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ABSTRACT OF THE DISSERTATION

Nonparametric Estimation, Forecasts, and Model Evaluation of Spatial Temporal Point

Process Models for California Seismicity

by

Joshua Seth Gordon

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2017

Professor Frederic R Paik Schoenberg, Chair

Point processes models describe random sequences of events. One key model is the self-

exciting point process model where the covariance between events is positive. Models of this

type have many applications including seismology, epidemiology, and crime. While model

estimation is a primary focus, quantification and assessment of model performance are also

useful at identifying departures of model fit from the data. This dissertation discusses two

applications of self-exciting point process models. The proposed models are fit to data

sets from California seismology and plague data. Performance is verified using simulation

studies. We also introduce various model evaluation techniques and conduct detailed model

evaluations.

This dissertation is organized as follows: Chapter 1 of this dissertation provides prelimi-

nary background on point process models. Chapter 2 introduces a nonparametric technique

for estimating self-exciting point process models and proposes an extension which seeks to

capture anisotropy in the spatial distribution of aftershocks. A forecasting approach is de-

veloped and model performance is evaluated retrospectively in comparison to Helmstetter

et al. (2007). Chapter 3 describes a mathematical curiosity that allows one to compute

exact maximum likelihood estimates of the triggering function in a direct and extremely

rapid manner when the number p of intervals on which the nonparametric estimate is sought

equals the number n of observed points. Chapter 4 uses Voronoi residuals, super-thinning,

ii



and some other residual analysis methods to evaluate a selection of earthquake forecast

models in the Collaboratory for the Study of Earthquake Predictability (CSEP). Chapter

5 introduces NonParametricHawkes, an R package for estimation, forecast, and evaluation

of spatial-temporal models, created to increase the accessibility of the methods introduced

here.
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ĥ(r|m,Region ∈ (North, South)), with approximate 95% confidence bands.

The estimated densities for North and South are significantly different from

one another (χ2
11 = 151.51, p < 2.805e−26. (c) Estimated anisotropic spatial

triggering density as a function of magnitude and proximity to a known fault,
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CHAPTER 1

Introduction

1.1 Scientific Context

Stochastic point process models describe random sequences of events and provide tools which

help improve our understanding of the physical world. One application of such models is

in seismology, where we have only indirect observations of the processes and the underlying

physics are extremely complex. The main focus of this dissertation is on a class of branching

point process models used in statistical seismology called Hawkes or epidemic-type aftershock

sequence (ETAS) models. Model estimation is a primary focus along with quantification of

model performance. While statistical seismologists have often used retrospective analysis

to train models, there has been increasing interest in improving reproducibility. As such,

seismologists have created a framework which focuses on the assessments of earthquake

forecast models.

In 2006, the Collaborative Study of Earthquake Predictability (CSEP) was created. CSEP

is a multinational effort to organize seismological forecast models and facilitate prospective

testing (Jordan, 2006). Not only are forecasts generated independently of user’s direct inputs,

all stochastic elements are reproducible, allowing for investigations into forecast successes

and failures. Hundreds of models of various types such as 1-day, 3-month, and 5-year models

are submitted to CSEP. While not all forecasts entered are purely statistical in nature, their

standardized nature makes it quite simple to compare them.

We take advantage of the unique opportunities provided by CSEP in two ways:

1. We develop and introduce two models which have been accepted into CSEP and

1



2. We evaluate existing long-term forecast models for California Seismicity

1.2 Point Process Models

Point processes are a useful tool for modeling events which occur randomly in time and in

space. A point process is a random collection of points falling in some space where each

point represents the time and/or location of an event. Examples of events include incidence

of disease, sightings or births of a species, or the occurrences of fires, earthquakes, lightning

strikes, tsunamis, or volcanic eruptions. A point process can be mathematically defined

where N is a random measure on a complete separable metric space S taking values in the

non-negative integers. This measure represents the number of points falling in the subset A

of S.

A point process (Daley and Vere-Jones, 2003, 2007) is a collection of points {τ1, τ2, ...}

occurring in some metric space. Frequently in applications the points occur in time, or in

space and time. Such processes are typically modeled via their conditional rate (also called

conditional intensity), λ(t) or λ(s, t), which represents the infinitesimal rate at which points

are accumulating at time t or at location (s, t) of space-time, given information on all points

occurring prior to time t.

Given the history of the process the conditional intensity is defined:

λ(t, x, y|Hti) = lim
∆t,∆x,∆y↓0

E[N{(t, t+ ∆t)× (x, x+ ∆x)× (y, y + ∆y)}|Ht]
∆t∆x∆y

1.2.1 Poisson Process

Perhaps the most important type of point process is the Poisson process. The Poisson process

is defined as a simple point process N such that the number of points in any set follows a

Poisson distribution and the numbers of points in disjoint sets are independent. That is, N

is a Poisson process if its subsets are independent Poisson random variables, for any disjoint,

measurable subsets.

2



When a Poisson process has a constant conditional intensity rate it is called a stationary

Poisson process. This model implies risk of an event is the same at all times, regardless

of where and how frequently such disturbances have occurred previously. A homogeneous

Poisson process, such as Figure 1.1(a), is a Poisson point process whose intensity is a non-

negative constant. That is, for a finite region A, the number of events in the region N(A)

follows a Poisson distribution with mean λ|A|. For any n events in region A, the events are

an independent random sample from a uniform distribution in A.

Alternatively, shown in Figure 1.1(b), an inhomogeneous is a Poisson process with rate

parameter λ(s) such that the rate of the process is a function of time and location. That

is, they are a class of Poisson Process with a varying intensity function. A point process

can be called simple if all points are distinct, self-exciting if covariance between points is

positive, and self correcting if the covariance is negative. Traditionally the points of a point

process are thought to be indistinguishable, other than by their times and/or locations.

Often, however, there is other important information to be stored along with each point

such as the magnitudes of earthquakes and such processes may be viewed as marked point

processes. We can mathematically define X as a simple point process in R2 where a mark

mi ∈ M is associated with each point xi ∈ X. Then a point process Y is called a marked

point process in R2 with mark space M . The space of marks M can be very general. It

may be a finite set, a continuous interval of real numbers, or a more complicated space

such as the set of all convex polygons. Marked point processes are also used in the formal

description of operations like thinning and clustering. For example, thinning a point process

X is formalized by constructing a marked point process with marks in {0, 1}. The mark 1x

attached to each point x indicates whether the point is to be retained (1) or deleted (0).

1.2.2 Hawkes Process

Hawkes or self-exciting point processes (Hawkes, 1971) are a type of branching point process

model that has become widely used in modeling seismicity (Ogata, 1988, 1998). For a purely

temporal Hawkes process, the conditional rate of events at time t, given information Ht on

3
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Figure 1.1: Poisson Processes

all events prior to time t, can be written

λ(t|Ht) = µ+K
∑
i:ti<t

g(t− ti), (1.1)

where µ > 0, is the background rate, g(u) ≥ 0 is the triggering density satisfying
∫∞

0 g(u)du =

1, which describes the secondary activity induced by a prior event, and the constant K is the

productivity, which is typically required to satisfy 0 ≤ K < 1 in order to ensure stationarity

(Hawkes, 1971). An example of a Hawkes process is seen in Figure 1.2.

Several forms of the triggering function g have been proposed for modeling aftershock activity,

such as g(ui;mi) = 1
(ui+c)p e

a(mi−M0), where ui = t− ti is the time elapsed since event i, and

M0 is the lower cutoff magnitude for the earthquake catalog (Ogata, 1988). Extensions to the

spatial-temporal case have been posited, and typically one assumes the spatial triggering to

be isotropic, meaning the rate of aftershock activity following an earthquake only depends on

the distance r from the earthquake’s epicenter. For instance, a spatial-temporal-magnitude

version of (1.1) suggested by Ogata (1998) uses circular aftershock regions where the sqaured

distance between an aftershock and its triggering event follows a Pareto distribution. The
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Figure 1.2: Example of Hawkes Process
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model may be written

λ(t,x|Ht) = µ(x) +K
∑
i:ti<t

g(t− ti,x− xi,mi), (1.2)

with triggering function

g(t− ti,x− xi,mi) = exp{a(mi −M0)}(t− ti + c)−p(||x− xi||2 + d)−q, (1.3)

where ||x − xi||2 represents the squared distance between the epicenter or hypocenter xi

of earthquake i, and d > 0 and q > 0 are parameters describing the spatial distribution

of triggered earthquakes about their respective mainshocks. An example of the spatial

distribution of a Hawkes model specified by (1.2) is shown in Figure 1.3 where q = 2.721,

d = 0.0501, and 300 background events. Triggered events are shown in red, background

events are simulated from a homogenous poisson process and appear in black.
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Figure 1.3: Hawkes model with q = 2.721, d = 0.0501, and 300 background events. Triggered
events are shown in red, background events are simulated from a homogenous poisson process
and appear in black.
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The parameters in models such as (1.3) have traditionally been estimated by maximizing

the log-likelihood function

`(θ) =
∑
i

log (λ(ti,xi|Hti))−
∫ T

0

∫
S
λ(t,x|Ht) dxdt (1.4)

where θ = (a, c, d,K0, p, q, µ) is the parameter vector to be estimated and S × [0, T ] is

the space-time window in which the data (ti,xi,mi) are observed (Daley and Vere-Jones,

2003). Under rather general conditions, MLEs are consistent, asymptotically normal, and

efficient (Ogata, 1978), and estimates of their variance can be derived from the negative of

the diagonal elements of the Hessian of the likelihood function (Ogata, 1978; Rathbun, S.L.

and Cressie, 1994). Functional forms for the background rate µ(x) are not typically given;

instead µ is assumed constant or estimated by smoothing the largest events in the catalog,

e.g. using bi-cubic B-splines or kernel smoothing (Ogata 1998; Zhuang et al. 2002).
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CHAPTER 2

A nonparametric Hawkes model for forecasting

California seismicity

2.1 Introduction

The long history of failed attempts to predict earthquakes has rendered the task of rigorous

assessment of earthquake forecasts the primary task for statistical seismology (Schorlemmer

et. al, 2010). As a result of the wide variety of models that have been proposed for forecasting

future seismicity, earthquake forecasting centers have been established recently, such as the

Regional Earthquake Likelihood Model (RELM) working group and the Collaboratory for

the Study of Earthquake Predictability (CSEP). Such centers, which require forecasts to

be fully automatic, with no subjective or retrospective adjustments made by the modelers,

are essential tools to assess the fit of models to observed seismicity and to determine which

models seem best suited to earthquake forecasting.

In this study, we construct long-term earthquake forecasts for California seismicity using

a Hawkes model with a nonparametrically estimated triggering function. The method for

nonparametric estimation was first proposed in Marsan and Lengliné (2008), and in the

implementation discussed here, this estimation technique is merged with a flexible, local

fault estimation idea similar to that implemented by Helmstetter et al. (2007) and Fox et

al. (2016), which allows detailed and locally varying estimates of the spatial distribution of

aftershocks. The proposed forecasting model has been submitted to and accepted by CSEP.

Here, we discuss this model and assess its performance retrospectively, especially relative to

other leading models in CSEP such as Helmstetter et al. (2007).
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Hawkes models and their slight variants such as the Epidemic-Type Aftershock Sequence

Models of Ogata (1988, 1998) have thus far outperformed their competitors in RELM and

CSEP (Schorlemmer et. al, 2010; Zechar, 2013). While such models have traditionally been

estimated by maximum likelihood (Ogata, 1978), concerns about model misspecification

have focused recent attention on nonparametric estimation methods for Hawkes processes,

using a variety of approaches in various different applications. Lewis and Mohler (2011)

considered an application of the spread of violence whereas Bacry et al. (2012) developed

a nonparametric estimation technique for modeling high frequency fluctuations in financial

prices. Building on Fox et al. (2016), we investigate a more detailed formulation of the spatial

triggering function which varies with direction, magnitude, and region. First, we estimate

a primary fault direction for each earthquake based on prior local seismicity using weighted

least squares, and estimate the triggering density of its aftershocks relative to this estimated

primary direction. Second, we allow the triggering density to incorporate magnitude scaling,

so that the spatial distribution of aftershock activity is dependent not only on distance and

direction, but also on the magnitude of the triggering event. Lastly, we allow the spatial

triggering function to vary based on subregions within California.

The idea to use spatially varying triggering kernels in a Hawkes model is not new. Indeed,

Ogata (1998) noted the benefits of anisotropic spatial response functions in ETAS models, in

agreement with the observed elliptical nature of aftershock activity. Additional parametric

forms of an anisotropic spatial response function have been proposed, such as the tapered

Pareto distribution proposed in Wong (2009). Ogata (1998) also considered the inclusion of

a scale factor which allows the spatial distribution of aftershocks to depend on magnitude.

Marsan and Lengliné (2008) investigated the inclusion of local fault structure in model

estimation but provided little detail on implementation. Fox et al. (2016) used similar

methods to show that measuring an aftershock’s distance from the triggering event relative

to the local faulting of the triggering event, as opposed to epicentral distance, tended to

result in a lower estimated background rate. Here we further explore the use of local fault

geometry and provide details on implementation for both MISD estimation and forecasting,

as well as model evaluation.
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The structure of this chapter is as follows. Section 2.2 outlines MISD nonparametric esti-

mation of Hawkes models incorporating local fault directions, evaluates three formulations

of the spatial response, and describes forecasting methods. Earthquake data are explained

in Section 2.2.6 and in Section 2.3, MISD is applied to two earthquake catalogues. Sec-

tion 2.4 discusses forecast selection and evaluation. Important subjects for future research

are discussed in Section 2.5.

2.2 Methods

2.2.1 MISD Estimation Incorporating Local Fault Direction

As an alternative to fitting a parametric triggering function in a Hawkes process, one may

instead estimate the triggering function nonparametrically. In the nonparametric method

of Marsan and Lengliné (2008), estimation of a Hawkes model is conducted by maximizing

the expectation of the complete data log-likelihood and assigning probabilities that a child

event i is caused by an ancestor event j. Given N events in a catalog, these probabilities

can be written in matrix form:

P =



p11

p21 p22

p31 p32 p33
... ... ... . . .

pN1 pN2 pN3 . . . pNN


.

Here the probabilities for each row i and column j are correspond with triggering probabilities

as follows:

pij =



probability earthquake i is an aftershock of j, i > j

probability earthquake i is a mainshock, i = j

0, i < j.
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The rows must sum to 1 (∑i
j=1 pij = 1) since each event i must either be caused by one of

the previous events j = 1, ..., i− 1 or be a background event (i = j).

Marsan and Lengliné (2008) allowed the spatial-temporal triggering function g to depend on

magnitude of the mainshock and on distance from the mainshock relative to local faulting.

Here, we allow the triggering function further to depend on the subregion where the events

took place, and we assign to each potential mainshock an estimate of its local primary

direction of faulting based on weighted regression applied to locally recorded earthquakes,

as described in Section 3.2. That is, we consider the spatial-temporal triggering function to

depend not only on the magnitude mj of the triggering earthquake but also on the distance

and angular separation from the location (x, y) in question to the triggering event, relative

to the estimated local strike angle φj associated with the triggering event. Thus, we will

write the model as

λ(t,m, x, y|Ht) = µ(x, y) +
∑
j:tj<t

κ(mj)g(t− tj)f(x− xj, y − yj;φj,mj), (2.1)

and the triggering probabilities can be estimated using essentially the method of Marsan

and Lengliné (2008), but where

pij = g(u)f(x, y;φ,m)
µ(x, y) +∑

g(u)f(x, y;φ,m) ,

pii = µ(x, y)
µ(x, y) +∑

g(u)f(x, y;φ,m) .

When the triggering is isotropic, for example, the angle φj is irrelevant, and one may write

the spatial-magnitude portion of the triggering function as

f(x− xj, y − yj;φj,mj) = h(r;mj).

More generally, in the case where the triggering may depend on the distance to the triggering

event as well as the angle relative to the local fault direction of the triggering event, one may

11



write this portion of the triggering function as

f(x− xj, y − yj;φj,mj) = h(r, θ;mj),

where θ is the difference between the angle of the segment connecting (x, y) and (xj, yj) and

the angle φj, and
∫ ∫

A f(x, y)dA =
∫∞

0
∫ 2π

0 f(r cos θ, r sin θ)r drdθ =
∫∞

0
∫ 2π

0 h(r, θ)drdθ = 1.

2.2.2 Local Fault Estimation Using Weighted Least Squares

A Hawkes model specified according to (2.1) requires estimation of each event’s local strike

angle. Because focal mechanism estimates are not available for all earthquakes and are

frought with large errors (Kagan and Jackson 2014), we instead propose the estimation,

for each event j in the catalog, of the corresponding primary slope φj associated with its

aftershocks, using observed local seismicity.

Specifically, in order to estimate the primary angle of faulting for earthquake j, we use the

entire catalog of events, including very small earthquakes, occurring both before and after

earthquake j. One may then calculate the Euclidean distance rij between the estimated

epicenter of earthquake j and that of any other earthquake i, and fit a weighted least squares

regression, constrained to pass through the epicenter of earthquake j, and with weights

wi = 1/rij, to produce an estimate φj of the slope of the anticipated primary direction of

aftershock activity associated with earthquake j. Thus, events located further away from

earthquake j are given proportionally less weight in determining the local angle of faulting

associated with earthquake j. If any event i has exactly the same recorded epicenter estimate

as the mainshock j, then we remove the event i from this regression.

One may then define, for mainshock j and any subsequent potential aftershock, i, the angular

separation between i and j relative to the slope φj. That is, one may calculate θij, the angle

formed by the line through (xj, yj) with slope φj and the segment connecting mainshock

epicenter (xj, yj) to aftershock epicenter (xi, yi). Letting φij denote the slope of this latter

12



segment, the angle θij is given simply by

θij = arctan(φi − φj).

As in Wong (2009), we may consider the minimal angle separating earthquakes i and j,

and thus the estimated angle θij can be constrained to the quarter circle,
[
0, π2

]
. Details of

incorporating these estimates of θij into the MISD algorithm are given in Appendix A.

The degree to which estimated epicenters of California earthquakes follow locally linear faults

can vary substantially. For instance, three examples of fault estimates with varying degrees

of scatter are shown in Figure 2.1. Here the weighted regression R2 values vary, descending

from 95% to 50% to 10%.
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Figure 2.1: Three examples of fault estimates with R2 values of (a) 95%, (b) 50%, and (c)
10%. Mainshock strike angles are estimated using events that occur both before and after
the mainshock, as well as all events m ≥ 2.5. Events used to estimate strike angles were in
a window of 0.1◦(121km2) around the mainshock.

2.2.3 Spatial Triggering Performance Verification

As a proof of concept and to illustrate the performance of the MISD estimation method spec-

ified by (2.1), even in highly nonstandard conditions, we repeatedly simulate a parametric

Hawkes model under various formulations of the model, and verify that the estimates re-

cover the appropriate functional form of the triggering density. We proceed by first assessing

13



how well the method is able to recover a spatially anisotropic triggering function. Second,

we investigate how well MISD is able to recover a magnitude-dependent spatial triggering

density. Third, we partition the space into subregions and verify the ability of MISD to

recover different spatial triggering densities, each associated with a different subregion of the

observation window.

To confirm the ability of MISD to estimate an anisotropic triggering density, earthquake

occurrences were simulated from Hawkes models with a parametric triggering function. One

example of an anistropic triggering function is a bivariate normal density with rotation

θ = 5π/12, as shown in Figure 2.2(a). Here the spatial triggering function h(r, θ) is evalu-

ated at bin centers for both distance (degrees) and direction (radians). For convenience of

visualization, one realization of a process corresponding to this triggering density is shown in

Figure 2.2(b). Background points (◦) are drawn uniformly in the spatial region [0, 10]×[0, 10]

over time [0, 5000] and triggered events are overlaid (+). In the simulations, earthquake mag-

nitudes are generated independently of other model components according to an exponential

(Gutenberg-Richter) distribution with b-value equal to 1 (see e.g. Utsu 1999 for details and a

history of the investigation into the distribution of earthquake sizes). The process is repeated

200 times using the above specifications. The means of the 200 corresponding isotropic esti-

mates based on (1.2) are shown in Figure 2.2(c). Here the estimates ĥ(r) are constrained to

have equal probability of triggering in all directions, and thus cannot accurately recover the

true triggering function, whereas the mean of the 200 corresponding anisotropic estimates of

ĥ(r, θ) using (2.1) quite accurately recovers the shape of the true triggering density shown

in Figure 2.2(a).

Next we assess how well the MISD algorithm recovers a spatial density that depends on the

magnitude of the preceding event. Specifically, earthquake occurrences are simulated from

a Hawkes model with a single parametric triggering function, specified by (1.3), where for

any earthquake of magnitude in (0, 1], the parameters governing its aftershocks are (d, q)

= (0.00171, 1.960), and otherwise the parameters governing aftershock activity are (d, q)

= (0.05010, 2.721). 200 realizations are generated in the spatial region [0, 6] × [0, 4] over

time [0, 5000], and one such simulation is shown in Figure 2.3(a). 200 estimates of ĥ(r|m)
14
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ĥ(r , θ)

rel. angle: 0

rel. angle:  
π
4

rel. angle: 
π
2

Figure 2.2: (a) The true spatial triggering function h(r, θ) used in simulation, evaluated
at bin centers. The distribution is a bivariate normal with rotation θ = 5π/12. (b) One
realization of a simulated Hawkes process. Background events (◦) are distributed uniformly
in space and time. Triggered events (+) are simulated from the bivariate normal distribution
with rotation θ = 5π/12 shown in (a). (c) Mean estimated triggering function ĥ(r) over 200
simulations using MISD with isotropic triggering as specified in (1.2). (d) Mean estimated
spatial triggering function ĥ(r, θ) over 200 simulations using MISD with anisotropic triggering
as specified in (2.1).
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constructed using the MISD algorithm described in Section 3.1 are shown in Figure 2.3(b,c).

The dashed(b) and dotted(c) curves in Figures 2.3(b) and 2.3(c) represent the true spatial

triggering functions used in the simulations. Despite the fact that the triggering densities

are mixed together in the simulation, the MISD algorithm appears to be able to recover the

two spatial triggering densities quite accurately.
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Figure 2.3: (a) One instance of a simulated Hawkes process used to evaluate the perfor-
mance of the isotropic (1.2) and anisotropic (2.1) MISD algorithms under magnitude scaling
conditions. Background events (◦) are distributed uniformly in space and time. Aftershocks
of events with magnitude in (0, 1] are labeled + and are generated according to (1.3) with
parameters (d; q) = (0.00171; 1.960), and aftershocks of events with magnitude greater than
1 are labeled 4 and are generated according to (1.3) with parameters (d; q) = (0.05010;
2.721). (b,c) Estimated magnitude-dependent spatial triggering functions ĥ(r|m) resulting
from 200 simulations with triggering function specified by (1.3), for mainshocks with magni-
tude in (0, 1] and for mainshocks with magnitude greater than 1, shown in panel (b) and (c),
respectively. The dashed curve (b) represents the true triggering function for mainshocks
with magnitudes in (0, 1], and the dotted curve (c) represents the true triggering function
for mainshocks with magnitudes greater than 1. In these simulations nbinsθ = 1.

A third proof of concept involves the situation where the spatial-temporal triggering function

varies spatially from region to region. The spatial region is partitioned into two regions,

North and South, and events are simulated according to (1.3). Figures 2.4(b) and 2.4(c)

reveal and that both spatial response functions appear to be recovered quite accurately by

the MISD algorithm. Even under such nonstandard conditions, the method described in

Section 2.2.1 appeared to perform well in recovering the triggering densities used to generate
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the synthetic catalogues in all three proofs of concept.
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Figure 2.4: (a) One instance of a simulated Hawkes process used to evaluate MISD with
anisotropic triggering function according to (2.1). Background events (◦) are distributed
uniformly in space and time. Triggered events in the Northern region are labeled 4 and
those in the Southern region are labeled +. (b,c) Estimated region-dependent spatial trig-
gering function ĥ(r|Z) for 200 simulations with two sets of parameters, (d; q) = (0.00171;
1.960) and (d; q) = (0.05010; 2.721) corresponding to the Northern and Southern regions,
respectively. The dashed(b) line represents the true triggering function from which after-
shocks were simulated in the Northern region while the dotted(c) line represents the true
triggering function from which aftershocks were generated in the Southern region. In this
simulation nbinsθ = 1.

2.2.4 Forecasting Methods

The fitted model (2.1), using the methods of Section 3.1 and 3.2, can be used to forecast

future seismicity. Under paradigms such as CSEP, the goal is to predict the number of

earthquakes occurring within spatial-temporal-magnitude bins (t, t+ ∆t]×Si× (mj,mj+1)),

for each i and j, given only information on seismicity up to time t. A common approach

for computing the conditional expectation of the number of events in such a bin, given only

information up to time t, is to use the integral of the conditional intensity:

Λ([t, t+ ∆t]× Si × (mj,mj+1)) =
mj+1∫
mj

∫
x,y∈

∫
Si

∫ t+∆t
t λ(t, x, y|Ht) dt dx dy dm,
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and approximating λ(t, x, y|Ht) using the value it would take if no additional events occurred

in the time interval (t, t + ∆t). While this approximation may be satisfactory in some

situations such as when ∆t is extremely small, it is unlikely to be a close approximation over

a multi-year period, such as a 5 year CSEP forecast. The result of using such an approach

would be an underestimation in total seismicity, especially if the forecast was generated

during a period of active triggering. Given this limitation we believe a simulation approach

may be preferred. Following Zhuang (2011), we construct forecasts of seismicity by first

simulating events from the estimated background rate using the thinning procedure of Lewis

and Shedler (1979) and subsequently adding in triggered offspring events as in Fox et al.

(2016). This process is repeated K = 10, 000 times in order for the simulations to sample a

wide range of possibilities for the seismicity after time t (Zhuang, 2011; Werner et. al, 2011).

Implementation details are provided in Appendix B.

Once synthetic catalogs are generated for [t, t + ∆t], we smooth events according to local

fault directions while simultaneously smoothing their magnitude distribution. Since CSEP

requires the spatial distribution be estimated over equally sized cells, we choose 150 × 150

0.1◦× 0.1◦ cells which are identical to those used in the background rate estimation. Magni-

tude is smoothed in bins of 0.1 magnitudes units ranging from 3.95 to 8.95, plus an additional

bin for magnitudes 8.95 - 10.

Anisotropic smoothing potentially has the advantage of an improvement in forecast accuracy,

especially when applied to a catalog generated by (2.1). Anisotropic smoothing can be

achieved by kernel smoothing the spatial (vector) distances between each earthquake and

each subsequent earthquake, relative to the estimated principal strike angle of the prior event.

These principal directions associated with each event are estimated by the weighted least

squares approach discussed in Section 2.2.1. That is, we define an anisotropic smoothing

kernel estimate via

Pm(~r,m) =
N∑
i=1

Kd(~r − ~ri, θi)Gh(m−mi)

θi = arctan (|φi|) , θi ∈ [0, π/2]
(2.2)
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with

Kdi
(~r, θ) = 1

2πd1d2
√

1− ρ2 exp
(
− z

2(1− ρ)2

)
,

and

Gh(m) = 1√
2πh2

exp
(
−(m−mi)2

2h2

)
. (2.3)

In (2.2), the rotation angle θi is simply the angle between the estimated strike angle φi of

earthquake i and the principal horizontal axis. (2.3) is an isotropic Gaussian function with

mean m and standard deviation h. As in Helmstetter et al. (2007), h was fixed to 0.15

magnitude units.

2.2.5 Model Evaluation

To evaluate model performance we use both Voronoi residuals (Bray et al., 2014) and de-

viance residuals (Clements et al. 2011). Voronoi residuals and Voronoi deviances are useful

for evaluating gridded forecasts especially when a substantial proportion of pixels have very

small integrated conditional intensities. Furthermore, Voronoi based residual methods offer

advantages over grid based residuals in that with the former type of residuals, the spatial

partition is data-driven and spatially adaptive, and the resulting distribution of residuals is

usually far less skewed in such situations than residuals integrals over fixed rectangular grid

cells (Bray et al. 2014).

Voronoi residuals are constructed by partitioning the space using a Voronoi tessellation. For

any point in a point pattern of N observed events in the forecast evaluation period, one

may define its corresponding Voronoi cell as the region consisting of all locations that are

closer to the observed event than to any of the other N − 1 points. A Voronoi tessellation

is the collection of such Voronoi cells. Details on Voronoi tessellations and their properties

are found in Okabe (2000).

Each Voronoi cell Ci has only one point inside it by construction. Hence, a raw Voronoi
19



residual for each cell Ci is given simply by

R̂i := 1−
∫
Ci

λ̂ dµ

= 1− |Ci|λ̄, (2.4)

where λ̄ denotes the mean of the proposed conditional intensity estimate, λ̂, over Ci. Since

standardizing residuals often improves their usefulness (Baddeley et al., 2005), Bray et al.

(2014) proposed rescaled Voronoi residuals of the form

R̂V(Ci) = 1−
∫
λ̂(t, x, y) dt dx dy√∫
λ̂(t, x, y) dt dx dy

.

In order to compare two competing models, a useful criterion is the deviance, which is the

ratio of the two corresponding local loglikelihoods, evaluated over spatial-temporal bins. The

fit of competing point process models can be readily compared using pixel based deviances

proposed by Wong and Schoenberg (2009), which share similarities with deviances defined

for generalized linear models in the regression framework. Deviances may be computed

over evenly spaced pixels, but instead of simply comparing the observed to the forecasted

seismicity within each pixel, the difference between the log-likelihoods of two competing

models is examined. That is, the deviances in a given bin, Bi, given two models for the

conditional intensity, λ̂1 and λ̂2, is calculated as follows:

RD(Bi) =
∑

i:(ti,xi,yi)∈Bi

log (λ̂1(ti, xi, yi))−
∫
Bi

λ̂1(t, x, y) dt dx dy

−

 ∑
i:(ti,xi,yi)∈Bi

log (λ̂2(ti, xi, yi))−
∫
Bi

λ̂2(t, x, y) dt dx dy
 .

A positive residual implies the model λ̂1 fits better in the given pixel and negative residuals

imply that λ̂2 provides a better fit. Of course, to get an overall view of which model fits

better we can take sum of the deviances, ∑iRD(Bi) and obtain a log-likelihood ratio score.
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2.2.6 Earthquake Data

California is populated by a large number of faults, and these faults tend to be highly

locally fractured and heterogeneous (Bolt, 2006), which makes the region an ideal location

for the assessment of Hawkes models with anisotropic spatial triggering as in model (2.1).

To estimate the anisotropic spatial triggering function for California seismicity, construct

forecasts for m ≥ 4.95 seismicity, and to compare our forecasts with e.g. those of Helmstetter

et al. (2007), we use the same catalog as Helmstetter et al. (2007), made available by the

Advanced National Seismic System (ANSS) at http://www.ncedc.org/anss/catalog-search.

html. The ANSS comprehensive catalog contains information on estimated origin times,

magnitudes, and origin locations of many thousands of seismic events dating back several

decades; for details on the catalog and its completeness see Kagan (2003) and Kagan and

Jackson (2014). We consider shallow (depth ¡ 30km) events in the period from 1 January

1981 until 23 Aug 2005 with a lower magnitude cutoff of m ≥ 2.5 and a spatial window of

15◦ by 15◦ region covering California, from Lon −127.0◦W to Lon −112.0◦W and Lat 29.0◦N

to Lat 45.0◦N. Locally linear features representing faults are clearly visible, such as those

at Lat 36.0◦N, Lon −121.0◦W. The estimated epicenters of these 71,662 recorded events are

shown in Figure 2.5(a) and the distribution of magnitudes for the time window is shown in

Figure 2.5(b). The catalog is considered complete for magnitudes above 3.0 (Werner et. al,

2011) and while we use the entire catalog of earthquakes with m > 3.0 in fitting (2.1), we

also use smaller events, including those of m ≤ 3.0, for the local fault estimation described

in Section 2.2.2.

16,569 of the 71,662 recorded events have magnitude greater than 3.0 and 5,159 fall outside

the window specified as the official Collaboratory for the Study of Earthquake Predictability

(CSEP, www.cseptesting.org) testing region. Of the events within the CSEP testing region,

184 events have magnitude ≥ 4.95. Unlike Helmstetter et al. (2007), when forecasting

seismicity we do not remove potential explosions from the learning catalog, to avoid any

subjective data processing issues, and this results in a slightly higher overall predicted number

of events during the forecast period. We also make no parametric assumption regarding
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Figure 2.5: (a) 71,662 events from the ANSS catalog falling within the the spatial window,
a 15 degree by 15 degree area surrounding California from Lon −127.0◦W to Lon −112.0◦W
and Lat 29.0◦N to Lat 44.0◦N. (b) The density of magnitudes in the ANSS catalog for the
temporal window 1 January 1981 until 23 Aug 2005 with a lower magnitude cutoff of m ≥ 2.5.

the magnitude distribution, such a tapered Gutenberg-Richter law, and instead use of the

observed empirical magnitude distribution shown in Figure 2.5(b). Hence the largest event

possible in our forecasts is equivalent to the largest in the dataset, which is magnitude 7.31.

In assessment of the spatial triggering function in Section 2.3, we also make use of the

U.S. Geological Survey database (http://earthquake.usgs.gov/hazards/qfaults/google.php)

on faults in the United States that are believed to be sources of m > 6 earthquakes during

the Quaternary period (the past 1,600,000 years).

2.3 Application to California seismicity

2.3.1 Estimation of Isotropic and Anisotropic Triggering Functions

The estimated isotropic spatial triggering function of (1.2) applied to all magnitude greater

than 3.0 events in the ANSS catalog. The resulting triggering function is shown in Fig-

ure 2.6(a), on log-log scale for ease of visualization. The fit resembles a power-law (Pareto)
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distribution. The isotropic, parametric power-law triggering function specified by 1.3, with

parameters (d; q) = (1.238e-05; 1.244), estimated simply by nonlinear least squares, is over-

laid for reference. The dot within each bin represents the estimate ĥ(r) while the error bars

approximate 95% confidence intervals as derived in Fox et al. (2016).

Using this isotropic estimate in (1.2) to decluster the ANSS catalog, we estimate 4,132.44 of

the 16,569 events to be background events, yielding an overall background rate of 24.93%.

The remaining components of the triggering function and background rate are shown in Fig-

ure 2.6(b-d). Figure 2.6(b) shows the estimate of the spatial background rate µ(x) = µ(x, y)

for model (1.2). Figure 2.6(c,d) shows the estimated magnitude productivity and temporal

triggering components. The estimated magnitude productivity κ̂(m) appears approximately

exponential while the estimated temporal component of the triggering function resembles a

power law.
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Figure 2.6: (a) Estimated spatial triggering function ĥ(r) for ANSS data using MISD
assuming isotropic triggering (1.2), and using 25 distance bins. The black dot in each bin
represents the estimate ĥ(r) while the error bars show approximate 95% confidence intervals
as derived in Fox et al. (2016), based on the sampling variation for the histogram estimates
in each bin. Parametric density (1.3) is overlaid for reference with parameters (d; q) =
(1.238e-05; 1.244) estimated by nonlinear least squares through bin centers. (b) Spatial
distribution of estimated background rate for (1.2) using a 150 × 150 grid of 0.1◦×0.1◦ cells.
(c) Estimated magnitude productivity and (d) temporal triggering components using MISD,
with 95% errors bars.

24



In order to investigate spatial inhomogeneity in the triggering function, an anisotropic MISD

estimate fitting equation (2.1) was fit to the catalog of ANSS events with m ≥ 3.0 and the

results are shown in Figure 2.7.

The estimate of the spatially anisotropic triggering, shown in Figure 2.7(a), reveals few

noticeable departures from isotropy. However, for many of the bins, the estimate in Fig-

ure 2.7(a) is based on very few pairs of points, and thus has large sampling error. A more

powerful test for anisotropy is obtained by fitting an anisotropic estimate of the spatial

triggering function using only 2 directional bins, as shown in Figures 2.7(b) and (c).

Figure 2.7(b) indicates anisotropy, as the estimated spatial density of aftershocks is more

concentrated at lower distances for large relative angles θ, measured relative to the estimated

strike angles of the mainshocks. Although the shapes of the estimated densities ĥ(r, θ) are

similar and roughly power-law shaped for θ ∈ (0, π/2] degrees compared to θ ∈ (π/2, π/4]

degrees, as shown in Figure 2.7(c), the anisotropy is indeed statistically significant, particu-

larly for distances r between 5.0 and 50.0 km. A χ2 test comparing the two densities reveals

the differences are highly significant in fact (χ2
13 = 85.67, p = 9.773e−13).

When stochastically declustering the catalog based on the estimated spatial triggering den-

sity in Figure 2.7(b), an estimated 3,874.59 of the 16,569 events are background events,

corresponding to an overall background rate of 23.39%. Figure 2.7(d) shows the spatial

distribution of this estimated background rate for (2.1). The corresponding estimated mag-

nitude productivity and temporal component of the triggering function in Figures 2.7(e,f)

are similar to those estimated assuming isotropy.
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Figure 2.7: (a) Estimated spatial triggering density ĥ(r, θ) using MISD assuming anisotropy
(2.1), fit to the ANSS catalog and estimated using 25 logarithmically spaced distance bins
and 20 direction bins. (b) Estimated anisotropic spatial triggering density ĥ(r, θ) fit to
the ANSS catalog using 25 logarithmically spaced distance bins and 2 direction bins. (c)
Estimated anisotropic spatial triggering density ĥ(r, θ) corresponding to (b), along with 95%
confidence bounds. The density for θ in (0, π/4] and the density for θ in (π/4, π/2] are
significantly different (χ2

13 = 85.568, p = 9.773e−13). (d) Estimated spatial background rate
for (2.1) using a 150 × 150 grid of 0.1◦ × 0.1◦ cells. (e) Estimated magnitude productivity
and (f) estimated temporal triggering components with 95% errors bars.

2.3.2 Estimation of Spatial Triggering Functions

In order to investigate the dependence of the spatial triggering function on the magnitude

of the mainshock, we fit an anisotropic triggering function to the ANSS earthquake catalog

using MISD, where now the spatial distribution was permitted to depend on the magnitude

of the triggering earthquake. The result is shown in Figure 2.8(a). There is a statistically
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significant difference (χ2
12 = 1732.7, p < 1e−32) between the spatial triggering functions for

smaller mainshock magnitudes versus larger mainshock magnitudes, with the larger earth-

quakes having significantly more diffuse aftershock regions. The result is not surprising and

is in agreement with previous observations of magnitude scaling (see e.g. Kanamori and

Anderson 1975 or Kagan 2002).

We similarly fit the spatial distribution after partitioning the space into two regions, North

and South, based on latitude. The estimated spatial triggering function ĥ(r, θ|Region) is

shown in Figure 2.8(b). There is a relatively small but statistically significant difference be-

tween the estimated spatial triggering function for Northern California mainshocks compared

to Southern California mainshocks, with Southern California aftershock zones significantly

more diffuse (χ2
11 = 151.51, p < 2.805e−26). Next, we fit an anisotropic spatial triggering

function (2.1) after partitioning mainshocks into two categories based on their positions rel-

ative to known faults. Any event within 27km of a known fault was classified as occurring

along a fault, and Figure 2.8(c) shows the corresponding estimated spatial triggering func-

tion ĥ(r, θ|Region) for such events and their complement. The mainshocks occurring near

known faults had significantly less diffuse aftershock regions (χ2
13 = 1613.9, p < 1e−32).

However, for mainshocks along faults and those further from known faults, the estimated

spatial triggering function resembles a power law. Combining the above approaches, we al-

low the spatial triggering to be impacted by both region and magnitude of the mainshock,

and the resulting four spatial triggering estimates are depicted in Figure 2.8(d). Smaller

mainshocks have larger aftershock densities at small distances, whether the mainshocks oc-

cur along a fault or not. However, the estimated aftershock zone is noticeably more diffuse

for large mainshocks away from known faults compared to large mainshocks along known

faults. Overall, the differences among the four estimated distributions are highly significant

(χ2
30 = 3360.1, p < 1e−32).
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Figure 2.8: (a) Estimated anisotropic spatial triggering density as a function of magnitude,
ĥ(r|m ∈ (Large, Small)), fit to the ANSS catalog by MISD and estimated using 25 logarithmi-
cally spaced distance bins and two magnitude bins. Approximate 95% confidence intervals
are also shown. The estimated spatial density for smaller mainshocks and the estimated
spatial density for larger mainshocks are significantly different (χ2

12 = 1732.7, p < 1e−32).
(b) Estimated anisotropic spatial triggering density as a function of magnitude and region,
ĥ(r|m,Region ∈ (North, South)), with approximate 95% confidence bands. The estimated
densities for North and South are significantly different from one another (χ2

11 = 151.51, p <
2.805e−26. (c) Estimated anisotropic spatial triggering density as a function of magnitude
and proximity to a known fault, ĥ(r, θ|Region ∈ (Fault,No Fault)), with approximate 95%
confidence bands. The estimated spatial densities for mainshocks near known faults and for
mainshocks far from known faults are significantly different (χ2

13 = 1613.9, p < 1e−32).
Estimated spatial triggering function (d) ĥ(r, θ|m,Region ∈ (Fault,No Fault)) with ap-
proximate 95% confidence bands. The 4 estimated densities are significantly distinct
(χ2

30 = 3360.1, p < 1e−32).
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2.4 Model Selection and Forecast Evaluation

A primary goal of this study is to determine if a nonparametric Hawkes model estimated by

MISD, coupled with a nonparametric forecast, can outperform the CSEP model introduced

in Helmstetter et al. (2007). We chose Helmstetter et al. (2007) since it performed best

among those submitted during that time period (Zechar, 2013). Indeed, Schorlemmer et. al

(2010) indicated that both the mainshock and mainshock-aftershock models of Helmstetter

et al. (2007) performed best in their classes by the L- and N -tests, and in comparisons with

every other model using the R-test, each time the other model was rejected in favor of the

Helmstetter et al. (2007) model.

To compare how well the Hawkes model estimated by MISD performs retrospectively com-

pared with Helmstetter et al. (2007), we applied both (1.2) and (2.1) to the ANSS catalog

specified by CSEP. Unlike Fox et al. (2016), we chose to use a fixed bandwidth, as opposed

to an adaptive bandwidth, while smoothing the background rate during model estimation.

Further detail regarding the tuning of inputs for these models is covered in Appendix B.

Example forecasts using the selected model inputs in Table 2.1 are shown in Figure 2.9,

which depicts the mean forecasts generated from isotropic MISD, anisotropic MISD, and

from Helmstetter et al. (2007), respectively. The anisotropic and isotropic MISD forecasts

are very similar to one another, and clearly much smoother than that of Helmstetter et al.

(2007). Figures 2.9(d-f) show the corresponding distributions of forecasted rates in the 7682

cells of the CSEP testing region. Helmstetter et al. (2007) has a higher concentration of cells

with medium rate forecasts where the nonparametric models proposed here have more cells

with low forecasted rates. In terms of the number of events forecasted, both our forecast and

that of Helmstetter et al. (2007) overestimated total seismicity, as only 31 m ≥ 4.95 events

were actually recorded in the temporal window of 24 August 2005 to 24 Aug 2010, compared

to the forecasted estimates of 37.33 using MISD and 35.40 from Helmstetter et al. (2007).
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Table 2.1: Selected Model and Forecast Inputs for (1.2) and (2.1). Full descriptions for
variables are provided in Appendix Section 7.

Model nbinsr nbinsθ nbinsm nbinsm2 nbinst nbinsx nbinsy background bandwidth forecast bandwidth forecast bandwidth ratio mag cutfit mag cutfault Deviance
(1.2) 25 bins 8 bins 25 bins 150 bins 150 bins 0.08 degrees 0.08 degrees 3.50 4.99
(2.1) 25 bins 7 bins 8 bins 2 bins 25 bins 150 bins 150 bins 0.08 degrees 0.08 degrees 3/4 3.50 2.50 6.38
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Figure 2.9: (a,b) Retrospective forecast for 24 August 2005 to 24 Aug 2010 using isotropic
MISD (1.2) and anisotropic MISD (2.1), respectively, with Npred = 37.33 events. (c) CSEP
forecast for Helmstetter et al. (2007) with Npred = 35.4 events. (d,e,f) Histograms of fore-
casted rates in the 7682 cells of the CSEP testing region for isotropic MISD (1.2), anisotropic
MISD (2.1), and Helmstetter et al. (2007), respectively. Rates on the x-axis are shown on a
logarithmic scale.

2.4.1 Forecast Evaluation

Figure 2.10 shows the Voronoi residuals of the isotropic and anisotropic MISD models, as

well as the Voronoi residuals for Helmstetter et al. (2007). The Voronoi residuals for a
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null homogeneous Poisson model are shown for comparison in Figure 2.10(a). For the null

model, the rate is constant, so small cells have large positive residuals (horizontal lines)

which indicate underprediction of seismicity, and large cells have large negative residuals,

indicating overprediction of seismicity (Gordon et al., 2015). In Figure 2.10 one sees the

MISD and Helmstetter et al. (2007) forecasts performed similarly to the null model in the

largest cell. The MISD and Helmstetter et al. (2007) models underpredicted seismicity in

the southernmost part of the forecast area, where a cluster of large events occurred on

4 April 2010 near Baja California along the Laguna Salada fault. In the largest cell in

the Northern region of the forecast area near Eureka, CA, Helmstetter et al. (2007) has a

relatively large negative residual compared with the forecasts (1.2) and (2.1), indicating a

relative overprediction of seismicity in this region.
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Figure 2.10: Voronoi residuals for (a) Null Poisson model, (b) Hawkes model estimated using
isotropic MISD (1.2), (c) Hawkes model estimated using anisotropic MISD (2.1), and (d)
Helmstetter et al. (2007). Striped shells indicate positive residuals and solid cells indicate
negative residuals, with lighter shading indicating larger absolute values of the residuals.

Figure 2.11 shows the pixel deviances for the isotropic MISD (1.2), anisotropic MISD (2.1),

and Helmstetter et al. (2007) models relative to one another.

Figure 2.11 shows pixel deviance while Figure 2.12 shows Voronoi deviances for the isotropic

MISD (1.2), anisotropic MISD (2.1), and Helmstetter et al. (2007) models relative to one
32



another. Helmstetter et al. (2007) outperforms (1.2) in the largest cell, while (1.2) performs

better in the areas surrounding the cluster of events near the Laguna Salada fault at Latitude

-115.25◦, Longitude 32.30◦. The Northern portion of the forecasts near Eureka and Trinidad

fault look similar since both (1.2) and Helmstetter et al. (2007) perform well in only part

of the region. Indeed, neither model clearly outperforms the other overall. (1.2) performs

slightly better than (2.1), near both Eureka and near Baja California. Helmstetter et al.

(2007) has large positive residuals near Alum Rock California. However, both (1.2) and

(2.1) perform similarly over most of the spatial window, as indicated by the relatively small

Voronoi deviances. A large residual is observed for the event on 2005 October 16 in the

SouthWest near San Clemente Island where (2.1) outperforms both Helmstetter et al. (2007)

and (2.1).
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Figure 2.11: (a) Pixel deviances for (1.2) vs. Helmstetter et al. (2007), (b) (2.1) vs. Helm-
stetter et al. (2007) and (c) (1.2) vs. (2.1), respectively. Red cells shells indicate positive
deviance residuals and blue cells indicate negative deviance residuals, with lighter shading
indicating larger values of the deviance residuals.
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Figure 2.12: (a) Voronoi deviances for (1.2) vs. Helmstetter et al. (2007), (b) (2.1) vs.
Helmstetter et al. (2007) and (c) (1.2) vs. (2.1), respectively. Striped shells indicate positive
deviance residuals and solid cells indicate negative deviance residuals, with lighter shading
indicating larger absolute values of the deviance residuals.
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2.5 Discussion

We have constructed long-term earthquake forecasts for California seismicity using a non-

parametrically estimated Hawkes model. The MISD method, merged with a flexible, local

fault estimation approach, performs well in both describing and forecasting earthquake occur-

rences. Hawkes models estimated using MISD, with spatial distributions computed relative

to local strike angle estimates, are able adequately to summarize the spatial distribution of

aftershocks and dependence upon region, distance from known faults, and mainshock magni-

tude. Simulation studies suggest the method performs well, even under highly nonstandard

conditions.

Alternative approaches for estimating fault planes used in (2.1) can be made. Under the

current approach, each estimate of φ is given equal weight in the estimation of the spatial

distribution of aftershocks even though their associated mean squared errors are significantly

different. In future work, one might loosen restrictions in order to allow φ not to pass through

the epicenter of the corresponding mainshock. In addition, estimated strike angles φ may

be smoothed or constrained to allow block estimates, since it may be unrealistic for strike

angles to differ substantially among earthquakes only a few meters apart. Another area for

future work is to combine information from seismic moment tensors into the estimation of

φ. Because such estimates may have large errors, robust regression techniques could also be

applied to reduce the impact of outliers. Similarly, using Deming regression to estimate strike

angles based on previous seismicity may improve estimation. Further research is needed to

evaluate the sensitivity of estimates of the spatial distribution of aftershocks to strike angle

estimates in general.

Additional opportunity exists to test and improve our earthquake forecasts. While we con-

sidered the ANSS catalog for estimation and forecasting, the size of the catalog used is

relatively small. While we show slightly improved performance compared to Helmstetter et

al. (2007) in various regions by using a nonparametric estimation and forecasting approach,

more alternative models should be submitted to and tested in CSEP and we intend to con-

tinually improve our forecasts in the long term (5 year) model group. We hope that these
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contributions will lead to improved probabilistic earthquake forecasts.
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CHAPTER 3

Analytic computation of nonparametric

Marsan-Lengliné estimates

3.1 Introduction.

The spatial-temporal spread of infectious disease has traditionally been described via

compartmental SIR models or their variants. Such models involve dividing populations

according to disease status, and then modeling the changes in numbers of infected,

susceptible, and recovered individuals in the population using systems of simple differential

equation models (e.g. Meyers 2007, Grassly and Fraser 2008, Vynnycky and White 2016).

Similarly, reaction-diffusion or regression-based methods have also been used with infectious

disease or invasive species data to describe the amount of area being infected over time or

the spatial-temporal spread of an infestation (e.g. Thompson 1991, Lonsdale 1993, Perrins

et al. 1993, Pysek and Prach 1993, Higgins and Richardson 1996, Delisle et al. 2003, Peters

2004, Riley 2007, Vynnycky and White 2016). The processes by which humans spread

contagious diseases and plants spread seeds naturally lend themselves to spatial-temporal

Hawkes point process analysis, however, and it is these Hawkes point process models that

are the subject of investigation here.

Purely temporal self-exciting point process models were proposed to describe the temporal

spread of smallpox in Brazil by Becker (1977), and by Farrington et al. (2003) to describe

the effect of vaccinations on the spread of measles in the United States, but the use of

spatial-temporal Hawkes models for describing infectious diseases has so far remained
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under-utlized. As an alternative to compartmental SIR models and their variants, Hawkes

models can provide different insights into the spread of epidemics and invasive species,

including a description of the spread via an estimated spatial-temporal triggering kernel.

As noted by Law et al. (2009), unlike grid-based studies on area occupation, where

the surface of study is divided into an array of pixels on a grid, spatial-temporal point

processes can enable greater precision of forecasts in space and time, and can offer a

more detailed and precise account of spatial heterogeneity and clustering. To this end,

Diggle (2006) investigated inhomogeneity in foot-and-mouth disease using spatial-temporal

point process models estimated by partial likelihood methods, and Diggle (2014) surveyed

successful uses of spatial-temporal point process modeling in describing in detail ecological

phenomena such as the locations of Japanese black pine saplings as well as public health

data such as liver cirrhosis in Northeastern England. However, the use of Hawkes processes

for spatial-temporal epidemic data has been sparse. Exceptions are Becker (1977), who

proposed purely temporal self-exciting point process models to describe the temporal spread

of smallpox in Brazil, Farrington et al. (2003), who describe the effect of vaccinations on

the spread of measles in the United States using self-exciting point process models, and

Balderama et al. (2012), who model red banana plant locations and times using a parametric

space-time Hawkes point process model, whose components were assumed to follow simple

exponential laws. Such Hawkes models have long been used in seismology to describe the

rate of aftershock activity following an earthquake (Ogata 1988, Ogata 1998) and have

outperformed alternatives for earthquake forecasting (Zechar et al. 2013, Gordon et al. 2015).

Traditionally, the functional form of the triggering function in a Hawkes process must be

specified by the researcher, and can then be estimated parametrically, using maximum

likelihood estimation (Ogata 1978, Schoenberg 2013, Schoenberg 2016). One of the most

exciting recent advances in this area was the discovery by Marsan and Lengliné (2008) of

a method for estimating the triggering function of a Hawkes process nonparametrically.

Their method, which uses a variant of the E-M algorithm, writes the triggering function

as a step function and then estimates the steps by approximate maximum likelihood. The
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procedure thus does not rely on a parametric form for the triggering function, and is

extremely useful as a tool for a variety of purposes including suggesting the functional form

of a triggering function, assessing the goodness of fit of a particular proposed functional

form, and simulating or forecasting the process without relying on a particular and possibly

mis-specified functional form for the triggering function.

Unfortunately the method proposed by Marsan and Lengliné (2008) requires an iterative

and computationally intensive procedure. In addition, the method ultimately produces

approximate maximum likelihood estimates whose asymptotic properties are not well

understood. Here, we describe a mathematical curiosity that allows one to compute exact

maximum likelihood estimates of the triggering function in a direct and extremely rapid

manner. One of the key ideas is to let the number p of intervals on which the nonparametric

estimate is sought equals the number n of observed points, and we also discuss extensions

to the more standard case where n is much larger than p. The computation times for

our proposed method are many times smaller than with the iterative method of Marsan

and Lengliné (2008). We evaluate the performance of this newly developed approach to

estimating triggering functions in a variety of simulations. We then apply the method

to two real-world datasets involving Loma Prieta earthquakes from 1989-2016 and plague

occurrences in the United States from 1900-2012, in order to produce estimates of the

triggering function and accompanying 95%-confidence bands. Such confidence bands,

obtained via repeated simulation and re-estimation, would be very difficult to obtain using

prior methods, and are useful for quantifying the uncertainty in estimates of the triggering

function and corresponding rates of spread of plague as well as aftershock activity.

The structure of this paper is as follows. Following a brief review of the algorithm of Marsan

and Lengliné (2008) in Section 2, the technique proposed here for the case p = n is described

in Section 3, followed by simulations in Section 4. Applications to seismological an epidemic

data are shown in Sections 5 and 6, respectively. Concluding remarks are given in Section

8. Extensions to the case where n >> p and other details regarding implementation are
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discussed in Appendix E.

3.2 Existing methods of nonparametric estimation.

Rather than rely on a particular parametric form of the Hawkes triggering function such as

(1.3), one may instead use the iterative method of Marsan and Lengliné (2008) to estimate

the background and triggering function of a spatial-temporal Hawkes process.

One tactic used by Marsan and Lengliné (2008) is to assume the estimated triggering

function to be a step function with p steps of fixed widths and unknown heights, and then

to consider estimating the p step heights via approximate maximum likelihood.

Specifically, for the case where g(u) is a step function with value βk for u in the range Uk,

setting the partial derivatives with respect to each βk of ` in equation (1.4) to zero, for

k = 1, ..., p, reduces to

0 = ∂`(θ)/∂βk =
∑

(i,j):τj−τi∈Uk

K/λ(τi)−Kn|Uk|, (3.1)

resulting in p equations with p unknowns. However, the equations are nonlinear, depending

in particular on 1/λ(τi), which in turn depends on the p unknowns. One may attempt to

resort to gradient descent or other optimization routines to find approximate solutions, but

these are typically prohibitively slow, since they rely on computing or approximating ` and

its derivatives many times, and each computation of ` requires O(n2) computations. Thus,

Marsan and Lengliné (2008) and Marsan and Lengliné (2010) resort to finding approximate

maximum likelihood estimates using the E-M based algorithm of Veen and Schoenberg

(2008). Unfortunately, this algorithm also requires an iterative procedure and considerable

computation time.

The Marsan-Lengliné algorithm works by first starting with a guess at the background rate
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µ and triggering function g, and then repeating the following two steps until convergence is

reached.

(a) First, one computes estimates of pij = the probability that occurrence i triggered

occurrence j, for each i and j, using the previous (or initial) estimates of µ and g. One

similarly obtains estimates p0j for each j as the probability that observation j was a

background event, i.e. was not triggered by any previous events.

(b) Second, one updates the estimate of g(u) for any u by using a histogram or kernel

smoothing of the pairs of observed events separated by a spatial-temporal distance of

approximately u, where each such pair of observations (i, j) is given a weight of pij.

Similarly, one can simultaneously obtain an updated estimate of the background rate µ

simply by smoothing the observed points and weighting each of them by its probability p0j,

as estimated in step (a), of being a background event.

In Marsan and Lengliné (2008), the function quantities g(u) are estimated for a discrete set

of values u using a weighted histogram type estimator. Other nonparametric estimates of

Hawkes triggering functions have been suggested, such as a maximum penalized likelihood

estimator proposed by Lewis and Mohler (2011), and an estimator based on the Laplace

transform of the sample covariance function proposed by Bacry et al. (2012). Adelfio

and Chiodi (2015) suggest a semi-parametric estimator for Hawkes processes where the

background rate is nonparametrically estimated while the triggering function is estimated

parametrically.

Nonparametric estimates not only enable robust estimation of the triggering function without

relying on a particular parametric form, but in addition, these methods may also be used to

solve the problem of declustering observed sequences of invasive species or infectious diseases.

Indeed, the stochastic declustering algorithm of Zhuang et al. (2002) uses a realization of
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an ETAS model to calculate the probability that an event is a background event, and its

complement gives the probability of being a triggered event. One then obtains a complete

probabilistic reconstruction of the branching structure. Similarly, Marsan and Lengliné

(2008) decluster earthquake sequences using their nonparametric estimates.

3.3 Proposed nonparametric estimates.

As mentioned in the preceding Section, the Marsan and Lengliné (2008) algorithm for

estimating the triggering function of a Hawkes process is an iterative procedure requiring

substantial computation time. A relatively simple mathematical curiosity enables us to

reduce the computation time dramatically, however, for the special case when p = n, as

described below.

Evaluating the conditional rate in equation (1.1) at the n observed points, we have the n

equations

λ(τj) = µ+K
∑
i<j

g(τj − τi), (3.2)

for j = 1, 2, ..., n, where λ(τj) is the conditional intensity at point τj. For simplicity, assume

for the moment that µ and K are known. The case where µ and K are unknown, and other

issues arising in practical implementation, are discussed in Appendix E.

As with Marsan and Lengliné (2008), we assume our estimate ĝ(u) will be a step function,

so that for u in a given interval Uk, we have ĝ(u) = βk. Again, for simplicity, let us assume

that the process is observed over a spatial region S and time interval [0, T ], and that the

intervals Uk are time intervals of equal size ∆, so that the size |Uk| of each interval is simply

∆|S|. Setting the derivative of the loglikelihood L with respect to βk to zero yields the p
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equations

0 = ∂L/∂βk =
∑

(i,j):τj−τi∈Uk

K/λ(τj)−Kn|Uk|. (3.3)

Unfortunately these terms on the right hand side of (3.3) are highly nonlinear functions of

the desired parameters, β = {β1, β2, ..., βp}. However, (3.3) consists of p linear equations in

terms of the n constants 1/λ(τj). Thus, if p = n, we may readily use equation (3.3) to solve

for 1/λ(τj), which therefore yields λ(τj), and subsequently use the n linear equations (3.2)

to solve for β.

Indeed, with some additional notation we may write the resulting estimator in a very

simple and condensed form as follows. First, let us use the following notation: for any

vector z = {z1, z2, ..., zk}, we will let 1/z represent the vector {1/z1, 1/z2, ..., 1/zk}. Next,

consider the p × p adjacency matrix A defined so that, for j, k ∈ {1, 2, ..., p}, A[k, j] is the

number of points τi such that τj − τi ∈ Uk. Let S denote the spatial observation region.

Let λ represent the n-vector {λ(τ1), λ(τ2), ..., λ(τn)} and let 1 denote the n-vector {1, 1, ..., 1}.

With this notation, equation (3.3) can be rewritten as

0 = KA(1/λ)−Kb, (3.4)

where b = n|S|∆1. The estimate of 1/λ satisfying equation (3.4) is thus A−1b, assuming A

is invertible. Similarly, equation (3.2) may be rewritten

λ = µ+KATβ, (3.5)

whose solution is β = (KAT )−1(λ− µ). Combining these two formulas, the resulting vector

β̂ of estimates may be written

β̂ = (KAT )−1[1/(A−1b)− µ]. (3.6)
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Equation (3.6) is remarkably simple, trivial to program, and extremely rapid to compute.

The speed with which these nonparametric estimates can be obtained facilitates certain

computations that might otherwise be prohibitively time consuming. For instance, one

may obtain approximate standard errors for these estimates by repeated simulation and

estimation of the triggering function.

When n is large, the estimates in (3.6) will have extremely high variance. However, when

it is reasonable to assume that g is smooth, these estimates in (3.6) may be smoothed to

provide more stable estimates of g. Appendix E contains discussion of how this smoothing

may be achieved, and other computational issues. In particular, the focus here is exclusively

on the estimation of the parameters β governing the triggering density. The cases where µ

and K are not known and where the binwidths ∆ are not equal are discussed in Appendix

E.

3.4 Performance in simulations.

As a proof of concept, Figure 3.1 shows the estimates in (3.6) applied to simulated temporal

Hawkes processes with triggering function g given by the exponential, truncated normal,

uniform, and Pareto densities. One can see that the estimate (3.6) is reasonably accurate

in each case.

Figure 3.2 shows the computation times and mean squared errors of the estimates obtained

via (3.6) and those obtained using the approximate MLE method of Marsan and Lengliné

(2008), using simulations of a Hawkes process with exponential triggering function with

mean 300 and productivity K = 0.3 on a square region [0, 1] × [0, 1]. The circles in

Figure 3.2a and b correspond to (3.6), and the triangles correspond to Marsan and

Lengliné’s estimates. The mean squared error is typically somewhat lower for the estimates

obtained via equation (3.6), though the results are somewhat mixed. However, one sees

from Figure 3.2a the dramatic improvement in computation time for the algorithm based
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on equation (3.6) compared with the Marsan and Lengliné algorithm. These differences in

computation time, which are shown on logarithmic scale, become substantial as n grows.

For a simulation with T = 100, 000, n = 1, 378, and the Marsan and Lengliné algorithm took

10.82 min, while the estimator proposed here took 9.39 sec. A simulation with T = 200, 000

produced n = 2, 778 events and the Marsan and Lengliné algorithm and the one proposed

here took 3.37 hours and 41.78 sec, respectively.

Note that the code for both methods was written in R for comparability; certainly the

Marsan and Lengliné code, which relies on iteration via loops, could be considerably faster

in C or Fortran. Also, the computation time for the Marsan and Lengliné algorithm depends

on a stopping criterion. Here for each estimate we had a stopping criterion of ε = 10−5,

i.e. if the estimate of g(u) did not change by at least ε for any u during a given iteration,

then the procedure terminated, and a maximum of 100 iterations was used for each estimate

in case this convergence threshold ε was not reached. For the estimator proposed here, the

computation times reflect the time not only to compute g but also to smooth the g-values,

using a Gaussian moving average filter with bandwidth 1100.

3.5 Application to Loma Prieta seismicity.

The estimation method of equation (3.6) and the method of Marsan and Lengliné (2008)

were used to estimate the triggering function for the moment magnitude 6.9 earthquake

occurring in Loma Prieta, California on October 17, 1989, and its aftershocks over the

subsequent 27 years. Specifically, 5,567 shallow (depth < 75km) earthquakes of magnitude

at least 2.1, occurring between Oct 16, 1989 and Feb 24, 2016, with longitude between

-121.0 and -124.0 and latitude between 36.0 and 39.0, were recorded and catalogued by

the U.S. Geological Survey (USGS), and made publicly available on USGS.gov. A Hawkes

model was fitted to this Loma Prieta catalog, and the resulting estimates of the triggering

function are shown in Figure 3.3.
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When examined over a long time scale, the estimates using equation (3.6) are indistinguish-

able from those using the method of Marsan and Lengliné (2008) in Figure Figure 3.3a.

However, as shown in Figure Figure 3.3b, there do appear to be substantial differences

between the two triggering density estimates for shorter time scales, with the estimate

proposed here placing considerably more mass at time intervals of 8 hours to 1 day. The

estimation method proposed here using equation (3.6) is sufficiently computationally fast to

allow construction of standard errors and confidence intervals via simulation. Specifically,

100 simulations of a Hawkes process with triggering function equal to that estimated from

the Loma Prieta data using equation (3.6) were generated. For each simulation, estimates of

the triggering function were obtained, again using equation (3.6), and for each of 50 values

of u, the standard deviation of the resulting estimates of g(u) was taken as the estimated

standard error. The estimate in (3.6) ± 1 and ± 2 standard errors are depicted with the

dotted curves in Figure 3b, and the results indicate that the apparent differences between

the two estimated triggering functions are not statistically significant. The only time

interval where the estimate based on Marsan and Lengliné (2008) is outside the estimate

using (3.6) ± 1 standard error is around 0.4 days, where the Marsan and Lengliné (2008) es-

timate assigns less mass to the estimated triggering density than the estimate based on (3.6).

3.6 Application to United States Plague Data.

Figure 3.4a shows the reported times of confirmed human plague cases in the continental

United States from 1900-2012. These data represent 1006 confirmed cases, combined from

various sources including the United States Public Health Service and later the Center for

Disease Control (CDC); see Kugeler et al. (2015) for details. As noted in Kugeler et al.

(2015), there was a period of apparently high frequency of plague in the United States from

1900-1925, followed by a period of relatively few cases until 1965, and subsequently sporadic

cases annually occurring. For 138 cases, most of which occurred between 1900-1907, no

specific estimated onset date was recorded. We focus our analysis, therefore, on the 868
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cases with estimated onset dates. For these cases, time of day was not reported. Ignoring

the time of day for each occurrence is problematic in this case, as if one neglects to consider

this or treats each case as if it occurred at the same time of day, then there will be multiple

pairs of points with exactly the same time interval, and the resulting paucity of unique

interevent times causes the adjacency matrix A to be singular. Hence times of days for each

event were randomly simulated uniformly and independently for these 868 cases.

The estimated triggering density ĝ, using both the Marsan and Lengliné method and the

analytic method based on equation (3.6), is shown in Figures 4b and 4c. The results show

how highly concentrated the cases are in time, with the bulk of the mass in the estimated

triggering function occurring at very short time intervals of one week or less. More precisely,

the estimated triggering density using equation (3.6) has 80% of its density corresponding

to time intervals of 4.5 days or less, and 99% of its density corresponding to time intervals

of 7.5 days or less. In other words, the fitted model suggests that given that subject B

contracted the plague from subject A, the delay between the onset time for subject A and

the onset time for subject B was most likely 4.5 days or less, and highly unlikely to be

more than 7.5 days. The productivity constant K and background rate µ were estimated

by maximum likelihood as 0.3267 and 0.01391 events/day, respectively, with corresponding

standard errors of 0.002205 and 6.433 × 10−6 events/day, respectively, constructed using

the inverse of the diagonal of the Hessian of the loglikelihood as is standard for maximum

likelihood estimates (Ogata 1978).

We performed 1000 simulations of Hawkes processes each with ĝ set to that estimated from

the data using equation (3.6), and with K and µ equal to their MLEs. For each of these 1000

simulations, estimates of the triggering function were performed using equation (3.6), and the

results were used to obtain the 95% confidence bands shown in Figure 3.4c. Little should be

inferred from the noticeably higher density in the equation (3.6) estimates compared to the

Marsan-Lengliné estimates in the range of 3-4 days, since these differences are well within the

95% confidence bands. Moreover, it is evident that even with more than 100 years of data on
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plague in the United States, there is still substantial variability in the estimates up to time

intervals of 20 days. However, there is also a clear decrease in the triggering density after

1-2 days, and much of the triggering density corresponds to these very short time intervals

of 4.5 days or less. Note that the 95% confidence bands are obtained individually for each

time interval, u; while it is not uncommon to obtain a large estimated triggering density of

0.2 or more for a particular time interval of 10-20 days, for example, it is extremely unlikely

to see such high density estimates for many time intervals in this range.

3.7 Concluding remarks

Prescribing the number p of parameters to be estimated to equal the number n of observa-

tions allows one to obtain analytic MLEs for those parameters, by setting the derivatives

of the log-likelihood to zero, solving for 1/λi and therefore obtaining λi, and then solving

for β which defines the estimated triggering function. We observe major computation time

savings from this method. For datasets of only 100-300 points, the savings are negligible.

However, for 5,000 points, whereas the Marsan and LenglinÃľ (2008) algorithm in R with a

stopping criterion of 100 iterations maximum takes about 7 hours on a 2.5 GHz Intel Core

i5 processor, the analytic method proposed here and also implemented in R takes only 1.3

minutes on the same machine. This speed facilitates computations such as simulation based

confidence intervals.

According to the fitted Hawkes model for United States plague data from 1900-2012, the

disease appears to have spread rapidly, with 99% of contagion occurring within 7.5 days.

Note that this estimate of contagion is based on the estimated onset days of the reported

plague symptoms; the actual times of day when the disease was contracted were unknown.

The modeled contagion is not necessarily direct: the model does not discriminate between

the situations where subject A transmits the disease directly to subject B and the situation

where subjects A and B are both infected by some other source (human or animal). Hence

the estimated contagion time of 0-7.5 days as suggested by the fitted model includes both
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direct and indirect transmission, and actual direct transmission times might be shorter.

As noted in Kugeler et al. (2015), plague is a zoonotic disease, and in the United States,

for only 30% of cases is the specific source of exposure known. Indeed, of the 305 human

cases in the United States for which such source information is available, 16.1% of the cases

were attributed to human to human transmission, while the remainder were attributed

to exposure from fleas, rodents or other animals (Kugeler et al. 2015). The estimated

triggering function reported here should be viewed as a description of the spatial-temporal

spread of the disease, rather than an estimate of the direct human to human transmission

rate. Furthermore, missing observations (unreported or undiagnosed plague cases) as well

as the confirmed plague cases prior without assigned onset dates were removed from the

analysis, and these omissions might also have led to an overestimate of the transmission

times. The application to Loma Prieta earthquake data suggests a similarly rapid contagion

time between earthquakes and their aftershocks, with most aftershock activity occurring

within 0.5 days of the triggering event according to the fitted model. Of course, in the case

of the Loma Prieta seismicity, most of the events in the catalog may be attributed to the

magnitude 6.9 Loma Prieta mainshock itself. The fitted model here instead attributes many

of the subsequent events to the cascading effect of aftershocks of the M6.9 Loma Prieta

event triggering future aftershocks, and so on, and it is these triggerings that are estimated

to occur primarily over a time span of only several hours. In the case of earthquakes as

well as plague, there may be numerous other covariates, such as climate, geographical and

geological variables for instance, that are omitted here yet may influence the relationship

observed here between previously observed points and the rate of future points. The

conditional intensity may nevertheless be consistently estimated in the absence of such

information provided the impact of the missing covariates is suitable small, as shown in

Schoenberg (2016).

While the method proposed here extends readily to the space-time-magnitude case and to

the case where both µ and g are estimated simultaneously, as described in Appendix E, more

work is needed to see what the limits are on this method. An important topic for future
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research is to investigate whether the method proposed here can be extended to other types

of point process models as well, such as Cox processes, inhibition processes, Gibbs point

processes, or other models. In addition, more work is needed to adapt the current method

to the case where the adjacency matrix is singular or nearly singular, and to determine

ideal means and bandwidths for smoothing the resulting estimates or perhaps to incorporate

this smoothing into the estimation procedure. As mentioned in the Introduction, while

Hawkes point process models are widely used in seismology, they have been sparsely used

in epidemiology, and we hope the nonparametric estimation methods described here might

facilitate the use of Hawkes processes to describe such datasets in the future.
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Figure 3.1: Estimated triggering density (dashed curve) using (3.6) and true triggering den-
sity (solid curve), for a) exponential, b) truncated normal, c) uniform, and d) Pareto densi-
ties. The exponential density used had mean 300, the truncated normal was the restriction to
positive values of the normal density with mean 50 and SD 100, the uniform density was on
the interval (0,200), and the Pareto triggering function had density g(u) = (p−1)cp−1/(u+c)p,
with c = 2 and p = 2.5.
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Figure 3.2: Computation times and MSE of triggering functions estimated using (3.6), rep-
resented by circles, or the method of Marsan and Lengliné (2008), represented by triangles.
Computations were performed in R on a MacBook Pro with 2.5 GHz Intel Core i5.
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ĝ
(u
)

0.0 0.5 1.0 1.5 2.0 2.5

0
1

2
3

4

time interval u (days)

ĝ
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Figure 3: Estimated triggering function for Loma Prieta seismicity of M � 3.0 from 10/16/1989

to 1/17/1990. Solid curves represent the method proposed here in equation (9), and dashed curves

represent the iterative method of Marsan and Lengliné (2008). Grey, dotted curves are estimates

based on equation (9) ± 1 or 2 SEs, for light grey and dark grey, respectively. SEs were computed

using the SD of equation (9) estimates in 100 simulations of Hawkes processes with triggering

functions equal to that estimated using equation (9).

24

Figure 3.3: Estimated triggering function for Loma Prieta seismicity of M ≥ 2.1 from
10/16/1989 to 1/17/1990. Solid curves represent the method proposed here in equation
(3.6), and dashed curves represent the iterative method of Marsan and Lengliné (2008).
Grey, dotted curves are estimates based on equation (3.6) ± 1 or 2 SEs, for light grey and
dark grey, respectively. SEs were computed using the SD of equation (3.6) estimates in
100 simulations of Hawkes processes with triggering functions equal to that estimated using
equation (3.6).
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ĝ
(u
)

Figure 3.4: (a) Onset dates of reported and confirmed occurrences of plague in the United
States from 1900-2012, according to data from the CDC. The y-coordinates are scattered
uniformly at random on the y-axis for ease of visualization. (b) Estimated triggering function,
ĝ, for the reported onset times of U.S. plague cases. (c) Estimated triggering function ĝ, for
U.S. plague data, for intervals up to 20 days. In (b) and (c), the solid curves correspond to
equation (3.6), the dashed curves result from the method of Marsan and Lengliné (2008),
and the dotted curves are the middle 95% range for ĝ from equation (3.6) resulting from
simulating Hawkes models where the true triggering function is that estimated from the data
using equation (3.6).
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CHAPTER 4

Voronoi residuals and other residual analyses applied

to CSEP earthquake forecasts.

4.1 Introduction

Voronoi residuals, super-thinning, and some other residual analysis methods are applied to

a selection of earthquake forecast models in the Collaboratory for the Study of Earthquake

Predictability (CSEP). Unlike simple numerical summaries such as the N-test, L-test, or

R-test, graphical residual methods are proposed which can be useful for comparing multiple

models and for highlighting when and where a given model does not agree closely with the

observed seismicity. For gridded forecasts Voronoi residuals seem preferable for assessing

one model individually. For models outputting an estimated conditional rate at any par-

ticular space-time location, Voronoi residuals and super-thinning can be especially useful at

identifying departures from the data.

Some alternative residual analysis techniques for spatial-temporal point process models have

been proposed recently, such as Voronoi residuals and super-thinned residuals. These residual

methods were reviewed in Clements et al. (2011) and applied to earthquake forecast models

from the Regional Earthquake Likelihood Models (RELM) project (Field 2007, Schorlemmer

and Gerstenberger 2007) in the framework of the Collaboratory for the Study of Earthquake

Predictability (CSEP) described in Jordan (2006). The evaluations in Clements et al. (2011)

were made using earthquake occurrence data from January 2006 to September 2009. Here,

we review the strengths and weaknesses of these various model evaluation techniques and

apply the residual analysis methods to a longer catalog, extending from January 2006 to
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September 2014.

We also suggest an improvement with respect to color scaling of Voronoi residual diagrams.

Previous research has struggled with this issue. Meijering (1953) demonstrated that the

expected area of a Voronoi cell is equal to the reciprocal of its intensity for a homogeneous

Poisson process and Hinde and Miles (1980) that the area of Voronoi cells is approximately

gamma distributed. Tanemura (2003) showed that, for an inhomogeneous Poisson process,

the reduced Voronoi cell area X is well approximated by a gamma distribution with

a rate and shape of 3.569. However, as noted in Bray et al. (2014), this model is a

poor approximation to the distribution of Voronoi residuals for earthquake data, since

earthquakes are so highly clustered. Bray et al. (2014) proposed using a probability integral

transformation (PIT) to scale the Voronoi residuals uniformly. The method was shown to

work well, in terms of providing useful graphics when applied to earthquake data, but was

computationally intensive, requiring repeated simulation of the model under consideration,

and the resulting values of the PIT transformed Voronoi residuals are not so easy to

interpret. Here, we propose simply using the Voronoi residuals applied to a homogeneous

Poisson process model, with rate fit by maximum likelihood, as a scale by which to judge

the Voronoi residuals of alternative models. The resulting scaling is trivial computationally,

provides useful graphics when applied to earthquake data from Southern California, and

results are very easy to interpret. Bright red cells and bright blue cells indicate areas where

the proposed model performed alarmingly poorly, as these are areas where the residual

was similar in size to that of the cells of maximum under-prediction or over-prediction of

seismicity, respectively, of the homogeneous Poisson model.

Note that, for the purpose of evaluation and comparison of earthquake forecast models, CSEP

currently implements several numerical summary tests, such as the Likelihood-test (L-test)

(Schorlemmer et al. 2007) and the Number-test (N-test) (Zechar et al. 2013) to measure

the consistency of a forecast with the observation and comparative tests, such as the T- and

W-tests (Rhoades et al. 2013). For instance, the L-test works by first simulating some fixed

number s of realizations from the forecast model and comparing the log-likelihood (`) for
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the observed earthquake catalog (`obs) with that of the simulations (`j, for j = 1, 2, . . . , s).

The quantile score, γ, is defined as the fraction of simulated likelihoods that are less than

the observed catalog likelihood:

γ =

s∑
j=1

1{`j<`obs}

s
,

where 1 denotes the indicator function. A value of γ close to zero is considered strong

evidence of inconsistency between the model and the observed seismicity. The N-test is

similar to the L-test, except that the quantile score examined is instead the fraction of

simulations that contain fewer points than the actual observed number of points in the

catalog, Nobs. That is,

δ =

s∑
j=1

1{Nj<Nobs}

s
,

where Nj is the number of points in the jth simulation of the model. With the

N-test, the model is rejected if δ is close to 0 or 1. Application of these test statistics

and others to the RELM and CSEP models studied here are shown in Clements et al. (2011).

Such tests provide a score for the overall fit of the model but fail to indicate where a

model may be fitting poorly. In addition, as noted in Clements et al. (2011), in practice

both statistics γ and δ test essentially the same thing, namely the agreement between

the observed and modeled total number of points. Indeed, for a typical model, the

likelihood for a given simulated earthquake catalog depends critically on the number

of points in the simulation. Furthermore, both the L-test and N-test have very low

power, as shown via simulations in Clements et al. (2011). Instead of numerical tests and

functional summaries such as weighted K-functions (see Adelfio and Schoenberg 2009),

here we focus on graphical residual analysis methods that can be useful to suggest ar-

eas where one model outperforms another, or where one given model may need improvement.

This chapter is organized as follows: Section 4.2 presents the observed earthquake occur-

rences and the forecasted models for comparison, in Section 4.3 we apply pixel-based Pear-
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son residuals and identify specific locations where each forecast performs well and/or poorly,

Section 4.4 presents super-thinned residuals, and Section 4.5 describes Voronoi residuals,

demonstrates their utility and introduces a new method of coloring scaling the cells. Sec-

tion 4.6 summarizes the results and discusses some of the strengths and weaknesses of these

methods.

4.2 Data and models for comparison

The data and models explored here are similar to those used in Clements et al. (2011), the

main difference being the extension of the earthquake catalog to include 8.7 years instead of

3.7 years. Figure 4.1 shows estimated earthquake hypocenter locations for 510 shallow earth-

quakes (M 3.95+), which occurred in RELM’s testing spatial-temporal window in Southern

California between 1 January 2006 and 2 September 2014, and were obtained for this study

from the Advanced National Seismic System (ANSS). 43 earthquakes were of magnitude

≥ M 4.95 and 10 were events ≥ M 5.5. The largest event, El Mayor M 7.2, occurred in

Baja California on 4 April 2010.

The RELM models selected for comparison come from CSEP’s rate-based repository, and

are the same as those discussed in Clements et al. (2011). They are the following 3 models

(named here A, B, and C as in Clements et al. 2011):

A: Helmstetter et al. (2007).

B: Kagan et al. (2007).

C: Shen et al. (2007).

All of these models except Model C forecast based exclusively on previous seismicity,

whereas Model C incorporates geodetic and geological data as well. Models A, B, and C

are five-year models, producing just one forecast of seismicity in each spatial-magnitude

grid. Not included are STEP and ETAS Models which are one-day models, producing a

forecasted expected number of events in each spatial grid for each day. Note that since

not all RELM models in CSEP produce estimates in every pixel within this space-time
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Figure 4.1: Locations of 510 earthquakes with magnitude M ≥ 3.95 in the RELM testing
region from 1 January 2006 to 2 September 2014.
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window, there are different numbers of observed earthquakes occurring in the relevant

forecast regions corresponding to different models. As such, Model A had 509 earthquakes

observed within its corresponding space-time window, Model B had 343, and Model C had

356. All 5 year models were scaled proportionally to adjust to the temporal window used here.

The RELM testing region was designed to include all earthquakes in California and ∼ 1◦

around it. The space is divided into cells size of 0.1◦ longitude by 0.1◦ latitude. The

magnitude dimension is also divided into 0.1◦ bins for earthquake magnitudes ranging

from 3.95 to 8.95. For magnitudes 8.95–10, there is a single bin of size 0.1◦ by 0.1◦

by 1.05 units of magnitude. Note that forecast bins can be masked, meaning that the

bins should be ignored when evaluating the forecast. For the RELM Models A, B and

C, a lower magnitude bound of 4.95 was imposed, but as in Clements et al. (2011), for

purposes of model evaluation and comparison, we extrapolate down to magnitude 3.95

using the model’s fitted magnitude distribution. Specifically, Models A and B assume

the magnitude distribution follows a tapered Gutenberg-Richter law (Gutenberg and

Richter, 1944) with a b-value of 0.95 and a corner magnitude of 8.0. Model C uses

a b-value of 0.975 and the same corner magnitude. Model A adjusts the magnitude

distribution in a small region in northern California influenced by geothermal activity

(−122.9◦ < lon < −122.7◦ and 38.7◦ < lat < 38.9◦) by using a b-value of 1.94 instead of 0.95.

4.3 Raw and Pearson residuals

Raw and Pearson residuals can be useful for detecting a model’s lack of fit as expressed

by large differences between the number of points occurring in each pixel and the number

expected according to the fitted model. Consider a space-time point process with conditional

intensity λ̂(t, x, y) at any time t and location (x, y). The raw residual process r may be

defined following Baddeley et al. (2005) as the difference between the point process and its
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conditional intensity process, i.e. a process with integral

R(B) =
∫
B
r(t, x, y) dtdxdy (4.1)

=
∫
B
dN −

∫
B
λ̂ (t, x, y) dtdxdy = N(B)−

∫
B
λ̂ (t, x, y) dtdxdy,

for any measurable set B. One may then observe these integrated raw residuals over a

sequence of pixels Bi. Note that Baddeley et al. (2005) only consider the case of purely

spatial point processes characterized by their Papangelou intensities; Zhuang (2006)

showed one may nevertheless extend the definition to the spatial-temporal case using the

conventional conditional intensity.

One may rescale the raw residuals such that they have mean 0 and variance approximately

equal to 1. The resulting Pearson residual process rp are defined so that, for measurable B,

RP(B) =
∫
B
rP(t, x, y) dtdxdy =

∫
B

1√
λ̂
dN −

∫
B

√
λ̂ dtdxdy

=
∑

(tj ,xj ,yj)∈B

1√
λ̂ (tj, xj, yj)

−
∫
B

√
λ̂ (t, x, y) dtdxdy,

provided λ̂(ti, xi, yi) > 0. This form is analogous to the Pearson residuals in Poisson

log-linear regression.

In practice, with Pearson residuals, standardization is problematic when one or more events

occur in spatio-temporal locations with forecasted conditional intensity of 0. Often a minor

adjustment may be made to the estimated conditional intensity in each of these locations

such that the forecasted conditional intensity is slightly greater than 0. Model C needs

such an adjustment in a few bins whereas Models A and B did not have this constraint

and we were able to obtain Pearson residuals for each pixel. However, when several models

assign very low conditional intensity in one area of space-time, the Pearson residuals in

these locations of very low conditional intensity tend to overwhelm the others in a visual
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inspection, resulting in a Pearson residual plot that is of limited use in terms of evaluating

the quality of the fit of the models either in absolute or relative terms.

Figure 4.2(b) shows the Pearson residuals for Model B with the largest residual (4.47)

located on the pixel that spans the California border with Mexico. This region is just east

of Mexicali and the Imperial Valley fault zone (lon ≈ −115.8◦W and lat ≈ 32.7◦N), and

is the location just East of a large cluster of earthquakes. Nearby there are many other

large Pearson residuals. A residual of 3.95 occurs just West, and a large cluster of large

residuals for Model B all occur south of this region (lon ≈ −115.2◦W and lat ≈ 32.2◦N).

Outside of this region, other notable residuals for Model B (3.36) are located above the San

Bernardino and Inyo county border near the Panamint Valley fault zone (lon ≈ −117.9◦W

and lat ≈ 36.4◦N), and (1.68) just north (lon ≈ −117.4◦W and lat ≈ 36.0◦N). Since the

Pearson residuals should be approximately standardized, values much greater than 2 (in

absolute value) suggest a significant lack of fit.

Model A, shown in Figure 4.2(a), shares many similarities to Model B in terms of model

fit. The largest Pearson residual for Model A (4.57) is located near Mexicali at at

the Mexico-California border (lon ≈ −115.2◦W and lat ≈ 32.2◦N). In fact, this region

contains most of the largest residuals for Model A. Large residuals (such as 3.51) also

occur just north of California in the Battle Rock fault zone (lon ≈ −123.8◦W and lat

≈ 42.6◦N) and (2.59) near the Bare Mountain fault zone (lon ≈ −117.8◦W and lat ≈ 36.4◦N).

The largest residual for Model C (4.44) occurs in close proximity to the Bare Mountain

fault zone (lon ≈ −117.8◦W and lat ≈ 36.4◦N) as seen in Figure 4.2(c). There were 10

earthquakes ranging from magnitude 4.2 to 5.19 in this pixel during the temporal window.

A cluster of large negative residuals, as seen in dark blue, occurred near the creeping

section of the San Andreas fault zone (lon ≈ −120.4◦W and lat ≈ 36.1◦N). Seismicity was

accurately forecasted in the low intensity area in the Eastern most portion of the forecast.
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Yet as with Models A and B, the majority of the largest Pearson residuals for Model C

occurred near the Imperial Fault region.

While raw and Pearson residuals can be an effective tool for evaluating a model’s lack of

fit, these residuals may be highly skewed and hence yield potentially misleading results

when spatial-temporal bins are small and/or the estimated conditional intensity in some

bins is very low, as in many locations in the models described above. Indeed, when this

occurs, plots of the pixellated raw or Pearson residuals tend to resemble plots of the points

themselves, and thus reveal little about the goodness-of-fit of the models in question.

Pearson residuals and raw residuals are effective at identifying areas where the model fit

should be adjusted and can be a good starting point for analysis, and alternative approaches,

such as deviances, can be useful to evaluate how poorly a model fits in locations where it

underpredicted or overpredicted seismicity.

4.4 Super-thinning

Thinning for residual analysis was proposed in Schoenberg (2003) and superposition by

Brémaud (1981). Using thinning, each point τi, of a point process N , is retained with

some probability pi. Superposition, meanwhile, is essentially an addition operator on point

processes, i.e. N3 is the superposition of point processes N1 and N2. While both are

individually effective, a more powerful approach than either thinning or superposition alone

is super-thinning. This combined approach, introduced by Clements et al. (2012), thins in

areas of high intensity and superposes simulated points in areas of low intensity, resulting

in a homogeneous point process if the model for λ used in the thinning and superposition is

correct.

Using the super-thinning method, N can be transformed into Z, using the following

algorithm. First thin N , keeping each point (ti, xi, yi) independently with probability
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Figure 4.2: The maximum observed Pearson residual is 4.57 for Model A and is located
near Mexicali at at the Mexico-California border (lon ≈ −115.2◦W and lat ≈ 32.2◦N). The
maximum observed Pearson residual is 4.47 for Model B and is located on the pixel that
spans the California border with Mexico. The largest residuals for Model C occur in close
proximity to the Bare Mountain fault zone (lon ≈ −117.8◦W and lat ≈ 36.4◦N).
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pi = min{1, k/λ̂(t, x, y)}, to obtain a thinned residual process Z1. Next, simulate points

according to a Cox process Z2 directed by max{0, k − λ̂(t, x, y)}. The points of the residual

point process Z = Z1 +Z2, obtained by superposing the thinned residuals and the simulated

Poisson process, are called super-thinned residuals. The procedure results in a homogeneous

Poisson process Z with rate k if and only if the thinning and superposition are performed

using an estimate λ̂ that is equal to the true conditional intensity λ almost everywhere

(Clements et al. 2012).

An advantage of this method is that the user may specify the overall rate of the resulting

residual point process, Z, so that it contains neither too few or too many points. In this

case, for Models A, B, and C, k was chosen to be the total number of expected earthquakes

according to each forecast. The resulting super-thinned residuals can be plotted and

assessed for homogeneity as a way of evaluating the model. Visualization allows detection of

any clustering or inhibition in the residual points which indicates a lack of fit. One can also

use the L-function applied to the residual super-thinned process Z to assess the uniformity

of the residuals.

Figure 4.3(a) shows Model A fits well overall despite some clustering in the residuals at

very small distances (from 0◦ to 0.1◦) but not much otherwise. Circles indicated observed

earthquakes and plus signs indicate simulated points, while lighter points indicate events

that occurred earlier in the time and darker points occurred later. There is a significant

cluster near the Imperial Fault (lon ≈ −115.2◦W and lat ≈ 32.2◦N) and in the Trinidad fault

zone (lon ≈ −124.5◦W and lat ≈ 40.5◦N). However, the centered weighted L-function for the

corresponding residuals for Model A, shown in Figure 4.5(a), reveals that the model performs

well is most areas. The L-function is best interpreted along with 95%-confidence bands which

are plotted as dash lines. While there is a small amout of inhibition in the residual process

but Model A seems to accurately predict the rate of seismicity outside of the interfault zones.
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The super-thinned residuals for Model B, shown in Figure 4.3(b), contain a few significant

clusters near the Imperial Fault (lon ≈ −115.2◦W and lat ≈ 32.2◦N), Laguna Salada (lon

≈ −117.1◦W and lat ≈ 32.4◦N), and La Habra (lon ≈ −118.0◦W and lat ≈ 34.0◦N). Indeed,

there is significant clustering for Model B up to distances of 0.3◦. As with Model A, the

weighted L-function for Model B, shown in Figure 4.5(b), indicates little inhibition outside

of this range. There is also little overprediction as evident by a consistent covering of

residual points. This result means enough points were simulated and the residual process is

close to what is expected.

As seen in Figure 4.3(c), there is also significant clustering for Model C up to distances of

0.2◦, which occur in similar regions to Models A and B. Clustering for Model C occurs in

the Imperial Fault (lon ≈ −115.2◦W and lat ≈ 32.2◦N), Laguna Salada (lon ≈ −117.1◦W

and lat ≈ 32.4◦N), and off the coast of Baja California (lon ≈ −117.7◦W and lat ≈ 32.0◦N).

Several of the nearly linear patterns in the data also appear in the residuals, such as in

the Imperial Cluster, which indicates that the rates in these locations may be misspecified.

Indeed, as seen Figure 4.5(c), at short distances the centered weighted L-function indicates

the Model C is under-predicting but the L-functions are within the Poisson bounds for large

distances.

4.4.1 Spatial Temporal Super-thinning

Spatial-temporal super-thinned residuals allow the evaluation of a model’s performance

over various time domains. The forecast period was split into four equal temporal windows

and super-thinned residuals were visualized for Model B to assess the spatial temporal

performance of the model. Figure 4.4 shows these results for Model B. The super-thinned

residuals contain clusters near the Imperial Fault (lon ≈ −115.2◦W and lat ≈ 32.2◦N),

specifically in temporal window 2 (2 March 2008 to 3 May 2010) and temporal window

3 (3 May 2010 to July 7 2012). Otherwise, there is little over-prediction as evident by a

consistent covering of residual points. This result implies enough points were simulated
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Figure 4.3: One realization of super-thinned residuals for each Model. Circles indicated
observed earthquakes and plus signs indicate simulated points. Lighter points indicate events
that occurred earlier in the time, darker points occurred later. There is a significant cluster
near the Imperial Fault (lon ≈ −115.2◦W and lat ≈ 32.2◦N) for Model A. The super-
thinned residuals for Model B contain a few significant clusters near the Imperial Fault (lon
≈ −115.2◦W and lat ≈ 32.2◦N) and Laguna Salada (lon ≈ −117.1◦W and lat ≈ 32.4◦N).
Clustering for Model C occurs in Laguna Salada (lon ≈ −117.1◦W and lat ≈ 32.4◦N) and
off the coast of Baja California (lon ≈ −117.7◦W and lat ≈ 32.0◦N).
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and the residual process in each temporal window is close to what is expected. Figure 4.6

shows the weighted L-function, corresponding to the four temporal windows. There appears

to be significant clustering in temporal window 2 up to distances of 0.3◦ and in temporal

window 3 up to distance of 0.1◦. In addition, at distance less than 0.1◦ in temporal window

4 (2 July 2012 to 2 September 2014), the observed data exhibit greater inhibition than one

would expect according to Model B.

To further evaluate each model’s temporal performance, the forecast period was split

into 12 equal temporal windows. Given the results from the L-function described above,

investigating distances of 0.2◦ to 0.3◦ is of interest. During each temporal window, the

Z-statistic with the largest absolute value associated with the L function in r ∈ [.2, .3),

was identified. The temporal assessment of the L-function, shown in Figure 4.7, indicates

that Model A appears to have larger positive Z-statistics in the first half of the temporal

window and has its largest negative Z-statistics in the 8th temporal window. In this

window the L-function crosses the 95% confidence bounds shown in Figure 4.5(a). Model

A generally performed well, so this result confirms the previous finding. Model B tended

to have positive Z-statistics although 3 of the last 4 temporal windows had large negative

Z-statistics. Similar to Model B, Model C had large positive Z-statistics in the 5th, 6th,

and 7th temporal windows while 3 of the last 4 temporal windows had large negative

Z-statistics. The temporal trend in the extremes of the residual process over time appears

to be minimal.

Spatial-temporal super-thinned residuals are a valuable tool for assessing a model’s perfor-

mance over varying space-time windows. The temporal windows must typically be defined

quite arbitrarily, however. For example, the M 7.2 El Mayor earthquake at the end of the

second temporal window, as seen in Figure 4.6(c), and its aftershocks were visible in window

3. Smaller temporal windows can be used, as shown in Figure 4.7 for instance, but as the

size of the temporal window decreases, the number of observed events in each window also

decreases resulting in less data available within each window for model evaluation.
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(b) T2 : 2 Mar 2008 - 3 May 2010
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(c) T3 : 3 May 2010 - 2 Jul 2012
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(d) T4 : 2 Jul 2012 - 2 Sep 2014

Figure 4.4: One realization of temporal Super-thinned residuals for Model B. Circles indi-
cated observed earthquakes and plus signs indicate simulated points. The super-thinned
residuals for Model B contain a few significant clusters near the Imperial Fault (lon
≈ −115.2◦W and lat ≈ 32.2◦N) in temporal window 2 (2 March 2008 to 3 May 2010)
and temporal window 3 (3 May 2010 to July 7 2012). Otherwise, the covering of residual
points appears to be quite uniform.
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(c) Centered weighted L-function for Model C

Figure 4.5: Centered weighted L-function for Model A along with 95%-confidence bands.
Model A fits well overall despite some clustering in the residuals at very small distances
(from 0◦ to 0.1◦) but not much otherwise. There is significant clustering for Model B up to
distances of 0.3◦. There is also significant clustering for Model C up to distances of 0.2◦,
which occurs in similar regions to Models A and B.
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(b) T2 : 2 Mar 2008 - 3 May 2010
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(c) T3 : 3 May 2010 - 2 Jul 2012
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(d) T4 : 2 Jul 2012 - 2 Sep 2014

Figure 4.6: Centered weighted L-function for Model B along with 95%-confidence bands.
There appears to be significant clustering in temporal window 2 up to distances of 0.3◦ and
in temporal window 3 up to distance of 0.1◦. However at distance less than 0.1◦ in temporal
window 4 (2 July 2012 to 2 September 2014), the observed data exhibit greater inhibition
than one would expect according to Model B.
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Figure 4.7: Temporal Assessment of L-function at r ∈ [.2, .3) enabling an assessment of the
stationarity of the residual process over time. Model A appears to have larger positive Z-
statistics in the first half of the the temporal windows and has its largest negative Z-statistics
in the 8th temporal window. In this window the L function would have crossed the 95%
confidence bounds shown in Figure 4.5. Model A generally performed well so this result is
not surprising. Model B has its largest Z-statistics in temporal windows 5 and 7. Model
B tended to have positive Z-statistics although 3 of the last 4 temporal windows had large
negative Z-statistics. Similar to Model B, Model C had large positive Z-statistics in the 5th,
6th, and 7th temporal windows while 3 of the last 4 temporal windows had large negative
Z-statistics.
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4.5 Voronoi residuals

Voronoi residuals are also useful for overcoming the problems caused by skewness in the

distribution of the raw or Pearson residuals integrated over pixels, when pixels have a

small integrated conditional intensity. Voronoi residuals are constructed using a Voronoi

tessellation, which is a partition of the metric space on which a point process is defined into

convex polygons, or Voronoi cells. Specifically, for a point pattern of N events, one may

define its corresponding Voronoi tessellation as follows: for each observed point τi of the

point process, its corresponding cell Ci is defined as the region consisting of all locations

that are closer to the generating point τi than to any other point of N . The tessellation is

the collection of such Voronoi cells which we assume fills the complete window CT such that

CT =
N
∪
i=1

Ci. Voronoi cells are necessarily convex polygons and have many well understood

properties; for instance, the mean number of edges in the Voronoi cells induced by a

stationary planar Poisson process is six. Okabe et al. (2000) provide a thorough treatment

of Voronoi tessellations and their properties.

Given an observed spatial or spatial-temporal point pattern and its corresponding Voronoi

tessellation, one may construct residuals for a conditional intensity model simply by

evaluating the integral of the raw residual process over the Voronoi cells rather than over

rectangular pixels. We will refer to such residuals as Voronoi residuals. Alternatively, one

may integrate Pearson residuals or examine deviances over the Voronoi residuals as well.

A key advantage of Voronoi residuals compared to conventional pixel-based residual methods

is that the partition is entirely automatic, data-driven, and spatially adaptive. Barr et al.

(2010) showed Voronoi estimates can have less variability than kernel estimates in locations

of low intensity surrounded by locations of high intensity. Moreover, the resulting distribu-

tion of residuals tends to be far less skewed than when one integrates the raw or Pearson

residuals over fixed rectangular pixels. Each Voronoi cell has exactly one point inside it by

construction, i.e. N(τi) = 1 for each Voronoi cell Ci.
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Voronoi residuals are described in detail in Bray et al. (2014) and are shown to be

considerably less skewed than pixel residuals. One difficulty when plotting Voronoi residuals

is the determination of an appropriate color scale, with appropriate limits. Bray et al.

(2014) proposed using a probability integral transformation (PIT) to scale the Voronoi

residuals uniformly. While the PIT method was shown to work well, in terms of providing

useful graphics when applied to earthquake data, it was computationally intensive since it

required repeated simulation of the model under consideration. Here, we propose a much

simpler alternative. We simply fit a homogeneous Poisson process model, with rate fit by

maximum likelihood, and use the standardized Voronoi residuals for this null model as a

scale by which to judge the residuals of alternative models.

The resulting scaling is trivial computationally, provides useful graphics when applied

to earthquake data from Southern California, and the results are very easy to interpret.

Figure 4.8(a) shows the Voronoi cells corresponding to the standardized residuals of the

null homogeneous Poisson model, as such the color in each Voronoi cell is defined by the

size of the cell. Cells of highly clustered events are colored red and blue cells indicate

areas of sparse seismicity. Note that to construct the reference model, all Voronoi cells

were truncated by the border of the RELM region, and in computing Voronoi residuals for

Models A, B, and C, the Voronoi cells were constructed spatially and each such cell spans

the entire temporal and magnitude window.

Figure 4.8(b) shows the standardized Voronoi residuals for Model A. Areas towards the

edges of the color scale are where Model A performed alarmingly poorly as compared to the

null homogeneous Poisson model. Indeed, these are areas where the residual was similar in

size to that of the cells of maximum under-prediction or over-prediction of seismicity for

the null model. Model A under-predicts seismicity near the Imperial Fault, as indicated

by the tight cluster of red cells, and generally tends to over-predict seismicity compared

to the reference model. Model A appears to perform well in the Trinidad fault zone (lon

≈ −124.5◦W and lat ≈ 40.5◦N). Model A also substantially outperforms the reference
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model near Hawthorne, Nevada (lon ≈ −118.70◦W and lat ≈ 38.40◦N).

Figure 4.8(c) shows Model B similarly under-predicts seismicity in the Imperial Fault region.

Model B appears to forecast seismicity accurately near the Campo Indian Reservation (lon

≈ −116.30◦W and lat ≈ 32.40◦N) but generally tends to under-predict seismicity in the

Southwestern region of the forecasted area. Model B tends to over-predict seismicity in the

Eastern region of the forecast and generally in the Northwestern region. However, within

a vast region of over-prediction Model B performs well off the coast of Paso Robles (lon

≈ −121.50◦W and lat ≈ 35.70◦N). The relatively large amount of lighter shades indicates

that Model B generally performs well compared to the null model.

Model C (Figure 4.8(d)) similarly under-predicts in the Imperial Valley, though the vast

white shade in this region indicates areas where Model C forecast seismicity accurately

compared to the homogeneous Poisson model. For example, Model C appears to perform

well near the Channel Islands of California (lon ≈ −119.3◦W and lat ≈ 33.1◦N) and also

performs well further South near the Coronado Islands (lon ≈ −117.1◦W and lat ≈ 32.3◦N).

Like Models A and B, Model C appears to under-predict seismicity in the Southwestern

area of the forecast region. Alternatively, over-prediction is evident by cluster of large

negative residuals located just west of the Sequoia National Forest (lon ≈ −119.5◦W and

lat ≈ 36.0◦N) in the Northwestern area of the forecast.

Using the color scaling defined by the null homogeneous Poisson model enables easy

comparisons between models. We can see in Figure 4.8(a) and Figure 4.8(b) that Model

B under-predicts in the eastern portion of the forecast region, whereas Model A tends

to over-predict seismicity in this area. In comparing Model A to Model C, one sees that

Models A and B both under-predict seismicity near the Channel Islands of California (lon

≈ −119.3◦W and lat ≈ 33.1◦N) whereas Model C appears to forecast seismicity accurately

in this region. In addition, Model A tends to over-predict just south (lon ≈ −118.0◦W and
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lat ≈ 32.0◦N) whereas Models B and C under-predicted seismicity. Compared to Model

C, Model B tended to over-predict in areas such as Death Valley (lon ≈ −116.5◦W and

lat ≈ 36.3◦N) and near Pomona (lon ≈ −117.8◦W and lat ≈ 34.0◦N). Overall, the Voronoi

residuals suggest that Model C forecast seismicity the most accurately of the three models.

Voronoi residual plots are able to clearly highlight the regions where Models A, B and C

under-predict and over-predict the intensity of the process. Model evaluation using Voronoi

residuals has the advantage of offering an adaptive, data-driven grid that requires no input

from the user regarding tuning parameters. They are ideal for evaluating when a particular

model appears to over-predict or under-predict seismicity, especially with the ease of compar-

ison to a null homogeneous Poisson model. When combined with Pearson and super-thinned

residuals, one can conduct a complete evaluation of a group of competing models.

4.6 Summary

A variety of common residual analysis methods for spatial point processes can be imple-

mented to assess fit and reveal strengths and weaknesses in point process models. Voronoi

residuals and super-thinned residuals for spatial-temporal point process models appear to

provide powerful summaries of model fit. These residual methods were applied to the 5-year

earthquake forecast models in the Regional Earthquake Likelihood Models (RELM) project

for a catalog spanning from January 2006 to September 2014, including shallow earthquakes

of magnitude at least 3.95. Extending the temporal window beyond that in Clements et al.

(2011) has allowed a larger number of observed earthquakes to test and led to more detailed

and more meaningful results.

Pixel-based Pearson residuals may be valuable for their ease of interpretation and simplicity

of calculation. However, problems can arise due to forecasted conditional intensities of 0

and extreme skew in the standardized residuals rendering them difficult to interpret. Model

evaluation using the partitions derived from Voronoi tessellation of the observed events
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(d) Voronoi residuals for Model C

Figure 4.8: Voronoi residuals for each Model. When computing the integrated rate over a
Voronoi cell, we treat the forecasted rate over each pixel as constant within each pixel. Model
A appears to perform well in the Trinidad fault zone (lon ≈ −124.5◦W and lat ≈ 40.5◦N)
while Model B appears to forecast seismicity accurately near the Campo Indian Reservation
(lon ≈ −116.30◦W and lat ≈ 32.40◦N). Model C appears to perform well near the Channel
Islands of California (lon ≈ −119.3◦W and lat ≈ 33.1◦N).
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has the advantage of offering an adaptive, data-driven grid that requires no input from

the user regarding tuning parameters. While some sampling variability is induced by the

random cell areas, the resulting Voronoi residuals are substantially less skewed than their

counterparts over typical rectangular grid cells, and the scaling proposed here for Voronoi

residuals using a fitted homogeneous Poisson process is trivial computationally and appears

to result in useful graphics for model evaluation and comparison. In particular, Voronoi

residuals appear to be ideal for evaluating when a particular model appears to over-predict

or under-predict seismicity, with the null homogeneous Poisson model offering a useful and

easily interpretable model for comparison. All of these methods may be useful in the CSEP

paradigm, and hopefully insight gained during one prediction experiment can inform the

building of models for subsequent experiments.

While the N-test and the L-test provide easy to understand statistics that can be used

for hypothesis testing, they have very low power and fail to indicate where a model

may be fitting poorly. The L-test does not differentiate between over-prediction and

under-prediction and the N-test contains no information on the spatial performance of the

model. Formulation of these models of space-time point processes allows for additional

evaluations to be applied that are not constrained by assumptions such as the independence

of bins [Schneider et al. 2014]. When applying point process evaluation techniques, a

model’s performance can depend on the diagnostic tool. Since Voronoi residuals rely on

fewer assumptions due to the spatially adaptive partitioning, as a result, models that

predict well in areas of low seismicity may outperform models with more accurate forecasts

where events actually occurred. Super-thinning appears to be a promising alternative, but

may have low power if the forecasted intensity is volatile. Weighted 2nd-order statistics

appear to be quite powerful, especially for comparisons of competing models in space-time

[Clements et al. 2011].

Zechar et al. (2013) recommend using all tests in combination since each provides insight into

model performance. Surveying results from all evaluation methods applied here, Model C
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generally appears to perform the best. Model A, B and C appear to over-predict seismicity in

many locations but under-predict seismicity in the Imperial Fault region. Voronoi residuals

suggest that Model C forecast seismicity more accurately in comparison to Models A and

B and this is supported by the results from deviances. Model C outperforms both Models

A and B in areas of high seismicity and has less extreme Pearson residuals than Models A

and B. Indeed, the spatial distribution of intensity according to Model C appears to be quite

accurate in areas of low seismicity and Model C tended not to over-predict seismicity locally

as much as Models A and B.
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CHAPTER 5

Software

5.1 Introduction to NonParametricHawkes

NonParametricHawkes is an R package for nonparametric model estimation, forecasting, and

evaluation of spatial point process models, created to increase the accessibility of the methods

introduced here. The package was primarily designed for submission to CSEP, and thus is

most useful for applications related to seismology, however, all of the functionality robust

and can be applied to any data. This chapter will introduce a sample of the functionality

available in the package. Specifically, the package i illustrated on both a simulated Hawkes

process as well as an earthquake catalog.

5.2 Using NonParametricHawkes

Included within NonParametricHawkes are a variety of example datasets. First, a small

ETAS simulation which is useful for demonstrating the methods. The data can be loaded

in the usual way. It contains four variables: time (t), magnitude (hm), longitude (lon), and

latitude(lat).

# Load

require(NonParametricHawkes)

# Load example data

data(ETASsim)

str(ETASsim)

## List of 4

## $ t : num [1:570] 10.2 11.7 11.7 23.2 35.6 ...

## $ hm : num [1:570] 0.3811 0.08 0.0293 0.0336 0.5472 ...
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## $ lon: num [1:570] 1.41 2.84 3.03 1.46 1.87 ...

## $ lat: num [1:570] 0.8 1.414 1.423 0.866 3.076 ...

It is important that data be transformed (sorted) in such a way that the oldest events are first

the variables are named appropriately. The nphData function provides this functionality.

# Cast Data to nphData format

newdata <- nphData(data = ETASsim, time_var = ’t’,

x_var = ’lon’, y_var = ’lat’, mag = ’hm’)

p <- ggplot(newdata) + geom_point(aes(x = lon, y = lat, size = hm))

p + theme_bw() + theme(legend.position = ’none’)
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Model Estimation

The package contains functions for estimating multiple variations of Hawkes point process

models. All model estimation procedures start with the function name nphawkes:

• nphawkesT: Temporal

• nphawkesTNS: Temporal Non Stationary

• nphawkesST: Spatial Temporal

• nphawkesMSTH: Marked Spatial Temporal with Homogenous Background Rate

• nphawkesMSTNH: Marked Spatial Temporal with Nonhomogenous Background Rate

• nphawkesMSTNHA: Marked Spatial Temporal with Anisotropic Spatial Response and

Nonhomogenous Background Rate
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• nphawkesMSTNHAC: Marked Spatial Temporal with Anisotropic Spatial Response Con-

ditional on Magnitude and Nonhomogenous Background Rate

Each function includes a help file, for example, help(nphawkesMSTNH) returns:

Description

Fits a Marked Spatial Temporal Nonparametric Hawkes Point Process Model with a nonho-

mogenous and stationary background rate

Usage

nphawkesMSTNH(data, nbins m = 8, nbins t = 25, nbins r = 30, np = 50, num iter

= 1000, nbins x = 100, nbins y = 100, xrange = c(0, 4), yrange = c(0, 6),

eps = 0.001, verbose = T, warn = T)

Arguments

data A list or data frame with the times, locations, and magnitudes of interest

nbins m The number of bins on which to estimate the magnitude productivity function for

Hawkes Point Process Model

nbins t The number of bins on which to estimate the spatial triggering of the Hawkes Point

Process Model

nbins r The number of bins on which to estimate the temporal triggering of the Hawkes

Point Process Model

np The nearest neighbor used for bandwidth selection

num iter The maximum number of iterations to run

nbins x The number of x bins on which to estimate the inhomogenous background rate

nbins y The number of y bins on which to estimate the inhomogenous background rate

xrange The x range on which estimate the spatial triggering function

yrange The y range on which estimate the spatial triggering function

eps The convergence criteria
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verbose A logical to control the amount of information printed to the console during esti-

mation

Value

mu A single number representing the stationary background rate

g A vector of length nbins t containing the nonparametrically estimated temporal triggering

function

f A vector of length nbins r containing the nonparametrically estimated spatial triggering

function

kp A vector of length nbins m containing the nonparametrically estimated magnitude pro-

ductivity function

delta t The bin widths used in the temporal triggering function estimation

delta r The bin widths used in the spatial triggering function estimation

delta m The bin widths used in the magnitude productivity function

An example is shown below. The resulting object contains the estimate model, specif-

ically, the background rate, the magnitude productivity, the temporal response, and

the spatial response. A plot method is included for the nphawkesMSTNH class. See

help(plot.nphawkesMSTNH) for a full description of the all available options.
res <- nphawkesMSTNH(data = newdata,

nbins_m = 8,

nbins_t = 25,

nbins_r = 25,

eps = 1e-3,

xrange = c(0,4),

yrange = c(0,6),

verbose = F

)

str(res)

## List of 14

## $ mu : num [1:10000] 0.00142 0.00152 0.00162 0.00173 0.00183 ...

## $ g : num [1:25] 4.92 5.29 4.34 5.02 2.61 ...

## $ f : num [1:25] 8.45 0 0 0 0 ...

## $ kp : num [1:8] 0.253 0.275 0.649 0.875 1.36 ...

## $ delta_t : num [1:26] 0.001 0.00185 0.00343 0.00636 0.01179 ...

## $ delta_r : num [1:26] 0.001 0.00143 0.00205 0.00293 0.00419 ...

## $ delta_m : num [1:9] 0 0.313 0.626 0.939 1.252 ...

## $ nbins_x : num 100
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## $ nbins_y : num 100

## $ tot_time: num 4986

## $ xrange : num [1:2] 0 4

## $ yrange : num [1:2] 0 6

## $ np : num 50

## $ pbNew : num [1:570] 1 0.96928 0.00172 0.37037 1 ...

## - attr(*, "class")= chr "nphawkesMSTNH"

p <- plot(fit = res, data = newdata, type = ’background’)

# Add more layers if needed

p + labs(x = ’x’, y = ’y’)

The plot return a ggplot2 object, which is convenient since we can add to the plot in layers.

For example:
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p1 <- plot(fit = res, data = newdata, type = ’space’)

p1 + scale_y_log10(limits = c(1e-3,1e1))
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Similarly, we use the nphawkesMSTNHAC function which provides model estimation for Marked

Spatial Temporal with Anisotropic Spatial Response Conditional on Magnitude and Non-
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homogenous Background Rate. For a user, only two additional inputs need to be specified

nbins a and nbins m2.

• nbins a The number of direction bins on which to estimate the spatial triggering of

the Hawkes Point Process Model

• nbins m2 The number of bins on which to estimate the magnitude component of the

spatial triggering function.

res <- nphawkesMSTNHAC(data = newdata,

nbins_m = 8,

nbins_t = 25,

nbins_r = 25,

nbins_a = 2,

nbins_m2 = 1,

eps = 1e-3,

xrange = c(0,4),

yrange = c(0,6),

verbose = F

)

# Note: est_space include angle

str(res)

## List of 19

## $ mu : num [1:10000] 0.00143 0.00153 0.00163 0.00174 0.00184 ...

## $ g : num [1:25] 4.85 5.22 4.31 4.73 2.7 ...

## $ f : num [1:50] 0.00 0.00 0.00 0.00 2.67e-303 ...

## $ kp : num [1:8] 0.254 0.269 0.654 0.895 1.473 ...

## $ phi : num [1:570] 0.367 0 0 -0.0717 0 ...

## $ delta_t : num [1:26] 0.001 0.00185 0.00343 0.00636 0.01179 ...

## $ delta_r : num [1:26] 0.001 0.00143 0.00205 0.00293 0.00419 ...

## $ delta_a : num [1:3] 0 0.785 1.571

## $ delta_arm: num [1:50] 0.000846 0.001211 0.001732 0.002478 0.003545 ...

## $ delta_m : num [1:9] -0.000001 0.312952 0.625904 0.938857 1.251809 ...

## $ delta_m2 : num [1:2] -1.0e-06 2.5

## $ nbins_x : num 100

## $ nbins_y : num 100

## $ mag_cut : num 0

## $ tot_time : num 4986

## $ xrange : num [1:2] 0 4

## $ yrange : num [1:2] 0 6

## $ np : num 50

## $ pbNew : num [1:570] 1 0.9997 0.00134 0.51946 0.99989 ...

## - attr(*, "class")= chr "nphawkesMSTNHAC"

Calling the plot function for spatial distribution on the nphawkesMSTNHAC object shows the

conditional distribution of triggering distance, given some mainshock magnitude.
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p1 <- plot(fit = res, data = newdata, type = ’space’, print = FALSE)

p1 + scale_y_log10(limits = c(1e-3,1e1))
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bin angle: (0.00, 0.79]; mag: (−0.00, 2.50] angle: (0.79, 1.57]; mag: (−0.00, 2.50]

5.3 California Earthquake Catalog Example

Included in the package is an earthquake catalog with over 150,000 events from Jan 1990 to

June 2016. The spatial windows is the area surrounding California. Once again we can use

the nphData function to transform the catalog into the correct format. Below an Isotropic

version of MISD if fit using two different background rate smoothing bandwidths. In the first,

a variable with bandwidth of 100th nearest neighbors is used. In the second, 20th nearest

neighbor is used. We can see a clear distinction the estimated background rates of the

two bandwidths. The nphawkesMSTNHAC unction also supports fixed bandwidth background

state smoothing. See help(nphawkesMSTNHAC) for more options. It is worth noting that

the estimation procedure in nphawkesMSTNH is special case of nphawkesMSTNHAC where the

number of anisotropy and conditional bins are both equal to 1. See Gordon et. al. 2017 for

a full explanation.

# Load Included California Catalog

data(catalog)

# Cast to nphData class

newdata <- nphData(data = catalog[catalog$Magnitude > 3.95,],

time_var = ’tdiff’, x_var = ’Longitude’,

y_var = ’Latitude’, mag = ’Magnitude’)

str(newdata)

## Classes ’nphData’ and ’data.frame’: 2170 obs. of 6 variables:

## $ DateTime: POSIXlt, format: "1990-01-05 06:42:10" ...

## $ lon : num -127 -127 -125 -118 -121 ...

## $ lat : num 41.7 41.8 40.4 35.2 36.4 ...

## $ hm : num 4.4 4.7 4.3 4.01 4.3 4.6 4.53 4.3 5.4 4.9 ...
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## $ Depth : num 10 10 4.3 2.59 12.93 ...

## $ t : num 4.28 4.3 5.23 10.06 11.38 ...

## - attr(*, "na.action")=Class ’omit’ Named int 85495

## .. ..- attr(*, "names")= chr "NA"

# Smoothing with 100 nearest neighbors

fit <- nphawkesMSTNH(data = newdata, np = 100,

eps = 1e-2, xrange = c(-127, -112),

yrange = c(29,44))

## start convergence algorithm...

## Iteration: 1 SupDist: 0.99948986 Nb: 37.22205

...

## Iteration: 14 SupDist: 0.01376935 Nb: 542.8207

plot(fit, newdata, type = ’background’)
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# Smoothing with 20 nearest neighbors

fit <- nphawkesMSTNH(data = newdata, np = 20,

eps = 1e-2, xrange = c(-127, -112),

yrange = c(29,44))

## start convergence algorithm...

## Iteration: 1 SupDist: 0.99948986 Nb: 73.64299

...

## Iteration: 14 SupDist: 0.01394689 Nb: 832.0025

plot(fit, newdata, type = ’background’)
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# choose a forecast data

forecast_date <- as.Date(max(catalog$DateTime)) + 1

forecast_date

5.3.1 Forecasting Seismicity

What if we would like to forecast seismicity? The forecastMSTH function provides such

ability. For the most accurate forecast of tomorrow, we need the most recent events in the

catalog. Since 9 June 2016 is the last available date in this catalog, a retrospective daily

forecast will be demonstrated.

## [1] "2016-06-10"

# Try it out, generate one forecasted point pattern

set.seed(54)

myForecast <- forecastMSTH(fit = fit, data = newdata,

forecast_date = forecast_date)

str(myForecast)

## List of 1

## $ new:List of 4

## ..$ t : num 9657

## ..$ hm : num 3.98

## ..$ lon: num -123

## ..$ lat: num 38.9

Instead of simply forecasting one time, it is required to forecast many times, say 1000. The

repForecastMSTH provides this functionality.
# Generate Multiple Forecasts

myRepForecast <- repForecastMSTH(fit = fit,

data = newdata,

num_sim = 1000,

forecast_date = forecast_date,

verbose = T)

## starting repeated forecasts...

## 25 % complete

## 50 % complete

## 75 % complete

## 100 % complete

# Put all the result in one data.frame

forecastResults <- data.frame(

x = unlist(myRepForecast$lons),

y = unlist(myRepForecast$lats),

hm = unlist(myRepForecast$mags),

time = unlist(myRepForecast$times)

)

p <- ggplot(forecastResults) + geom_point(aes(x = x, y = y, size = hm))

p
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Once forecasts are generated we want to smooth them over the spatial window. Included

in the package are many smoothing functions, two of which are demonstrated here. For

isotropic smoothing we can use forecastSmoothing which enables smoothing of not only

the spatial distribution but also the magnitude distribution. If we are interested in only the

spatial distribution of forecasted events we can use quickForecastSmoothing which ignores

the magnitude distribution. Both methods rely on Rcpp for high performance. Note: fdata

in the function below is generated by the forecastDataPrep function. Included is a plot-

ting method for the nphIsoForecast class, see help(plot.nphIsoForecast) for additional

information.

# includes magnitude smoothing

res <- forecastSmoothing( x = forecastResults$x,

y = forecastResults$y,

mags = forecastResults$hm,

magbins = csep_mag_grid,

lims = c(fdata$xrange, fdata$yrange),

nbins = 150,

mh = .15,

h = rep(.1, nrow(forecastResults)),

verbose = FALSE)

# ignores magnitude smoothing

res <- quickForecastSmoothing(x = forecastResults$x,

y = forecastResults$y,

lims = c(fdata$xrange, fdata$yrange),

nbins = 150,

mags = forecastResults$hm,

h = rep(.1, nrow(forecastResults)),

verbose = FALSE)

class(res)

## [1] "nphIsoForecast"
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plot(res)
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Also included as a data object is an example CSEP five year forecast. We can use the
plot.csepForecast method to show the spatial distribution.
List of 8

$ minlon : num [1:7682] -117 -117 -117 -117 -117 ...

$ maxlat : num [1:7682] 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.6 31.7 31.7 ...

$ maxlon : num [1:7682] -117 -117 -117 -117 -117 ...

$ minlat : num [1:7682] 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.5 31.6 31.6 ...

$ mindepth: num [1:7682] 0 0 0 0 0 0 0 0 0 0 ...

$ maxdepth: num [1:7682] 30 30 30 30 30 30 30 30 30 30 ...

$ rate : num [1:7682] 1.85e-04 1.04e-04 8.17e-05 1.06e-04 9.80e-05 ...

$ mask : num [1:7682] 1 1 1 1 1 1 1 1 1 1 ...

- attr(*, "row.names")= int [1:7682] 1 2 3 4 5 6 7 8 9 10 ...

- attr(*, "class")= chr "csepForecast"

data(csepFiveYearForecast)

data("catalog495")

p <- plot(csepFiveYearForecast, legend = T)

p + geom_point(aes(x = Longitude, y = Latitude, size = Magnitude),

data = catalog495,

alpha = .6,

shape = 22,

colour = "black",

fill = "black")
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Once forecasts are generated, we can apply various residual analysis techniques to them such

as Voronoi Residuals. Voronoi tessellation is available in the deldir package, which is a vital
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dependency for the NonParametricHawkes package. A simple workflow is demonstrated:

first we tesselate the observed point pattern, second we extract the vertices of the tiles of

the Voronoi tessellation. Next, if needed, we account for any boundary issues by augmenting

the tessellation to only include areas inside the CSEP spatial window (known as Regional

Earthquake Likelihood Models or RELM). Lastly we transform the list into a data.frame

which is easier to work with. Lastly we call the voronoiResiduals function to calculate the

raw and scaled residuals for the forecast in question. The function also return an object

called total rate which is the integrated conditional intensity over each cell. Once the data is

joined to the original tiles, we can plot the resulting using ggplot2, specifically the geom map

functional allows us the draw and fill the tessellation.

deldf <- deldir(data.frame(x = catalog495$Longitude, y = catalog495$Latitude), rw=c(-127, -112, 29, 44))

tl <- tile.list(deldf)

tl <- relmTileFix(tl)

tiles <- extractTiles(tl)

vor4 <- voronoiResiduals(forecast = data.frame(unclass(csepFiveYearForecast)), tl = tl)

## [1] 5

## [1] 10

## [1] 15

## [1] 20

## [1] 25

## [1] 30

res_df4 <- data.frame(id = 1:length(vor4$scaled.res),

scaled.res = vor4$scaled.res,

raw.res = vor4$raw.res,

total.rate = vor4$total.rate)

tiles_res4 <- left_join(tiles, res_df4, by = ’id’)

p1 <- ggplot(tiles_res4) +

theme_bw() +

xlim(c(-126,-113)) +

ylim(c(31,44)) +

geom_map(map = tiles,

aes(x = x, y = y, map_id=id, fill = scaled.res),

size=0.25) +

scale_fill_gradientn(

colours = c(’darkblue’, ’white’, ’darkred’), values = NULL ,

breaks = c(-2, 0, 2),

limits = c(-2,2),

oob = scales::squish,

guide = guide_colourbar(title = ’Deviance Residual’,

title.vjust = ’1’)) +

theme( panel.grid.major = element_blank(),

panel.grid.minor = element_blank()) +

labs(x = ’Longitude’, y = ’Latitude’) +

geom_polygon(data = data.frame(x1 = c(-116,-116, -115,-115),

y1 = c(32,33,33,32)),
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mapping = aes(x1,y1),

fill = NA,

colour = ’black’)
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p2 <- ggplot(tiles_res4) +

xlim(c(-116,-115)) +

ylim(c(32,33)) +

geom_map(map = tiles,

aes(x = x, y = y, map_id=id, fill = scaled.res), size=0.25) +

scale_fill_gradientn(

colours = c(’darkblue’, ’white’, ’darkred’), values = NULL ,

breaks = c(-2, 0, 2), limits = c(-2,2), oob = scales::squish,

guide = guide_colourbar(title = ’Deviance Residual’, title.vjust = ’1’)) +

theme( panel.grid.major = element_blank(),

panel.grid.minor = element_blank()) +

labs(title = ’’, x = ’Longitude’, y = ’Latitude’)

p2

32.00

32.25

32.50

32.75

33.00

−116.00 −115.75 −115.50 −115.25 −115.00
Longitude

La
tit

ud
e

−2

0

2
Deviance Residual
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CHAPTER 6

Discussion

Development of both short and long-term earthquake forecasts are still areas that require

much work. The methods demonstrated in this Dissertation provide some fundamentals for

estimation, prediction, and evaluation of these seismological models. The MISD methods

demonstrated in Chapter 2 performs well in both describing and forecasting earthquake oc-

currences. Yet, since the algorithm requires an iterative approach, fast estimation can better

be accomplished using the methods demonstrated in Chapter 3. Additional opportunities

exist to test and improve our earthquake forecasts using the methods outlined in Chapters 2

and 4. Voronoi residuals, as well as Deviance residuals, and super-thinned residuals provide

some great insights into where models perform well or poorly relative to one another. The

NonParametricHawkes R package provide easy to use, well documented and reproducible

examples which may prove vital to making further improvements to these methods in the

future.

Further research is needed to assess and evaluate the two only day forecast models we have

submitted to CSEP. The models began running in Oct 2016 and have been generating daily

forecasts ever since. Evaluation of daily forecasts may require innovation in the visualiza-

tion of temporal residuals. The methods introduced earlier are primarily focused on static

representation which allows the comparison of data features without a temporal dimension.

Yet, in the case of daily forecasts, it may make sense to focus on dynamic representation.

Advantages of dynamic representation are that all data is shown and temporal trends can

be observed.

Recently, fault angles based on focal mechanisms, as opposed to historic seismicity, have

been used to describe the anisotropic spatial distribution of events following a mainshock.
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These moment tensor estimates can be incorporated into the MISD algorithm demonstrated

in Chapter 2 or perhaps used in conjunction with MISD through a semi parametric approach.

While local fault estimation was shown to work quiet well, the goal of including the best

available geophysical measurements should remain a key research goal.

The primarily application of this research was an application for California seismicity. Per-

haps another avenue of research would be to apply these methods to global tectonic zones to

see what can be learned about the seismicity in those regions. Similarly, more work is needed

to better generalize the NonParametricHawkes R package, thus increasing its relevance to

statisticians and scientists around the world.
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CHAPTER 7

Appendix

7.1 Appendix A: Algorithm A

1. Initialize P (0), set iteration index v = 0.

2. Estimate inhomogenous background rate µ(x, y)

µk,` = 1
T∆x∆y

∑
Dk,`

p
(v)
ii , k = 0, ..., nbinsx − 1, ` = 0, ..., nbinsy − 1.

3. Estimate triggering components k(m), g(t) and h(r, θ|m):

κ(m)(v)
k =

∑
Ak
p

(v)
ij

Nmag
k

, k = 0, ..., nbinsm − 1;

g(t)(v)
k =

∑
Bk
p

(v)
ij

∆tk
∑N
i=1

∑i−1
j=1 p

(v)
ij

, k = 0, ..., nbinst − 1;

h(r, θ,m)(v)
k,`,q =

∑
Ck,`,q

p
(v)
ij

∆rk∆θ`∆mq
∑N
i=1

∑i−1
j=1 p

(v)
ij

, k = 0, ..., nbinsr − 1,

` = 0, ..., nbinsθ − 1, q = 0, ..., nbinsm2 − 1;

h(m)(v)
q =

∑
Eq
p

(v)
ij

∆mq
∑N
i=1

∑i−1
j=1 p

(v)
ij

, q = 0, ..., nbinsm2 − 1;

4. Update probabilities P (v+1) after transforming polar h(v) to Cartesian f (v).

p
(v+1)
ij = κ(v)(mj)g(v)(ti − tj)f (v)(rij, θij|mj)

µ(v)(xi, yi) +∑i−1
j=1 κ

(v)(mj)g(v)(ti − tj)f (v)(rij, θij|mj)
,

p
(v+1)
ii = µ(v)(xi, yi)

µ(v)(xi, yi) +∑i−1
j=1 κ

(v)(mj)g(v)(ti − tj)f (v)(rij, θij|mj)
.
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5. Run the algorithm until convergence.

The notation for the above is defined as follows:

• nbinsx and nbinsy are the number of bins used for estimating the background rate.

• ∆x and ∆y are bin widths and Dk,` is defined as the pairs of points that fall in the k

and `th bins respectively such that: Dk,` = {i : (k − 1)∆x < xi ≤ k∆x, (` − 1)∆y <

yi ≤ `∆y}.

• nbinsm , nbinst , nbinsr , nbinsθ are the number of bins used in estimating the triggering function

components for magnitude, time, and space.

• nbinsm2 is the number of bins used in estimating the spatial-magnitude distribution.

• Nmag
k is the number of earthquakes in whose magnitude fall in the kth interval:∑N
j=1 1δmk<mj≤mk+1 .

• Ak =
{

(i, j)
∣∣∣∣∣δmk ≤ mj ≤ δmk+1, i > j

}
is the set of indices of all pairs of earthquakes

whose mainshock magnitudes fall within the kth bin of the histogram estimator κ(m).

• Bk =
{

(i, j)
∣∣∣∣∣δtk ≤ ti − tj ≤ δtk+1, i > j

}
is the set of indices of all pairs of earthquakes

whose inter event times fall within the kth bin of the histogram estimator g(t).

• Ck,`,q =
{

(i, j)
∣∣∣∣∣δrk ≤ rij ≤ δrk+1, δθ` ≤ θij ≤ θ`+1, δmq ≤ mj ≤ δmq+1, i > j

}
is the

set of indices of all pairs of earthquakes whose epicentral distances fall within the kth

bin and whose angular separation fall in the `th bin, and mainshock magnitude fall in

the qth bin of the histogram estimator h(r, θ,m).

• Eq =
{

(i, j)
∣∣∣∣∣δmq ≤ mj ≤ δmq+1, i > j

}
is the set of indices of all pairs of earthquakes

whose mainshock magnitude fall in the qth bin of the histogram estimator h(m).

• ∆mq = δmq+1 − δmq is the size of the qth bin shared by both the joint and marginal

probability distributions for magnitude in h.
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The approach shares some similarities to the fault distance approach described in Marsan and

Lengliné (2008). However, in their approach, distance was calculated between an earthquake

j and the fault plane of earthquake i, as opposed to epicentral distance. The fault plane

was defined as the least squares line passing through the centroid of events within a rupture

plane, as opposed to the mainshock epicenter itself.

7.2 Appendix B: Algorithm B

Algorithm B1: Generating the background catalog of Algorithm for Equa-

tions 1.2 and 2.1

1. Let Ndays be the number of days in the forecast window t, t+ ∆, and T be the length

of time (days) of the fitting catalog. Let γ be the estimated number of background

events in the forecast window, such that γ = Ndays ·
∑N
i=1 pii
T

.

2. Let µmax be the maximum of the background density µ̂(x, y).

3. Generate a Poisson random variable N with mean λ = µmax · |S|.

4. Uniformly distribute the locations of N events over the spatial-temporal window.

5. Generate Ui, a uniformly distributed random variable.

6. Retain each event if Ui < γ · µ̂(x, y)
µmax

.

7. Let N(0) be the number of retained events.

8. Draw a sample of size N(0) magnitudes from the magnitudes of events in the catalog

{mi : i = 1, ..., N}

9. Let generation 0, G′(0) = {(t(0)
i , x

(0)
i , y

(0)
i ,m

(0)
i )}, be the set of times, locations, and

magnitudes of the background events.

Algorithm B2: Forecast the triggering process for (1.2)

1. Set generation index v ← 0
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2. Let the initial catalog G(0) be the union of all observed events in the catalog and the

simulated background events in G′(0).

3. For each event i in G(0), generate k = 1, . . . , N (i) offspring where N (i) is a Poisson ran-

dom variable with mean κ(mi). Generate offspring tk,mk from the temporal response

function g(t− ti) and empirical magnitude distribution s(mi).

4. Locations xk, yk are generated by sampling a distance from spatial response function

f(x− xi, y − yi) and a direction by sampling a Uniform random variable in (0, 2π).

5. Let offspring O′i(v)← {(tk, xk, yk,mk) : tk ∈ [t, t+ ∆t]}.

6. Keep only the offspring which occurred in [t, t+ ∆t], thus set G(v+1) ← ∪i∈G(`)O′i(v).

7. If G(`) is not empty (there are new simulated events in [t, t+ ∆t]), set generation index

v ← v + 1, else return all events in t, t+ ∆t : G′(0) ∪
(
∪vj=1G

(j)
)
.

Simulating from the anisotropic triggering process of (2.1) once again requires the use of a

lower magnitude cut-off for fault estimation. Although the entire catalog up to time t is used

to estimate faults for forecasted events, the lower magnitude catalog is not used to generate

new events. At each iteration of the simulation we re-estimate fault directionality of new

events, using the entire catalog, as opposed to assigning the fault direction of the preceding

fault. Algorithm B3 is designed such that the if number of direction bins and magnitude bins

in the spatial response function are both to set to 1, Algorithm B3 reduces to the Algorithm

B2.

Algorithm B3: Forecast of the triggering process for Algorithm A

1. Set the lower magnitude cut-off c1, upper magnitude cut-off c2, and let the fault esti-

mation catalog H be all events where m ≥ c1.

2. Set generation index v ← 0.

3. Let the initial catalog G(0) be the union of all observed events greater or equal to

m ≥ c2 and the simulated background events in G′(0) ((2.1)).
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4. For each event i in G(0), estimate a fault orientation φi associated with each event

using catalog H.

5. Set θi = arctan (|φi|).

6. For each event i in G(0), generate k = 1, . . . , N (i) offspring where N (i) is a Poisson

random variable with mean κ(mi). tk is generated from the temporal response function

g(t− ti) and mk from the magnitude distribution s(mi).

7. Locations xk, yk are generated from spatial response function f(x − xi, y − yi, θi|mi)

with distance rk and direction θk.

8. Define R as a 4 directional rotation distribution:

Rθ Rπ

1 0
1 1

-1 0
-1 1

9. Since the spatial response is estimated on a quarter circle, sample k = 1, . . . , N (i)

rotations uniformly from rotation R.

10. Let direction θ′k = θi + θk ·R(k)
θ + π ·R(k)

π .

11. Set xk = xi + cos(θ′k) · rk and yk = yi + sin(θ′k) · rk.

12. Let O′i(`)← {(tk, xk, yk,mk) : tk ∈ [t, t+ ∆t]}.

13. Keep only the offspring which occurred in [t, t+ ∆t], thus set G(v+1) ← ∪i∈G(`)O′i(v).

14. If G(`) is not empty (there are new simulated events in [t, t+ ∆t]), set generation index

v ← v + 1, else return all events in t, t+ ∆t : G′(0) ∪
(
∪vj=1G

(j)
)
.

7.3 Appendix C1: MISD (1.2) Distance to Fault

The orientation of a fault on which a mainshock occurs provides a reasonable approximation

to an events rupture mechanics. By approximating a fault we are able to estimate the spatial
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distribution of aftershocks using distance from the fault rather than epicentral distance.

To estimate a fault we used the location of all nearby events, both before and after, and

performed a weighted least squares regression.

Fault orientation was estimated by setting the magnitude cut offs to c1 = c2 = 4.0 and

a surrounding area of .045 degrees by .045 degrees (roughly 100km2) for each event in the

catalog. All input parameters were set identically to (1.2) in the epicentral approach outlined

of Section 2.3.

Figure 7.1(b) shows a scatter plot comparing the epicentral distance to fault distance for a

sample of earthquakes in the catalog. We can see that epicentral distance is strictly greater

than distance from fault. The method (provided in Appendix C2) estimated a larger pro-

portion of aftershocks then the model using using epicentral distance (see Fox et al. (2016)

supplement for more details). Figure 7.1)(b) shows the estimate of the underlying spatial

inhomogeneous Poisson processes µ(x, y) for mainshock activity. Although the background

rate is much lower, its spatial distribution is somewhat similar to the background rate de-

scribed in Section 2.3. Histogram estimates of the components of the spatial triggering

function are shown in Figure 7.1)(b). Although not shown, compared to the estimate de-

rived using epicentral distance in Figure 2.6, the density estimate of g(t) and the magnitude

productivity function κ(m) are quite similar, however, the estimates (shown) for the spatial

distribution h(r) shows a much higher rate of triggering at shorter distances. The results

for both the background rate and triggering function suggest that epicentral distance out-

performs distance to fault.
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Figure 7.1: Fault Distance

7.4 Appendix C2: Fault Distance Methods

Using the following steps we can approximate a fault for each mainshock:

1. Let earthquake j be called the mainshock. Using the entire catalog of events, both be-

fore and after the mainshock, identify all mi ≥ c1 events within some area surrounding

a mj ≥ c2 event, where c1 ≤ c2. Here c is a magnitude cut off and m is the magnitude

of an earthquake.

2. Calculate the Euclidean distance between a mj earthquakes epicenter and all other mi

102



events denoted rij.

rij =
√

(xi − xj)2 + (yi − yj)2

3. Fit a weighted ordinary least squares regression for each event j constrained to pass

through the mj epicenter with weights wj = 1/rij.

4. Store the coefficient of the weighted regression βj as the estimated fault plane for each

mj event.

If any event is in the same exact location as the mainshock as a result of a location error,

we remove the event since it adds no information to the fault estimate.

Distance to fault was calculated by computing the perpendicular distance for each pair (i, j)

of earthquakes, where ti > tj, in the catalog using the fault approximated by the method

described above. Since the regression line must pass through the mainshock location we can

rewrite the regression equation as:

− βj Longitudei + Latitudei = 0,

and apply the formula:

dij = | − βj Longitudei + Latitudei|√
β2
j + 12

.

7.5 Appendix D: Model Selection

Following an approach similar to Helmstetter et al. (2007), to estimate the expected number

of events within the forecast period we counted the number of events per year in the learning

catalog. In this case, 184 events fell within the CSEP testing region over a time of 24.64

years, giving us Npred = 37.33 events in the forecast window. Helmstetter et al. (2007)

conducted a procedure to remove potential explosions from the catalog, and as such estimated

Npred = 35.40 during the same period.

Selection of model inputs was conducted using loglikelihood ratios of our models with that
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of Helmstetter et al. (2007), to identify the best inputs for the nonparametric estimation and

forecasting. We find that larger bandwidths result in poorer performance while including

smaller events in the catalog improves our results. In addition, the forecasts appears to

improve when more directional bins are used in conjunction with slight directional smoothing

while magnitude scaling in the spatial triggering function does not substantially improve

forecast performance. Table 2.1 shows selected model inputs for (1.2,2.1) as determined by

the overall deviance of the model compared with that of Helmstetter et al. (2007).

7.6 Appendix E: Computational issues.

E1. Extension to the case where the binwidths ∆ are not equal.

Formulas (7-9) are simplified somewhat by the assumption that the bins Uk are all of size ∆.

However, these formulas can easily be amended when the bins are of unequal sizes. Indeed,

equation (7) would remain unchanged but instead of the definition b = n|S|∆1, we would

have b = n|S||U |1, where |U | is the vector of bin sizes {U1, U2, ..., Un}. Formulas 8 and 9

would remain exactly the same, but again with b = n|S||U |1 in equation (9). The method

for smoothing β̂ should be adjusted to account for the modification to unequal bin widths

as well. For instance, in smoothing β̂ via simple moving average (MA) filtering as is done in

Figures 3 and 4, one must be careful to account for the varying binwidths when smoothing.

In these cases, the values of β̂ were smoothed using MA filtering with a Gaussian kernel

applied to the distances from the bin centers. One could also weight each bin according to

its binwidth when smoothing by MA filtering, though simple unweighted MA filtering was

implemented for Figures 3 and 4.

E2. Extension to the case where µ and/or K are unknown.

When the parameters µ and/or K are unknown, one can estimate g and subsequently es-

timate µ and/or K by maximum likelihood using e.g. a gradient descent search algorithm.

Alternatively, one may estimate µ and K simultaneously with the βk. Suppose both µ and

K are unknown. Consider augmenting the vector β, so that βp+1 = µ and βp+2 = K, so that

now β has length p + 2. Since ∂L/∂µ = ∑
j 1/λ(τj) − ST and ∂L/∂K ≈ ∑

j A[k, j]βk − n,
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where in the approximation above we are ignoring mass of the triggering function g outside

the observed spatial-temporal window, triggered by events inside the spatial-temporal win-

dow. This approximation would be exact if we were observing the process over infinite time

and space. Setting these partial derivatives to zero, we obtain 2 additional linear equations,
n∑
j=1

1/λ(τj) = ST and
n∑
j=1

n∑
k=1

A[k, j]βk/λ(τj) = n. One can thus amend equations (7-9) ac-

cordingly to solve simultaneously for the p + 2 unknowns in the augmented vector β, using

the p equations in (7-8) and the two equations above.

E3. The case where A is not invertible.

A problem with the method proposed here is that in many cases the adjacency matrix A

will not be of rank n, and thus the solution in (9), which requires inversion of A, cannot

be obtained. In particular, if there is any interval Uk such that no observed pairs of points

τi and τj satisfy τj − τi ∈ Uk, then A[k,m] = 0 for all m, and this column of all zeros will

render A singular.

One way of dealing with such situations is to let the intervals Uk depend on the observations,

choosing the intervals Uk carefully to ensure that each such interval corresponds to at least

one time interval τj − τi. For instance, one may choose some very small constant ε > 0, and

let the time windows be [ui+ε, ui+1 +ε), where ui = τi+1−τi are the observed times between

successive events. This ensures that each row and each column of A has at least one nonzero

element. This alone seems to be sufficient in most cases to render A invertible. Little is

known about the theoretical properties of MLEs when the parameters are defined within

random intervals rather than fixed intervals, but this method was employed here throughout

and seems to yield good results.

Even with these intervals carefully selected this way, it is still possible for A to have rank less

than n. In such cases, one may opt to choose elements of A at random and augment them

by one until A is invertible; the result seems to have relatively little effect on the resulting

estimates. An alternative we explored briefly is to perturb all the elements of A very slightly

by adding independent normal random variables with mean zero and very small variance, but

this resulted in drastic changes to the resulting estimates and added substantial variability

to the results. Better solutions to the problem of singularity of the adjacency matrix remains
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an important area for future work in order to make the method proposed here more stable

and robust.

E4. Smoothing the estimates β̂.

Determining the proper amount of smoothing for the estimates generated using equation (9)

seems to be an extremely difficult problem. In the simulations in Section 5, we simply applied

a Gaussian moving average filter to the estimates β̂. The bandwidths selected for this filter

were 1100 for the exponential and truncated normal, 880 for the uniform, and 500 for the

Pareto triggering density. In general, a bandwidth of roughly n/4 or n/3 seems reasonable,

but further study is needed in order to determine what bandwidth works optimally with the

estimates proposed here using equation (9). As mentioned in item 1 of this Appendix, when

unequal binwidths are used in defining the intervals Uk corresponding to the parameters βk
being estimated, one may modify the simple MA filtering in order to account for the varying

binwidths, e.g. by applying the Gaussian kernel to the time difference between the midpoints

of the corresponding intervals, and/or by weighting each parameter estimate β̂ by the size

of its corresponding interval. Alternative, more elaborate smoothing methods could also be

used, including techniques involving more complex filters or splines. Future research should

focus on the possibility of smoothing and inverting the matrix A in tandem, to address not

only the problem of variability in the estimates β̂ but also the singularity problem described

in item 3 of this Appendix.

106



Bibliography

Adelfio, G. and Schoenberg, F.P. (2009). Point process diagnostics based on weighted second-

order statistics and their asymptotic properties. Annals of the Institute of Statistical Math-

ematics, 61(4), 929-948.

Bacry, E. Dayri, K. and Muzy, J.F (2012).. Non-parametric kernel estimation for symmetric

Hawkes processes. Application to high frequency financial data. Eur. Phys. J. B 85(157)
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