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Comparative transcriptome in large‑scale 
human and cattle populations
Yuelin Yao1,2†, Shuli Liu3,4†, Charley Xia5,6†, Yahui Gao3,7†, Zhangyuan Pan8,9†, Oriol Canela‑Xandri1, 
Ava Khamseh1,2, Konrad Rawlik5, Sheng Wang10, Bingjie Li11, Yi Zhang4, Erola Pairo‑Castineira1,5, 
Kenton D’Mellow1, Xiujin Li12, Ze Yan4, Cong‑jun Li3, Ying Yu4, Shengli Zhang4, Li Ma7, John B. Cole3, 
Pablo J. Ross8, Huaijun Zhou8, Chris Haley1,5, George E. Liu3*, Lingzhao Fang1,13*   and Albert Tenesa1,5* 

Background
Cross-species comparison of the transcriptome enables a better interpretation of how 
natural selection shapes gene expression and is crucial for exploring the evolutionary 
basis of phenotypic variation between and within species. Comparison of the transcrip-
tome between human and mouse has enhanced the use of mouse as models for a wide 
variety of diseases including neurological and muscular disorders, as well as cancer [1]. 

Abstract 

Background: Cross‑species comparison of transcriptomes is important for elucidat‑
ing evolutionary molecular mechanisms underpinning phenotypic variation between 
and within species, yet to date it has been essentially limited to model organisms with 
relatively small sample sizes.

Results: Here, we systematically analyze and compare 10,830 and 4866 publicly avail‑
able RNA‑seq samples in humans and cattle, respectively, representing 20 common 
tissues. Focusing on 17,315 orthologous genes, we demonstrate that mean/median 
gene expression, inter‑individual variation of expression, expression quantitative trait 
loci, and gene co‑expression networks are generally conserved between humans and 
cattle. By examining large‑scale genome‑wide association studies for 46 human traits 
(average n = 327,973) and 45 cattle traits (average n = 24,635), we reveal that the herit‑
ability of complex traits in both species is significantly more enriched in transcription‑
ally conserved than diverged genes across tissues.

Conclusions: In summary, our study provides a comprehensive comparison of tran‑
scriptomes between humans and cattle, which might help decipher the genetic and 
evolutionary basis of complex traits in both species.

Keywords: Comparative transcriptome, Gene co‑expression, Heritability enrichment, 
Inter‑individual variability, RNA‑seq
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Additionally, the comparison of the transcriptome across primates has provided molec-
ular insights into human evolution, particularly in the brain [2].

Previous studies on comparative transcriptomics were essentially restricted to model 
organisms and human data from a few individuals, hindering the comparison of inter-
individual variation of gene expression and associated genetic regulatory effects (e.g., 
expression quantitative trait loci, eQTLs) across species. Moreover, although it has been 
suggested that the genetic architecture underlying complex traits is conserved at a cer-
tain degree between humans and livestock [3–5], the molecular mechanisms under-
pinning such conservation are largely unknown. Until now, no study has systematically 
explored the conservation of transcriptome across a wide range of tissues in large popu-
lations of humans and any livestock species.

Cattle is one of the most economically important livestock species, supplying humans 
with a substantial fraction of animal protein. Driven by the high selection intensity of 
economically important traits, compared to humans, cattle has a different population 
structure, such as smaller effective population size (Ne ~100), higher linkage disequi-
librium (LD) among genomic variants, and higher inbreeding rate (i.e., resulting in the 
accumulation of deleterious mutations) [6]. Furthermore, millions of highly accurate 
phenotypic records, including fertility, health, and growth traits, have been collected 
for cattle [7, 8]. As such, a better understanding of transcriptome conservation between 
humans and cattle may not only contribute to establishing cattle as a potential biomedi-
cal model for certain human diseases, but also enhance the cattle genetic improvement 
program by leveraging prior information from humans [5, 9]. Here, we select 10,830 and 
4866 high-quality RNA-seq profiles from the human GTEx project (v8) [10] and the Cat-
tleGTEx project [11], respectively. We group human samples from similar tissues (e.g., 
different brain regions as brain) into bigger tissue classes, resulting in 20 matched tis-
sues in humans and cattle (Additional file 1: Table S1). The large and tissue-diverse data-
set analyzed allowed us to systematically compare the transcriptome of humans and a 
livestock species to gauge the conservation of gene expression in two outbred mamma-
lian populations. We compare mean gene expression, inter-individual variation of gene 
expression, cis-eQTLs, and co-expression networks between humans and cattle, and 
then integrate results with large-scale genome-wide association studies (GWAS) from 
46 human traits and 45 cattle traits to understand the genetic and evolutionary basis of 
complex traits.

Results
Global conservation of gene expression

We focused on the expression of 17,315 one-to-one orthologous genes, including 72% 
and 76% of all annotated protein-coding genes in humans and cattle, respectively. These 
orthologous genes, representing 16,510 protein-coding genes with 664 on sex chromo-
some, contributed to the majority of transcriptional outputs among all 20 tissues being 
studied in both humans and cattle (Additional file 2: Fig. S1). We analyzed an average of 
243 and 541 RNA-seq samples across these 20 tissues in cattle and humans, respectively 
(Fig. 1a, Additional file 1: Table S1). We observed a significant correlation (Spearman’s r 
= 0.59, p = 6.7×10−3) between the number of expressed (median Transcripts per Kilo-
base Million, TPM > 0.1) genes in each tissue in humans and cattle (Fig. 1b). Testis has 
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the largest number of expressed genes in both species (nHuman = 16,204; nCattle = 14,457), 
while muscle (nHuman = 13,081; nCattle = 11,707) and blood (nHuman = 12,283; nCattle = 
11,573) have the smallest in cattle and humans, respectively.

The t-SNE-based visualization of expression variation among samples clearly recapitu-
lated tissue types (Fig.  1c, d). The hierarchical clustering of tissues based on mean or 
median gene expression in each tissue also showed that tissues rather than species clus-
tered together (Additional file 2: Fig. S2a-b). These results demonstrate that gene expres-
sion profiles of orthologous genes are generally conserved within corresponding tissues 
between cattle and humans (Additional file 2: Fig. S3a). Tissues with the highest simi-
larity of gene expression between humans and cattle included brain, pituitary, muscle, 
and adipose, while tissues with the lowest included stomach (the majority were rumen 
in cattle), skin, testis, and mammary gland (Additional file 2: Fig. S3b). In addition, we 
sorted all orthologous genes according to their median level of expression in each tissue, 
and observed that humans and cattle share most genes in the top (highest expression) 
and bottom (lowest expression) 10% of genes (Fig. 1e).

Conservation of tissue specificity of gene expression

We found that the distribution of median gene expression across tissues was U-shaped 
(tending towards either tissue-specific or ubiquitously expressed) in both humans and 
cattle, with the majority of genes (69% and 66% in humans and cattle, respectively) 
expressed in all 20 tissues (Fig.  2a). The number of tissues in which each gene was 
expressed was significantly correlated between the two species (Spearman’s r = 0.75, 
p < 2.2×10−16), indicating that among orthologous genes there is global conservation 
of tissue-specific expression between humans and cattle. We found that 639 and 337 
genes, with a significant (Hypergeometric test, p < 2.2×10−16) overlap of 165, were not 

Fig. 1 Data summary and conservation of transcriptomes of 20 common tissues in humans and cattle. a 
Sample size per tissue in humans and cattle. b Spearman’s correlation of number of expressed genes (median 
TPM > 0.1) across tissues between humans and cattle. Each dot represents a tissue. c Plot of t‑SNE of samples 
based on batch‑corrected gene expression (Methods). Each dot represents a sample, colored by species 
types. d Same as in c, but colored by tissue types. e Percentage of orthologous genes shared in each window 
between humans and cattle. Genes were ranked (from largest to smallest) by median expression in each 
tissue each species, and then divided into ten windows evenly (1731 genes per window)
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measurably expressed (TPM < 0.1) at the time of measurement in any of 20 tissues in 
humans and cattle, respectively. These non-expressed genes were significantly enriched 
in embryonic development processes, such as embryonic morphogenesis, angiogenesis, 
and regulation of stem cell division (Additional file 2: Fig. S4a). This might be due to the 
underrepresentation of embryonic samples in the current study.

We found that the number of tissue-specific genes across tissues was significantly cor-
related (Spearman’s r = 0.68, p = 1.2×10−3) between humans and cattle (Additional 
file  2: Fig. S4b). The testis had the largest number of tissue-specific genes, while the 
large intestine and heart had the smallest in cattle and humans, respectively. In general, 
tissue-specific genes of the same tissues overlapped significantly (Hypergeometric test, 
FDR < 1.0×10−3) between humans and cattle (Fig. 2b). In each tissue, the top 10 tissue-
specific genes with the largest expression values detected in cattle tissues also exhibited 
a strong pattern of tissue-specific expression in human tissues (Fig. 2c), and vice versa 
for the top 10 tissue-specific genes detected in human tissues (Additional file 2: Fig. S4c). 

Fig. 2 Comparison of tissue specificity of gene expression. a Gene expression levels and number of 
tissues in which genes were expressed (median TPM > 0.1) in cattle (left) and humans (right). b Number of 
tissue‑specific genes  (log2(fold‑change) > 1.5 and FDR < 0.05) and their overlap across 20 tissues in humans 
and cattle. The overlap was tested using hypergeometric test. “***” represents FDR (Benjamini‑Hochberg 
method corrected P‑value) less than 1.0×10−3. c Expression profiles of top 10 tissue‑specific genes that are 
detected in cattle among both cattle (left) and humans samples (right). Each row represents a gene and each 
column represents a sample from the corresponding tissue. The color represents  log2‑transformed expression 
value, i.e.,  log2(TPM+0.25). d Percentage of orthologous genes shared in each bin between humans and 
cattle. Genes were ranked (from largest to smallest) by degree (measured by −log10p) of tissue specificity, 
and then divided into ten bins (1731 genes per bin). e Spearman’s correlation between the percentage (%) 
of overlapping tissue‑specific genes and gene expression correlation between humans and cattle across 
20 tissues. Each dot represents a tissue. f Expression profiles of ADAM7 (human‑specific testis gene), DAZ1 
(cattle‑specific testis gene), and TDRT1 (conserved testis gene)
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We observed that tissue specificity in gene expression was linked to the chances of genes 
being transcriptionally conserved between humans and cattle (Fig. 2d). The more simi-
lar the expression of two tissues was between species the larger the number of shared 
tissue-specific genes the tissues had (Spearman’s r = 0.73; p = 3.5×10−4) (Fig. 2e). This 
finding indicates that tissues with more tissue-specific genes shared between humans 
and cattle tend to be more transcriptionally conserved between these two species.

We found that the tissue-specific genes shared by species (conserved) accurately reflected 
the known biology of tissues, while tissue-specific genes that were not shared by species 
(diverged) showed distinct biological functions in humans and cattle (Additional file  3: 
Table  S2). For instance, the conserved testis-specific genes were significantly engaged in 
germ cell development, while human-specific and cattle-specific ones were significantly 
engaged in cilium organization and synapse assembly, respectively (Additional file  2: 
Fig. S4d). Of note, the difference in gene annotation databases between humans and cat-
tle might bias the biological interpretation of human- and cattle-specific genes. We took 
ADAM7, DAZ1, and TDRD1 as examples of human-specific, cattle-specific, and conserved 
genes in testis (Fig. 2f). ADAM7 plays roles in sperm maturation and sperm-egg fusion [12]. 
DAZ1 and TDRD1 are essential for spermatogenesis [13, 14]. These species-specific genes 
in testis might be linked to the difference in fertility between humans and cattle, e.g., the dif-
ference in embryo implantation [15].

Comparison of mean gene expression level

We identified differentially expressed genes (DEGs) in each tissue between humans and 
cattle (Additional file 2: Fig. S5), and found that brain and pituitary showed the lowest 
number of DEGs (Fig. 3a), consistent with previous report that the central neural sys-
tem evolves slowly across mammals [16]. In contrast, skin and stomach had the great-
est number of DEGs, which was in line with the distinct physiological and anatomical 
characteristics of skin and stomach between humans and cattle. Using independent 
epigenetic data (i.e., ATAC-seq, and ChiP-seq for H3K4me3, H3K4me1, H3k27ac, and 
H3K27me3) in six common tissues in humans and cattle, we predicted 15 distinct chro-
matin states (Additional file 2: Fig. S6). We furthermore confirmed that TSS ± 2kb of 
human upregulated DEGs showed an increased enrichment of active promoter-related 
states (e.g., TssA and TxFlnk ) and decreased enrichment of repression-related states 
(e.g., TssBiv, TssAHet, Repr, and ReprWk) in humans when compared to their ortholo-
gous genes in cattle, and vice versa for cattle upregulated DEGs (Fig.  3b,c, Additional 
file 2: Fig. S7a). Furthermore, the upregulated DEGs in either humans or cattle exhib-
ited distinct biological functions (Additional file 2: Fig. S7b, Additional file 4: Table S3). 
For instance, genes that were upregulated in cattle mammary gland were significantly 
engaged in protein secretion regulation, while genes that were upregulated in the human 
mammary gland were significantly engaged in responses to oxygen level (Additional 
file 4: Table S3). The oxygen level is important for supporting the increased metabolic 
rate during pregnancy and lactation in mammary gland. The downregulation of these 
genes in cattle mammary gland compared to humans might be partially due to the inten-
sive selection of milk production and mammary gland health traits (e.g., mastitis) in 
cattle. We detected 511 and 461 genes were up- and downregulated in cattle rumen com-
pared to human stomach. The upregulated genes in cattle rumen were mainly enriched 
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in multicellular organismal water homeostasis, cell-cell adhesion, and tissue develop-
ment, while the downregulated genes were significantly enriched in digestion, response 
to topologically incorrect protein, response to endoplasmic reticulum stress, and muscle 
contraction. In addition, we detected 481 and 551 genes were up- and downregulated in 
cattle skin compared to human skin. The upregulated genes in cattle skin were mainly 
enriched in anatomical structure morphogenesis, vasculature development, blood vessel 
development, and inflammatory response, while the downregulated genes were signifi-
cantly enriched in skin development, epidermis development, regulation of water loss 

Fig. 3 Comparison of average gene expression across 20 tissues between humans and cattle. a Number 
of significantly upregulated genes across tissues in humans (red) and cattle (blue) using the cutoff of 
fold‑change (FC) > 1.2 and FDR < 0.05. b, c Changes of enrichment folds of 15 chromatin states around 
(± 2kb) transcriptional start sites (TSS) of top 500 upregulated genes in human and cattle adipose when 
compared with each other, respectively. The 15 chromatin states are predicted based on six epigenetic marks 
(i.e., ATAC, CTCF, H3K27ac, H3k27me3, H3K4me1 and H3K4me3). d Spearman’s correlation of genes between 
their tissue specificity (measured by −log10p from tissue specificity expression analysis) of expression and 
degrees (−log10p) of differential expression between species. “*” represents the correlation coefficient is 
significant (FDR < 0.01). e Expression profiles of CNS2, CNS3, and CCL27 across human (red) and cattle (blue) 
tissues
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via skin, establishment of skin barrier, and keratinocyte differentiation. However, fur-
ther experimental follow-ups are required to understand how the differential expression 
of these genes reflects biological differences in corresponding tissue functions between 
humans and cattle.

To further explore whether the findings were consistent between humans and mice, 
we integrated 113 RNA-seq samples from 14 tissues in mice [17, 18]. We found that gene 
expression profiles of most of tissues were generally conserved among the three mam-
mals (Additional file 2: Fig. S8a), and the differential expression of genes (measured by 
t-statistics) were significantly but moderately correlated between humans vs. cattle and 
humans vs. mice (Additional file 2: Fig. S8b-c). We then detected genes that showed con-
servation (|FC|< 1.2 and FDR > 0.05) in humans vs. cattle, but divergence (|FC| > 1.2 and 
FDR < 0.05) in humans vs. mice (Additional file 2: Fig. S8d). For instance, those genes 
in adipose, spleen, lung, and mammary gland were significantly enriched for immune 
systems, such as T cell activation and regulation of lymphocyte proliferation (Addi-
tional file 2: Fig. S8e, Additional file 5: Table S4). This might suggest that cattle show a 
greater similarity to humans than mice in terms of several aspects of immunophysiol-
ogy, which was in agreement with previous studies that cattle is a preferred model for 
human immunology [19, 20]. We also noticed that those genes in heart and liver were 
significantly involved in muscle contraction, ATP processing, and glucose metabolism, 
which might be in line with that cattle has been proposed as a model for some muscular 
disorders, e.g., brody disease [21].

Furthermore, we found that the degree (measured by −log10p) of differential expres-
sion of genes between humans and cattle was significantly and negatively correlated 
with their tissue specificity of expression in most of the tissues within humans (Fig. 3d), 
suggesting that genes with higher tissue-specific expression are more likely to be tran-
scriptionally conserved (i.e., less differentially expressed) between humans and cattle. 
However, this was not universal as the opposite trend was found in skin, adrenal, and 
stomach, suggesting that certain functions of such tissues might be under positive selec-
tion in humans and cattle [22]. In addition, we found that dN/dS ratios (measuring DNA 
sequence conservation) of orthologous genes were weekly but significantly with their 
Tau values (measuring tissue-specific expression) in humans and cattle (Additional file 2: 
Fig. S9). We then investigated 30 genes with dN/dS ratio > 1, considered as positively 
selected between humans and cattle. Among them, 26 showed tissue-specific expres-
sion, and 14 were also significantly differentially expressed in at least one tissue between 
humans and cattle (Additional file 2: Fig. S10). For instance, CSN2 and CSN3, which are 
associated with milk production traits in cattle [8], were significantly upregulated in the 
cattle mammary gland compared to human mammary gland (Fig.  3e). CCL27, which 
participates in T cell-mediated skin inflammation [23], was highly expressed in human 
skin, but not in cattle skin (Fig. 3e).

Comparison of inter‑individual variation of gene expression and their cis‑genetic 

regulatory effects

Like mean gene expression levels, we found that the inter-individual variation of gene 
expression (measured by median absolute deviation, MAD) was generally conserved 
in humans and cattle (Fig. 4a). We then sorted all orthologous genes according to their 
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level of variability and found that humans and cattle share most (around 55%, on aver-
age) in the top (most variable) and bottom (most consistent) 10% of genes (Fig. 4b). This 
result was consistent after adjusting for the mean of expression (i.e., the coefficient of 
variation, CV, which is the ratio of the standard deviation to the mean) (Additional file 2: 
Fig. S11a, b). The variable genes were significantly engaged in tissue-relevant functions, 
while consistent genes were significantly involved in essential biological functions, such 
as system processes and stimulus detection (Additional file 6: Table S5).

Since inter-individual variation of gene expression is partially due to genetic factors, 
we then compared cis-eQTLs of genes across tissues between humans and cattle. We 
found that compared to all tested SNPs that were evenly distributed around transcrip-
tion start sites (TSS), top cis-eQTLs of eGenes centered around TSS in both humans 
and cattle (Fig. 4c). However, there was a higher enrichment of cis-eQTLs around TSS in 
humans than in cattle (Additional file 2: Fig. S12), which might be due to the difference 

Fig. 4 Comparison of inter‑individual variability of gene expression and their cis‑genetic regulatory effects. 
a Hierarchical clustering of tissues in humans and cattle based on Pearson’s correlation of median absolute 
deviation (MAD) of expression. b Percentage of orthologous genes shared in each bin between humans 
and cattle. Genes were ranked (from largest to smallest) by MAD, and then divided into ten bins (1731 genes 
per bin). c Distribution of top cis‑eQTLs around transcriptional start sites (TSS) in human and cattle liver. d 
Number of eGenes (genes with significant cis‑expression quantitative trait loci, cis‑eQTLs) in what number of 
tissues in cattle (left) and humans (right). There is a weak but significant correlation (Spearman’s r =0.15; p = 
1.91×10−13) between the number of tissues an eGene was detected on across both species e, Enrichment 
of eGenes between human and cattle tissues. Color represents −log10FDR. P‑values are computed using the 
hypergeometric test for the overlaps of eGenes between human and cattle tissues, and then are adjusted for 
multiple testing with FDR method. “*” represents FDR < 0.05. f Distribution of difference in median absolute 
deviation (MAD) between humans and cattle among four groups of genes in blood, i.e., cattle‑specific 
eGenes (cattle), human‑specific eGenes (human), species‑shared eGenes (both), and non‑eGenes in neither 
species (neither)
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in LD patterns between the two species [24]. For instance, 95% of top cis-eQTLs were 
within 873 kb and 698 kb around TSS in cattle and humans, respectively (Additional 
file  2: Fig. S12). We found that the majority of eGenes (i.e., genes with cis-eQTLs) 
were tissue-specific (shared with less than five tissues) in humans and cattle (Fig. 4d). 
We observed a weak but significant correlation (Spearman’s r =0.15; p = 1.91×10−13) 
between the number of tissues, in which an eGene was detected on across two species 
(Fig.  4d). We further observed a significant overlap of eGenes within similar tissues 
between humans and cattle (Fig. 4e). For instance, eGenes in human blood had the high-
est enrichment with those in cattle blood, monocytes, and macrophage, and the same 
was observed for liver, muscle, and heart (Fig. 4e).

Furthermore, we observed that species-specific eGenes had a significantly (one-
side Wilcoxon rank-sum test, p < 2.20×10−16) higher variability than other genes in 
the corresponding species (Fig.  4f ). Additionally, we found that eGenes showed sig-
nificantly higher differential expression between humans and cattle than non-eGenes 
(one-side Wilcoxon rank-sum test, p < 2.2×10−16), and conserved eGenes showed sig-
nificantly higher differential expression than species-specific ones (Additional file  2: 
Fig. S11c). Overall, this suggests that cis-genetic variants may contribute to the inter-
species differences in inter-individual variation of gene expression.

Comparison of gene co‑expression network

We estimated the conservation of gene co-expression profiles by calculating the corre-
lation of the correlation coefficient (corCor, Methods) of genes between tissues within 
cattle, between tissues within humans, and within tissues between humans and cattle 
(Fig. 5a). We found that the overall corCors of genes among tissues within a species were 
significantly (one-side Student’s t test, p < 1.00×10−4) higher than those within tissues 
between species (Fig. 5b). This suggests that gene co-expression networks are less con-
served than mean gene expression across species. However, we observed that tissues 
exhibited distinct conservation levels of gene co-expression between humans and cat-
tle. For instance, muscle and brain showed the highest conservation levels, while ovary, 
skin, and spleen showed the lowest (Fig. 5c). In addition, we compared the conservation 
between gene expression and co-expression and found that expression-conserved genes 
showed significantly (Wilcoxon test, p < 2.20×10−16) higher co-expression conservation 
(i.e., corCors) than expression-diverged genes across tissues (Additional file 2: Fig. S13).

We here took muscle as an example, due to its highest conservation based on cor-
Cors, to show the conservation of individual gene co-expression modules between 
humans and cattle. We first conducted the weighted gene co-expression network anal-
ysis (WGCNA) in humans and cattle muscle samples to detect gene co-expression 
modules, separately (Methods). In general, we found that multiple gene co-expression 
modules were conserved between species (Fig.  5d–f ). Genes in the most conserved 
module were significantly engaged in fundamental biological processes, such as histone 
modifications and covalent chromatin modifications. In contrast, genes in the least con-
served gene module were significantly involved in skin development and keratinocyte 
differentiation (Fig. 5g). We repeated the analysis in all the 20 tissues and detected the 
most conserved and divergent gene co-expression modules, as well as found that these 
genes in different tissues were significantly enriched in distinct biological functions 



Page 10 of 24Yao et al. Genome Biology          (2022) 23:176 

(Additional file  2: Fig. S14-15). For instance, genes of the most diverged module in 
blood were significantly enriched in neutrophil-mediated immunity, while genes of the 
most diverged module in brain were significantly enriched in mitochondrial ATP func-
tions (Additional file 2: Fig. S15).

Heritability of complex traits enriched in transcriptionally conserved genes

To better understand the genetic architecture underlying complex traits from an evolu-
tionary point of view, we tested whether transcriptionally conserved genes were more 
enriched for genetic variants of complex traits than diverged genes (Methods). We ana-
lyzed GWAS summary statistics for 46 human complex traits with an average sample size 
of 327,973, and 45 cattle complex traits with a sample size of 27,214 (Additional file 7: 
Table S6). After ranking (from the largest to smallest) genes in each tissue according to 
their degree of differential expression (measured by −log10p) between humans and cat-
tle, we considered the top and bottom 10% as diverged and conserved genes (n = 1731), 
respectively. The distributions of conserved and diverged genes across tissues are shown 
in Figure S16, and the majority of them were tissue-specific (shared with less than five 
tissues). In addition, the MAF and LD of SNPs were comparable between conserved and 

Fig. 5 Comparison of gene co‑expression network. a The diagram shows three comparisons, i.e., (1) 
between tissues within humans, (2) between tissues within cattle, and (3) within tissues between species. 
b Comparisons of corCor (measurement of gene co‑expression conservation, details in “Methods”) among 
three groups. “****” represents the P < 0.0001 from one‑side Student’s t test. c Comparisons of corCor in (3) 
across tissues. d The weighted gene co‑expression network is constructed in human muscle using WGCNA 
package (“Methods”). Color represents gene co‑expression module. Gene clustering is also visualized 
through t‑SNE method. Each dot in the t‑SNE plot represents a gene. e Similar with d, but the weighted gene 
co‑expression network is constructed in cattle muscle. Genes in the cattle network are assigned same color 
as they in human modules to reflect the extent of module conservation between species. f Bar plot shows 
correlation of gene connectivity (measuring the conservation of gene co‑expression module) between 
humans and cattle across human co‑expression modules. g The top significantly (FDR<0.05) enriched Gene 
Ontology terms for genes in most conserved module (left) and most diverged module (right)
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diverged genes (Additional file 2: Fig. S17). We found that genes with conserved mean 
expression explained more heritability or enriched more GWAS signals of complex traits 
than diverged ones (one-side Student’s t test, p < 2.20×10−16), and this was consistent 
across tissues and traits in both humans and cattle (Figs. 6 and 7, Additional files 8, 9 and 
10: Table S7-9). We observed similar results for conserved and diverged genes that were 
detected from inter-individual variation and gene co-expression analyses (Additional 
file  2: Fig. S18). By further examining GWAS-discovered genes of 4756 complex traits 
(at least 10 genes per trait) using FUMA [25], we confirmed that conserved genes were 
significantly enriched for more complex traits GWAS signals than diverged ones, which 
was consistent across tissues except for skin, adrenal, and stomach (Additional file 2: Fig. 
S19). In addition to using the sum-based permutation method in cattle, we also employed 
the three-component GREML-LDMS model to estimate the per-SNP heritability of con-
verged and diverged genes in three milk production traits (i.e., milk, fat and protein yield) 
(Additional file 10: Table S9), which had the largest sample size and the highest reliabil-
ity of phenotypes [8, 26]. We found that the expression-conserved genes showed higher 
per-SNP heritability than DNA sequence-conserved genes and expression-diverged genes 
across most of the tissues (Additional file 2: Fig. S20a). We also found that the enrich-
ment degrees based on the sum-based permutation test were significantly correlated with 

Fig. 6 Heatmap of heritability enrichments of 46 human complex traits in transcriptionally conserved and 
diverged genes. Heritability enrichments obtained from LDSC for 46 human complex traits in transcriptionally 
diverged and conserved genes between humans and cattle (“Methods”). All orthologous genes are ranked 
(from largest to smallest) based on –log10p obtained from the differential gene expression analysis in each 
of 20 tissues between humans and cattle. The top and last 10% of genes are considered as transcriptionally 
diverged and conserved genes in each tissue, respectively. The enrichment is scaled to have mean of zero 
and variance of one by traits. “*” represents the adjusted P‑value (FDR) < 0.05. Traits and tissues are clustered 
using the Hierarchical clustering method
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per-SNP heritability across tissues for milk and fat yield but not protein yield (Additional 
file 2: Fig. S20b). For other complex traits in cattle, the GREML-LDMS model could not 
converge properly across many tissues, mainly due to the variance components being 
estimated were close to zero. Compared to the GREML-LDMS or LDSC models, the 
sum-based permutation test only does the GWAS signal enrichment analysis rather than 
estimate proportions of genetic variance explained [27].

To test if the human-cattle conservation at the transcriptomic level could provide 
extra information than the conservation at the DNA level, we conducted the same 
heritability enrichment analysis for sequence-conserved genes (top 10% of genes with 
the highest sequence conservation between humans and cattle, measured by both Dn/
Ds and PhastCons scores) together with expression-conserved genes. As shown in 
Fig. 8a, although sequence-conserved genes showed the highest enrichment for sev-
eral traits (e.g., weight and years of education), expression-conserved genes in relevant 
tissues showed higher enrichments for certain traits. For instance, expression-con-
served genes in blood showed the highest enrichment for immune/health traits (e.g., 
ulcerative colitis, systemic lupus erythematosus, rheumatoid arthritis, and inflamma-
tory bowel disease). Similar findings were observed for genes showing conserved co-
expression patterns (Additional file  2: Fig. S21a). For instance, we found that genes 

Fig. 7 Heatmap of GWAS signal enrichments of 45 cattle complex traits in transcriptionally conserved 
and diverged genes. GWAS signal enrichments (i.e., −log10p from 10,000 times permutation, “Methods”) of 
cattle complex traits for transcriptionally diverged and conserved genes. All orthologous genes are ranked 
(from largest to smallest) based on –log10p obtained from the differential gene expression analysis in each 
of 20 tissues between humans and cattle. The top and last 10% of genes are considered as transcriptionally 
diverged and conserved genes in each tissue, respectively. The enrichment is scaled to have mean of zero 
and variance of one by traits. “*” represents FDR < 0.05
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with conserved co-expression in brain showed the highest enrichment for schizophre-
nia, while genes in small intestine for immune-relevant traits (e.g., rheumatoid arthri-
tis and inflammatory bowel disease), might be due to its immune function (Additional 
file  2: Fig. S21a). Although the interpretations of some trait-tissue associations were 
not straightforward due to the complexity in both complex traits and tissues, these 
results indicate that the transcriptome conservation in relevant tissues could pro-
vide additional information for interpreting complex trait genetics. We further com-
pared the heritability enrichment of these 46 human traits for four groups of genes, 
i.e., the top 10% (most diverged), 40–50%, 50–60%, and bottom 10% (most conserved), 
ordered by −log10FDR (from largest to smallest) from the differential expression analy-
sis between humans and cattle. We found that genes with higher conserved expression 
showed higher enrichments for the heritability of complex traits, and similar results 
were observed for gene co-expression (Additional file 2: Fig. S21b).

To investigate whether the transcriptional conservation between humans and cattle 
could help us identify new causal genes for complex traits, we took the well-studied 
human height as an example to perform the functionally informed (using conserved 
genes as functional priors) fine-mapping analysis using PolyFun + SuSiE [28, 29]. Com-
paring to results from the fine-mapping analysis without conserved genes (i.e., SuSiE 
[29] only), we fine-mapped more variants/genes for human height (Fig. 8b). Consider-
ing PIP (PolyFun + SuSiE) > 0.95 but PIP (SuSiE) < 0.95, we detected 53 variants for 
human height, out of which 10 were not genome-wide significant (p > 5×10−8) in the 

Fig. 8 Transcriptionally conserved genes provide insights into the genetics of complex traits. a Heatmap 
of heritability enrichments obtained from LDSC for 46 human complex traits in transcriptionally and DNA 
sequence‑conserved genes (measured by both dN/dS and PhastCons scores). All orthologous genes 
are ranked (from largest to smallest) based on –log10p obtained from the differential gene expression 
analysis in each of 20 tissues between humans and cattle. The bottom 10% of genes are considered as 
transcriptionally conserved genes in each tissue, respectively. The 10% of genes with the smallest dN/dS 
ratios are considered as DNA sequence conserved, whereas the 10% of genes with the largest PhastCons 
scores are also considered as DNA sequence conserved. In each trait, tissues or sequence‑conserved genes 
with the top heritability enrichment are denoted as triangle, others as dots. b Bar plot shows the number 
of SNPs identified by PolyFun + SuSiE (blue) and SuSiE (red) at different PIP (posterior inclusion probability) 
cutoffs, respectively. c Comparison of FAETH scores of SNPs within transcriptionally conserved and diverged 
genes. SNPs located within 1000 bp up‑ and downstream of a gene are included. d Violin plot compares the 
LOEUF scores (up) and the dN/dS ratios (bottom) of transcriptionally conserved and diverged genes across 20 
tissues. “*,” “**,” and “****” represents the P < 0.05, 0.01, 0.0001, respectively, from one‑side Student’s t test
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original GWAS. Out of these 10 variants, six could be mapped to protein-coding genes 
(Additional file 11: Table S10). By conducting phenome-wide association analysis for 
these genes using PheWAS (https:// atlas. ctglab. nl/) [30], we found all these genes were 
associated with human height or relevant traits (Additional file  11: Table  S10). We 
took PFKP and CYP27B1 as examples in Figure S21c. To explore whether conserved 
genes could provide useful information in the cattle genomic prediction, we compared 
the FAETH scores of SNPs within conserved and diverged genes [26], which measures 
the predictive ability of SNPs for complex traits in dairy cattle. We found that SNPs in 
conserved genes had higher FAETH scores than those in diverged genes, consistent 
across all tissues except for stomach and brain (Fig. 8c).

We further explored the properties of transcriptionally conserved and diverged genes 
as a function of their tolerance to Loss-of-Function (LoF) variants (measured by Loss-
of-Function observed/expected upper bound fraction, LOEUF) [31]. We observed that 
conserved genes had significantly smaller LOEUF scores (i.e., more depleted for LoF 
variation) compared to diverged genes across tissues, consistent for results from mean 
gene expression, inter-individual variation of gene expression, and co-expression net-
works (Fig. 8d, Additional file 2: Fig. S22a). Moreover, compared to diverged genes, we 
found that conserved genes had significantly smaller dN/dS ratios, indicating that tran-
scriptionally conserved genes also exhibit more constrained protein-coding sequences 
(Fig. 8d, Additional file 2: Fig. S22b).

Discussion
We comprehensively compared the transcriptomes of 20 tissues in humans and cat-
tle. Despite the differences in experimental conditions and sample characteristics, we 
found that the mean expression of orthologous genes was, to a certain degree, conserved 
between humans and cattle. This is consistent with previous findings that the global gene 
expression pattern of orthologous genes between humans and mice is conserved, par-
ticularly for the central nervous system, liver, and heart/muscle [32]. We found that the 
brain had the highest correlation of median gene expression between humans and cattle, 
while testis and stomach had the lowest. This is in line with previous findings that sug-
gested that the transcriptome evolves rapidly in testis but slowly in the central nervous 
system, based on a comparison of the gene expression profiles of six organs across ten 
mammals [33]. In addition, we investigated whether the gene expression of cattle-spe-
cific tissues (e.g., horn and rumen) were significantly correlated with those of human tis-
sues, and found that cattle rumen showed the highest similarity with vagina, esophagus, 
and skin in humans compared to other tissues, which was due to the high enrichment 
of epithelial cells in these tissues. Meanwhile, cattle horns showed a low correlation of 
gene expression across all human tissues, while among them fallopian tube was the most 
similar one (Additional file 2: Fig. S23a-b).

Additionally, we found that inter-individual variability of gene expression was gen-
erally conserved in humans and cattle, which agrees with a previous comparison of 
gene expression between mice and humans [32]. However, we have taken this further 
and have shown that cis-genetic regulatory effects of gene expression (eGenes) were 
also conserved between humans and cattle, reflecting that the genetic regulation of 
gene expression evolves under similar evolutionary pressures among mammals [34]. In 

https://atlas.ctglab.nl/
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contrast, we found that gene co-expression networks were more conserved among tis-
sues within a species than within corresponding tissues between species, suggesting that 
changes of gene co-expression networks play important roles in the adaptive evolution 
of species [2]. Of note, apart from the gene expression, many other functional elements 
(e.g., enhancers, ncRNAs, TFBS, and translation) and cell type composition might con-
tribute to the difference in phenotypes between species.

The interpretation of the molecular mechanisms underlying complex traits has always 
been the research focus of genetics. GWASs provide strong evidence that most com-
plex traits are extremely polygenic, yet the distribution of causal variants across the 
genome remains elusive. Finucane et al. reported that the heritability of complex traits 
was enriched in genomic regions with constrained DNA sequence across species [35]. 
We demonstrate that among orthologous genes, transcriptionally conserved genes had 
significantly higher enrichment for the heritability of complex traits than diverged genes 
in humans and cattle. We still noted that although on the relative scale, conserved genes 
seem to be more enriched with heritability than divergent genes, the total amount of her-
itability explained by conserved genes is not great in either humans or cattle on average 
across tissues. However, the top tissue for a complex trait could explain a relatively high 
proportion of heritability. For instance, 8% of SNPs in blood expression-conserved genes 
could explain 31% and 33% of heritability for inflammatory bowel disease and systemic 
lupus erythematosus, respectively (Additional file  9: Table  S8). This finding suggested 
that expression-conserved genes contribute to the heritability of complex traits at a tis-
sue-specific manner. Compared to previous studies [26, 35], we found a relatively lower 
enrichment of heritability in expression-conserved genes than sequence-conserved 
regions. This may be due to the previous studies considered the sequence-conserved 
regions in the entire genome, including both genic and intergenic regions, whereas we 
here only focused on orthologous genes between humans and cattle. Future research, 
with the increasing availability of functional annotation of animal genomes from the 
FAANG project [36], will allow examining the conservation of functionally regulatory 
elements (e.g., enhancer, promoter, and topologically associating domain) and non-cod-
ing RNAs in a wide range of tissues/cell types and species, as over 90% of GWAS hits are 
in non-coding regions [37].

Conclusions
In summary, we showed the conservation of transcriptome among 20 common tissues 
between humans and cattle. We observed that transcriptionally conserved genes exhib-
ited significantly higher enrichments for the heritability or GWAS signals of complex 
traits than diverged genes in both species. Our findings provided novel insights into the 
evolutionary basis of complex traits in humans and cattle.

Methods
RNA‑seq samples in humans and cattle

All human RNA-seq samples were analyzed uniformly by human GTEx (v8) consor-
tium previously [10], and the normalized gene expression (TPM) data were obtained 
in https:// gtexp ortal. org/ home/ datas ets. For cattle, we analyzed 11,642 publicly avail-
able RNA-seq runs from 8536 samples (by July 2019) using a similar pipeline as human 

https://gtexportal.org/home/datasets
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GTEx [10, 11]. Briefly, we filtered out low-quality reads using Trimmomatic (v0.39) 
and mapped clean reads to cattle ARS-UCD1.2 reference genome using STAR (v2.7.0). 
We obtained TPM of all annotated genes (n = 27,608) in Ensembl (v96) using Stringtie 
(v2.1.1). We kept cattle samples with unique mapping reads > 70% and the number of 
clean reads > 800,000 for subsequent analysis. All gene expression data and the meta-
data of samples in cattle were available in https:// cgtex. roslin. ed. ac. uk/. Ultimately, we 
obtained normalized gene expression values (TPM) for 10,830 and 4866 RNA-seq sam-
ples from 20 common tissues in humans and cattle, respectively. We obtained 17,315 
one-to-one orthologous genes and their annotation information from Ensembl (v96).

Sample clustering and differential gene expression analysis

We used the function IntegrateData(anchorset = expression, dims = 1:30) in R 
Seurat package [38] to combine expression values of orthologous genes in humans 
and cattle by removing hidden confounding factors. Afterward, we performed 
t-distributed stochastic neighbor embedding (t-SNE), implemented in Rtsne [39]: 
Rtsne(expression,dims = 2, perplexity=150, theta=0.5, verbose=TRUE, max_iter = 
1000, check_duplicates = FALSE,partial_pca = T, num_threads=50) to project sam-
ples to a two-dimensional space based on corrected expression values of ortholo-
gous genes. We calculated the median gene expression in each tissue in cattle and 
humans separately, to represent the “true” expression of the particular tissue in each 
species. We then performed hierarchical clustering using R package pheatmap [40]: 
pheatmap(corr_mat, cluster_rows = T,cluster_cols = T, clustering_distance_rows 
="correlation", clustering_distance_cols = "correlation"), to explore the relationship of 
tissues in humans and cattle based on the median gene expression.

We detected genes with tissue-specific expression using R Limma package [41] 
with function model.matrix, lmFit, contrasts.fit, eBayes, and topTable by compar-
ing gene expression of samples in a given tissue to those in the remaining tissues. We 
also employed Limma package to detect species-specific genes in each tissue between 
humans and cattle. Limma returned adjusted P-values for multiple testing using Ben-
jamini and Hochberg methods (FDR). Here, we used log2(FC) > 1.5 and FDR < 0.05 to 
detect tissue-specific genes. In contrast, we used FC > 1.2 and FDR < 0.05 to identify 
genes differentially expressed between species, as the differences in gene expression are 
much bigger between tissues within species than within tissues between species. We 
also ranked genes according to their degrees of differential expression (–log10p) from 
DEG analysis between humans and cattle. We then considered the top and last 10% of all 
orthologues genes as the most diverged and conserved genes for partitioning the herit-
ability of complex traits.

We obtained and analyzed 113 RNA-seq samples from 14 tissues in mice from 
recount3 (http:// rna. recou nt. bio/) [17, 18]. We used Limma package [41] to identify 
species-specific genes for human vs. cattle, and human vs. mouse, similarly as described 
above.

Detection and comparison of chromatin states between humans and cattle

We analyzed genome-wide sequence data of five epigenetic marks (i.e., ATAC-seq and 
ChIP-Seq for H3K27ac, H3K27m3, H3K4m1, and H3K4m3) and their corresponding 

https://cgtex.roslin.ed.ac.uk/
http://rna.recount.bio/
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background inputs in six common tissues (two biological replicates per tissue) in 
humans and cattle. The tissues included liver, lung, spleen, muscle, brain, and adipose. 
We downloaded the human data from ENCODE (https:// www. encod eproj ect. org/), and 
cattle data from FAANG (https:// www. faang. org/). Using BWA algorithm with default 
settings [42], we mapped human and cattle data to GRCh38 and ARS-UCD1.2 refer-
ence genomes, respectively. We then employed a multivariate Hidden Markov Model 
(HMM), implemented in ChromHMM v1.18 [43], to define 15 chromatin states using 
200-bp sliding windows through combining these epigenomic marks across samples in 
humans and cattle, separately. We calculated the enrichment fold of each chromatin 
state in TSS ±2kb of diverged genes as (C/A)/(B/D), where A is the number of bases in 
the state, B is the number of bases in TSS ±2kb, C is the number of bases overlapped 
between the state and TSS ±2kb, and D is the number of bases in the entire genome.

Detection of differentially variable genes between species

We used the following F-test to conduct differential variability analysis of gene 
expression in each of 20 tissues between humans and cattle [44]. In a given tissue, 
f =

s1
2

s22
 , where s1

2 and s2
2 are variances of gene expression values (i.e.,  log2TPM) in 

humans and cattle, respectively, with the null hypothesis: s1
2 = s2

2. Under the assump-
tion that the expression of a gene follows a normal distribution, f follows an F(n − 1, m − 1) 
distribution (where n and m is the number of human samples and cattle samples, 
respectively), from which we obtained P-values. We adjusted P-values for multiple 
testing using Benjamini and Hochberg methods (FDR) with R function 
p.adjust(variance_diff$p_value,method = "BH"). According to their –log10FDR, we 
then ranked genes (from largest to smallest) and considered the top and last 10% 
genes as diverged and conserved genes.

Furthermore, we obtained fine-mapped results of cis-eQTLs for similar tissues 
in humans and cattle from the Human GTEx project [10] (https:// gtexp ortal. org/ 
home/ datas ets) and Cattle GTEx project (http:// cgtex. roslin. ed. ac. uk/), respec-
tively. We considered genes with significant cis-eQTLs (P <  10−5) as eGene. We used 
the hypergeometric test, implemented in phyper function in R: phyper(Overlap-1 , 
human, 17315-human , cattle, lower.tail= FALSE), to test the significance of overlaps 
of eGenes across tissues between species. We adjusted P-values for multiple testing 
using the Benjamini-Hochberg method (FDR).

Gene co‑expression analysis

We employed an R package, MergeMaid with function intCor(merged,method="pea
rson",exact=F) [45], to calculate corCors for all orthologous genes in three scenar-
ios, (1) between tissues within cattle, (2) between tissues within humans, (3) within 
tissues between humans and cattle. For a gene A in an expression matrix of a tissue 
in a species containing n genes, we computed the Spearman’s correlation of expres-
sion value between gene A and any other genes, resulting in a vector of length n-1 
(vector A). Given gene A’ is the ortholog of gene A on the other expression matrix (a 
different tissue or species), we obtained a vector of length n-1 (vector A’) similarly 
by calculating Spearman’s correlation of A’ with any other genes in the same order 

https://www.encodeproject.org/
https://www.faang.org/
https://gtexportal.org/home/datasets
https://gtexportal.org/home/datasets
http://cgtex.roslin.ed.ac.uk/
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as in vector A. We then computed the correlation between vector A and vector A’ 
(corCor), to represent the conservation level of gene A in terms of the co-expres-
sion network between two groups. We also applied another R package WGCNA 
with function cutreeDynamic(dendro = hierTOM, distM = distTOM, deepSplit = 
2, pamRespectsDendro = FALSE, minClusterSize = minModuleSize) [46], to detect 
the weighted gene co-expression networks within each tissue in humans and cattle 
separately. We assigned colors to genes in each co-expression module using func-
tion labels2colors(dynamicMods).

Stratified LD score regression (S‑LDSC) and POLYgenic FUNctionally informed 

fine‑mapping (PolyFun) analysis for human complex traits

To determine whether transcriptionally conserved genes explain the more genetic 
variance of complex traits than diverged genes, we employed the commonly used 
stratified LD score regression to partition the heritability of human complex traits 
into distinct functional categories [35]. The stratified LD scores were calculated 
in 500 kb window using 1000G Phase 3 European human samples. Only HapMap3 
SNPs with INFO≥0.9 and MAF > 0.05 in 1000G European samples were included 
for LD score calculation. We obtained 1000G samples and default SNP weights from 
(https:// github. com/ bulik/ ldsc).

We collected GWAS summary statistics for 46 human complex traits from a public 
database (Additional file 6: Table S5). These GWAS are mainly European-ancestry based, 
with an average sample size of 327,973, a good overlap with HapMap3 panel, a mean 
χ2 statistics of > 1.02 and a heritability Z-score of > 4 [47]. For each GWAS summary, 
default quality control was performed by LDSC to remove GWAS SNPs that are with 
MAF ≤ 0.01, INFO ≤ 0.9, genotype call rate ≤ 0.75, duplicated rsid, out-of-bounds 
P-value, extreme large χ2 statistics, strand ambiguous variants, and in discordance with 
those used in previous LD score  calculation32. After filtering, the average number of 
markers for LDSC regression was over one million. A summary of GWAS used in this 
study and the LDSC regression results of base model (without partitioning heritability) 
are available in Tables S6 and S7, respectively.

We tested 41 functional categories for each trait, including 20 groups of the most con-
served genes (a group per tissue), 20 groups of the most diverged genes and a group 
of all SNPs to capture the total heritability. We extended −/+50 kb of gene regions to 
include their cis-regulatory regions. We detected the most conserved/diverged genes 
within each of 20 tissues between humans and cattle in three scenarios below:

(1) The top 10% (diverged) and last 10% (conserved) of all orthologous genes based 
on –log10P (ranked from largest to smallest) from differentially expression analysis 
between humans and cattle;

(2) The top 10% (diverged) and last 10% (conserved) of all orthologous genes based 
on –log10P (ranked from largest to smallest) from differential variability analysis 
between humans and cattle.

(3) The top 10% (conserved) and last 10% (diverged) of all orthologous genes based on 
corCor scores (ranked from largest to smallest).

https://github.com/bulik/ldsc
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PolyFun [28] is an extension of S-LDSC [35] that computes SNP prior causal prob-
abilities via the same statistical framework (Step 1). These prior causal probabilities were 
then used priors in SuSiE [29] for the fine-mapping (Step 2) analysis. Settings in Step 1 
were the same as S-LDSC [35] analysis with two exceptions. First, we only annotated 
21 functional categories, including a group of all SNPs to capture the total heritability 
and 20 groups of the conserved genes between humans and cattle. Second, to gain more 
power, we used the UK Biobank data as the reference panel and the LD scores were com-
puted using pre-computed UK Biobank LD matrices composed of ~19M SNPs from 
[28]. In Step 2, we performed fine-mapping analysis using two models in SuSiE [29]. The 
first model only took into account LD information (i.e., pre-computed UK Biobank LD 
matrices), whereas the second model considered both LD information and SNP prior 
causal probabilities estimated from Step 1. We compared how many loci were detected 
at difference posterior causal probability (PIP) thresholds between these two models.

GWAS signal enrichment analysis for cattle complex traits

We collected GWAS summary statistics from 45 agronomic traits of economic 
importance in cattle, including reproduction (n = 12), production (milk-relevant; n 
= 6), body conformation (n = 18), health (immune/metabolic-relevant; n = 8) and 
one feed efficiency trait (i.e., residual feed intake, RFI). For body type, reproduc-
tion and production traits, we conducted a single-marker GWAS by fitting a linear 
mixed model in 27,214 U.S. Holstein bulls as described previously [8]. For health 
traits, we conducted GWAS using the same method in a subset (ranging from 11,880 
for hypocalcemia to 24,699 for livability) of the 27,214 available bulls [48]. GWAS of 
feed efficiency (i.e., residual feed intake, RFI) was conducted based on 3947 Holstein 
cows [49].

As linkage disequilibrium (LD) pattern is extremely complicated in the cattle popu-
lation, we applied a commonly used genotype cyclical permutation method, imple-
mented in QGG package [50], to test the enrichment of cattle GWAS signals in each 
of the functional categories defined above. Previous studies showed that results from 
this method were highly correlated with those from LDSC and other GWAS signal 
enrichment methods [5, 51, 52].

where mf is the total number of genomic markers linked to a list of genes (e.g., tran-
scriptionally conserved genes in liver), and b is the marker effect from single-marker 
GWAS. The markers linked to different genes were often not in LD. We controlled 
marker-set sizes and LD patterns among makers through applying a genotype cyclical 
permutation strategy [53]. To obtain an empirical P-value for a gene list, we repeated 
this permutation procedure 10,000 times and employed a one-tailed test of the propor-
tion of random summary statistics greater than that observed.

In order to explore the patterns of MAF and LD between conserved and diverged 
groups, we calculated the MAF and LD using PLINK (v.1.9) (--freq and --r2) of 20 
gene groups’ SNPs.

Tsum =
mf

i=1
b2,
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GREML‑LDMS

For cattle, we applied the 3-component GREML-LDMS model below [54] to estimate 
how much genetic variance in three milk production traits (i.e., milk, fat, and protein 
yield) could be attributed to common genetic variants within distinct gene groups (e.g., 
expression-conserved and divergent genes). This analysis included 27,235 individuals 
and 3,085,572 autosomal variants with MAF > 5% [8].

where 𝒚 was the vector of phenotypes of individuals being analyzed. The pheno-
types were deregressed transmitting ability, i.e., the additive genetic values of cattle 
after correcting for all the known fixed effects. μ is global mean, gcon was the vec-
tor of polygenic effects for SNPs within conserved genes, where gcon~N(0, 𝐆con𝜎2 𝑔), 
𝐆con was the genomic relationship matrix (GRM) calculated by SNPs within con-
served genes; gdiv was the vector of polygenic effects for SNPs within diverged vari-
ants, where gdiv~N(0, 𝐆div𝜎2 𝑔), 𝐆div was the GRM calculated by SNPs within diverged 
genes; grest was the vector of polygenic effects for the rest of SNPs, where grest~N(0, 
𝐆rest𝜎2 𝑔), 𝐆rest was the GRM calculated by the rest variants;  and e was the vector of 
residual. We applied GREML in GCTA [55] to calculate the heritability of each trait, 
h2

con and h2
div, respectively. For each group, the per-variant h2 was calculated as the 

h2 divided by the number of SNPs in the corresponding group.

Other downstream bioinformatics analysis

We used the hypergeometric test, implemented in clusterProfiler R package [56], 
to explore the function of a list of genes based on Gene Ontology (GO) database. 
We applied function bitr(gene_list, fromType="ENSEMBL", toType = c("SYMBOL", 
"ENTREZID"), OrgDb=org.Hs.eg.db, drop = T) to translate Ensembl ID to gene symbols, 
and enrichGO(gene = gene_cattle$ENTREZID, OrgDb= org.Hs.eg.db, ont = "BP", pAd-
justMethod = "BH", minGSSize = 1, pvalueCutoff = 0.05, qvalueCutoff = 0.05, readable 
= TRUE) to detect the enriched GO terms. We considered GO terms with FDR < 0.05 as 
significant.

We utilized tspex [57] to calculate the tau score (τ) (ranging from 0 to 1, with 1 
for highly tissue-specific genes and 0 for ubiquitously transcribed genes) for each 
orthologous gene to measure its tissue-specific expression in humans and cattle. In 
each tissue, we used the median gene expression across all samples to calculate τ 
scores.

To explore whether transcriptionally conserved/diverged genes were significantly 
enriched for GWAS signals of complex traits in humans, we performed gene-set enrich-
ment analysis for our conserved/diverged genes on reported gene-sets for a large num-
ber of human complex traits and diseases from GWAS-catalog using GENE2FUNC in 
FUMA (https:// fuma. ctglab. nl/) [25]. To investigate the association of a gene/variant 
with a variety of complex traits, we performed phenome-wide association analysis using 
PheWAS (https:// atlas. ctglab. nl) (https:// atlas. ctglab. nl) [30], which includes totally 4756 
GWAS. Only GWAS traits with Bonferroni-corrected P-value < 0.05 were displayed in 
the PheWAS plots.

y = µ+ gcon + gdiv + grest + e;

https://fuma.ctglab.nl/
https://atlas.ctglab.nl
https://atlas.ctglab.nl
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