
UCSF
UC San Francisco Previously Published Works

Title
Prognosis of conversion of mild cognitive impairment to Alzheimer's dementia by voxel-
wise Cox regression based on FDG PET data

Permalink
https://escholarship.org/uc/item/5tj3n8cv

Authors
Sörensen, Arnd
Blazhenets, Ganna
Rücker, Gerta
et al.

Publication Date
2019

DOI
10.1016/j.nicl.2018.101637
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5tj3n8cv
https://escholarship.org/uc/item/5tj3n8cv#author
https://escholarship.org
http://www.cdlib.org/


Contents lists available at ScienceDirect

NeuroImage: Clinical

journal homepage: www.elsevier.com/locate/ynicl

Prognosis of conversion of mild cognitive impairment to Alzheimer's
dementia by voxel-wise Cox regression based on FDG PET data

Arnd Sörensena,⁎, Ganna Blazhenetsa, Gerta Rückerb, Florian Schillera, Philipp Tobias Meyera,
Lars Fringsa,c, for the Alzheimer's Disease Neuroimaging Initiative1

a Department of Nuclear Medicine, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
b Institute of Medical Biometry and Statistics, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany
c Center for Geriatrics and Gerontology Freiburg, Medical Center, University of Freiburg, Faculty of Medicine, Freiburg, Germany

A R T I C L E I N F O

Keywords:
Cox model
Mild cognitive impairment
Alzheimer's dementia
FDG PET

A B S T R A C T

Aim: The value of 18F-fluorodeoxyglucose (FDG) PET for the prognosis of conversion from mild cognitive im-
pairment (MCI) to Alzheimer's dementia (AD) is controversial. In the present work, the identification of cerebral
metabolic patterns with significant prognostic value for conversion of MCI patients to AD is investigated with
voxel-based Cox regression, which in contrast to common categorical comparisons also utilizes time information.
Methods: FDG PET data of 544 MCI patients from the Alzheimer's Disease Neuroimaging Initiative (ADNI) da-
tabase were randomly split into two equally-sized datasets (training and test). Within a median follow-up
duration of 47months (95% CI: 46–48months) 181 patients developed AD. In the training dataset, voxel-wise
Cox regressions were used to identify regions associated with conversion of MCI to AD. These were compared to
regions identified by a classical group comparison (analysis of covariance (ANCOVA) with statistical parametric
mapping (SPM) 8) between converters and non-converters (both adjusted for apolipoprotein E (APOE) genotype,
mini-mental state examination (MMSE) score, age, sex and education). In the test dataset, normalized FDG
uptake within significant brain regions from voxel-wise Cox- and ANCOVA analyses (Cox- and ANCOVA- regions
of interest (ROI), respectively) and clinical variables APOE status, MMSE score and education were tested in
different Cox models (adjusted for age, sex) including: (1) only clinical variables, (2) only normalized FDG
uptake in ANCOVA-ROI, (3) only normalized FDG uptake from Cox-ROI, (4) clinical variables plus FDG uptake in
ANCOVA-ROI, (5) clinical variables plus FDG uptake from Cox-ROI.
Results: Conversion-related regions with relative hypometabolism comprised parts of the temporo-parietal and
posterior cingulate cortex/precuneus for voxel-wise ANCOVA, plus frontal regions for voxel-wise Cox regression
(both p < .01, false discovery rate (FDR) corrected). The clinical-only model (1) and the models based on
normalized FDG uptake from Cox-ROI only (2) and ANCOVA-ROI only (3) all significantly predicted conversion
to AD (Wald Test (WT): p < .001). The clinical model (1) was significantly improved by adding imaging in-
formation in model (4) (Akaike information criterion (AIC) relative likelihood (RL) (1) vs (4): RL < 0.018).
There were no significant differences between models (2) and (3), as well as (4) and (5).
Conclusions: Voxel-wise Cox regression identifies conversion-related patterns of cerebral glucose metabolism,
but is not superior to classical group contrasts in this regard. With imaging information from both FDG PET
patterns, the prediction of conversion to AD was improved.

1. Introduction

In recent years, the prognostic accuracy of 18F-fluorodeoxyglucose
(FDG) PET concerning conversion from mild cognitive impairment

(MCI) to Alzheimer's dementia (AD) has been discussed controversially.
Some studies reported uninformative prediction accuracies of 50%
(Grimmer et al., 2016) to 57% (Schmand et al., 2012) and a recent
Cochrane review (Smailagic et al., 2015) did not recommend FDG PET
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for clinical use for this purpose. This has been criticized (Morbelli et al.,
2015), and other studies have shown that FDG PET is a significant
predictor of conversion to AD (Drzezga et al., 2005; Lange et al., 2015;
Prestia et al., 2015).

The majority of previous FDG PET studies were limited as they used
only a-priori defined region of interest (ROI)-based survival analyses
(Gray et al., 2012; Landau et al., 2010; Torosyan et al., 2017) or voxel-
based analyses that disregarded observation time information (Chen
et al., 2011). In addition, previous MRI studies have shown advantages
of the well-established Cox proportional hazard regression (Cox, 1972)
over traditional group comparisons (Vemuri et al., 2011; Zeifman et al.,
2015), when applied at voxel level.

In the present work, we aimed to use voxel-wise Cox regression to
identify patterns of cerebral glucose metabolism that are significantly
related to MCI to AD conversion without a-priori knowledge about ty-
pical AD patterns. The predictive value of the normalized FDG uptake
within these hypometabolic clusters was evaluated and compared
against other predictors in a test-dataset, using multivariate Cox re-
gression.

To this end, we used the large imaging data collected in the scope of
the Alzheimer's Disease Neuroimaging Initiative (ADNI, http://adni.
loni.usc.edu), which enables a combination of voxel level analysis of
FDG PET with observation time information.

2. Materials and methods

2.1. Subjects

The data used in the present study is provided by the ADNI project,
which is a large multi-center study with approximately 50 sites parti-
cipating in the United States and Canada. It was launched in 2003 as a
public-private partnership and is led by Principal Investigator Michael
W. Weiner, MD. The primary goal of the ADNI has been to test whether
serial MRI, PET, other biological markers, and clinical and neu-
ropsychological assessments could be combined to measure the pro-
gression of MCI and early AD. Comprehensive information about the
ADNI project can be found at the official website.

For the present work 576 FDG PET scans of MCI patients were re-
trieved from the ADNI database (August 2016) with the following in-
clusion criteria: all patients were clinically diagnosed as MCI (DX-score
2) and had an FDG PET at baseline. A mini-mental state examination
(MMSE) score of at least 24 points (n= 6 excluded), minimal follow-up
of at least 6 months (n=20 excluded, of these n=10 had no follow-
up) and no bidirectional change of DX-scores (e.g. between different
ADNI phases, n= 6 excluded) were requested. The remaining 544
subjects were randomly split into equally sized cohorts A and B, see
Table 1.

2.2. FDG PET data and image preprocessing

The scans were acquired at 57 different sites and across 22 scanner
types. In 468 cases the images had been recorded with a dynamic
protocol of 6 frames of 5-min duration, starting at 30–35min. after
injection, while the remaining 76 were scanned with a static 30-min
acquisition. The reconstructed files were downloaded in their original
format (DICOM, ECAT, Interfile) for meta-information and as Nifti
which was ultimately used for analysis.

The preprocessing steps for the ADNI MCI scans followed re-
commendations for optimal statistical analysis of brain FDG PET scans
in the context of MCI to AD conversion prognosis, previously described
elsewhere (Lange et al., 2015). This processing pipeline utilized MA-
TLAB (The MathWorks, Inc., Natick, Massachusetts, United States) and
the freely available Statistical Parametric Mapping (SPM 8) framework
(Friston et al., 2007).

In case of dynamic scans, first a frame-by-frame motion correction
to the first frame was applied and realigned frames were summed into a
final static uptake image. In a second step the images were regularized
into MNI space and subsequently stereotactically normalized onto an
in-house FDG PET template, obtained from healthy elderly controls.
Finally, the scans were proportionally scaled to brain parenchyma and a
Gaussian smoothing of 12mm full-width at half maximum (FWHM) was
applied.

2.3. Region of interest derivation

Two fundamentally different methods were applied to the training
dataset in order to identify conversion-related ROIs of cerebral glucose
metabolism on FDG PET. In both cases the calculations were restricted
to brain parenchyma voxels.

First, a voxel-wise analysis of covariance (ANCOVA) was performed
to identify voxels with significantly reduced FDG uptake in converters
(n= 86) versus non-converters (n=194) in the training dataset, ad-
justed for age, sex, mini-mental state examination (MMSE) score and
apolipoprotein E (APOE) genotype using statistical parametric mapping
(SPM) 8 software. The subsequent region of interest (ANCOVA-ROI,
Fig. 1), containing all voxels with significant hypometabolism in con-
verters compared to non-converters, was thresholded at p < .01 (false
discovery rate (FDR) corrected).

Second, a Cox model was fit independently for each voxel within
MATLAB, with normalized and subsequently z-scaled FDG uptake as
predictor variable, adjusted for sex, age, MMSE score and APOE gen-
otype. Voxels that showed a significant (FDR-corrected p < .01) as-
sociation between hypometabolism and (earlier) conversion were
combined to a ‘Cox-ROI’ (Fig. 1). In order to match the common con-
vention that hazard ratios above one correspond to a risk increase, the
measure ‘hypometabolism’ was defined as a positive value. Hazard ra-
tios below one, indicating a protective effect, were excluded for the
final analysis as these seemingly hypermetabolic regions were actually
due to proportional scaling (i.e. relative preserved areas like cortices).

2.4. Cox regressions in the test dataset

Using the ANCOVA- and Cox-ROIs derived from the training da-
taset, Cox regressions were carried out in the test dataset. First, the
average normalized FDG uptake within both ROIs were read out for
each subject in the test dataset, and used together with clinical data as
covariates for five Cox models (see Table 2). Multicollinearity was ad-
dressed by the usage of ridge regression. For all five Cox models, a
validation of the proportional hazard assumption has been performed
for all covariates by testing for multiple fractional polynomials trans-
formation, using the R package mfp (R Core Team, 2017; Ambler,
2015). As all covariates satisfied the proportional hazard assumption,
transformations would have been only linear and were thus omitted.

In order to be able to assign a given MCI patient to a risk group, the

Table 1
Clinical and demographic characteristics of the included Alzheimer's Disease
Neuroimaging Initiative (ADNI) participants.

Training dataset Test dataset

Subjects 272 272
Age mean (± S.D.) [years] 74 ± 8 73 ± 8
Sex [M/F] 172/100 163/109
Education (± S.D.) [years] 15.6 ± 4 15.7 ± 4
MMSE score mean (± S.D.) 28 ± 2 28 ± 2
APOE ε4 positive rate 49% 52%
Conversion rate 32% 34%
Median follow-up (± S.D.) [months] 48 ± 1 47 ± 1

Apolipoprotein E (APOE) ε4 status is defined as positive if at least one epsilon 4
allele is present. The median follow-up was calculated as the reversed Kaplan-
Meier estimate. MMSE=mini-mental score examination.
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feasibility of risk stratification was tested and illustrated using Kaplan-
Meier survival curves. To this end, we calculated a prognostic index (PI)
as proposed by (Royston and Altman, 2013) as follows:

= ∗ + …+ ∗PI(p) HR c (p) HR c (p)c1 1 c6 6

with HRci= hazard ratio corresponding to ci= covariate and PI= in-
dividual prognostic index for patient p.

The resulting continuous distribution of the PI was stratified into
three equally-sized groups: corresponding to low, medium and high risk
for conversion. For those three groups Kaplan-Meier survival curves
were analyzed.

3. Results

Using the categorical group comparison (SPM ANCOVA), sig-
nificantly decreased metabolism in converters compared to non-

Fig. 1. MRI template and ROI overlays showing significant regions from the Cox model (Cox-ROI, cyan) and the analysis of covariance (ANCOVA-ROI, red). Both
were derived in the training dataset (p < .01, false discovery rate (FDR)-corrected).

Table 2
Variables chosen as covariates for Cox regressions in the test dataset.

Model Cox-ROI ANCOVA-ROI Age Sex MMSE score Education APOE
status

1 – – X X X X X
2 – X – – – – –
3 X – – – – – –
4 – X X X X X X
5 X – X X X X X

The variables sex (male= 1, female=0) and APOE status (positive if at least
one epsilon 4 allele present) are dichotomous. (ROI= region of interest,
ANCOVA=analysis of covariance).

A. Sörensen et al. NeuroImage: Clinical 21 (2019) 101637
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converters in the training dataset was observed in the parietal cortex,
posterior cingulate cortex and the precuneus bilaterally (Fig. 1, red
regions).

Voxel-wise Cox regressions identified an association between (ear-
lier) conversion and hypometabolism of the bilateral temporo-parietal
cortex, posterior cingulate cortex/precuneus, and frontal cortex in the
training dataset (Fig. 1, cyan regions; see Fig. 2 for topography of voxel-
wise HR). As shown in Fig. 1, regions identified by voxel-wise Cox re-
gressions (66 cm3) considerably extended beyond those identified by
SPM ANCOVA (6 cm3).

For the test dataset, model 1 yielded APOE (HR=1.6 [95% C.I.:
1.2–2.1], p < .001) and MMSE (HR=1.24 [95% C.I.: 1.1–1.4],
p < .001) as independent predictors with an Akaike information cri-
terion (Akaike, 1974) (AIC) of 883 (Wald test (WT) p < .001).

Model 2, using only the normalized FDG uptake within the
ANCOVA-ROI, also significantly predicted MCI to AD conversion with a
HR=1.35 [95% C.I.: 1.2–1.5] and AIC= 901 (WT: p < .001).

Model 3 (Cox-ROI-only) yielded comparable results with a
HR=1.29 [95% C.I.: 1.2–1.4] and AIC= 904 (WT: p < .001).

Model 4, consisting of the clinical variables and normalized FDG
uptake from the ANCOVA-ROI yielded all three as independent pre-
dictors, with an AIC of 875 (WT: p < .001): FDG uptake from
ANCOVA-ROI (HR=1.2 [95% C.I.: 1.1–1.4], p < .001), APOE
(HR=1.6 [95% C.I.: 1.2–2.1], p < .001) and MMSE (HR=1.2 [95%
C.I.: 1.1–1.4], p < .003), see also Fig. 3.

Comparable results were found for model 5, with the normalized

FDG uptake, APOE and MMSE as independent predictors (HR=1.2
[95% C.I.: 1.1–1.3], HR=1.6 [95% C.I.: 1.2–2.1], HR=1.2 [95% C.I.:
1.1–1.4], respectively; all p < .001) with an AIC=878 (WT:
p < .001), see also Fig. 3.

The clinical-only model (1) was significantly improved by adding
normalized FDG uptake in the ANCOVA-ROI in model 4 (relative like-
lihood (1) to (4): L= 0.018). Similarly, it was improved by adding
normalized FDG uptake in the Cox-ROI in model 5 (at trend level, re-
lative likelihood (1) to (5): L= 0.08).

A change between model 4 and 5 was not beneficial: relative like-
lihood (4) vs (5): L= 0.22.

Finally, changing from either model 2 or 3 towards model 4 or 5
yielded a strong improvement, all relative Likelihood tests yielded
L < 0.001.

The prognostic value of the Cox models in the test dataset was
evaluated by comparing survival curves for the three risk groups. A
comparison of Fig. 4 (model 1, clinical-only) and Fig. 5 (model 4,
clinical plus normalized FDG uptake on ANCOVA-ROI) showed that the
inclusion of imaging data improved the separation in between the dif-
ferent risk groups. As indicated by median conversion times, separation
of the high- from the medium-risk group was worse in model 1 (48
[95% C.I.: 35-n/a] months vs. 60 [95% C.I.: 51-n/a] months), than in
model 4 (36 [95% C.I.: 27–49] months vs. 85 [95% C.I.: 60-n/a]
months). Likewise, the hazard ratios of the high-risk groups were 8.1
compared to 4.9 but 3.2 and 3.4 for the median-risk group (with low-
risk group as reference, see Figs. 4 & 5), respectively. After about
60months, the number of subjects left is too small to draw conclusions.
Very comparable results were found for model 5 (clinical plus nor-
malized FDG uptake on Cox-ROI), see Fig. 6.

The survival curves for models 2 and 3 can also be found in the
supplementary material, see Figs. 7 and 8. Both show a very good se-
paration of the high-risk group, whereas the low- and medium-risk
groups were less satisfactorily separated.

Finally, Table 3 shows the annual conversion rates for all models
and risk groups after 1, 3 and 5 years.

4. Discussion

In the present study, voxel-wise Cox regression identified brain re-
gions for which decreased metabolism was significantly associated with
MCI to AD conversion. This pattern included the hypometabolic clusters
derived from the reference method (ANCOVA SPM), but was more
widespread and (at the same selected significance threshold) also in-
volved the frontal cortex. The identified conversion-related brain re-
gions (Fig. 1), including frontal cortex, coincided with the well-estab-
lished regions of cerebral hypometabolism in MCI (Dukart et al., 2013)

Fig. 2. Surface projection of the hazard ratios from the voxel-wise Cox model in
the training dataset. Hazard ratios above one correspond to one-unit decrease in
the normalized and z-scaled 18F-fluorodeoxyglucose (FDG) uptake.

Fig. 3. Resulting hazard ratios for models 4 (left) and 5 (right). All covariates have been transformed to z-scores, except for sex and APOE status which are
dichotomous. The MMSE has been multiplied by −1 to yield a positive HR, in order to increase comparability.
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and AD (Bohnen et al., 2012; Langbaum et al., 2009). Although the Cox-
ROI was noticeably larger than the ANCOVA-ROI, both covered similar
brain regions and the normalized FDG uptake within the two regions
was highly correlated. Consequently, the Cox model pairs 2 and 3 as
well as 4 and 5 in the test dataset led to comparable results, respec-
tively. Apparently, the classical group comparison already identified
the most relevant areas, and the additional information contained in the
slightly larger Cox-ROI had no added value concerning the prediction of
conversion to AD. Therefore, the inclusion of observation time in-
formation via voxel-wise Cox regression, used to identify the Cox-ROI,
was not superior to traditional group contrasts for identification of
conversion-related regions.

Of note, the prognosis of conversion to AD by APOE genotype and
MMSE score was significantly improved when imaging information
(normalized FDG uptake based on either method) was included.

Identification of conversion-related hypometabolism in frontal re-
gions might indicate greater sensitivity of the Cox regression method.
However, notably the predictive power of models including the Cox
regression-derived FDG uptake (and hence frontal metabolism) was not
superior to those including FDG uptake from conventionally derived
regions (excluding frontal regions), which might also indicate that
frontal regions play only a minor role in conversion to AD.

The applied stratification into risk groups based on the calculated
prognostic index has the advantage of individual predictions of con-
version probability within arbitrarily chosen time frames (e.g., 1, 3, or
5 years, see Table 3). This might be of value for patient counseling in
clinical routine.

Limitations for the Cox regression method, as applied in both da-
tasets, include the fact that the set of chosen predictor variables was not
comprehensive: For instance, it did not include information about beta-

Fig. 4. Survival curves for model 1 including only
clinical covariates sex, age, MMSE score and APOE
genotype. Three risk groups were defined corre-
sponding to the lower, middle and upper thirds of
subjects in the prognostic index (PI) distribution.
With the low-risk group defined as reference, the
hazard ratios are 3.4 [95% C.I.: 1.8–6.4, p < .001]
and 4.9 [95% C.I.: 2.6–9.1, p < .001] for the
medium- and high-risk group, respectively.

Fig. 5. Survival curves for model 4 including clinical
covariates and normalized FDG uptake values from
within the ANCOVA-ROI. Three risk groups were
defined corresponding to the lower, middle and
upper thirds of subjects in the PI distribution. With
the low-risk group defined as reference, the hazard
ratios are 3.2 [95% C.I.: 1.6–6.3, p < .001] and 8.1
[95% C.I.: 4.2–15.6, p < .001] for the medium- and
high-risk group, respectively.
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amyloid or tau from PET imaging, cerebrospinal fluid (CSF), or struc-
tural information from MRI. Also, more detailed cognitive performance
data (e.g. Montreal Cognitive Assessment, which has not been available
for about half of the patients in this study) might be important cov-
ariates. In addition, comorbid diseases like vascular pathologies may
both obscure and mimic an AD-pathology.

However, the current study aimed at testing the method of voxel-
wise Cox regressions and hence results were only compared to those of
conventional group contrasts and adjusted for commonly used clinical
covariates.

Concerning the predictive value of FDG PET in the context of MCI to
AD conversion, the literature shows a large heterogeneity. While the
current study and Lange et al. (2015) found a significant predictive
value for FDG PET within the ADNI data, others did not (Schmand
et al., 2012; Trzepacz et al., 2014). Beyond differences in employed
methods, reasons for this obvious discrepancy might be different

subsets of the constantly growing ADNI sample, based on the time of
download and inclusion criteria. This is apparent when comparing
annual conversion rates of different ADNI samples: while the current
study used a dataset with an annual conversion rate of 8.7%, in (Landau
et al., 2010) it was 17.2%, in (Trzepacz et al., 2014) even 20% and
(Lange et al., 2017, 2015) report about 9.5% and 6.3%, respectively. It
has been pointed out that the ADNI database does not represent the
general population (Whitwell et al., 2012). Therefore, the predictive
value of FDG PET that we found might not necessarily apply to other
samples tested. In line with this, smaller studies (Grimmer et al., 2016;
Trzepacz et al., 2014), (Frings et al., 2018) did not support this, al-
though a meta-analysis of (Frisoni et al., 2013) showed a clear ad-
vantage of FDG PET for conversion prediction over other modalities.

Fig. 6. Survival curves for model 5 including clinical
covariates and normalized FDG uptake from the Cox-
ROI. Three risk groups were defined corresponding
to the lower, middle and upper thirds of subjects in
the PI distribution. With the low-risk group defined
as reference, the hazard ratios are 3.6 [95% C.I.:
1.8–7.1, p < .001] and 7.7 [95% C.I.: 4.0–14.8,
p < .001] for the medium- and high-risk group,
respectively.

Fig. 7. Survival curves for model 2 including only
normalized FDG uptake within the ANCOVA-ROI.
Three risk groups were defined corresponding to the
lower, middle and upper thirds of subjects in the PI
distribution. With the low-risk group defined as re-
ference, the hazard ratios are 2.2 [95% C.I.: 1.1–4.4,
p < .001] and 6.8 [95% C.I.: 3.7–13, p < .001] for
the medium- and high-risk group, respectively.
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5. Conclusions

We demonstrated that voxel-wise Cox regression can be used to
identify MCI to AD conversion-related patterns of cerebral glucose
metabolism, but does not outperform classical group contrasts in this
regard. With imaging information from these patterns on FDG PET, the
prediction of conversion to AD was improved in the ADNI dataset.

The following are the supplementary data related to this article.
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