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Keywords
Age structure; linear population model; marine

reserves; overfishing; transient dynamics.

Correspondence
J. Wilson White, Department of Biology &

Marine Biology, UNCW, 601 S College Rd,

Wilmington, NC 28403, USA.

Tel: 910-962-3058; fax: 910-962-4066.

E-mail: whitejw@uncw.edu

Received
9 June 2012

Accepted
9 September 2012

Editor
Hugh Possingham

doi: 10.1111/j.1755-263X.2012.00295.x

Abstract

Implementation of no-take marine reserves is typically followed by monitoring
to ensure that a reserve meets its intended goal, such as increasing the abun-
dance of fished species. The factors affecting whether abundance will increase
within a reserve are well characterized; however, those results are based on
long-term equilibria of population models. Here we use age-structured mod-
els of a generic fish population to analyze the short-term transient response.
We show that it may take decades for a fished population to reach postre-
serve equilibrium. In the meantime, short-term transient dynamics dominate.
During the transient phase, population abundance could either remain un-
changed, decrease, or exhibit single-generation oscillations, regardless of the
eventual long-term result. Such transient dynamics are longer and more oscil-
latory for populations with heavier fishing, older ages at maturity, lower natu-
ral mortality rates, and lower larval connectivity. We provide metrics based on
demographic data to describe the important characteristics of these postreserve
transient dynamics.

Introduction

Marine reserves are growing in popularity as a conser-
vation and management tool (Wood et al. 2008), hence
there is a need to determine whether reserves meet their
intended goals in an adaptive management process (e.g.,
Hamilton et al. 2010; McCook et al. 2010). The majority
of marine reserves produce an increase in the density,
size, and biomass of fished species within their bound-
aries, although there are exceptions (Lester et al. 2009).
However, several meta-analyses have produced different
conclusions regarding the time scale over which these in-
creases occur, from rapid, asymptotic increases (Halpern
& Warner 2002) to gradual increases over time (Micheli
et al. 2004; Claudet et al. 2008) to no net effect of reserve
age on population responses (Côté et al. 2001). Recently,
Molloy et al. (2009) found that fish densities gradually

increased with reserve age, but species differed greatly in
their responses. A serious difficulty in evaluating these
findings is the dearth of population dynamic models to
predict the transient response of populations to marine
reserves.

In ecology, there is increasing appreciation of the im-
portance of transient dynamics. Changes in management
will necessarily perturb ecological systems away from dy-
namic equilibrium (Hastings 2004, 2010; Caswell 2007;
Ezard et al. 2010); therefore, transient dynamics may be
especially important when harvest of a heavily exploited
population is abruptly stopped, such as when a no-take
reserve is implemented.

Most modeling analyses of fished populations within
marine reserves have focused on long-term dynamic
equilibria (e.g., Mangel 1998; Botsford et al. 2001; Gerber
et al. 2003; Costello et al. 2010; White et al. 2010a, b).
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Equilibrium conditions reflect the long-term effects of re-
serve designs, and in general they have indicated that the
abundance of fished species will increase within a reserve
(White et al. 2011). However, equilibrium-based analy-
ses do not explore how quickly that effect will appear.
The time it will take for abundance to increase within
reserves is crucial information for monitoring programs.
Understanding transient dynamics is particularly impor-
tant as the goals of reserve monitoring become more
sophisticated, moving from simply determining whether
abundance increases within the reserve to evaluating
whether and how to alter reserve management (Gerber
et al. 2005).

Here we use age-structured population models to in-
vestigate the biological and management factors that
affect the rate and pattern of that increase in abundance.
We show that populations could exhibit slowly increas-
ing, decreasing, or oscillatory trajectories immediately af-
ter reserve implementation even when abundance would
eventually increase over the long term. We also describe
metrics that could assist empirical assessments of reserve
success by quantifying the expected duration and inten-
sity of transient dynamics.

Methods

Size-selective fishing has two main effects on a popula-
tion: (1) an immediate increase in mortality, reducing
abundance and truncating the age distribution as older
fish are removed, and (2) a longer term reduction in re-
cruitment due to reduced abundance of reproductive age
classes. When fishing stops, the time scale of the popu-
lation response will reflect both processes: the “filling in”
of the age distribution as it returns to the unfished state,
and the gradual increase in reproduction due to increased
abundance of adults, which might accelerate with the fill-
ing in of older, more fecund individuals. We investigated
both these processes, focusing on the dynamics of the
type of organism typically protected in marine reserves:
a fish with a dispersive larval stage and relatively seden-
tary adult stage.

Case 1 (open population): filling in the age
distribution

To investigate the filling in of the age distribution absent
any changes in reproduction, we first consider the case of
a single reserve that receives all of its larval recruits from
elsewhere; that is, a demographically “open” population.
This represents a reserve containing a small fraction of a
larger population.

We model a population with n age classes; fish are tar-
geted by the fishery after age ac. All ages have natural
mortality rate M and ages a ≥ ac experience fishing mor-
tality rate F (see Table 1 for glossary of symbols). The dy-
namics of the fished population are:

Nt+1 = ANt+R, (1)

where Nt is a n × 1 vector of abundance in each age class
a at time t, Na,t. A is an n × n matrix describing adult
survivorship:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

0

e−(M+F̂1)

e−(M+F̂2)

. . .

e−(M+F̂n−1) 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, (2)

where F̂a = 0 for a < ac and F̂a = F otherwise. R is an
n × 1 vector with the density of new recruits, R, in the
first entry and zeros elsewhere.

Case 2 (closed population): filling in + changes
in reproduction

Next, to focus on the combined effects of filling in and re-
production, we consider the case of a population within a
reserve that has extremely high local retention and/or is
isolated from external sources of larvae, so that the popu-
lation is demographically “closed.” Although we focus on
marine reserves, this case could also represent the effects
of a stock-wide fishing closure in a traditional, nonspatial
management setting. The model in this case is

Nt+1 = ANt , (3)

in which the first row of A now accounts for reproduc-
tion, and fa is the per-capita fecundity, measured in re-
cruits, of individuals in age class a:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

f1 f2 . . . fn−1 fn

e−(M+F̂1)

e−(M+F̂2)

. . .

e−(M+F̂n−1) 0

⎤
⎥⎥⎥⎥⎥⎥⎦

. (4)

Defining am as the age at maturity, fa = 0 for a < am, and
is a function of length, fa = αLβ

a for a ≥ am (α and β are
constants; note that α also accounts for larval survival).
The mean length of fish in each age class, La, follows the
von Bertalanffy equation:

La = L∞(1 − e−k(a−a0)), (5)

where L∞ is the asymptotic maximum size, k is the
growth rate, and a0 is the age at length zero.

Conservation Letters 6 (2013) 180–191 Copyright and Photocopying: c©2012 Wiley Periodicals, Inc. 181



Transient dynamics in marine reserves J. W. White et al.

Table 1 Symbols used in the article

Symbol Description Comments

State variables

Nt n × 1 vector of abundance in each age class, a Sub-elements Na,t .

N0 is the initial conditions when the reserve is implemented

R n × 1 vector of recruit abundance R1 = R, zeros elsewhere

Demographic parameters

A Population projection matrix

a Age class

a0 Age at length 0

ac Age at entry to fishery

am Age at maturity

α Length-fecundity coefficient

β Length-fecundity exponent

fa Fecundity at age a

k von Bertalanffy growth rate

La Length at age a

L∞ Asymptotic maximum length

M Natural mortality rate

n Number of age classes

φ Constant of proportionality between mean and standard deviation of length

Management factors

Tf Duration of fishing prior to reserve

F Fishing mortality rate

F̂a Age-specific fishing mortality rate

Transient metrics

λi ith right eigenvalue of A λ1 determines asymptotic geometric growth rate

λ2 is often complex, and describes the primary oscillatory

component of the transient

λinit Initial trajectory of transient Determined by θ

Deviation from λ1 determines amplitude of oscillations

wi ith right eigenvector of A Proportional to SAD∗

vi ith left eigenvector of A
D Distance from SAD “As the road turns” distance (Equation 7)

θ Angle between N0 and SAD “As the crow flies” distance; determines λinit (Equation 6)

P Period of transient oscillations Usually determined by complex part of λ2 (Equation 9)

ρ Rate of return to SAD Determined by ratio of λ1 to λ2 (Equation 8)

Notes: ∗SAD = stable age distribution.

Now A is a Leslie matrix, so the model has asymp-
totic (i.e., long-term) behavior described by the domi-
nant eigenvalue λ1 of A: geometric growth (λ1 > 0) or
decline (λ1 < 0). In the long term, N will converge to a
stable age distribution (SAD), i.e., a consistent proportion
of individuals in each age class, given by the dominant
right eigenvector w1 of A. As this model lacks density de-
pendence, there is no stable nonzero equilibrium density.
However, it is adequate for describing the initial transient
response of a population that is at low density because of
harvesting (see Appendix S1, Figures S1, S2, S3).

Model analysis

We simulate the dynamics of a population that starts at
an unfished SAD. Fishing at rate F begins at time t = Tf

(T−f < 0) and continues until reserve establishment at
t = 0, when the fishing rate changes from F to 0. We
then examine the response of the population as it returns
to the unfished SAD.

We focus on age-structure dynamics in our results, but
also illustrate the consequences for size structure, since
the latter is more commonly observed. When construct-
ing size distributions, we represent natural variability in
size by assuming that the standard deviation of La was
equal to φLa, where φ is a constant of proportionality
(Table S1). Additionally, we show age-structured results
for both total population abundance and the abundance
of fished age classes only. The latter exhibits dynamics
similar to the former, but monitoring programs may be
more likely to observe only the latter. Total population
abundance should also be more sensitive to stochastic
variation in larval supply, so the deterministic patterns
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we describe here may be more easily observed in the dy-
namics of older age classes.

We investigate how the magnitude and tempo of the
population response to reserve implementation depends
on both management factors (F, ac) and life-history pa-
rameters (am, M, k, β). As a baseline, we use life-history
parameters for the kelp rockfish (Sebastes atrovirens), a
nearshore species that is a focus of marine reserve protec-
tion in coastal California, USA (White & Rogers-Bennett
2010, Table S1). We also analyze the local sensitivity of
results for all parameter values.

In order to examine the effects of life-history variation,
independent of changes to the overall population growth
rate, we adjust the larval survival parameter α so that all
simulations of the closed population model had instanta-
neous growth rate λ1 = 1.02 when F = 0. This growth
rate is an arbitrary choice intended to show a modest
positive increase within the reserve; our analytical results
are not sensitive to the value of λ1. Generally speaking, a
faster growth rate (larger value of λ1) would shorten the
time scale over which the dynamics we describe would
be observed.

Results

Case 1 (open population): filling in the age
distribution

An example of the pattern of change in population age
structure following reserve implementation in an open
population is shown in Figure 1. The “missing” older
age classes that were subject to fishing (a ≥ ac) gradu-
ally fill in as the population approaches the unfished SAD
(Figure 1a). This filling-in produces a similar effect in the
population size distribution (Figure 1b).

The change in age structure (Figure 1) is accompa-
nied by an asymptotic increase in population density af-
ter reserve implementation (Figure 2). We derived an
analytical description of this asymptotic increase (see
Appendix S2) that shows that the difference between
the abundance of the fished population and the unfished
equilibrium declines exponentially with rate M after re-
serve implementation. For a continuous age distribution,
the maximum proportional increase relative to the fished
population at t = 0 is

lim
t→∞

N ′
t

N ′
0

= M + F

M
, (6)

where N ′
t is the total density of age classes a ≥ ac at

time t. For a discrete age distribution with no maximum
age, the expression is more complex but has a similar
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Figure 1 Example of the age and size distributions “filling in” after marine

reserve implementation in the open population model. Time is expressed

in years after reserve implementation, and abundance is shown relative

to the abundance of the first age class. (a) Age distribution in each year

(gray bars); also shown are the age distribution at t = 0 (after fishing at F

= 0.8 per year for 50 years; red curve) and the unfished age distribution

(blue curve). (b) Size distribution of the population 0, 5, and 50 years after

reserve implementation (curves overlap for sizes<20 cm). This simulation

used the baseline parameters given in Table S1 for kelp rockfish; age of

entry to the fishery, ac , is indicated by arrow.

interpretation:

lim
t→∞

N ′
t

N ′
0

= 1 − e−(M+F )

1 − e−M
. (7)

The time scale over which the maximum increase oc-
curs is equal to n − ac, the time required for all age classes
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Figure 2 Change in population size following reserve implementation in

the open population model. Each panel shows simulations with the same

parameters (given in Table 1) except for (a) fishing rate, F (per year); (b)

natural mortality rate, M (per year); and (c) age of entry to the fishery, ac

(y). Each simulation is shown as a solid curve for each different value of

these variables as indicated by legend (all three curves overlap in panel c).

Vertical dashed lines indicate the predicted end of the transient “filling in”

period (n− ac ). Horizontal dashed lines indicate the predicted asymptotic

postreserve density (Equations 5), with dashed lines corresponding to the

solid curve of the same color. Population density is expressed as a ratio

relative to density just prior to reserve implementation at t = 0 and is

calculated for fished age classes (a ≥ ac ) only.

to have existed without fishing (Figure 2). The approxi-
mation for the maximum increase (Equation 5) and time
scale of the increase are less accurate if Tf < (n − ac) or if
n is not much larger than ac.

We derived these results using a linear model without
density dependence, although by assuming constant re-
cruitment from an external source we implicitly assume
that there is density-dependent regulation elsewhere in
the metapopulation. If density-dependent mortality oc-
curs, it likely falls most heavily on the youngest age
classes (Caley et al. 1996), not the fished age classes cov-
ered by our analysis. In a population with intra-cohort
density-dependent mortality, density dependence should
remain relatively constant with constant recruitment,
and would not affect our predictions regarding the rel-
ative abundance of older age classes.

Case 2 (closed population): filling in + changes
in reproduction

For a closed population there is a greater variety of poten-
tial responses to marine reserve implementation than in
an open population. For example, two populations with
the same demographic parameters but fished at different
rates could show a rapid increase in density following re-
serve implementation (F = 0.1 per year; Figure 3a) or a
continued decline followed by an oscillatory increase in
density (F = 0.8 per year; Figure 3b). Regardless, once
the population reaches its SAD, it exhibits long-term dy-
namics determined by the dominant eigenvalue λ1 of A.

Any oscillations are due to the narrower age distribu-
tion produced by fishing during the years prior to re-
serve implementation. As the heavily fished population
(F = 0.8 per year) declines in abundance, the number
of new recruits (a1) is much smaller each year, so the
older unfished cohorts (0 < a ≤ ac) are relatively more
abundant than they would be with less fishing. This pro-
duces a bulge in the age distribution just before the age
of entry to the fishery (Figure 3d; see Mori et al. [2001]
for an example of this effect). When fishing ceases, that
bulge produces a resonant effect in population abundance
as it moves through the now-unfished reproductive age
classes (Figures 3d, f). This effect is smaller in a more
lightly fished population (Figures 3c, e).

The intensity and duration of the transient follow-
ing reserve implementation depends on two factors: the
initial conditions (at the time fishing stops) and the life
history of the fished species. Fortunately, the transient re-
sponse of linear models with Leslie matrices is well stud-
ied (Caswell 2001). Using theoretical results from linear
population models, we derived several quantities that de-
scribe the transient behavior of fished populations (see
Appendix S3 for mathematical details). We illustrate the
use of these quantities with examples of model popu-
lations that have been fished at different rates, F, and
have a range of life-history parameters (in particular am)
(Figure 4).
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Figure 3 Differences in transient response due to differences in fishing

rate, illustrated by the change in population size (a, b), age structure (c,

d), and size structure (e, f) after reserve implementation in the closed

population model. Simulations had the same demographic parameters

(Table 1) but experienced fishing at rate (a, c, e) F = 0.1 per year or (b, d, f)

F = 0.8 per year for Tf = 50 years prior to reserve implementation. In (a,

b), population density is expressed as a ratio relative to density at t = 0,

and is shown as density of all age classes (solid curve) or fished age classes

only (dotted curve). In (c, d), the age distribution is shown in each year;

the fished distribution at t = 0 (red curve) and unfished distribution (blue

curve) are shown for comparison. Age and size distributions are shown as

the proportion of total abundance in each age or size class.

First, we calculate the similarity of initial conditions to
the unfished SAD, which will determine the initial tra-
jectory of change in population density, λinit. The simi-
larity to the SAD can be expressed as an angle, θ , with

smaller θ indicating that λinit will be closer to λ1 (Fig-
ures 4a,b). Note that in the examples shown here, λinit ≤
λ1, so the overall population density continues to decline
(Figures 4a,b); however, the fished age classes sometimes
increase initially (Figure 4c) because of the propagation of
a “bulge” in the age distribution like that in Figure 3d. We
calculate θ by finding the angle between the vectors N0

and w1:

θ = arccos

(
N0 · w1

‖N0‖ ‖w1‖
)

, (8)

where double vertical bars indicate a vector norm.
Second, we calculate D, the scalar distance from the

SAD (Cohen 1979):

D =
[

lim
T →∞

T∑
t=0

(
Nt

λt
1

− w1v′
1

v1w′
1

N0

)]
, (9)

where v1 is the dominant left eigenvector of N0. This dis-
tance is measured not “as the crow flies” (i.e., simply the
difference in abundance of each age class, which is essen-
tially measured by θ) but rather “as the road turns” (i.e.,
accounting for “the trajectory of age structures through
which the population must pass” as it approaches the
SAD; Cohen 1979, p. 172). Larger values of D are associ-
ated with longer transients (Figure 4). While θ estimates
the initial trajectory, D affects the overall transient dura-
tion.

Third, we calculate ρ, the rate of convergence to
asymptotic behavior. It is approximately proportional to
the ratio of the first and second eigenvalues of A:

ρ ≈ λ1/ |λ2| . (10)

The actual rate of convergence may deviate slightly
from this estimate due to the effect of the remaining
eigenvalues. Smaller values of ρ result in longer tran-
sients because the oscillatory components of A, repre-
sented by λ2 (and its complex conjugate in typical cases),
are large relative to the exponential growth component
represented by λ1 (compare Figures 4a–b; the latter has
am = 8 year and thus larger λ2).

Last, we can calculate P, the period of oscillations in the
transient, which is determined by λ2:

P = 2π/ arctan

(
Im (λ2)

Re (λ2)

)
, (11)

where Im(x) and Re(x) denote the imaginary and real
parts of x, respectively. P is approximately equal to the
generation time (Caswell 2001; Figure 4). The ampli-
tude of oscillations is determined by the deviation of the
initial trajectory λinit from the asymptotic trajectory, λ1

(Figure 4).
The value of each of these transient metrics depends

on the combination of fishing intensity and life-history
parameters. These relationships can be calculated directly
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Figure 4 Change in population density over time after

reserve implementation (relative to density at t = 0) for

populations that experienced fishing at different rates

(F, indicated by color) for Tf = 50 years prior to reserve

implementation in the closed population model.

Populations had the same demographic parameters

(Table S1) except for age of maturity, am, which was

either (a, c) 4 years or (b, d) 8 years. Densities shown

are (a, b) all age classes; (c, d) fished age classes only.

Metrics that characterize the transient (D, θ , λinit, ρ, P,

see Equations 6–9) were calculated for each

simulation. The metrics D, θ , λinit differ for each curve

because they depend on F. The metrics ρ and P

depend on life-history parameters (including am in

particular; see Figure 5) but not F. Points on each curve

indicate the time at which the population is growing at

99% of the asymptotic rate (i.e., the transient is

essentially complete). These points are not visible in (b,

d) but occurred at t = 24, 35, and 36 years for F = 0.2,

0.8, and 1.6 per year, respectively.

from N0 and A (Equations 5–9) for any population, but as
an example we show the sensitivity of each to variation
in the kelp rockfish parameters (Figure 5).

Higher F and/or younger age of entry (ac) produces
large values of D and θ , moving λinit away from λ1, but
has no effect on ρ or P (Figure 5). Longer Tf also in-
creases D and θ , although this effect quickly saturates
at relatively high F. Increasing the age of maturity, am,
and/or decreasing the natural mortality rate, M, concen-
trates reproduction in older, more fecund age classes (re-
call that λ1 is fixed at a constant value) and lengthens
generation time. Thus for a given F, older am or smaller
M leads to higher values of D and θ as well as greater
λ2 relative to λ1, so ρ decreases (note that ρ is actu-
ally greatest for intermediate values of M; Figure 5o)
and P increases (Figure 5). The other model parame-
ters, k and β, had minimal effects on transient behavior
(Figure S4).

Discussion

We have shown that populations within reserves can ex-
hibit a long period of transient dynamics after fishing
ceases (e.g., Figures 3b, 4b). During this transient, abun-
dance may not change or may actually decrease relative
to the prereserve conditions, even when the long-term
equilibrium outcome is a large increase in abundance.
The possibility of such transients is crucial to the adap-
tive management of marine reserves: without accounting
for them, a reserve could be judged to have failed to meet
expectations over the short term, even if it would ulti-
mately be successful. As such, we have provided several
metrics to estimate the magnitude and duration of the
transient. Some of these metrics are appropriate for de-
mographically open populations (Equation 5), while oth-
ers are intended for demographically closed populations
(Equations 6–9); populations that are only partially open
to immigration exhibit dynamics that are intermediate
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Figure 5 Sensitivity of transient dynamics to variation in fishery manage-

ment and life-history parameters in the closed population model. Each

panel shows the value of a transient statistic at the time of reserve imple-

mentation (t = 0) for a population with model parameters given in Table

1, except for the parameter being varied in that panel. In each column of

panels, a single model parameter has been varied across a biologically

reasonable range of values, holding other parameters constant. Note that

horizontal andvertical axis scales are consistent across rowsandcolumns,

respectively, except for (d).
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to the two extreme cases presented here (Appendix S4,
Figure S5).

The transient metrics we have proposed could be used
by resource managers in two general ways. First, in a
relatively data-poor situation, one could calculate these
metrics from a “snapshot” estimate of the population
age structure near the time of reserve implementation.
The metrics would then set expectations for the length of
time required to observe increases in abundance within
the reserve. Second, if more resources for monitoring and
modeling are available, managers could use these metrics
within an adaptive management program, with feedback
from monitoring observations used to refine the popula-
tion model and revise the predictions regarding transient
dynamics (White et al. 2011).

Our analysis reveals the management conditions and
demographic processes that most strongly affect the
transient dynamics (summarized in Figure 6). In general,
populations that have lower natural mortality rates, older
ages at maturity, or that have been fished more intensely
(e.g., some California rockfishes, such as Sebastes mystinus;
Key et al. 2007; or species in a reserve placed in an area
of high fishing pressure, such as southern California)
should be more likely to exhibit longer transients with
higher amplitude oscillations relative to faster maturing
populations or those that have been fished less intensely
(e.g., California halibut, Paralichthys californicus; CDFG
2011; or species in a reserve placed in an area of his-
torically low fishing pressure, such as the northwest
Hawaiian islands). Unfortunately from a monitoring per-
spective, the intensity and duration of the transient are
best predicted by the age distribution, which is difficult
to sample. However, it could be possible to use the size
distribution as a proxy (Figures 1b, 3e–f) in cases where
there is information on growth patterns. Our results
also lend themselves to the intuitive interpretation that
longer lags and age structures that are more truncated
relative to unfished conditions (especially when this
concentrates reproduction in just a few age classes)
are more likely to cause cyclic behavior, because the
population will generate periodic pulses of recruitment
as the stock rebuilds and the age structure fills in.

Prior analyses of the rate of increase within reserves did
not account for population age structure and so did not
include the possibility of transients (Jennings 2001; Game
et al. 2009). For simplicity, the models we used to exam-
ine transient dynamics also omit several factors that are
known to affect population responses to marine reserves.
For example, larval dispersal and adult movement have
well-characterized effects on equilibrium biomass within
reserve networks (reviewed by Grüss et al. 2011; White
et al. 2011), and we examine them in the context of tran-
sient behavior elsewhere (Moffitt, White, and Botsford,

unpublished manuscript). Here we addressed the role of
larval dispersal indirectly. Species with extremely short
dispersal distances should have relatively closed popula-
tions, with transients similar to those in Case 2. Species
with extremely long dispersal distances will have more
open demographics, with dynamics similar to those in
Case 1; and species between those extremes will have in-
termediate dynamics (see Appendix S4, Figure S2). Our
analysis also omitted temporal environmental variability
such as that in larval survival and transport, which can
dominate patterns of recruitment, especially in temperate
populations (Carr & Syms 2006). We have explored the
effects of such temporal stochasticity on transient dynam-
ics within reserves elsewhere (White & Rogers-Bennett
2010); in general stochasticity amplifies the difficulty of
detecting increases in density within reserves over short
time scales, and may also change the frequency of tran-
sient oscillations. These changes are especially for no-
ticeable for species with intermediate ages of maturity
(Appendix S5, Figures S6, S7). Finally, the models used
here lacked density dependence and so are appropriate
only for representing the initial increase in abundance
within a heavily fished population (see Appendix S1).

The intensity of fishing prior to reserve implementa-
tion bears an inverse relationship to the long-term in-
crease in biomass within the reserve (Holland & Brazee
1996; Mangel 1998; White et al. 2010b), and fishing in-
tensity is typically accounted for in empirical analyses
of responses to reserve establishment (Côté et al. 2001;
Micheli et al. 2004). However, such analyses typically re-
port that some fished species do not exhibit increased
biomass over short time scales (5–15 years; e.g., Molloy
et al. 2009; Hamilton et al. 2010). These patterns could
reflect the presence of transients, although testing that
hypothesis would require examination of age distribu-
tions. Similarly, transient dynamics could explain the lag
in recovery of many overfished stocks after the cessation
of fishing, such as those reported for species with long
generation times (Hutchings 2000; Frank et al. 2011). In-
deed, many such stocks exhibit recoveries consisting of
a continued decline followed by initial increase, just as in
Figure 3b (Hutchings 2000). Collecting the data necessary
to evaluate the likely magnitude and duration of transient
effects is crucial for the development of monitoring pro-
grams that can judge effectively whether management
actions are producing intended effects.
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