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ABSTRACT OF THE THESIS

Geo-spatial Learning and Modeling for

Seismic Site Responses in Los Angeles County

by

Pengfei Wang

Master of Science in Statistics

University of California, Los Angeles, 2020

Professor Frederic R Paik Schoenberg, Chair

Earthquakes in seismically-active regions, such as in California, present a significant human

and financial risk to communities. Ground motion models (GMMs) have been developed

to account for earthquake impacts when infrastructures are designed. However, GMMs

assume ergodic hypothesis that is ground motions behave the same globally over time. The

assumption was made as the global data had to be combined for modeling due to very limited

available data. As more and more data collected, it was realized that spatial variations of

ground motions are too large to be neglected. This study proposes a Bayesian hierarchical

model to extract seismic site terms, the spatial site response bias from ergodic GMMs, to

develop non-ergodic seismic site responses. The model was then implemented on the data

from earthquake stations in Los Angeles County. The Kriging prediction is also conducted

to generate heat map for seismic site responses visualization.
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CHAPTER 1

Introduction

1.1 Motivation

Earthquakes as one of the most ruinous hazards have caused tremendous damage, especially

in the areas where there are many active faults, like California. However, there is still not

an effective way to forecast when and where a big earthquake could happen. To mitigate the

damage of earthquakes on infrastructures, structural engineers account for earthquake effects

when designing structures by using ground motion models (GMMs). GMMs were developed

to predict ground motion intensity measures given parameters descriptive of source, path,

and site conditions. These GMMs incorporate source, path, and site response models that

represent approximately the average conditions in the database from which the GMMs were

derived. In the most commonly used NGA-type GMMs [1, 3, 4, 5], global earthquake data

is used so the predictions represent global averages. In contrast, when GMMs are applied

for a specific engineering project, the source, path, and site response attributes of interest

are those local to the site, which may depart from the global averages represented by the

GMM. In this context, I refer to the source, path, and site models in the GMM as spatially

ergodic. Alternative models that consider local, or site-specific features, are considered

spatially non-ergodic, and have the potential to significantly reduce the ground motion bias

and variability.

The most accepted method to correct ergodic GMM to be spatially non-ergodic model is

using the actual earthquake observation data from the sites to extract the site-specific bias,

denoted as site term (ηS). Thus, the site-specific GMM will be the sum of ergodic GMM

and site terms and then the site-specific site response will be the sum of site response from

1



ergodic GMM and site terms. The traditional approach to extract the site terms is utilizing

fixed effect model on total residuals. This approach is widely used as it is unbiased estimator

of site terms and is easy to implement and interpret. However, the approach is not robust

to outliers and it could overfit for some sites where the amount of available earthquake data

is limited. Therefore, an alternative model is needed.

Furthermore, there is a last problem needs to be resolved before implementing site-specific

site response into the design. The earthquake observation ground motions data are recorded

at strong motion stations distantly located. For example, in California where the density

of stations is the highest in the U.S., there are around 2,000 stations mainly locating along

the coast and clustering around San Francisco and Los Angeles. With the highest density

of stations, in Los Angeles County, however, we are still unable to get a reasonably high

resolution of site-specific site response. This is because the distance between two stations

is generally a few kilometers away. To generate a higher resolution map of site-specific site

response, a prediction model (or interpolation) is imperative.

1.2 Organization

This study seeks to propose a more robust method to calculate seismic site terms and site-

specific site responses, and then generate a higher resolution map of site terms for Los Angeles

County. The main body of the thesis consists of 3 chapters.

The Chapter 2 first introduces the commonly used earthquake intensity measure (the

ground motion metric), pseudo spectra acceleration, as it is the prediction result of GMM.

And then it describes the ergodic GMM and its prediction of site response. Additionally,

it also presents the earthquake ground motion data set for Los Angeles County and will be

used in this study.

The Chapter 3 describes the traditional approach (Frequentist) and robust approach

(Bayesian) to extract site terms from total residuals of GMM. And then both methods are

implemented on the data set in Los Angeles County to calculate site terms. The difference

between the two methods will then be illustrated and discussed.
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The Chapter 4 first describes the basic theory of Kriging. The author then describes how

to implement Kriging to construct site-specific site terms and site responses for Los Angeles

County. The heat map of site terms is also generated.

Finally, in the last Chapter, it concludes findings and limitations.
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CHAPTER 2

Ergodic GMM and Data Source

In this chapter, I first introduce a most commonly used earthquake ground motion intensity

measure, pseudo spectra acceleration, as it reflects more real infrastructures response and

also it is the prediction result of GMM. And then I will present one ergodic GMM and

its prediction for site response. The data set of ground motion used in this study is also

presented.

2.1 Pseudo Spectra Acceleration

The actual observed ground motions are in time series format, as one example shown in

Fig. 2.1. This time series is from 1994 Northridge earthquake (Magnitude is 6.69) at Los

Angeles Obregon Park strong motion station. For ease of description and modeling use,

many intensity measures were proposed to numerically express how strong the shaking is.

Peak Ground Acceleration (PGA) is one of the most common measures. PGA is defined

as the maximum absolute ground motion acceleration. As it is shown in Fig. 2.1, the PGA

of the time series is 0.355 g. g is the unit of gravity (∼ 9.8 m/s2), so the PGA is about

0.355 × 9.8 ≈ 3.5m/s2 which is a very strong shaking. This is because the Obregon Park

station is only 40 kilometers from the epicenter.
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Figure 2.1: One Horizontal Time Series Recorded at Los Angeles Obregon Park Station from

1994 Northridge Earthquake

It is no doubt that PGA is widely used intensity measure, however, PGA cannot tell

distinctions of different buildings responses under the same ground motions. The reason is

that PGA is the metric objectively describes how strong the ground motion is, it does not

consider any effect from the buildings themselves. This is why another intensity measure was

came up that is pseudo spectra acceleration (PSA). It was proposed from the assumption

that the responses of buildings are governed by Single-degree-of-freedom (SDF) System.

Figure 2.2: The schematic of SDF system [6]

Fig. 2.2 (a) shows the response of a simplified building to ground motion ug. The de-
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formation displacement (response) of top respect to bottom of the building is u while the

absolute displacement of top respect to previous position before shaking is ut. The mass,

stiffness, and damping coefficient are denoted by m, k, and c. This response can be expressed

by Fig. 2.2 (b), the schematic of SDF system. By Newton law, the motion equation is,

ü+ 2 ξ ωn u̇+ ω2
n u = −üg(t) (2.1)

where damping ratio ξ = c
2
√
km

and natural frequency ωn =
√
k/m = 2π

Tn
. Then the defor-

mation displacement can be written as, u ≡ u(t, Tn, ξ). Usually, we set ξ = 0.05 as default

for typical structure design. Therefore, the deformation displacements of different buildings

will be fully determined by their natural periods Tn. Generally speaking, shorter buildings

are stiffer and the natural periods are smaller. On the other hand, the taller buildings would

have longer natural periods (up to a few periods).

Given a natural period of interest, by using Eq. 2.1, the deformation displacement can

be calculated (using the R package [14]). For example, suppose Tn = 0.5 sec, given the same

ground motion as shown in 2.1, the deformation displacement (along time) can be calculated

and plotted in Fig. 2.3.

Figure 2.3: Deformation Response with Natural Period Tn = 0.5 sec to Ground Motion from

Fig. 2.1
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Note PDD stands for Peak Deformation Displacement in the same manner as PGA, the

maximum absolute of the values. PDD can also be transformed into acceleration by the

following equation,

Sa(Tn) = ω2
n PDD (2.2)

where Sa(Tn) is named as pseudo spectra acceleration (PSA). Spectra is referring to periods

and pseudo comes from the conversion from PDD (as the real spectra acceleration should be

derived directly from Eq. 2.1). If a sequence of natural periods are inputted, then a sequence

of Sa will be calculated shown in Fig. 2.4. The red point is corresponding to natural period

Tn = 0.5 sec, the example in Fig. 2.3.

Figure 2.4: PSA of Ground Motion from Fig. 2.1

Then given the PSA curve of any ground motion and natural period of interest, structural

engineers will be able to estimate the building response and potential damage very easily. Due

to the valuable advantage, PSA is the most important intensity measure used in earthquake

engineering and selected as the intensity measure in GMMs.
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2.2 Ergodic GMM

GMM is an empirical model to numerically describe the source, path, and site response

effects of ground motion. Fig. 2.5 is a schematic to show the whole process that the ground

shaking has been transmitted from earthquake epicenter through earth crust and relatively

soft soil layers to the surface site of our building. Then in GMM, it describes each of these

three effects.

Figure 2.5: The schematic of ground motion generation and propagation

You may notice that the earthquake is generated along the tectonic fault and then trans-

mitted within deep earth crust not shallow soils. Actually the wave is transmitted every-

where, however, the stronger motions to our site are the ones with smaller energy loss which

comes through relatively harder and less damping deep earth crust. This is the reason why

only this path is showed in Fig. 2.5. Another note is that the wave gradually becomes ver-

tical as the wave propagates up from bedrock. This behavior can be explained by Snell’s

Law that the angle of refraction, θr, becomes smaller than the angle of incidence, θi, if the

velocity in the second medium is smaller. The wave velocity in the upper softer soil is indeed
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slower than the deeper harder soil, then the wave propagation becomes gradually vertical.

Therefore, the source effect mainly focuses on the tectonic fault, path effect describes the

transmission within deep earth crust, and the site response accounts for the wave propaga-

tion from bedrock to the surface. You can imagine the site response should not depend too

much on where and how earthquake happens as it is the local site behavior and could be

well-predictable under well studies. This is hypothetical reason of this study.

2.2.1 Structure of Ergodic GMM

There are five commonly used GMMs [1, 3, 4, 5, 8] for crustal earthquakes which were

developed based on NGA-West2 project database [2]. Their model structures are the same,

while some detailed terms differ. BSSA14 model [3] is selected to illustrate the ergodic GMM

and its prediction for site response, and will be used in this study. The full BSSA14 model

can be expressed as

lnY = FE(M,mech) + FP (RJB,M, region) + FS(VS30, RJB,M, region, z1) + εnσ(M, RJB, VS30) (2.3)

where lnY is the natural log of PSA at a period of interest; FE is the source function de-

pendent on earthquake magnitude M and earthquake focal mechanism mech; FP is the

path function determined by the distance RJB, region (as the earth curst hardness varies in

the world), and earthquake magnitude M (as the frequency contents of different magnitude

earthquakes differ and then wave transmissions vary); FS is the site response function (ex-

plained in detail below), σ is the total standard deviation, and εn is the number of standard

deviations of a predicted value away from the mean.

2.2.2 Ergodic Site Response

In this ergodic model, the site response FS is a function of time-averaged shear wave velocity

at the top 30 meters VS30, distance RJB, earthquake magnitude M, site region region, and

depth that is used to represent basin effect z1. VS30 and z1 are the variables that roughly

describes the stiffness and thickness of soil layer. The combination of RJB, M, and region

will account for the effects of site response from ground shaking. This is because soil could

9



be linear or nonlinear behaviors under weak or strong shaking.

Then we can partition the whole ergodic site response FS into three parts, linear com-

ponent of site amplification ln(Flin), nonlinear component of site amplification ln(Fnl), and

the effect of basin depth Fδz1(δz1),

FS(VS30, RJB,M, region, z1) = ln(Flin) + ln(Fnl) + Fδz1(δz1) (2.4)

the coefficients of this function parameters are period-dependent (for PSA) and are regressed

based on global database, the detailed approach is discussed in [3].

The linear site amplification and nonlinear site amplification were originally proposed by

[12]. The linear site amplification Flin describes the scaling of ground motion with VS30 for

linear soil response conditions, typically with small strains under weak ground motions. The

natural logarithm of Flin is expressed as

ln(Flin) =

 c ln(VS30

Vref
) VS30 ≤ Vc

c ln( Vc
Vref

) VS30 > Vc
(2.5)

where c is the VS30 scaling, Vc is the maximum velocity beyond which ground motions no

longer scale with VS30, and Vref is a reference velocity (760 m/s). Parameter c and Vc are

period-dependent and given by BSSA14.

The nonlinear site amplification Fnl in natural log is

ln(Fnl) = f1 + f2ln(
PGAr + f3

f3
) (2.6)

where f1, f2, and f3 are model coefficients, and PGAr is the median peak horizontal accel-

eration for reference rock where VS30 = 760m/s. The model takes f1 = 0 to force ln(Fnl) to

0 for PGAr � f3. f3 is a transition intensity measure (IM) between linear behavior (lower

than f3) and linear decrease at rate of f2ln(IM) (higher than f3), it is taken as f3 = 0.1g.

f2 is the degree of nonlinearity as a function of VS30,

f2 = f4[exp{f5(min(VS30, 760)− 360)} − exp{f5(760− 360)} (2.7)

where f4 and f5 are period-dependent coefficients, also given by BSSA14.

10



And the last part of site amplification is basin term Fδz1 , it is formulated as

Fδz1(δz1) =


0 T < 0.65

f6δz1 T ≥ 0.65&δz1 ≤ f7/f6

f7 T ≥ 0.65&δz1 > f7/f6

(2.8)

where f6 and f7 are model coefficients, provided by BSSA14. δz1 (in km) is computed as

δz1 = z1 − µz1(VS30) (2.9)

where µz1(VS30) is a function of VS30 relating to z1. For California, it can be computed as

ln(µz1) =
−7.15

4
ln(

V 4
S30 + 570.944

13604 + 570.944
)− ln(1000) (2.10)

where µz1 is also in km. Therefore, given VS30, z1, and PGAr, the ergodic site response FS

can be estimated.

2.3 Data Source

The dataset used in this study is from Pacific Earthquake Engineering Research (PEER)

center 1. It contains the strong ground motion recordings since 1930s until 2011 from all

over the world. There are 21540 processed and calculated PSAs in total. Since this study

focuses on Los Angeles County, the data outside of Los Angeles County are filtered out.

The filter results in 2608 records in Los Angeles County which are collected by 344 unique

stations and from 134 earthquake events. The earthquakes (blue-white beachballs) and

stations (green dots) of the data are plotted below. The beachball is a convenient way to

show focal mechanisms (fault strike direction).

1http://peer.berkeley.edu/ngawest2/databases/

11



Figure 2.6: Spatial distribution of earthquakes and stations
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CHAPTER 3

Frequentist and Bayesian Models for Site Terms

When GMMs are applied for a specific engineering project, the source, path, and site response

effects of interest are those local to the site, which will depart from the global averages

represented by the ergodic GMM. The systematic bias of site response effect between ergodic

site response from GMM at the specific site and the actual site response will be called site

term (denoted by ηS). The same to event term, the systematic bias of source effect between

ergodic source from GMM in a specific event and the actual source effect (denoted by ηE).

Therefore, the site-specific site response will be the sum of ergodic site response from GMM

and the site term (the site systematic bias), F̃S = FS + ηS. Then the goal in this chapter is

to extract site term from residuals.

From residual analysis, we have the following equation,

lnYij − lnŶij = Rij = ηEi
+ δWij = ηEi

+ ηSj
+ eij (3.1)

where i represents event i, j stands for station or site j; lnYij is the natural log of actual

observed ground motion and lnŶij is the natural log of predicted ground motion from GMM;

Rij is total residual from deviation of observation and GMM, δWij is within-event residuals,

and eij is the random noise. To extract the site terms ηSj
, event terms ηEi

should be removed

from total residuals. How to estimate event terms and site terms? There are two methods:

Frequentist versus Bayesian.

3.1 Frequentist Approach

From Frequentist statistical point of view, Equation 3.1 is an additive model. Event terms

ηEi
and site terms ηSj

are two predictors. Based on two assumptions,

13



• within-event residuals δWij independently follows multivariate normal distribution

N (0, φ2);

• random noise eij also independently follows multivariate normal distribution N (0, σ2
e)

Then, either applying least square or maximum likelihood estimation, we can have the

following results showing in the Figure 3.1.

Figure 3.1: Frequentist additive model

From Figure 3.1, the estimators based on Frequentist additive model are the averages.

For the ith event term ηEi
, it is the average of total residuals for the recordings from event i;

and the jth site term ηSj
, it is the average of within-event residuals (total residuals removed

event terms) for the recordings from station j.

3.2 Bayesian Hierarchical Approach

The estimators of Frequentist approach are not robust but very sensitive to outliers when

the dataset is relatively small. The histograms of number of recordings within each event

14



and each station are showed in Figure 3.2.

Figure 3.2: Histograms of number of recordings

The majority of events and stations have less than 10 or even less than 5 recordings so

that using means is not very appropriate. In this situation, Bayesian hierarchical approach

is superior. Stewart et al [13] gave the analytic solutions to event terms and site terms,

15



however, they did not show mathematical reasoning and explain in detail. Here, according

to Gelman et al [7], I will give more detailed explanations.

Bayesian approach is more preferable here is because there is a prior distribution which

can be trained by using the entire dataset. The total dataset is large enough to have a relative

stable solutions although each individual event and station does not. Then event terms and

site terms will be estimated by both prior distribution and their own individual datasets. In

another word, although each individual event terms and site terms are independent of each

other, they help each other to improve estimations from connection of prior distribution.

First, there are two prior distributions for event terms and site terms, respectively,

ηEi
∼ N (0, τ 2)

ηSj
∼ N (0, φ2

S)

and two conditional distributions,

Rij|ηEi
∼ N (ηEi

, φ2)

δWij = Rij − ηEi
|ηSj
∼ N (ηSj

, σ2
e)

To estimate event terms, we can have,

P(ηEi
|Rij) ∝ π(ηEi

)P(Rij|ηEi
)

= ϕ(
ηEi
− 0

τ
)ϕ(

Rij − ηEi

φ
)

= ϕ(
ηEi
− µi
Vi

)

where ϕ(·) is the standard normal probability density function, µi and Vi are the mean and

varaince of posterior distribution ηEi
|Rij, Ni is the number of recordings in event i. They

are,

µi =

Ni

φ2
Ri

1
τ2

+ Ni

φ2

V 2
i =

1
1
τ2

+ Ni

φ2
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then, the Bayesian estimator of event term is

η̂Ei
= E(ηEi

|Rij) = µi =

Ni

φ2
Ri

1
τ2

+ Ni

φ2

(3.2)

But the variance of event terms τ 2 and variance of within event residuals φ2 are unknown.

So iteration method is applied, the procedure is,

• initialize parameters τ 2 and φ2;

• plug them into Equation 3.2 to get event terms η̂Ei
;

• compute the sample variance of event terms τ̂ 2 and within event residuals φ̂2;

• repeat step 2 and 3 until they converge.

After obtaining event terms, we can compute within event residuals δWij = Rij − ηEi
, and

then apply the same approach to calculate site terms,

P(ηSj
|δWij) ∝ π(ηSj

)P(δWij|ηSj
)

= ϕ(
ηSi
− 0

φS
)ϕ(

δWij − ηSj

σe
)

= ϕ(
ηSj
− µj
Vj

)

then, the Bayesian estimator of site term is

η̂Sj
= E(ηSj

|δ) = µj =

nj

σ2
e
δWij

1
φ2S

+ 1
σ2
e

where nj is the number of recordings at station j. The iteration is also applied to compute

φ̂2
S, σ̂2

e , and η̂Sj
.

In R, I used package nlme [11] (for mixed effects model) to estimate all these parameters.

3.3 Comparison of Two Approaches

The residuals described above are in terms of pseudo spectral acceleration (PSA) which has

been described in Chapter 2. It is period dependent variable. For buildings, the typical
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fundamental periods of interest are, 0.010, 0.050, 0.500, and 2.500 sec. They represent

the relatively stiff short buildings to relatively soft tall buildings. Then the PSA at these

periods are the most important. Therefore, event terms and site terms at these periods are

imperative to calculate and will be studied in this thesis. The calculations of event terms

and site terms from both Frequentist approach and Bayesian model are shown in Fig. 3.3

and Fig. 3.4 below.

From statistical view of point, Frequentist additive model gives unbiased estimators, while

estimators from Bayesian hierarchical model are biased. However, Bayesian hierarchical

model shrinks event terms and site terms to avoid overfitting, and reduces variance of event

terms and site terms. This is reflected in Fig. 3.3 and Fig. 3.4 that the points of Bayesian

are consistently absolutely smaller and closer to zero. It is also clear to see this trend in

Table 3.1. It summarizes the standard deviations of event terms and site terms at the

periods of 0.010, 0.050, 0.500, and 2.500 sec for both Bayesian and Frequentist methods.

The Bayesian approach gives consistently smaller values than Frequentist.

Moreover, Bayesian hierarchical model is more flexible and robust to outliers. The event

or station which has only a few recordings can obtain additional information from other

events and/or stations through prior distribution. Due to these features, I will use Bayesian

hierarchical model to compute event terms and site terms for spatial visualization in next

chapter.

Table 3.1: Standard deviations of event terms (τ̂) and site terms (φ̂S) at the periods T of

0.010, 0.050, 0.500, and 2.500 sec

Period Frequentist τ̂ Bayesian τ̂ Frequentist φ̂S Bayesian φ̂S

0.010 sec 0.4875 0.3887 0.5675 0.2680

0.050 sec 0.5145 0.4102 0.5549 0.2645

0.500 sec 0.5071 0.3836 0.6106 0.2765

2.500 sec 0.6441 0.5624 0.5565 0.2839
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Figure 3.3: Event terms of 134 earthquakes by Frequentist and Bayesian approach

Figure 3.4: Site terms of 344 sites by Frequentist and Bayesian approach
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CHAPTER 4

Kriging

Site terms and site responses could be well-predictable so that we can use them for future

structural design. However, even in Los Angeles County where the density of ground motion

stations is almost the highest in the U.S., it is very likely the there is no ground motion

station nearby (within 2 km) to derive site-specific site response. So it is imperative to

develop a model to predict site terms where there is no nearby station. In this study, I

implement the most popular geostatistical method–Kriging to conduct prediction (or also

called interpolation) on site terms. Then this chapter will first introduce the basic theory of

Kriging; and then implement Kriging to generate the heat map of site terms of Los Angeles

County.

4.1 Basic Theory of Kriging

In this section, I will introduce the basic theory of Kriging in seismic site term context. The

basic form of Kriging is quite simple, which is the sum of weighted measurements,

η̂S0 = w1ηS1 + w2ηS2 + · · ·+ wnηSn =
n∑
j=1

wjηSj
(4.1)

where {ηSj
, j = 1, 2, · · · , n} is the site term of the j-th station; ηS0 is the site term at the

site of our interest without any ground motion records; and wj is the weight of ηSj
used to

combine n observed site terms to estimate unknown ηS0 .

To preform the prediction, the key is to obtain the weight of each ηSj
. Obviously, the

weight of ηSj
should be higher if the station Sj is closer to our site S0. Inverse distance

weighting or other similar method could be good options, however, they do not consider
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spatial variations. In contrast, Kriging perfectly combines spatial correlation and distance

to estimate the weights.

To quantify the relation between spatial correlation and distance, variogram (denoted as

2γ() or semivariogram γ()) were inverted by [10]. The variogram 2γ() function describes

variability based on the separation distance. The function can be written as,

2γ(h) = V
[
ηS(h)− ηS(0)

]
(4.2)

where V represents variance, h is the separation distance between any two data points which

are separated by h. If we bin h and calculate the corresponding 2γ̂(h), we would be able to

get many experimental estimates of 2γ̂(h) versus h. By fitting smooth continuous functions,

we then can easily make forward application based on the fitting function. Fig. 4.1 shows an

example of experimental semivariogram of site terms and the spherical fitting function (one

of the most commonly used functions). The formula is,

γ(h) =


c0, h = 0

c0 + c1(
3
2
( h
α

)− 1
2
( h
α

)3), 0 < h ≤ α

c0 + c1, h > α

where c0 is nugget (≈ 0.05 in Fig. 4.1), the semivariogram value at distance h = 0, was

first suggested by [9]. It believed that microscale variation can cause a discontinuity at the

origin. c0 + c1 is sill (≈ 0.64 in Fig. 4.1), the quantity of plateau shown in Fig. 4.1, and α

(≈ 900km in Fig. 4.1) is range that is corresponding to the starting point of plateau. We

can see as separation distance increases, the semivariogram is increasing. When the distance

reaches range, semivariogram becomes plateau, then the correlation inversely becomes very

small. We will say there is almost no correlation or they are independent.
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Figure 4.1: Spherical fitting curve and its nugget, sill, and range

By having the tool of semivariogram, then we can solve for the weights. From Eq. 4.1,

we have

η̂S0 =
n∑
j=1

wjηSj
(4.3)

where we also have constraint
∑n

j=1wj = 1 to ensure unbiased estimation. Our objective is

to minimize to the mean squared error of prediction,

min σ2
e = E

[
ηS0 − η̂S0

]2
= E

[
ηS0 −

n∑
j=1

wjηSj

]2
(4.4)

where E is the expectation. By assuming the expectation of any site E(ηS) = µ is a constant

(ordinary Kriging assumption), we can plug Eq. 4.3 into Eq. 4.4 and conduct some algebra

to get,

σ2
e = E

[
ηS0 −

n∑
j=1

wjηSj

]2
= 2

n∑
j=1

wjγ(S0 − Sj)−
n∑
j=1

n∑
k=1

wjwkγ(Sj − Sk) (4.5)

Considering the constraint
∑n

j=1wj = 1, we will have

min 2
n∑
j=1

wjγ(S0 − Sj)−
n∑
j=1

n∑
k=1

wjwkγ(Sj − Sk)− 2λ
( n∑
j=1

wj − 1
)

(4.6)

where λ is the Lagrange multiplier. By differentiating Eq. 4.6 with respect to each w1, w2, . . . , wn

and λ and set the derivatives equal to zero, we eventually will get the best weight. The
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weights are (expressed in matrix form),

W = Γ−1γ (4.7)

where

W = (w1, w2, . . . , wn, λ)

which includes Lagrange multiplier.

γ = (γ(S0 − S1), γ(S0 − S2), . . . , γ(S0 − Sn), 1)>

where > means transpose. It is the vector of semivariogram between all observations Sj and

our interested point S0 and 1. 1 is associated to Lagrange multiplier λ.

Γ =



γ(Sj − Sk), j = 1, 2, . . . , n, k = 1, 2, . . . , n

1, j = n+ 1, k = 1, 2, . . . , n

1, k = n+ 1, j = 1, 2, . . . , n

0, j = n+ 1, k = n+ 1

which is a (n+ 1)× (n+ 1) matrix. The another way to represent Kriging system ΓW = γ

will be,

γ(S1 − S1) γ(S1 − S2) · · · γ(S1 − Sn) 1

γ(S2 − S1) γ(S2 − S2) · · · γ(S2 − Sn) 1
...

...
. . .

... 1

γ(Sn − S1) γ(Sn − S2) · · · γ(Sn − Sn) 1

1 1 · · · 1 0





w1

w2

...

wn

λ


=



γ(S0 − S1)

γ(S0 − S2)
...

γ(S0 − Sn)

1


Therefore, if the semivariogram between any two of sites (including unknown site S0) are

given, we can calculate weights and then estimate ηS0 by Eq. 4.3. And the semivariogram

fitting function is just the tool to provide semivariogram between any two points given their

separate distance.

4.2 Implementation of Kriging on Site Terms

Based on the derivations of semivariogram and Kriging from last section, the site terms at

any given location can be estimated from the observed site terms. If a dense grid in Los
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Angeles County is generated, then we can implement Kriging to calculate site terms for each

dot in the grid and then procedure a high resolution map of site terms.

The reason to predict for site terms rather than site responses is because site terms are

relatively clearer and simpler (without linear, nonlinear, and other effects involved) and also

site terms meet the assumption for ordinary Kriging. For ordinary Kriging, the expectation

of the variable is constant. Apparently, site responses are not constant, however, site terms

could be constant if the ergodic site response from GMM is unbiased. The unbiasedness of

ergodic GMM can be validated by Fig. 3.3 and Fig. 3.4 where the overall average of site

terms is around zero.

To perform Kriging prediction, first semivariogram is needed. In Fig. 4.2, I present the

experimental semivariograms at the four representative periods, 0.010, 0.050, 0.500, and

2.500 sec, of PSA and the best fitting functions.

Figure 4.2: Semivariogram functions

Note, the unit of distance in Fig. 4.2 is degree (as the location of station is described by

longitude and latitude). The range α starts from around 0.05 at period of 0.01 sec, to 0.07

24



at period of 0.05 sec, to 0.1 at period of 0.5 sec, to very far at period of 2.5 sec. It reflects the

spatial correlation range is further at longer period. This is because PSA at longer periods

reflect the behavior of deeper soil structure and the deeper soil structure could be more

continuous than shallower soil (due to less disturbance and geotectonic development) so that

the spatial correlation of deeper soil structure and PSA at longer periods can go further.

Based on fitting functions at four periods and the derivations in last section, the site

terms can be predicted at any location. Then I generate a dense grid in Los Angeles County

and then calculate the site terms for each dot. The following figure shows heat map of site

terms in Los Angeles County

Figure 4.3: Kriging prediction for site terms

In the above heat map, darker red and yellow represent larger positive site terms and

larger negative site terms. The overall average of site terms is about zero (validating the

constant expectation assumption of ordinary Kirging). The larger positive site terms mainly

locate around center of Los Angeles county where it is in Los Angeles basin. It means that

ergodic site response from GMM under-estimates ground motion the most in Los Angeles
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basin. The reason to this result is due to focusing effect. The basin substructure can locally

focus the seismic wave energy to amplify ground motion higher than the sites without basin.

Although the basin effect has been accounted in ergodic GMM, the basin effect is still under-

estimated for Los Angeles basin. Thus, if ergodic GMM is utilized in structural design, the

infrastructures are very likely damaged due to the model under-estimation. Therefore, it

is crucial to extract site terms and calculate site-specific site response to estimate ground

motion for structural design.

Then given the site term at site j, site-specific site response can be estimated by

F̃S = ηSj
+ FS(VS30, RJB,M, region, z1) (4.8)

where FS(VS30, RJB,M, region, z1) is ergodic site response from GMM given by Eq. 2.4.
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CHAPTER 5

Conclusion

GMM has been the crucial and mandatory calculation for earthquake risk estimation and

management. However, as this study and many previous studies state that GMM is ergodic

and could give very large biased prediction. If the bias is negative, the ergodic GMM

under-estimates ground motion, the structural designs are safe but could be conservative

to waste resources. In contrast, if the bias is positive, then the structural designs are not

stable or resistant to any expected potential earthquakes. Therefore, ergodic GMM is not

suggested to be used as the final seismic risk estimation, non-ergodic GMM should be highly

recommended.

This study presents a method to correct the site response effect in ergodic GMM to be

spatially non-ergodic or site-specific site responses. It corrects the site responses by adding

the systematic site response bias, site term (ηS). Two approaches to extract site term from

residuals analysis are investigated and compared. Based on the actual analysis on ground

motion data in Los Angeles County, Bayesian approach is recommended especially for limited

data. This is because Bayesian approach is robust to outliers, is flexible to capture complex

hierarchical data structure, and avoids overfitting.

This study also proposes to use Kriging to predict site terms for sites where there are

no ground motion data available for direct site term calculation and then generate high

resolution heat map of site terms in Los Angeles County. Based on the heat map, I found

GMM could not capture Los Angeles basin effects, particularly for short periods. The larger

positive site terms indicate ergodic site response in GMM under-estimates ground motions.

This finding strengthens the statement that non-ergodic GMM or at least site-specific site

response GMM should replace ergodic GMM for earthquake risk assessment.

27



The limitation of this study is that the data set is still small so the site terms derived

may not be the truth. Additionally, the predicted site terms from Kriging are not verified

with any data and could not be used in actual structural design. However, as the number

of ground motion stations increases, data will also increase, we will be able to get more

accurate site terms so is site-specific site response to mitigate earthquake damage.
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