and controlled by a PC computer op-
erating on a Win10 system. The stimuli were displayed at the 
horizontal center of a 15.6-inch FHD Monitor (1280 x 1024 
resolution). We left ¼ of the space above the image and ¾ of 
the space below the image for the textbox. The stimuli span 
58° x 38° of visual angle at a viewing distance of 30 cm. Par-
ticipants’ eye movements were recorded using EyeLink 1000 
Plus, installed on a tower mount and set to head-stabilized 
mode, with a chin rest to keep participants’ heads stable. A 
standard nine-point calibration procedure was performed be-
fore the experiment and whenever the drift check error ex-
ceeded 1° of visual angle. 

Procedure. In the object detection task, participants were 
instructed to detect common objects for 160 images in 4 
blocks, 40 images per block, with randomized block orders 
and within-block trial orders. They were presented with the 
full list of the labels before the experiment to ensure that they 
understood all the labels’ meanings. Each trial started with a 
drift check at the screen center and then a fixation cross at the 
center of the stimuli presentation for 500 ms. Participants 
were presented with a class label for 1000 ms and asked to 
detect all the objects belonging to the class label in the image 
they were about to view and pressed a key as soon as they 
finished detecting.  To assess detection performance, 
immediately after the key press, participants were asked to 
use a mouse click to place a marker at each detected object 
location on a blank screen. Then, they were asked to click 
again on the same objects they had clicked previously on the 
original image to confirm their selection (Figure 2A). Before 
the formal trials, they completed two practice trials to ensure 
their understanding of the task. Participants’ eye movements 
when they viewed the stimuli and before pressing the key to 
indicate the end of detection were used for analysis. We 

separated the visual search phase from the clicking phase to 
avoid interference from sensorimotor planning of clicking 
during the eye movement recording of the visual search task. 

In the object explanation task, participants were instructed 
to provide explanations of 160 images which were blocked 
and randomized the same way as in the detection task. The 
images were presented with the largest target object labelled 
with a blue bounding box. Each trial started with a drift check 
at the screen center. Then, after a 500-ms fixation cross, par-
ticipants saw the image’s class label for 1000 ms and saw the 
image (Figure 2B). They were asked to type an explanation 
in a textbox about why the object in the bounding box should 
be identified as its labeled class. We prompted them to imag-
ine explaining to someone who has no existing knowledge of 
the visual object and to provide sufficient information to help 
a person identify the object or assign correct labels to the ob-
ject. Before starting the formal trials, participants were in-
structed to complete two practice trials with the two extra im-
ages. Experimenters provided feedback to them and made 
sure they understood the task before the formal trials. Their 
eye movements were recorded when they viewed the images. 
The same set of participants performed the detection task and 
the explanation task, and the explanation task was conducted 
last to avoid introducing a familiarity effect to the detection 
task.  

In the passive viewing task (Figure 2C), each trial started 
with a drift check at the screen center. A fixation cross was 
then displayed at the center for 500 ms. Participants were 
asked to view 160 images one at a time, each for 5 s, and rated 
how much they liked the image on a Likert scale of 1 to 5. 
The images were blocked and randomized the same way as 
in the detection task. Their eye movements were recorded 
when they viewed the images. 

Figure 2: Procedure for collecting human attention data for 
the (A) Detection, (B) Explanation, and (C) Passive 

Viewing Tasks on the MSCOCO dataset. 
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Human Attention Maps & XAI Methods We generated 
human attention maps by applying a Gaussian smoothing 
kernel with a 21-pixel SD (equivalent to 1° of visual angle) 
on each fixation point over all subjects in each task. 

To generate AI saliency maps comparable to human atten-
tion maps during object detection, we applied FullGrad-CAM, 
an XAI algorithm that was derived from Grad-CAM and was 
specially designed for object detection models. Let 𝑁!"# be 
the total number of objects detected, then the FullGrad-CAM 
saliency map for all objects of that class is: 

      𝑆$ =	∑ 𝜇	(𝑅𝑒𝐿𝑈	(∑ %&!

%'"
⊙𝐴()#$

(*+ ))%&'
,*+ ),    (1) 

where 𝑦,  is the output classification probability of 𝑚 -th 
detected object, 𝐴( is the activation map from the 𝑘-th layer 
with 𝑁-. channels in total, 𝑅𝑒𝐿𝑈 is the rectified linear unit 
activation function, 𝜇 is the max-min normalization function 
that ensures the saliency maps scale between 0 to 1, and	⊙ 
represents the Hadamard product. By replacing the global 
average pooling operation in the conventional Grad-CAM 
method, FullGrad-CAM preserves the spatial information in 
the gradient maps, which is particularly informative for 
object detection. 

To compare object detectors’ attention with human 
attention during the explanation task, where a specific object 
in an image is asked for explanation, ODAM is applied to 
generate the corresponding instance-specific saliency map of 
the object.  An ODAM saliency map for the 𝑚-th object is:  

         𝑆/(,) = 𝑅𝑒𝐿𝑈	(∑ %&!

%'"
⊙𝐴())#$

(*+ ,  (2) 
When there is only one ground truth target, ODAM’s out-

put is equivalent to a FullGrad-CAM saliency map. While in 
multi-object detection, FullGrad-CAM can be viewed as a 
normalized saliency map that is averaged over multiple 
ODAM maps corresponding to all detected objects. 

In this study, we generated saliency maps using both XAI 
methods on all 17 convolutional layers selected. We 
measured the similarity between human and XAI saliency 
maps using Pearson correlation coefficient (PCC) to probe 
the function of each layer across different stages in object 
detectors by leveraging our understanding of human attention 
strategies, thus revealing the functional partitioning of the 
network. In particular, we correlated FullGrad-CAM saliency 
maps from each layer separately to human attention maps in 
the detection and passive viewing tasks, and between ODAM 
saliency maps and human attention maps in the object 
explanation task. Out of 160 images, we used only those 
where Yolo-v5s successfully detected objects to ensure a 
valid comparison to human attention. 

Results 
Here we examined the human-AI-attention similarity and 

its variation across layers in Yolo-v5s (Figure 4). Figure 3 
illustrates examples AI saliency maps and human attention 
maps during different tasks. For each task, a paired-samples 
t-test was conducted to compare the human-AI similarity 
score difference between the neck and the backbone, where 
the score is defined as the average PCC value over all layers 

 
Figure 3: Example human attention maps and XAI 

saliency maps.  

 
Figure 4: The similarity between human attention maps 

and XAI saliency maps generated from backbone layers 
(F1-F9) and neck layers (F10-F17) in Yolo-v5s during 

different tasks for MSCOCO object detection, as measured 
by Pearson correlation coefficient (PCC). The similarity 
scores of F14-17, excluded from statistical analysis, are 

displayed transparently. 
 

within the neck and within the backbone, for 144 images 
where Yolo-v5s made successful detections. Note that the last 
four layers in the neck (F14-F17) are excluded from the anal-
ysis. Our analysis indicates that attention maps from the neck 
of Yolo-v5s (M = .362, SD = .115) exhibited higher similarity 
to human attention maps during object detection, compared 
to the backbone (M = .298, SD = .082), t(143) = 7.12, p < .001. 
When comparing AI and human attention during passive 
viewing, we found that the neck (M = .192, SD = .161) exhib-
ited lower similarity to human attention than the backbone (M 
= .208, SD = .126) with marginal significance, t(143) = -1.94, 
p = .00539. Lastly, when comparing AI and human attention 
during object explanation, the neck (M = .292, SD = .138) 
showed higher similarity than the backbone (M = .276, SD 
= .096) with marginal significance, t(143) = 1.97, p = .0504. 
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Study 2: Object Detection in Driving Scenarios 

Methods 
AI Model and Dataset We selected BDD-100K, a popular 
database for object detection during autonomous driving (Yu 
et al., 2020). The dataset includes 10 target categories, from 
which we chose ‘car’, ‘truck’, and ‘bus’ as the target 
categories for vehicle detection, and ‘person’ and ‘rider’ for 
human detection. We trained Yolo-v5s, from scratch on a 
self-curated training set with these five target labels. We 
followed the same criteria of layer selection in Study 1.  
 
Human Attention Data Participants. We recruited 79 
participants aged 18 to 37 (M = 24.03; SD = 4.60; 62 females) 
with normal or corrected-to-normal vision. 60 of them (48 fe-
males) participated in the vehicle task and 60 (48 females) 
participated in the human task. To identify human experts for 
driving-scene objects, they all had driving licenses. 

Materials & Apparatus. According to the suggestion of 
existing research that young adults have a location memory 
limit of 3 to 5 items (Cowan, 2010), we selected stimuli from 
the dataset that contains 1 to 4 targets. We selected 160 
images for vehicle detection and 160 for human detection. 
In the detection task, stimuli (1280 x 720 pixels) were 
displayed at the center of a 15.6-inch monitor (1280 x 1024 
pixels) which spans 34.2 ° x 20.8° of visual angle at a viewing 
distance of 55 cm. In the explanation task, they were 
presented 30 pixels to the top of the screen with space for the 
textbox below the image. Participants’ eye movements were 
recorded using the same equipment and setup as Study 1.  

Procedure. In the detection task, the procedure was 
identical to that in Study 1 except that participants were not 
presented with the target label in each trial (Figure 5A). 
Before the experiment, they were instructed to detect all cars, 
buses, and trucks in the vehicle detection task and pedestrians 
or riders in the human detection task. The explanation task 
procedure was identical to that in Study 1 except that 
participants did not see the object label in each trial (Figure 
5B). Additionally, in each image as the target for explanation, 
we selected the target object influenced by the most difficult 
conditions: occlusion (with part of the object occluded by 
other objects or image boundary) and degradation (with 
object features influenced by uneven lightening, shadow, 
reflection, motion blur, or night vision). These conditions 
were determined according to the majority choice of three 
raters with good inter-rater reliability (Occlusion: α = .881; 
Degradation: α = .877; Cronbach, 1951). Among targets 
influenced by the same number of difficult conditions, we 
chose the one with the largest bounding box. 
 
Human Attention Maps & XAI Methods The procedure of 
human and AI attention maps generation was identical to 
Study 1, except that due to the difference in image sizes, here 
we applied a Gaussian smoothing kernel with a 30-pixel SD 
(equivalent to 1° of visual angle on BDD images) when 
generating human attention maps. 

 

 
Figure 5: Procedure for collecting human attention data 

for the (A) Detection and (B) Explanation Task using the 
BDD dataset. 

 
Figure 6: The similarity between human attention maps 

and XAI saliency maps generated from backbone layers 
(F1-F9) and neck layers (F10-F17) in Yolo-v5s for (A) 

vehicle detection and (B) human detection, as measured by 
Pearson correlation coefficient (PCC). The similarity scores 
of F14-17, excluded from statistical analysis, are displayed 

transparently. 

Results 
Yolo-v5s made successful detections on 86 images for 
vehicle detection and 68 images for human detection. 
Comparing between AI and human attention during vehicle 
explanation, the neck of Yolo-v5s (M = .579, SD = .153) 
exhibited higher similarity to human attention than the 
backbone (M = .521, SD = .116), t(85) = 4.33, p < .001. 
Similarly, for human explanation, the neck of Yolo-v5s (M 
= .595, SD = .084) also exhibited higher similarity to human 
attention than the backbone (M = .516, SD = .072), t(67) = 
6.86, p < .001. Comparing AI and human attention during 
vehicle detection, there was no significant difference between 
the neck (M = .459, SD = .147) and the backbone (M = .456, 
SD = .135), t(85) = .299, p = .766. Similarly, for human 
detection, the difference between the neck (M = .406, SD 
= .136) and the backbone (M = .392, SD = .114) was not 
significant, t(67) = 1.63, p = .108. 
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Discussion 
Here we introduced a new XAI method to investigate the 
functional partition in an AI model (Yolo-v5s) by comparing 
it with human cognition. Inspired by how cognitive neurosci-
entists investigate the functional architecture of the brain by 
asking participants to perform different cognitive tasks, and 
the observation that human attention is task-specific, here we 
utilized human attention in different tasks and examined its 
similarity to the representations from different layers of 
Yolo-v5s to comprehend their functional roles.   

We first tested our method on Yolo-v5s for general object 
detection on the MSCOCO dataset to examine its functional 
partitioning. We correlated saliency maps from each layer 
with human attention during object detection, object 
explanation, and passive viewing tasks, and compared the 
overall similarity scores between the backbone and the neck 
of Yolo-v5s under these three task conditions.  

Interestingly, Yolo-v5s exhibited an opposite trend in 
human-AI similarity score when compared with human’s 
attention during detection and passive viewing. Specifically, 
the neck had a higher similarity score than the backbone in 
the comparison with human attention during detection, and a 
lower similarity score than the backbone for passive viewing 
(although this difference was not significant in the t-test). 
During object detection, humans attend to diagnostic features 
for identifying the target objects from background distractors 
(e.g., Qi et al., 2023, although in object categorization). In the 
model, a higher similarity to human object-detection 
attention maps in the neck than in the backbone suggested 
that diagnostic features for identifying the target objects were 
better represented in the neck than in the backbone. In 
contrast, during passive viewing, there was no specific task 
demand and human attention was guided mainly by bottom-
up saliency (Elazary & Itti, 2008). Therefore, in the model, a 
higher similarity to human passive-viewing attention maps in 
the backbone than the neck suggests that the backbone 
encoded more bottom-up saliency information.  

Our findings above also contributed to an extended 
understanding of human’s attention strategies. The similarity 
of Yolo-v5s's neck to human attention during explanation fell 
between the similarity scores for human attention during the 
other two tasks, and there was no significant difference in 
similarity between the neck and backbone. This result 
suggested that humans may employ a combination of 
diagnostic features and salient features when explaining 
object detection. This finding is congruent with previous 
studies comparing human and deep neural networks in image 
classification (Qi et al. 2023), which revealed that humans 
employed a focused fixation strategy on diagnostic features, 
attending to only sufficient information for making the 
decision, in contrast to an explorative fixation strategy on 
more relevant and contextual features when explaining how 
the object was classified to a given category. 

We have also tested our methods on Yolo-v5s under more 
realistic and difficult conditions: vehicle and human 
detection/explanation in driving scenarios with occlusions 
and degradations using stimuli from BDD. The comparison 

with human attention during object detection showed a 
similar pattern to Study 1 with MSCOCO, where the neck 
exhibited higher similarity than the backbone (although this 
difference was not significant in the t-test). Interestingly, the 
comparison with human attention during vehicle/human 
explanation showed a similarity score pattern different from 
our findings in the first study: the neck exhibited higher 
similarity to human attention than the backbone. This result 
suggests that humans may use a different strategy to explain 
vehicle and human detection with images from BDD as 
compared with that used in explaining the detection of 
general object categories with images from MSCOCO. For 
explaining difficult human or vehicle detection, participants 
attended to more diagnostic features than salient features, in 
contrast to detecting objects of multiple general categories 
where both salient and diagnostic features were attended to. 
This explanation strategy change may be related to task 
demands. There were multiple categories in MSCOCO that 
differed in many low-level features. Thus, participants may 
use these differences in low-level salient features to explain 
how to identify an instance in one category against other 
categories. In contrast, detecting humans or vehicles with 
BDD involved detecting only one category. Therefore, the 
explanations may focus on the minimum amount of 
diagnostic/positive features that give them the confidence to 
identify it as a hit.  

The method described in this paper has enhanced our 
comprehension of the mechanism of Yolo-v5s with a human-
centered explanation. While preliminarily we interpreted the 
functions of layers based on the predefined backbone/neck 
split, our method can potentially be used to discover a more 
detailed human-attention-guided functional partitioning in 
more complicated AI systems, which may differ from the 
typical architectural partitioning specified by AI developers. 

In conclusion, we introduced a new XAI method that 
probes the functional partition in an AI system by comparing 
its attended features at different layers with human attention 
driven by different task demands. Using object detection 
model Yolo-v5s as an example, we showed that in multi-
category general object detection with MSCOCO, human 
attention for object detection had higher similarity to features 
in Yolo-v5s’s neck than the backbone, suggesting that the 
neck encoded diagnostic features for detection. In contrast, 
human attention during passive viewing had the opposite 
trend, suggesting that the backbone encoded salient local 
features that humans typically attended to during passive 
viewing. By comparing the human-AI-similarity score of the 
explanation tasks, we found that humans attended to a 
combination of diagnostic and salient features during 
explaining multi-category general object detection but 
attended to mainly diagnostic features when explaining 
human/vehicle detection in driving scenarios. Thus, in 
addition to providing human-centered explanations on the 
functional partition of AI systems, our method demonstrated 
potential applications in understanding human cognition 
using the functional partition in AI as a model.  
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