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Scatter Correction for Positron Emission

Mammography

Jinyi Qi and Ronald H. Huesman

Center for Functional Imaging, Lawrence Berkeley National Laboratory, Berkeley,
CA 94720, USA.

E-mail: {jqi,rhhuesman}@lbl.gov

Abstract. In this paper we present a scatter correction method for a regularized
list mode maximum likelihood reconstruction algorithm for the positron emission
mammograph (PEM) that is being developed at our laboratory. The scatter events
inside the object are modeled as additive Poisson random variables in the forward
model of the reconstruction algorithm. The mean scatter sinogram is estimated using
a Monte Carlo simulation program. With the assumption that the background activity
is nearly uniform, the Monte Carlo scatter simulation only needs to run once for each
PEM configuration. This saves computational time. The crystal scatters are modeled
as a shift-invariant blurring in image domain because they are more localized. Thus,
the useful information in the crystal scatters can be deconvolved in high-resolution
reconstructions. The propagation of the noise from the estimated scatter sinogram
into the reconstruction is analyzed theoretically. The results provide an easy way to
calculate the required number of events in the Monte Carlo scatter simulation for a
given noise level in the image. The analysis is also applicable to other scatter estimation
methods, provided that the covariance of the estimated scatter sinogram is available.

1. Introduction

A rectangular positron emission tomograph (PEM), dedicated to imaging the human

breast, is under development at our Laboratory [1]. The tomograph consists of four

banks of detector modules (two banks of 3×3 modules left and right and two banks

of 3×4 modules top and bottom). Each module consists of an 8×8 array of 3×3×30

mm3 lutetium oxyorthosilicate (LSO) crystals. The maximum field of view (FOV) of

the system is 96×72×72 mm3. The LSO crystals are coupled to a photo-diode (PD)

array at the front and a photo multiplier tube (PMT) at the back. By measuring the

signal from both the PD and the PMT, the depth of interaction (DOI) of the photon

can be estimated [2]. For each crystal, the system digitizes the DOI of the photon with

three bits. Each detector is placed in coincidence with all detectors in the other three

banks, giving rise to 172 million possible lines of response (LORs). The system operates

exclusively in fully 3D mode.

The data from the new tomograph are stored in list mode format because the

total number of detections is generally far less than the total number of LORs. A
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list mode likelihood reconstruction algorithm has been developed to reconstruction the

data with explicit modeling of the DOI information in the forward projection matrix [3].

Here we present a scatter correction method for this list mode likelihood reconstruction

algorithm. The scatter events inside the object are modeled as additive Poisson random

variables in the likelihood function. The expectation of the scatters is estimated before

the reconstruction starts. A Monte Carlo simulation method is used to estimate the

scatter sinogram; however, the reconstructions method can use the scatter sinogram

estimated from other approaches as well. The scatter events inside detector crystal are

modeled as a shift invariant blurring in the image domain because they are relatively

localized to the original source. Unlike the traditional convolution-subtraction methods

[4], this blurring operator is incorporated in the forward model of the reconstruction

algorithm. The noise propagation from the Monte Carlo scatter sinogram into the

reconstructed image has also been theoretically analyzed. Such analysis is useful in

determining the total number of events that is required for the Monte Carlo scatter

simulation.

2. Theory

2.1. List Mode Likelihood Reconstruction with Scatter Correction

Histogrammed PET data are generally modeled as a collection of independent Poisson

random variables. By treating the detections in each LOR separately, we can derive the

appropriate log-likelihood function for list mode data [3]:

L(x) =
K∑

k=1

log


 N∑

j=1

p(ik, j)xj + sik


− N∑

j=1

εjxj, (1)

where xj is mean activity inside the jth voxel of the unknown image, p(i, j) is the

probability of detecting an event from the jth voxel in the ith LOR, si is the expectation

of the scatter in the ith LOR, ik is the index of the LOR of the kth detection,

εj ≡ ∑
i p(i, j), K is the total number of detections, and N is the total number of

image voxels. si has to be estimated before the reconstruction.

The maximum likelihood (ML) estimate can be found by maximizing (1). A popular

ML algorithm for PET reconstruction is the expectation maximization (EM) algorithm

[5, 6, 7]. However, the ML solution is noisy. Hence some form of regularization (or prior

function) is needed to reconstruct a reasonable image. The prior function used in [3] is

a Gaussian prior whose logarithm is of the form

βU(x) =
β

2
(x − m)′R(x − m), (2)

where β is the smoothing parameter, m is the estimated mean of the unknown image,

and R is a positive definite (or semidefinite) matrix.

Combining the likelihood function (1) and the image prior (2), the reconstruction

is found as

x̂ = arg max
x≥0

[L(x) − βU(x)] . (3)
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For further simplification, R is chosen to be a diagonal matrix, so the EM algorithm

can be used to solve (3). The EM update equation is [3]

x̂n+1
j =

1

2

(
mj − εj

βrjj

)
+

√√√√1

4

(
mj − εj

βrjj

)2

+
x̂n

j

βrjj

K∑
k=1

p(ik, j)∑N
l=1 p(ik, l)x̂n

l + sik

,(4)

where rjj is the (j, j)th element of R.

2.2. Estimate Mean Scatter Sinogram using Monte Carlo Simulation

The reconstruction method described above requires the mean scatter sinogram be

known beforehand. For conventional PET systems, a scatter sinogram can be estimated

using the convolution method [4], the hardware dual energy windows method [8], the

Monte Carlo simulation method [9], and analytical methods [10, 11]. Among these

methods, the Monte Carlo simulation can model multiple scatters and various effects in

the photon detection process. Thus, it can achieve high accuracy, albeit time consuming.

In addition, most other scatter estimation methods require fitting a computed scatter

sinogram to the tails of the emission sinogram that consist of pure scatter events. This is

not practical for the PEM geometry, as the whole FOV is filled with activity. Therefore,

we adopt the Monte Carlo method here.

The Monte Carlo scatter simulation requires both emission and attenuation maps.

They are generally obtained from an initial reconstruction without scatter correction.

One advantage of breast imaging with FDG is that the background is quite uniform.

If we can assume that the whole FOV is filled with uniform activity and that features

such as cancerous lesions account for a small fraction of the radioactivity, then we may

only need to run the Monte Carlo simulation once for each system configuration, which

can save a large amount of computational time. A potential problem is that in real

situations the breast may not fill the whole FOV even by applying some compression

using the top and bottom detector banks. In this case we will need first to estimate

the support of the breast (either from projection data or an initial reconstruction) and

then run the Monte Carlo simulation to estimate the scatter sinogram. When time is

limited, we can either smooth the Monte Carlo scatter sinogram to reduce its variance,

or use the image based scatter estimation algorithm in [11] instead.

We used the same Monte Carlo simulation program that we developed for generating

list mode data to estimate the scatter sinogram. The program traces all 511 keV

photon pairs randomly generated inside the FOV. For each photon, it first computes the

interaction point based on the attenuation length, and then it determines whether it is

a photoelectric or Compton interaction. If it is photo-electric, it dumps all of its current

energy; if it is Compton, it computes the deposited energy and the new direction of the

photon using the Klein-Nishima formula, and it continues to trace the photon until the

photon has dumped all its energy or traveled outside of the system. A photon is detected

when the energy deposited at one detector is greater than a preselected threshold. A

coincidence event is recorded if both photons are detected. The Monte Carlo simulation

program histograms the scattered and unscattered (true) events separately. In the
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current implementation we have not used any variance reduction techniques or other

acceleration methods.

For each individual data set, the scatter sinogram is then estimated by

ŝi =
total events in the data

total events in Monte Carlo simulation
sMC

i , (5)

where sMC
i is the number of scatter events in the ith LOR in the Monte Carlo simulation.

This assumes the scatter fraction and profile in each data set are the same, as most

scatters are generated from the uniform background.

2.3. Noise Propagation

Noise is inevitable in the Monte Carlo scatter sinogram due to the Poisson nature of the

counting process. The longer the simulation runs, the less noise there is. This presents

a tradeoff between time and accuracy. In this section we analyze how the noise in the

scatter sinogram propagates into the reconstruction.

We denote the MAP reconstruction in (3) as x̂(y, ŝ) to indicate that x̂ is dependent

on estimated scatter sinogram ŝ, where y denotes the collection of the detected

events. We approximate x̂(y, ŝ) using a first order Taylor series expansion at the point

(y, ŝ) = (ȳ, s), where ȳ is the expectation of y

x̂(y, ŝ) ≈ x̂(ȳ, s) + ∇sx̂(ȳ, s)(ŝ − s) + ∇yx̂(ȳ, s)(y − ȳ). (6)

From (6), we have the following expression for the covariance of noise in the

reconstruction caused by the noise in the estimated scatter sinogram

Σs(x̂) ≈ ∇sx̂(ȳ, s)Σ(ŝ)[∇sx̂(ȳ, s)]′, (7)

where Σ(ŝ) is the covariance matrix of the estimated scatter sinogram.

To compute ∇sx̂(y, s), we follow the idea presented in [12]. We restrict our

attention to the situations where the solution of (3) satisfies

0 =
∂

∂xj

[L(y|x, s) − βU(x)]
∣∣∣x=x̂(y,s), j = 1, . . . , N. (8)

While this assumption precludes inequality constraints, it should work here because of

the uniform background. Differentiating (8) with respect to si by applying the chain

rule and solving the resulting equation, we get

∇sx̂(y, s) =
{
−∇xx [L(y|x, s) − βU(x)] |x=x̂(y,s)

}−1

∇xs [L(y|x, s) − βU(x)] |x=x̂(y,s), (9)

where the (j, k)th element of the operator ∇xx is ∂2

∂xj∂xk
, and the (j, l)th element of the

operator ∇xs is ∂2

∂xj∂sl
.

From (1) and (2), we can derive

−∇xx [L(y|x, s) − βU(x)] = P ′ diag

[
yi

(Px + s)2
i

]
P + βR
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and

∇xs [L(y|x, s) − βU(x)] = P ′ diag

[ −yi

(Px + s)2
i

]
.

Then

∇sx̂(ȳ, s) =

{
P ′ diag

[
ȳi

(P x̂ + s)2
i

]
P + βR

}−1

P ′ diag

[ −ȳi

(P x̂ + s)2
i

]
. (10)

Substituting (10) into (7) results in

Σs(x̂) ≈
{

P ′ diag

[
ȳi

(P x̂ + s)2
i

]
P + βR

}−1

P ′ diag

[
ȳi

(P x̂ + s)2
i

]
Σ(ŝ) diag

[
ȳi

(P x̂ + s)2
i

]
P

{
P ′ diag

[
ȳi

(P x̂ + s)2
i

]
P + βR

}−1

. (11)

In general, x̂ is a slightly blurred version of x, so the projection P x̂ + s is

approximately equal to the mean of the data, ȳ. Therefore, we can simplify the above

expression to

Σs(x̂) ≈ [F + βR]−1P ′ diag

[
σ2

ŝi

ȳ2
i

]
P [F + βR]−1, (12)

where F = P ′ diag
[

1
ȳi

]
P is the Fisher information matrix and σ2

ŝi
is the variance of ŝi.

Eq. (12) is the covariance matrix of the noise in the reconstruction that is propagated

from the estimated scatter sinogram.

The covariance of noise in the reconstruction caused by the Poisson noise in the

data is [12]

Σy(x̂) ≈ ∇yx̂(ȳ, s)Σ(y)[∇yx̂(ȳ, s)]′

≈ [F + βR]−1F [F + βR]−1. (13)

Adding (12) and (13), we get the covariance of the total noise

Σtotal(x̂) = [F + βR]−1P ′ diag

[
σ2

ŝi

ȳ2
i

+
1

ȳi

]
P [F + βR]−1. (14)

It shows that the noise from the scatter sinogram is equivalent to an increase of the

noise in the data by a factor of 1+σ2
ŝi
/ȳi, where σ2

ŝi
/ȳi is equal to the scatter fraction of

the ith LOR divided by the ratio between the total number of detections in the Monte

Carlo simulation and the total number of detections in the data. For example, if the

average scatter fraction is 30%, and the Monte Carlo simulation has 30 times as many

events as the data, then the increase of the variance in reconstruction caused by the

scatter sinogram will be about 1%. Thus, (14) can be used to determine the number of

events required in the Monte Carlo simulation and to design better simulation strategy.
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2.4. Modeling of Crystal Scatters

Monte Carlo simulation shows that about 33% of detected events have undergone

Compton scatter inside LSO crystal but not inside the object (see Section 3). We call

these events “crystal scatters.” Although we can model crystal scatters the same way as

scatters inside the object, we believe that crystal scatters carry more useful information

than scatters inside the FOV because the attenuation length of the LSO crystal is much

shorter than that of the soft tissue. Photons scattered inside a crystal are usually

detected by nearby detectors. Thus, the mispositioning of crystal scatters is relatively

local to the original source. This local property provides us with the opportunity to

extract useful information from crystal scatters.

For histogrammed data, the crystal scatters can be modeled using a sinogram

blurring function [13, 14]. However, list mode reconstruction precludes us from using the

sinogram approach. Therefore, we propose the following method. The detectors used in

the PEM scanner are capable of measuring depth of interaction information and hence

can achieve nearly isotropic resolution in all three dimensions. We then can assume

that the detection response function of a 511 keV photon is shift invariant for photons

that have the same incident angle and rotation invariant for photons with different

incident angles. With this assumption we can model the mean of crystal scatters using

a shift-invariant spherically symmetric blurring function in image space; i.e., the mean

detection for each LOR is now

yi =
∑
j

p(i, j)[Hx]j + si, (15)

where H is the blurring function used to model crystal scatters and si is the mean

contribution of scatters from the object. Hx can be easily computed using the Fast

Fourier Transform, since H is a shift-invariant operator. The model in (15) is quite

similar to the one that Reader et al. [15] used to model finite resolution effects in list

mode reconstruction.

Bailey and Meikle [4] proposed modeling scatters as a convolution of the true

projection in the sinogram domain. Some other researchers have also modeled scatters

as a convolution of the real image [16, 17]. Our approach differs from these work in

several respects. The convolution in the previous authors’ methods was mainly used to

model object scatters, and the scatters were subtracted from the reconstructed image;

whereas here the blurring function is used to model crystal scatters, and scatters are

corrected using deconvolution to restore high resolution. Because soft tissue has a long

attenuation length, object scatters do not have the local property compared to crystal

scatters. Hence, we think (15) is more suitable for modeling crystal scatters than object

scatters.
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Figure 1. (a) The rectangular PEM geometry. (b) Simulation setup for studying
scatter. Uniform flood source (96×72×252 mm3) extending out of FOV by 180 mm in
axial direction is surrounded by scatter medium (water) (372×372×180mm3).

3. Simulation Results

3.1. Scatter Distribution

The Monte Carlo simulation uses the appropriate energy-dependent cross sections for

the interaction of photons in water (in the field of view) and in the LSO detector.

Fig. 1a shows the rectangular geometry of the PEM scanner. In the simulations we did

not model the energy resolution of the detectors (i.e., the energy resolution was perfect).

It means that we could reject all scatter events if we had used an energy threshold of

511 keV. An energy threshold (270 keV) that was lower than that expected for the

real scanner (typically 350 keV) was used to partially compensate the perfect energy

resolution. With only a flood source inside the FOV, the average detection efficiency

was about 13% for the energy threshold of 270 keV (there was no upper limit). Of all

the detected events, there were about 35% unscattered events, 32% events scattered in

the FOV, and 33% events scattered in the detector (not scattered in the FOV).

For breast imaging, there is a significant portion of activity outside of FOV. The

out-of-FOV activity contributes to both randoms and scatters. Here we study the scatter

events from the activity out-of-FOV using the setup shown in Fig. 1b. The uniform flood

source is about 25 cm long in the axial direction. Fig. 2 shows the scatter fraction image

obtained from the Monte Carlo simulation. The voxel intensities represent the fraction

of the events originating from each voxel that are scattered and detected. With the

out-of-FOV activity and scatter medium, more scatter events are detected. The extra

scatters originate from both inside and outside the FOV, as shown in Fig. 2c. The

overall increase of the scatter events is about 7.7% (relative to the number of the scatter

events without out-of-FOV object), which is relatively small. Thus, we choose to ignore

the out-of-FOV activity in the scatter correction.
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Figure 2. The front view center slice (a) and the side view center slice (b) of the scatter
fraction image. The voxel intensities represent the fraction of the events originating
from each voxel that are scattered and detected (not the image reconstructed from
scatter events). (c) Plot of the average scatter fraction as a function of the axial
distance from the front of the scanner. The dashed line denotes the fraction of scatter
without out-of-FOV activity and scatter medium. The dotted line indicates the axial
limit of the PEM scanner.

3.2. Scatter Correction

We simulate a subject weighing 70 kg and an injection of 1 mCi of FDG, which is

uniformly distributed within the body. This activity density within the 72×72×96 mm3

field of view and an imaging time of 60 s gives about 16 million disintegrations within

the imaging volume, resulting in about 2 million detected events.

Fig. 3 shows an example of a reconstruction of a simulated flood source with and

without scatter correction. The reconstructed image without scatter correction (Fig. 3a)

shows brighter at the center of the FOV and darker at the corners in the front view

slice. The scatter-corrected image (Fig. 3b) shows more uniform activity distribution

and reflects the correct activity level.

3.3. Crystal Scatters

3.3.1. Computing the Blurring Kernel We chose eight points to study crystal scatters.

For each point, we generated Monte Carlo simulated data of a point source with only

crystal scatters (no scatter in FOV) and reconstructed using the list mode ML algorithm

without any scatter modeling. The reconstructed point source images are shown in

Fig. 4. The three views are the front view, side view and top view of the plane through
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Figure 3. Front view slices and the average horizontal profiles of the simulated
reconstructions: (a) without scatter correction; (b) with scatter correction. The
scatter-corrected image shows a more uniform activity distribution and reflects the
correct activity level. Note that the gray level maps in (a) and (b) are different.

the point source. The point spread functions are close to being spherically symmetric

and shift invariant. We fitted the point spread functions with a sum of two exponentials

h(r) = a1 exp(−λ1r) + a2 exp(−λ2r), (16)

where r is the distance from the point source.

Fig. 5 shows the fitting function with the comparison to the measured results

from each reconstructed point source image. The measured profiles were obtained by

averaging the intensities of all the voxels within a certain range of distance from the

point source. It shows that the proposed function (a1 = .9943, λ1 = 3.8891, a2 = .0063,

λ2 = .5567) has a good fit for all point spread functions at least up to the 20 mm radius,

which also confirms the previous observation that these point spread functions are close

to shift invariant.

3.3.2. Reconstructions Using the blurring function h(r) we obtained, we reconstructed

a point source on a warm background. In Fig. 6 we plotted the contrast recovery

coefficient (CRC) of the point source vs. background noise curves with and without

modeling of the crystal scatters. CRC is defined as the ratio between the measured

contrast and the true contrast. The points were obtained using different prior

parameters. Here we used the gamma prior [18] because the EM update equation (4)

for Gaussian prior is very sensitive to round-off errors when βrjj is small. The results

show that by modeling the crystal scatters we can achieve a higher contrast at the same

background noise level compared to the reconstruction without the modeling. It also

shows that the improvement is more pronounced when the contrast is high.
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Figure 4. The reconstructed point source images with crystal scatters. The numbers
above each image are the (x,y,z) coordinates of the point source. The three views are
the top view (top), front view (lower left), and side view (lower right) through the
point source. In each image the values are normalized with respect to the voxel that
contains the point source and are thresholded at 0.05.

4. Conclusion

We have implemented a scatter correction method for the list mode likelihood

reconstruction algorithm for the PEM and have presented simulation results. The object

scatters are modeled as additive Poisson random variables in the forward projection.

The specific application of PEM allows us to assume that the background emission

activity and attenuation are quite uniform. This simplifies the the Monte Carlo scatter

simulation. The crystal scatters are modeled using a shift invariant blurring function in

image space, assuming that the detector can achieve isotropic resolution by measuring

DOI information. Reconstructions of computer simulated data show that by modeling

of crystal scatters we can achieve higher contrast at any given background noise level

compare with the reconstruction without the modeling. The improvement is more

pronounced at high resolution.
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Figure 5. The comparison of the measured point spread function profiles (‘+’) and
the exponential fitting function (solid line). The numbers above each plot are the
(x,y,z) coordinates of the point source. The x-axis is the distance (mm) from the point
source, and the y-axis is the mean activity.
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Figure 6. The comparison of CRC vs. background standard deviation plots for images
reconstructed with (‘*’) and without (‘◦’) modeling of crystal scatters. The points on
the curves were obtained with different smoothing parameters.
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We have also theoretically analyzed the noise propagation from the estimate scatter

sinogram into the final reconstructed image. The results show that the noise propagated

from the estimated scatter sinogram is equivalent to increasing the noise variance in each

LOR by a factor of 1 + σ2
ŝi
/ȳi. If we assume the scatter fraction for each LOR is the

same, then this factor is constant for all LORs, and it provides an easy way to calculate

the required number of events in the Monte Carlo scatter simulation for a given noise

level in reconstruction. This noise analysis is applicable to other scatter estimation

methods, provided that an estimate of the covariance of the estimated scatter sinogram

is available.
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Appendix

A Validation of (12) Using Monte Carlo Simulation

We conducted a computer Monte Carlo simulation to validate (12). We simulated a

one ring PET system with only 40 detectors so that (12) can be easily computed. The

ring diameter was 172mm. The number of LORs per view was 32. The image was

32×32 3mm square pixels. The phantom was a uniform disk as shown in Fig. A1. The

projection data were generated by forward projecting the noise free image and adding

a uniform scatter sinogram. The total number of true events was 100000, and the total

number of scatter events was 50000. We reconstructed the noise free projection data

with noisy scatter sinogram estimate. The Monte Carlo scatter estimate was simulated

using a Poisson random number generator. The noise level was controlled by the total

number of events in the estimated scatter sinogram. At each noise level, we generated

1000 independent noisy scatter estimates, and used it to reconstruct the noise free

projection data. A variance image is then computed from these 1000 independently

reconstructed images. Since the projection data were noise free, the variance in the

reconstructed images was solely due to the noise in the scatter estimate.

Fig. A2 shows the comparison of the standard deviation images that were computed

from (12) and that from 1000 reconstructions. The noise level was 50000 events. Since

(12) does not model the non-negativity constraint used in the reconstruction, it cannot

predict the variance in the zero background region. Fortunately, we are less interested in

the background, so we masked both variance images with the true phantom image. The

images show that within the support region of the disk phantom, the variance computed
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Figure 1. The disk phantom image (left) used in the computer simulation and the
mean image of 1000 independent reconstructions with noisy scatter estimate (right).
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Figure 2. The standard deviation images that were obtained from theoretical
approximation (12) (left) and that obtained from 1000 independent reconstructions
(right). Both images are masked with the disk phantom image.
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Figure 3. The average variance of all pixels within the disk as a function of the
number of Monte Carlo simulated scatter events. Solid line denotes the theoretical
predictions and ’×’ denotes the results from 1000 reconstructions.

from (12) is quite close to that obtained from 1000 reconstructions.

In Fig. A3 we plot the average variance of all the pixels within the disk as a function

of the noise level (the number of Monte Carlo simulated scatter events). It shows that

the variance in reconstruction is inversely proportional to the count level of the Monte

Carlo scatter simulation and that the theoretical approximation matches the Monte
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Carlo results reasonably well.
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