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LINC complex proteins in cardiac structure, function, and
disease

Matthew J Stroud*, Indroneal Banerjee*, Jennifer Lowe*, and Ju Chen
Department of Cardiology, University of California San Diego School of Medicine

Abstract

The LINC (LInker of Nucleoskeleton and Cytoskeleton) complex, composed of proteins within

the inner and the outer nuclear membranes, connects the nuclear lamina to the cytoskeleton. The

importance of this complex has been highlighted by the discovery of mutations in genes encoding

LINC complex proteins, which are causative for skeletal or cardiac myopathies. Herein, this

review summarizes structure, function, and interactions of major components of the LINC

complex, highlights how mutations in these proteins may lead to cardiac disease, and outlines

future challenges in the field.
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Introduction

The division between cytoplasm and nucleus is defined by the nuclear envelope (NE), which

consists of two lipid bilayers, the inner and the outer nuclear membranes (INM and ONM

respectively) (Fig.1). The lumen between the two layers is known as the perinuclear space

(PNS). The INM and ONM are fused periodically at nuclear pore complexes (NPCs) that

regulate bidirectional macromolecular trafficking across the NE1–3 (Fig.1). Immediately

underlying the INM is the nuclear lamina, a meshwork of intermediate filaments composed

of A- and B-type Lamins, which play a critical role in providing structural integrity to the

NE, as well as providing anchoring sites for chromatin domains and regulatory proteins,

including signaling molecules and transcription factors4. Proteins within the INM and ONM

act as a LInker of the Nucleoskeleton and Cytoskeleton, termed the LINC complex5, 6 (Fig.

1).

The LINC complex provides structural support to the nucleus and physically couples the

nucleoskeleton with the cytoskeleton7–11. This NE-spanning supramolecular chain may

serve as a mechanosensor, translating mechanical cues, which include physical forces (e.g.,
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tension, compression or shear stress) and alterations in extracellular matrix (ECM)

mechanics, into biochemical signals, thus allowing cells to adapt to their physical

environment12, 13. By mediating changes in cytoskeletal and nuclear organization/structure/

positioning, these mechanical signals may also influence chromatin localization and

organization, and thereby modulate gene expression by altering interactions with active

transcription complexes, or by altering intracellular signaling pathways 12–16.

A wide range of cardiac and skeletal myopathies have been linked to mutations in LINC

complex proteins. These diseases include, but are not limited to, dilated cardiomyopathy

(DCM), arrhythmogenic cardiomyopathy (AC), and Emery-Dreifuss muscular dystrophy

(EDMD)17–21. In this review, we discuss the structure, function, and interactions of major

components of the LINC complex, including Nesprins, Sun proteins, Emerin, and Luma, and

associated Lamins, and highlight how mutations in these proteins may lead to cardiac

disease.

Nesprins

The ONM components of LINC complexes are made up of a four-member family of

spectrin-repeat (SR) transmembrane proteins termed NE spectrin-repeat proteins

(Nesprins)22, 23. The founding member of this protein family, Nesprin 1, was alternatively

named synaptic NE-1 (Syne-1)24, Enaptin25, or myocyte NE protein-1 (Myne-1)26 due to its

simultaneous discovery by a number of independent groups. Nesprin 1 was first discovered

during a search for specific gene markers of contractile differentiated vascular smooth

muscle cells (VSMCs). In a differential expression screen of differentiated versus

dedifferentiated VSMCs, a cDNA clone (1RA1) was identified that was more strongly

expressed in differentiated VSMCs27. Isolation and full length sequencing of the human

ortholog of 1RA1 identified a gene encoding a protein (hereafter referred to as Nesprin 1),

which localized to the NE in C2C12 myoblasts and human VSMCs28. Nesprin 1 was also

found to be highly expressed in nuclei that lie beneath the postsynaptic membrane at the

neuromuscular junction of adult skeletal muscle fibers24, and at the NE of smooth, skeletal,

and cardiac muscle26. The expression pattern of mammalian Nesprin 1 therefore implies a

specific role in muscle function, further suggested by its abundance in the sarcomeric Z-line

of both human skeletal and cardiac muscle22.

Sharing >60% homology with Nesprin 1, Nesprin 2 was discovered simultaneously in both a

differential cDNA screen28, and a yeast two-hybrid screen used to identify proteins

concentrated in the postsynaptic membrane24. Accordingly, Nesprin 2 is otherwise known as

Syne-2, or nucleus and actin connecting element (NUANCE), having been identified as a

novel protein during a database search using the peptide sequence of the actin-binding

domain (ABD) of known α-actinin-related proteins29. Nesprin 2 was found to be

predominantly expressed at the ONM and in the nucleoplasm of multiple cell types29, a

rather uncharacteristic feature of actin-binding proteins.

Multiple Nesprin isoforms that vary markedly in size are produced by alternative

transcriptional initiation, RNA splicing, and termination of the two independent Nesprin 1

and Nesprin 2 genes23, 30 31. Giant isoform Nesprin 2 (Nesprin 2G) was first cloned by
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combining Rapid Amplification cDNA Ends (RACE)-PCR with the analysis of data

available from human EST and genomic databases29. Independently, Zhang et al. performed

bioinformatic examination of the genomic regions of human Nesprin 1 and 2 and predicted

the existence of giant isoforms, Nesprin 1G and Nesprin 2G, with calculated molecular

weights of 1.01 MDa and 796 kDa, respectively22, 28. Nesprin 1G cDNA was later cloned

with mRNA extracted from mouse brain25. Both Nesprin 1G and Nesprin 2G consist of an

N-terminal tandem repeat of calponin-homology (CH) domains, an SR-containing rod

domain, and a C-terminal transmembrane Klarsicht, ANC-1, and Syne Homology (KASH)-

domain. The two giant proteins bind to the actin cytoskeleton via their CH domains, whereas

the C-terminal transmembrane KASH domains mediate their localization and stabilization at

the NE by interacting directly with Sad1/UNC-84 or SUN-domain containing proteins

residing in the INM5, 7–9, 25, 29, 32. The existence of these giant isoforms in striated muscle

has yet to be confirmed by western blot and/or cDNA data.

The smaller Nesprin 1 and 2 isoforms that have been documented include, but are not

limited to, Nesprin 1α, Nesprin 1β, Nesprin 2α, Nesprin 2β, and Nesprin 2γ24, 28. For a

detailed review and schematic representations of the various Nesprin isoforms we refer

readers to recent publications 31, 33. In comparison to their respective giant isoforms, the

short isoforms either lack the N-terminal CH domains and/or the C-terminal KASH domain,

or vary in the length of their SR-containing rod domains34. For example, the Nesprin 1α
isoform contains the KASH domain and SRs, but lacks the CH domains24, 26, 28. Nesprin 1α
localizes to the NE and has been reported to interact with itself, Emerin and Lamin

A/C26, 35. Like Nesprin 1α, Nesprin 2α is expressed predominantly in heart and skeletal

muscle, as detected by northern blot and RT-PCR analysis28, 32, and co-localizes with

Emerin and Lamin A/C in the NE of VSMCs32. Whilst direct interactions between Nesprin

1α, Nesprin 2α, Emerin, and Lamin A/C have been reported, the recently solved crystal

structure of SUN domains interacting with KASH peptides of Nesprins implies that KASH-

containing Nesprin isoforms reside in the ONM9. As Nesprins are a multi-isoform protein

family, many antibodies have been generated against different regions/domains of each

protein isoform. It should be duly noted however, that the specificities of many of the

antibodies described have to date not been thoroughly validated in suitable Nesprin knock-

out animal models. Furthermore, the lack of isoform specific sequences in many of the

Nesprin variants makes it difficult to design antibodies targeting a single isoform33.

Recent data suggest that missense mutations in Nesprin 1 and 2 may be involved in the

pathogenesis of EDMD-like phenotypes, including cardiomyopathy36, 37. Screening for

DNA variations in genes encoding Nesprin 1 and 2 was performed on 190 EDMD or

EDMD-like patients lacking Lamin or Emerin mutations. Four heterozygous missense

mutations were identified (R257H, V572L and E646K in Nesprin 1α and T89M in Nesprin

2β), which occurred at positions that are highly conserved evolutionarily and which lie

within the Lamin and Emerin binding domains of Nesprin 1 and 236. Fibroblasts from these

patients exhibited nuclear morphological defects, and mislocalization of Emerin and SUN2.

These observations could be recapitulated by siRNA knockdown of Nesprin 1 or 2 in normal

fibroblasts. In addition, diminished NE localization of Nesprins and impaired Nesprin/

Emerin/Lamin binding interactions were common features of all EDMD patient fibroblasts.

These results suggest that defective LINC complexes and uncoupling of the nucleoskeleton
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and cytoskeleton may play a significant role in the muscle-specific pathogenesis of

EDMD36, 38.

In an independent study, a patient with the R374H missense variant in Nesprin 1α, but no

mutations in LMNA, was identified in a screen of 46 unrelated patients with non-ischemic

cardiomyopathy37. This individual developed severe DCM and required cardiac

transplantation at 26 years of age. Patient-derived fibroblasts displayed increased expression

of LINC complex proteins Nesprin 1α and Lamins A and C. Due to the association of

Nesprin 1 mutations with cardiac disease, Puckelwartz and colleagues also characterized the

cardiac phenotype of a mutant mouse model in which the KASH domain of Nesprin 1 was

specifically replaced by a stretch of 61 unrelated C-terminal amino acids (Nesprin1rKASH)39.

Homozygous mutant mice exhibited lethality, with approximately half dying at or near birth

from respiratory failure. Surviving mice displayed progressive muscle weakness, a

characteristic of EDMD, and with increasing age developed cardiomyopathy with associated

cardiac conduction defects37, 39. Absence of the KASH domain prevented Nesprin 1 from

binding to SUN proteins, thereby disrupting the LINC complex39, 40. Furthermore,

cardiomyocyte nuclei were found to be elongated with reduced heterochromatin in

Nesprin1rKASH hearts39. These findings mirror what has been described for Lamin A/C

mutations and reinforce the importance of an intact LINC complex for normal cardiac

function41. Of note however, is the observation that in this model, mutant Nesprin 1α
protein was similar in size (120 kDa), owing to the replacement of 100 amino acids of the

KASH domain with an alternate 61 amino acids, and was produced at the same level as

wild-type Nesprin 1α in skeletal muscle samples39. It is unclear from the data presented as

to whether other mutant Nesprin 1 isoforms were present, since no proteins with molecular

weights above 120 kDa were shown by western blot analysis39.

In other mouse models, ablation of the KASH domain of either Nesprin 1 (Nesprin1ΔKASH)

or Nesprin 2 (Nesprin2ΔKASH) has been reported to have no effect on either viability or

fertility; however, double mutants die of respiratory failure within 20 minutes of birth42.

Nesprin 1α is highly expressed in synaptic nuclei of syncytial muscle fibers and is

upregulated during myotube differentiation24, 26, 28. In Nesprin 1ΔKASH mutants, clusters of

synaptic nuclei are abolished and mice display abnormal positioning of non-synaptic nuclei

in skeletal muscle42. Heart and muscle function of these mice has not been reported. In the

absence of western blot analysis however, it is unclear whether truncated mutant proteins

lacking the KASH domain or native Nesprin isoforms that lack the KASH domain are still

present in these mouse models42. Interestingly, expression of a dominant negative form of

Nesprin 1, which encodes the C-terminal KASH domain, results in mislocalization of

neuromuscular junction nuclei43. Another group has reported that mice lacking the ABD of

Nesprin 2G were viable and almost indistinguishable from wild-type mice, except for slight

epidermal thickening44. Interestingly, fibroblasts from these mice exhibited abnormal

nuclear morphology and an uneven distribution of Emerin in the NE.

The two Nesprin 1 mutant mouse lines discussed above were generated by either partially

removing42 or completely replacing39 the last exon of Nesprin 1, which encodes the KASH

domain. Since KASH-less Nesprin 1 isoforms have been shown to exist, we generated

Nesprin 1 mutants by targeting an exon that is shared by all Nesprin 1 isoforms containing
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the C-terminal SR region with or without the KASH domain (hereafter referred to as

Nesprin 1−/− mice)45. Nesprin 1−/− mice have markedly decreased survival rates, growth

retardation, increased variability in body weight, and compromised exercise capacity

compared with wild-type animals. In agreement with the previous studies39, 42, we found

that Nesprin 1 is critical for nuclear positioning and anchorage in skeletal muscle. Of the

LINC complex-associated proteins examined, only SUN1 and SUN2 were slightly

upregulated in Nesprin 1−/− cardiac and skeletal muscle, respectively45. No defects in

cardiac contractile function were observed in our Nesprin 1−/− mice up to 12 months of age,

although function was not tested in older mice45. To this end, it would be of great interest to

investigate whether Nesprin 1 and 2 have distinct and overlapping roles in cardiac muscle

nuclear positioning, nuclear membrane integrity, and cardiac muscle function by generating

mouse lines in which Nesprin 1 and 2 are specifically ablated in developing cardiac muscle

and adult cardiomyocytes. It will also be important to determine the roles of different

isoforms of Nesprin 1 and 2 by generating isoform-specific knock-out mice.

Nesprin 3, Nesprin 4 and KASH5

Nesprin 3 was first identified in a proteomics screen to identify novel NE proteins and was

subsequently found to interact with the ABD of human Plectin 1C using a yeast two-hybrid

screen46 47. Nesprin 3 has two protein isoforms, 3α and β, which contain a C-terminal

KASH domain but lack N-terminal CH domains47. The KASH domain interacts with SUN1

and SUN2 to retain Nesprin 3α at the ONM, and the N-terminus of Nesprin 3α interacts

with the ABD of Plectin, which in turn interacts with intermediate filaments47, 48. Nesprin 3

is conserved throughout evolution and is ubiquitously expressed in mouse tissues,

importantly localizing to the NE in both skeletal and cardiac myocytes47, 49, 50. Nesprin 3

knock-out zebrafish and mice are viable and do not display any basal phenotype49, 50. It

would be interesting however, to investigate whether these mice have an abnormal cardiac

response to stress or present an age-related phenotype, as Nesprin 3 has been found to

regulate cell morphology during flow-mediated mechanical loading and cell migration in a

3D collagen matrix51, 52.

Nesprin 4 was discovered by performing a BLASTP search for sequences similar to the

KASH domain of Nesprin 253. Nesprin 4 localizes to the ONM and contains a single SR

domain and a C-terminal KASH domain. Nesprin 4 interacts with Kinesin-1 as shown by co-

immunoprecipitation and a yeast two-hybrid screen, and recruits Kinesin-1 to the NE when

expressed in heterologous HeLa cells53. Nesprin 4 knock-out mice appear overtly normal

with no obvious loss of viability; however, they do display defects in hearing54. Whether

Nesprin 4 is expressed in the heart remains to be determined.

KASH5 was identified by performing a yeast two-hybrid screen using a testes cDNA library

and the mouse cohesin protector protein shugoshin-2 as bait55. KASH5 contains a C-

terminal KASH domain that interacts with SUN1 and SUN2, and a central coiled-coil

region. Its expression appears to be limited to the testes, and has yet to be described in the

heart.
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SUN proteins

Sad1/UNC-84 or SUN proteins were originally described in fission yeast (Sad1)56 and C.

elegans (UNC-84)57. BLAST searches using the conserved C-terminus (now termed the

Sad1/UNC-84 or SUN domain) revealed the mammalian homologues, SUN1 and SUN2,

which were subsequently cloned using a cDNA library from human brain57. Since the

identification of SUN proteins in mammals, five mammalian family members (SUN1-5)

have been identified10. Whereas SUN1 and SUN2 are ubiquitously expressed, SUN3, SUN4

(SPAG4) and SUN5 appear to be specifically expressed in the testes58–60. For the purposes

of this review, we will focus on the roles of SUN1 and SUN2 as they have been identified in

the mouse heart and skeletal muscle5, 39, 45. For a more extensive overview of SUN proteins

in other tissues and cell types we refer readers elsewhere61.

SUN1 and SUN2 are type II membrane proteins62, 63. Human SUN1 is the largest member

of the SUN-domain family containing 812AAs and having a molecular mass of ~90 kDa.

SUN2 contains 717AAs and a predicted molecular mass of ~80 kDa. Overall, SUN1 and

SUN2 proteins show high degrees of similarity and share 64% homology7. SUN1 and SUN2

both have an N-terminal region localized at the nucleoplasm,5, 7 which is abutted to a single

transmembrane domain that spans the INM6, 61. The bulk of SUN1 and SUN2 are composed

of the stalk region, which spans the PNS and is comprised of coiled-coil repeats that is

thought to be essential for trimerization9, 64, 65. The most highly conserved region between

family members is the C-terminal SUN domain, which is made up of ~175AAs and interacts

with Nesprins.

To our knowledge, only the longest isoforms of SUN1 and SUN2 have been shown to be

expressed in the heart at the protein level45. Interestingly, a recent study found 6 potential

splice isoforms of SUN1 expressed in the heart using RT-PCR66. All predicted isoforms

contain the canonical SUN domain, stalk region, and transmembrane domain, but have

varying lengths that protrude into the nucleoplasm. At present, there is no experimental

evidence to suggest differential splicing of SUN262. It remains to be seen whether or not

these isoforms are translated into protein, and if so, what distinct roles they may have.

SUN1 and SUN2 have been shown to interact directly with nuclear Lamins5, 7. Specifically,

overexpressed HA-tagged SUN1 co-immunoprecipitates with GFP-conjugated Lamin A in

U2OS cells. Furthermore, an in vitro transcribed/ translated N-terminus of SUN1 was found

to interact with in vitro transcribed/ translated Lamin A, but not Lamin C, B1 or B27. In

another study, a GST-conjugated N-terminus of SUN1 was found to preferentially interact

with in vitro transcribed/ translated pre-Lamin A over mature Lamin A, and weakly

interacted with Lamins C and B15. In HeLa cells, overexpression of Myc-tagged pre-Lamin

A, but not Lamin B1 relocalized a HA-tagged N-terminus of SUN1 from the nucleoplasm to

the NE. This interaction appears to be evolutionarily conserved, as the localization of one of

the two SUN protein homologues expressed in C. elegans, UNC-84, was found to be

dependent on Lamins67. Given the foregoing in vitro interaction and immunofluorescence

data, it was somewhat surprising that in Lamin A/C-null mouse embryonic fibroblasts

(MEFs), SUN1 was still able to localize to the NE. In support of this, others have shown that
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SUN1 was able to localize to the NE when Lamin A/C and/or B1/ B2 were knocked down in

HeLa cells68.

Similarly to SUN1, the HA-tagged N-terminus of SUN2 could be recruited from the

nucleoplasm to the NE by overexpressing Myc-tagged pre-Lamin A, but not Lamin B1 in

HeLa cells5. In addition, in vitro pull-down assays revealed that the N-terminus of SUN2

interacts weakly with Lamins A, C and B1. In contrast to SUN1, the localization of SUN2

showed some dependence on Lamin A/C, as SUN2 was unable to localize to the NE in the

majority of MEFs devoid of Lamin A/C5.

These data clearly imply some role of nuclear Lamins in the localization of SUN proteins.

However, in light of recent evidence, where lmna−/− mice were shown to produce truncated

Lamin A that may be capable of interacting with SUN proteins, data using the Lamin A/C-

null MEFs must be interpreted with caution69. The region of Lamin A that interacts with

SUN1 maps to residues 389–6647 and the truncated Lamin A produced by the ‘Lamin A/C

null’ MEFs retains 78 of 275AAs. It is therefore possible that the remaining 78AAs could

mediate the interaction between SUN1 and truncated Lamin A. In contrast, for SUN2, the

197AA of the 275AA interaction domain that are lost in the 'Lamin A/C null' MEFS may be

critical for retention of SUN2 at the INM.

Whether or not Lamin-independent mechanisms exist to localize SUN1 and SUN2 to the

INM remains to be seen. However, it is clear that other mechanisms exist to recruit SUN

proteins to the INM. For example, in C. elegans, UNC-84 requires a combination of two

nuclear localization signals (NLSs), an INM-sorting motif, and a NE-localization signal

(NELS) that is evolutionarily conserved with mammalian SUN163. In support of the

hypothesis that other localization mechanisms exist, Turgay and colleagues demonstrated

that in addition to Lamin A/C, SUN2 requires a combination of its NLS, Golgi-retrieval

sequence, and the SUN domain for localization to the INM70.

Various mechanisms have been speculated to retain SUN1 and SUN2 at the INM, including

binding to the Lamins and heterochromatin10. Intriguingly, one study found that the N-

termini of SUN1 and SUN2 were able to interact with Emerin and short isoforms of Nesprin

2 that localize to the INM71. Clearly, further work is required to investigate whether these

interactions have functional consequences in vivo.

Whereas the localization and connection between SUN1 and SUN2 to the nucleoskeleton

seem to require a combination of factors, it is clear that the connection between the

cytoskeleton and SUN1 and SUN2 is directly through members of the Nesprin

family9, 64, 65. The crystal structure of SUN2 revealed that it forms a trimer9, 64, which is

essential for coordination and recruitment of the KASH domains of Nesprin 1 and Nesprin

265. Three SUN domains form a hexameric complex with three KASH peptides of the

Nesprins, and coordinate them using a combination of hydrogen bonds, a “KASH lid” and

disulfide bridges. The extensive covalent and non-covalent attachments as well as the

binding avidity between three KASH domains with three SUN domains are thought to

enable the LINC complex to transmit force between the cytoskeleton and the

nucleoskeleton61. This is of critical importance in cardiomyocytes that are constantly
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undergoing mechanical stress for both maintenance of the NE architecture as well as sensing

and responding to changes in force.

Given the interaction partners and localizations of SUN1 and SUN2, they are likely

candidates for playing a role in the pathogenesis of cardiomyopathy. For example, mutations

in Lamin A/C that result in progeria show upregulated levels of SUN1 in patient-derived

fibroblasts72. Interestingly, downregulation of SUN1 in mouse models for both progeric

(LmnaΔ9) and dystrophic (lmna−/−) laminopathies ameliorated the phenotypes observed and

significantly extended the lifespan of the mice. Specifically, histological sections from

lmna−/− hearts revealed an increase in sarcoplasmic vacuoles and an increase of

inflammatory cells in the myocardium. These features were ameliorated in the lmna−/−

SUN1−/− double knock-out (DKO) mice. In addition, the cardiac function as measured by

ejection fraction was restored to near wild-type levels of ~70% in the lmna−/− SUN1−/−

DKO compared to ~50% in lmna−/− mice. Intriguingly, SUN1 accumulated in the Golgi of

lmna−/− and LmnaΔ9 MEFs, which resulted in cytotoxicity. However, the underlying

molecular mechanisms behind the pathogenesis remain unknown.

Interestingly, one study in mice using a global knock-out approach to ablate SUN1 and

SUN2 expression in all tissues resulted in perinatal lethality73. While the causes of death

were not ascertained in great detail, it appears that the lungs were not fully inflated in the

DKO. Interestingly, the DKO was rescued by expressing SUN1 using a transgenic approach

under a neuron-specific promoter. Also, it is intriguing that this phenotype is similar to that

of Nesprin 1 and Nesprin 2 double global knock-out mice.

Another potential association between SUN1 and SUN2 and disease is through a mutation in

Emerin that results in X-linked EDMD74. It has been shown that the disease causing

mutation in Emerin reduces the strength of binding between Emerin and SUN1 or SUN271.

Despite these data, the precise role of SUN1 and SUN2 in the heart remains elusive. Clearly

studies in cardiac specific knock-out mouse models will further our understanding of these

key factors.

Emerin

The gene coding for Emerin was first identified in 1994 by genetic mapping of X-linked

recessive EDMD74. Emerin is a type-II integral membrane protein, which contains a

nucleoplasmic N-terminal domain, followed by a single transmembrane region that spans

the INM, and a short luminal tail that resides in the PNS75, 76. Emerin is ubiquitously

expressed in tissues and predominantly localizes to the NE in skeletal and cardiac muscle

where it is thought to be retained at the INM via its interaction with A-type Lamins75–79.

Emerin has multiple binding partners, including but not limited to SUN1, SUN2, Nesprin

1α, and the chromatin-interacting protein, barrier to auto-integration factor (BAF), which

provides a link between Emerin and chromatin35, 71, 80. For a comprehensive list of binding

partners and their interaction regions we refer readers to a recent review81.

Mutations in Emerin cause X-linked EDMD, lead to cardiac conduction defects and DCM,

as well as defects in skeletal muscle74, 75, 82–85. The number of disease causing mutations in
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Emerin is vast and we refer readers elsewhere for a comprehensive overview86, 87. Many of

the Emerin disease-causing mutations lead to its depletion in cells75, 76. It is therefore

surprising that Emerin knock-out mice have been reported to either display a very mild age-

related atrioventricular conduction defect or no overt skeletal or cardiac phenotype88, 89.

Interestingly, Emerin-deficient MEFs have abnormal nuclear shape88, altered NE elasticity90

and display an impaired response to mechanical stimulation as measured by expression

levels of mechanosensitive genes iex-1 and egr-188. After sustained mechanical strain, the

number of apoptotic cells is higher in Emerin-null MEFs compared to wild-type cells88. It

was therefore postulated that Emerin might play a role in mechanosensing and regulate

expression of genes to enable the cell to adapt to mechanical load. In support of this, a recent

report suggests that Emerin indirectly regulates the localization and therefore signaling of

the mechanosensitive transcription factor megakaryoblastic leukaemia 1 (MKL1) 91 by

modulating actin dynamics. MKL1 is a co-activator of serum response factor (SRF), which

is a master regulator of genes encoding numerous cytoskeletal proteins, including both

Vinculin and Actin.

Whilst it is clear that mutations in Emerin are the unequivocal cause of X-linked EDMD,

studies with cardiomyocytes derived from human EDMD patient-derived induced

pluripotent stem cells (iPSCs) may reveal the molecular basis behind the disease.

Luma

Luma (TMEM43) was first identified in a proteomics screen for new INM proteins in

neuroblastoma cells and was subsequently cloned and shown to localize to the NE in COS-7

cells46, 92. Luma is widely expressed in human tissues, and importantly has been shown to

be expressed in the heart93, 94. Interestingly, Luma is highly conserved throughout

metazoans and is also expressed in insects, and unicellular eukaryotes implying that it plays

an essential, non-redundant role in cells. Luma contains four transmembrane (TM) domains

that are thought to play a role in self-oligomerization93, 95. The majority of the protein

resides in the PNS and comprises a large hydrophilic domain that is located between TM1

and TM2. Luma has been shown to interact with Lamins A/C, B1, Emerin, and SUN293, 95,

and may play a role in regulating Emerin localization.

Luma has been identified as the unequivocal cause of arrhythmogenic right ventricular

cardiomyopathy type 5 (ARVC5)94, 96, 97. The mutation in Luma causing ARVC5 changes

residue Serine 358 to Leucine residue (S358L) in the third TM domain96. The ARVC5 locus

was mapped in an extended eight-generation family from the genetically isolated population

of the Canadian island of Newfoundland. ARVC5 is a lethal, fully penetrant, sex-influenced,

autosomal dominant disorder. Typically, it affects males more than females as affected men

have a median lifespan of 41 compared to 83 in the control group, whereas affected women

have a median lifespan of 71. The disorder is fully penetrant by the age of 63 and 76 in men

and women, respectively. The most prominent clinical features of ARVC5 were premature

ventricular contractions (PVCs) and left ventricular dilatation, resulting in heart failure and

sudden cardiac death. Interestingly, another study identified two EDMD patients in which

two novel mutations in Luma were found, E85K and I91V95. Unfortunately, the patient with
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the E85K mutation died after a muscle biopsy was taken, and the patient’s son who

reportedly had the same phenotype was lost to follow-up. Therefore no mutation analysis or

segregation studies could be performed. For the I97V patient, her parents died with no

mention of any specific causes, and she did not have any children. Therefore, unlike the

S358L mutation that is genetically traceable, the E85K and I91V mutations can only be

associated with EDMD and it remains to be seen whether they are causative factors in

EDMD.

The underlying molecular mechanism(s) behind the pathogenesis of ARVC5 caused by the

S358L mutation in Luma remains to be elucidated. However, Luma was identified as a

potential target gene of the adipogenic transcription factor, PPARγ98, indicating a potential

link between the fibrofatty replacement of cardiomyocytes in the hearts of ARVC5 patients.

Clearly, further work using mouse models and patient-derived iPSCs are needed to reveal

the molecular function of Luma in cardiac function and disease.

Nuclear Lamins

Nuclear Lamins were first described in 197899. Nuclear Lamins are type V intermediate

filaments, which readily self-associate to form parallel coiled-coil homodimers. These

homodimers are then able to form higher-order filamentous structures to form the nuclear

lamina, situated beneath the INM. The main components of the nuclear lamina are the A-

type and B-type nuclear Lamins, which share a common overall structure, comprising of a

central α-helical rod, which is flanked by non-helical, globular domains at either

terminus100.

The A-type Lamins are encoded by a single gene, LMNA, that is alternatively spliced to

generate the major Lamins, A and C, as well as the minor Lamins, AΔ10 and C2101, 102. The

expression of A-type Lamins is ubiquitous and is developmentally regulated, as their

expression is only detected in differentiated cells103. In contrast, B-type Lamins are

constitutively expressed and are found in many tissues104. The B-type Lamins, Lamin B1

and B2, are encoded by LMNB1 and LMNB2, respectively105, 106. For a comprehensive

overview of the discovery and description of nuclear Lamins, we refer the readers to another

review107.

Mutations in LMNA cause a broad range of human diseases, collectively known as

‘laminopathies’108, 109. Laminopathies are comprised of more than a dozen previously

defined clinical disorders and include several forms of muscular dystrophies, such as

autosomal dominant (AD)-EDMD110, limb-girdle muscular dystrophy111, DCM112, heart-

hand syndrome113, and a newly discovered LMNA-related congenital muscular dystrophy or

L-CMD114. The myriad of diseases caused by mutations in the gene coding for Lamin A/C

surpasses any other known gene115 and are beyond the scope of this review. For an

overview of the laminopathies that result in cardiac diseases, we refer readers elsewhere116.

The many roles of Lamins are mediated by interactions with numerous Lamin-binding

proteins both at the nuclear periphery and in the nucleoplasm117. In addition to providing

structural integrity to the NE, playing a role in cytoskeletal organization and nuclear

positioning, there is also growing evidence that Lamins regulate chromatin organization and
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gene expression, and influence cell signaling118–123. Lamins can interact with chromatin

either directly or through histones and other INM and non-integral membrane proteins, such

as Lamin B receptor (LBR), heterochromatin protein 1 (HP1), Emerin, and BAF4, 124–126

(Fig. 1).

As substantial data support a role for Lamin A/C in its interaction with chromatin and gene

regulation15, Mewborn and colleagues examined gene expression changes in hearts and

fibroblasts resulting from a dominant LMNA mutation, E161K, associated with inherited

cardiomyopathy127, 128, and correlated this with changes in chromosome positioning129. As

well as having a high percentage of misexpressed genes, chromosome 13 was found to be

less tightly associated with the nuclear membrane in LMNA E161K mutant cells, and the

entire chromosome territory was displaced to a more intranuclear position compared to

control cells129, thereby linking abnormal gene expression and intranuclear position. Gross

mislocalization of chromosome 13 was also observed in another fibroblast line with a LMNA

gene mutation, D596N, associated with both cardiomyopathy and muscle disease130.

However, the chromosome 13 territory was found completely abutted to the nuclear

periphery129. The authors hypothesized that changes in nuclear positioning and therefore

chromatin organization, can modulate the epigenetic regulation of gene expression. This

may be via altering interactions with active transcription complexes and subsequent

accessibility to transcription factors131–134 (Fig. 1). Interestingly, cells lacking A-type

Lamins have defective nuclear mechanics and impaired expression of mechanosensitive

genes such as iex-1 and egr-1122. Further evidence that Lamin A/C may play a

mechanosensing role is from studies using lmna+/− mice. These mice display a significantly

attenuated response to pressure overload, evidenced by reduced ventricular mass and

myocyte size 135. In addition, analysis of pressure-overload induced transcriptional changes

also revealed an impaired activation of egr-1. The most recent data suggesting Lamin A/C

plays a role as a mechanosensor was derived from analysis of Lamin A/C null mice or

Lamin (N195K/N195K) mutant mice 91. MEFs derived from both mouse lines showed

impaired nuclear translocation of the mechanosensitive transcription factor MKL1.

Furthermore, cardiac sections from both mouse lines had significantly reduced fractions of

cardiomyocytes with nuclear MKL1. MKL1 is a co-activator of SRF, which in turn is a

master regulator of genes encoding many cytoskeletal proteins 136.

Many mouse models have been generated to mimic mutations found in humans, for a

comprehensive overview see137. Interestingly, it appears that some autosomal dominant

mutations in humans, for example the H222P mutation which causes AD-EDMD, only

causes a phenotype in mice when both alleles are mutated138. Mutations in other factors or

greater dosage sensitivity may exacerbate the phenotype in humans.

One of the better characterized mouse models used to mimic EDMD in humans is the

lmna−/− mouse77. These mice develop severe cardiac and skeletal myopathy, bearing a

striking resemblance to human EDMD, which results in premature death between 6–8 weeks

of postnatal development. lmna−/− MEFs and tissues exhibit aberrant nuclear morphology,

partial loss of peripheral heterochromatin, and mislocalization of Emerin77. In another study

using the same lmna−/− model, mutant mice develop rapidly progressive DCM by 4–6 weeks

of age139. Isolated lmna−/− cardiomyocytes exhibit altered nuclear morphology and
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architecture with central displacement and fragmentation of heterochromatin. These studies

lend further credence to the notion that Lamins and their associated proteins play an

important role in nuclear mechanics, chromatin organization, and modulation of gene

expression, which if impaired causes striated muscle damage in subjects with certain Lamin

A/C mutations.

A recent report demonstrated that the original lmna−/− mouse is not a null-allele and actually

expresses a truncated form of Lamin A that arises as a result of an unforeseen splicing

event69. The resulting protein is 54 kDa in size, and contains the N-terminal globular

domain and rod domains, whereas a large proportion of the C-terminal globular domain is

missing69. The C-terminus is where most of the interaction partners are thought to bind to

Lamin A, hence many of the conclusions from the lmna−/− mouse are still likely to be valid.

In another Lamin mutant mouse line generated using gene-trap technology, lmnaGT−/− mice

have a more severe phenotype than the lmna−/− mice, and die before weaning at 2–3 weeks

post partum, providing evidence that the truncated Lamin A protein in lmna−/− mutants

retains some function140. The phenotype of lmnaGT−/− mice is more consistent with what is

observed in humans, as a patient that lacked Lamin A/C died at birth141. Clearly, some re-

evaluation is required of the data collected from the lmna−/− mouse, despite the value it has

added to the field in terms of understanding laminopathies.

Unlike A-type Lamins, there are a paucity of diseases linked to mutations in B-type Lamins.

This may be because mutations result in early lethality, as observed for Lamin B1 knock-

down mice, and Lamin B2 knock-out mice142–144. To date, no B-type Lamin mutations have

been reported as causing either skeletal or cardiac myopathies.

Concluding remarks and future directions

The importance of the LINC complex in numerous fundamental cellular functions has been

established by the discovery of cardiac and skeletal muscle disease-causing mutations in

genes encoding LINC complex-associated proteins17–21, 36, 39, 42, 45. The LINC complex

provides structural support to the nucleus and physically couples the nucleoskeleton with the

cytoskeleton7–11 and is hypothesized to serve as a mechanosensor, translating mechanical

cues, which include physical forces and alterations in ECM mechanics, into biochemical

signals12, 13. By mediating changes in cytoskeletal and nuclear organization, structure, and

positioning, these mechanical signals may also influence chromatin localization, and

regulate gene expression12–16. These mechanisms are not mutually exclusive, and alterations

in one of these cellular features could influence the other. Consequently, any disruption in

the LINC-associated protein complex could result in defects in cellular structure and

function and so contribute to the development of cardiac and skeletal myopathies, as

described throughout this review.

The use of integrated approaches that combine animal models and cell-based assays where

LINC complex-associated proteins have been targeted, has been instrumental in beginning

to uncover the molecular mechanism(s) by which NE proteins act as crucial regulators in

diverse cellular processes. These include cytoskeletal organization, nuclear architecture,
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chromatin dynamics, and gene expression. The next step is to determine molecular

mechanisms by which cardiac and skeletal muscle-specific complexes coordinate

mechanical and signaling pathways throughout the cell, and how malfunction of this process

contributes to disease.

As described in this review, a number of NE-associated proteins, including Nesprins, SUNs,

Emerin, Luma, and Lamins, have been studied in detail. To further investigate their

involvement in cardiac and skeletal muscle function, future work should involve more in-

depth studies characterizing each of the individual proteins, and individual isoforms, by

generating global and cardiac specific knock-out mice for each of the proteins and specific

isoforms. Another key future challenge is to further determine LINC complex interaction

networks with other NE-associated and proximal proteins, as well as yet to be identified

proteins, in cardiomyocytes.

It is also important to generate mouse models that mimic disease mutations identified in

humans to elucidate molecular mechanisms underlying cardiac and skeletal myopathies in

vivo. Furthermore, complementary studies are essential to investigate mechanisms by which

mutations in LINC complex-associated proteins impact human cardiomyocyte function,

utilizing human patient-derived iPSCs. In addition to uncovering fundamental biology,

insights gained from these studies can potentially lead to novel therapeutic approaches for

treating the devastating diseases caused by LINC complex-associated mutations, including

cardiac and skeletal myopathies.
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Non-standard Abbreviations and Acronyms

ABD actin-binding domain

AC arrhythmogenic cardiomyopathy

AD autosomal dominant

ARVC arrhythmogenic right ventricular cardiomyopathy

BAF barrier to auto-integration factor

CH calponin-homology

DCM dilated cardiomyopathy

DKO double knock-out

ECM extracellular matrix
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EDMD Emery-Dreifuss muscular dystrophy

INM inner nuclear membrane

iPSC induced pluripotent stem cell

HP1 heterochromatin protein 1

KASH Klarsicht, ANC-1, and Syne homology

LBR Lamin B receptor

LINC linker of nucleoskeleton and cytoskeleton

MEF Mouse Embryonic Fibroblast

MKL1 megakaryoblastic leukaemia 1

NE nuclear envelope

NELS nuclear envelope localization signal

Nesprin nuclear envelope spectrin-repeat protein

NLS nuclear localization signal

NPC nuclear pore complex

NUANCE nucleus and actin connecting element

MEF mouse embryonic fibroblast

Myne myocyte nuclear envelope protein

ONM outer nuclear membrane

PNS perinuclear space

PVC premature ventricular contractions

RACE rapid amplification cDNA ends

SR spectrin-repeat

SUN Sad1/UNC-84

Syne synaptic nuclear envelope

TM transmembrane

VSMC vascular smooth muscle cell
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Figure 1. The LINC complex in the cardiomyocyte
The LINC complex couples the nuclear lamina to the cytoskeleton. SUN domain proteins, SUN1 and SUN2, located at the inner

nuclear membrane (INM) interact with the nuclear lamins, Lamin A/C, B1 and B2, that line the nucleoplasmic face of the INM.

SUN domain proteins interact with Nesprins in the perinuclear space (PNS). Nesprins protrude from the outer nuclear

membrane (ONM) and interact with the cytoskeleton, often through an intermediate binding partner. Nesprin 1 giant (g) and 2g

potentially link the NE directly to the Z-disc (Z), whereas Nesprin 1α and 2α may connect via an unknown intermediate protein.

In addition, the shorter isoforms of Nesprin 1 and 2 may localize to the INM. Various proteins are associated with the LINC

complex, such as Emerin and Luma, and are thought to play an important role in cardiac function. Chromatin directly interacts

with Lamin A/C and indirectly with Emerin and Lamin B Receptor (LBR) via Barrier to Auto-integration Factor (BAF) and

Heterochromatin Protein 1 (HP1), respectively. NPC, Nuclear Pore Complex; M, M-band.

Stroud et al. Page 23

Circ Res. Author manuscript; available in PMC 2015 January 31.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript




