UC Irvine UC Irvine Previously Published Works

Title

Single crystal growth and physical properties of YbPd2Si2

Permalink https://escholarship.org/uc/item/5tm7x5dk

Journal

Journal of Physics Conference Series, 592(1)

ISSN 1742-6588

Authors

Matsumoto, Y Hanya, K Haga, Y <u>et al.</u>

Publication Date

2015-03-18

DOI

10.1088/1742-6596/592/1/012022

Copyright Information

This work is made available under the terms of a Creative Commons Attribution License, available at https://creativecommons.org/licenses/by/4.0/

Peer reviewed

Single crystal growth and physical properties of $YbPd_2Si_2$

Y Matsumoto¹, K Hanya¹, Y Haga², Z Fisk^{2,3}, and S Ohara¹

¹Department of Engineering Physics, Electronics and Mechanics, Graduate school of Engineering, Nagoya Institute of Technology, Nagoya, Aichi 466-8555, Japan

²Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan

³Department of Physics and Astronomy, University of California, Irvine, California 92697, USA

E-mail: matsumoto.yuji@nitech.ac.jp

Abstract.

We report the heat capacity and magnetic properties of single crystals of YbPd₂Si₂ grown from Sn flux. YbPd₂Si₂ is a non magnetic heavy fermion compound with electronic specific heat coefficient $\gamma = 95 \text{ mJ/mol } \text{K}^2$ and Pauli paramagnetic susceptibility $\chi_0 = 0.0115 \text{ emu/mol}$. The density of states of single crystal $YbPd_2Si_2$ is approximately half that of polycrystalline $YbPd_2Si_2$ while the strength of the Kondo effect in the single crystal is approximately twice that of poly crystal.

1. Introduction

In the study of quantum critical phenomena in highly correlated f electron systems, Yb compounds have been found to exhibit interesting quantum phenomena. β -YbAlB₄ exhibits heavy fermion superconductivity [1], YbT_2Zn_{20} (T=transition metal) exhibits heavy fermion behavior where the electronic specific heat coefficient γ of YbCo₂Zn₂₀ reaches about 8 J/mol K^{2} [2], and ferromagnetic quantum fluctuations have been observed in YbNi₄P₂ [3].

The tetragonal ThCr₂Si₂-type structure series is one of the most studied group of compounds. Among the Yb member compounds, YbRh₂Si₂ exhibits anomalous quantum critical behavior which cannot be explained by the conventional Hertz-Millis-Moriya (MHH) theory [4, 5, 6, 7]. In the paramagnetic heavy fermion compounds $YbCu_2Si_2$ and $YbNi_2Ge_2$ [8, 9], pressure induced magnetic order takes place. And superconductivity occurs in YbPd₂Ge₂ [10].

 $YbPd_2Si_2$ is paramagnetic heavy fermion compound with $ThCr_2Si_2$ -type structure whose γ is approximately 200 mJ/mol K² [11]. The lattice volume V is 165.074 Å³ [12]. On the other hand, YbNi₂Si₂ with the same electron count is an antiferromagnet with $T_N = 2.3$ K and V is 145.736Å³ [13]. If YbNi₂Si₂ and YbPd₂Si₂ fit on the so-called Doniach phase diagram, then YbPd₂Si₂ will exhibit antiferromagnetic order under pressure. Actually, magnetic order has been observed above the critical pressure $p_c = 1$ GPa [14]. These pressure measurements have been performed on a polycrystalline sample with residual resistivity ratio (RRR) and residual resistivity of about 2 and 90 $\mu\Omega$ cm, respectively. High quality single crystals are necessary for the study of quantum critical phenomena. However, there is no report of the single crystal growth for YbPd₂Si₂. Therefore we have synthesized and performed magnetic property and specific heat measurements on YbPd₂Si₂ single crystal grown from Sn-flux.

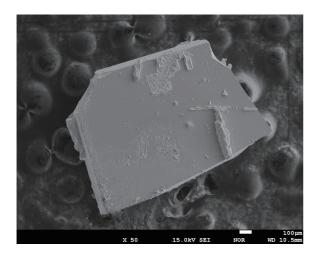


Figure 1. Scanning electron microscopic images of $YbPd_2Si_2$.

2. Experimental

The single crystal of YbPd₂Si₂ were grown in Sn-flux method. 3N (99.9 %) Yb, 3N Pd, 6N Si and 6N Sn were reacted in the starting composition of 1:2:2:50. These materials were placed in an alumina crucible and sealed in an evacuated quartz tube. The sealed tubes were heated to 1150 °C, soaked for 12 hours, then cooled down to 500 °C in 96 hours. The excess Sn was spun off in a centrifuge. Figure 1 shows the scanning electron microscopic images of YbPd₂Si₂.

The single phase of the tetragonal ThCr₂Si₂ structure was confirmed by the powder Xray diffraction method. The crystal compositions and homogeneity were determined by using an electron micro-probe with wavelength dispersive spectrometers (electron probe micro analyzer(EPMA)-WDS; JEOL-8530F). We used the YbP₅O₁₄, Pd and Si as standard reference materials for EPMA. The chemical composition was determined to be Yb:Pd:Si = 1.00:1.83:2.08, indicating that the values are similar to the stoichiometric compositions of YbPd₂Si₂, although the ratio of Pd is slightly small.

The magnetic susceptibility was measured using a commercial superconducting quantum interference device magnetometer (Quantum Design). The specific heat measurement was carried out by the relaxation method using a commercial physical property measurement system (PPMS; Quantum Design).

3. Results and discussion

Figure 2 shows the magnetic susceptibility as a function of temperature at 1 T with magnetic field applied parallel to the [001] direction. With decreasing temperature, the susceptibility increases to a broad maximum. In heavy fermion compounds such as CeRu₂Si₂ [15], such a broad maximum have been observed. Here the temperature of the maximum of susceptibility $T\chi_{max}$ is 41 K. The $T\chi_{max}$ of our single crystal is about two times that of the polycrystalline samples of the previous study. In the low temperature region, the susceptibility slightly increases with decreasing temperature, probably due to magnetic impurities. The maximum of susceptibility around $T\chi_{max}$ is wider than that of poly crystal [16]. It would be caused by the impurity phases. If we neglect the magnetic impurity, we estimated $\chi(T=0) = 0.0115 \text{ emu/mol}$, a large Pauli paramagnetic value.

Figure 3 shows the temperature dependence of the reciprocal magnetic susceptibility. Above 150 K, the temperature dependence of the inverse magnetic susceptibility can be fit by a

Curie-Weiss law with effective moment μ_{eff} and Weiss temperature θ_{p} of 4.54 μ_{B} and -123 K, respectively, the effective moment being very close to the Hund's Rule value expected for Yb⁺³ $\mu_{\text{eff}} = 4.53 \ \mu_{\text{B}}$.

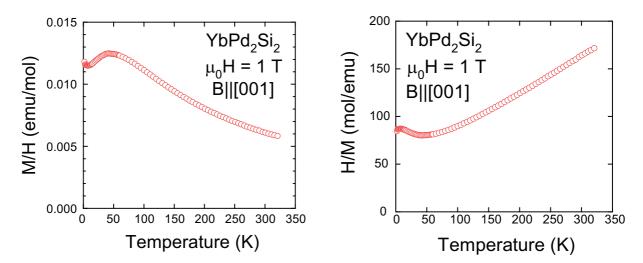


Figure 2. Temperature dependence of the magnetic susceptibility at 1 T for a magnetic field along [001] direction.

Figure 3. Temperature dependence of the reciprocal magnetic susceptibility at 1 T for a magnetic field along [001] direction.

Figure 4 shows the temperature dependence of the specific heat C. The inset in Fig. 4 shows C/T versus T^2 . Using the expression $C/T = \gamma + \beta T^2$, we estimate the value of the specific heat coefficient $\gamma = 95 \text{ mJ/mol K}^2$ and $\beta = 0.555 \text{ mJ/mol K}^4$. This γ of our single crystal is approximately half that reported for the polycrystal.

The physical properties of single crystal YbPd₂Si₂ are similar to that of polycrystalline, indicating that single crystal YbPd₂Si₂ is a paramagnetic heavy fermion. However the γ , $T\chi_{max}$ and χ_0 differ between them. We summarize the physical properties of single crystal and polycrystalYbPd₂Si₂ in table 1. χ_0 and γ are proportional to the density of states (DOS). χ_0 and γ of single crystal are about half those of polycrystal, indicating a DOS of single crystal about half that of polycrystal. In heavy fermion systems, $T\chi_{max}$ is proportional to the Kondo temperature $T_{\rm K}$ [15], indicating that $T_{\rm K}$ of single crystal is about twice larger than that of poly crystal. Moreover, the electronic specific coefficient γ is roughly in inverse proportional to $T_{\rm K}$ [17]. γ is approximately half that of poly crystal. The difference of physical properties between the single crystal and polycrystal could be caused by the change of strength of Kondo effect. The strength of Kondo effect is changed by the electron or hole doping, the change of lattice volume etc. The defect at the Pd site can possibly change the number of electron and lattice volume. The difference of physical properties between single crystal and polycrystal could be caused by the defect at the Pd site.

4. Conclusion

We have synthesized single crystal YbPd₂Si₂ from Sn flux. The crystal structure was confirmed by powder X-ray diffraction and chemical composition was determined to be Yb:Pd:Si = 1.00:1.83:2.08. We have measured the specific heat and susceptibility of YbPd₂Si₂. It was found that single crystal YbPd₂Si₂ is a non magnetic heavy fermion compound with the $\gamma = 95$ mJ/mol K² and $\chi_0 = 0.0115$ emu/mol.

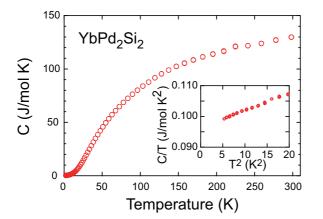


Figure 4. Temperature dependence of specific heat. The inset shows the C/T vs. T^2 .

Table 1. χ_0 , $T\chi_{max}$ and γ of poly crystal and single crystal.

sample	$\chi_0 \ (emu/mol)$	$T\chi_{max}$ (K)	$\gamma \; ({\rm mJ/mol} \; {\rm K}^2)$
poly crystal (arc melt) single crystal (Sn flux (this work))	$\begin{array}{c} 0.018 \ [16] \\ 0.0115 \end{array}$	$25 \ [16] \\ 41$	203 [11] 95

Acknowledgments

We thank A. Iwasaka for technical support of EPMA measurements. We thank M. Taki and Y. Minamiguchi for technical support. This work was supported by a Grant-in-Aid for Scientific Research Young Scientists B (No 24740248) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) and Japan Society of the Promotion of Science (JSPS).

References

- Nakatsuji S, Kuga K, Machida Y, Tayama T, Sakakibara T, Karaki Y, Ishimoto H, Yonezawa S, Maeno Y, Pearson E, Lonzarich G G, Balicas L, Lee H, and Fisk Z, 2008Nature Phys. 4 603.
- [2] Torikachavili M S, Jia S, Mun E D, Hannahs S T, Black R C, Neils W K, Martien D, Bud'ko S L, and Canfield P C, 2007 Proc. Natl. Acad. Sci 104 9960.
- [3] Krellner C, Lausberg S, Steppke A, Brando M, Pedrero L, Pfau H, Tence S, Rosner H, Steglich F, and Geibel C, 2012 New J. Phys. 13 103014.
- [4] Custers J, Gegenwart P, Wilhelm H, Neumaier K, Tokiwa Y, Trovarelli O, Geibel C, Fseglich F, Pepin C, and Coleman, 2002 Nature 424 524.
- [5] Hertz, J A, 1976, *Phys. Rev. B* **14** 1165.
- [6] Millis A J, 1993 Phys. Rev. B 48 7183.
- [7] Moriya T, and Takimoto T, 1995 J. Phys. Soc. Jpn 64 960.
- [8] Knebel G, Braithwaite D, Lapertoto, Canfiled P C, Flouquet J, 2001 J. Phys.: Condens. Matter. 13 10935.
- [9] Tateiwa N, Matsuda T D, Haga Y, and Fisk Z, 2014 Phys. Rev. B 89 035127.
- [10] Hull G W, Wernick J H, Geballe T H, Waszczak J V, Bernardini J E, 1981 Phys. Rev. B 24 6715.
- [11] Dhar S K, Sampathkumaran E V, and Vijayaraghavan R, 1987 Solid State Commun. 61 479.
- [12] Yamaoka H, JArrige I, Tsuji N, Lin J-F Hiraoka N, Ishii H, and Tsuei K-D, 2010 Phys. Rev. B 82 035111.
- [13] Andre G, Bonville P, Bouree F, Bombik A, Kolenda M, Oles A, Pacyna A, Sikora W, and Szytula A, 1995 J. Alloys Comp. 224 253.
- [14] Nakano T, Hedo M, Uwatoko Y, and Sampathkumaran E V, 2004 Solid Sate Commun. 132 325.
- [15] Haen P, Flouquet J, Lapierre F, Lejay P, and Remenyi G, 1987 J. Low Temp. Phys. 67 391.
- [16] Bonville P, Hammann J, Hodges J A, Imbert P, Jehanno G, Besnus M J, and Meyer A, 1991 Z. Phys. B Condensed Matter 82 267.
- [17] Onuki Y, Settai R, Sugiyama K, Takeuchi T, Kobayashi T C, Haga Y, and Yamamoto E, 2004 J. Phys. Soc. Jpn. 73 769.