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The immune system is composed of hundreds of highly-specialized cell types 

that collaboratively orchestrate an efficient response to pathogens and damage. Central 

to immune function, B lymphocytes participate in both the fast but non-specific innate, 

and persistent adaptive immune responses by sensing conserved pathogen-associated 

molecular patterns such as bacterial or viral CpG DNA as well as pathogen-specific 

patterns recognized by uniquely generated B-cell receptors. Upon activation, B cells 



 
 

xxiii 
 

undergo rapid expansion in number, deal with the threat by carrying out specific effector 

functions, and eventually die by programmed cell death or become long-lived memory 

cells. As a result, B-cell dynamics dictate vaccine efficiency, while aberrant proliferation 

and/or survival is the hallmark of autoimmune disorders, immune deficiency, and cancer. 

Decades of Nobel-worthy studies have characterized the key molecular players, cellular 

behaviors, and population dynamics of B cells, but the implicit heterogeneity and multi-

scale nature of the B-cell response pose fundamental challenges to meaningful 

interpretation in specific contexts. A multi-scale understanding has only recently become 

possible with the advent of single-cell assays and the advancement of computational 

methods. To better-understand how individual cells orchestrate the population response, 

we developed CFSE flow cytometry deconvolution of cell populations, time-lapse cell 

tracking, and agent-based multi-scale computational modeling methods which we 

combined with single-cell and traditional biochemical assays and literature mining to 

develop a mechanistic understanding of the B cell immune response from the molecular 

pathways governing NFκB signaling, growth, cell-cycling, and apoptosis to cellular 

behavior and ultimately the population dynamics. We find that 1)the population behavior 

is best explained by individual B cells making decisions to either grow and divide, or die 

2)that NFκB signaling serves as a central enforcer of B cell decision making by 

promoting division and survival and 3)that a multi-scale model can accurately predict 

population behavior with a lower dose of the stimulus, when NFκB cRel missing, and 

when pretreated with the drug rapamycin. The methods and models developed as part 

of this dissertation serve as predictive frameworks for future hypothesis-driven discovery 

and model-driven analysis, enabling meaningful interpretation of patient data, and drug 

target prediction across biological scales.
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Chapter 1 

Introduction 

Developing an understanding of the multi-scale B-cell immune response requires 

a diverse background in the underlying biological processes as well as a working 

knowledge of various experimental and computational techniques. In the following 

sections I provide an overview of B-cell biology, the stochastic multi-scale dynamics of 

the B-cell immune response, the role of NFκB signaling, an overview of the interplay 

between NFκB, Myc, and mTOR, as well as highlighting the current state of the art 

approaches to time-lapse microscopy, cell tracking, single-cell molecular assays, 

stochastic modeling of CFSE flow cytometry datasets, and multi-scale agent based 

modeling.  My aim is to provide a general overview of these topics and to highlight the 

findings pertinent to these studies, while referring readers to more in-depth reviews. 
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1.1.  Overview of B cell development and function 

The immune system is a collection of diverse cells that are typically dormant but 

can rapidly respond to pathogens, inflammatory signals, and other stresses by 

upregulating metabolism, proliferating, traveling to the source of infection, producing 

secondary messenger molecules, differentiating into specialized cell types and ultimately 

dying or resuming a quiescent steady state [1,2]. First characterized in the middle 1960’s 

and early 1970’s [3-5], B cells serve important roles in both the adaptive and innate 

immune responses and so it is not surprising that their homeostasis is under control at 

multiple development and functional checkpoints [6]. B lymphocytes are continuously 

being produced from a stem-cell pool in the bone marrow, where they undergo a 

stringent vetting process that removes auto-reactive, and potentially dangerous clones. 

The remaining ~10% migrate to the secondary lymphoid tissues (spleen, lymph nodes), 

where they undergo further maturation into naïve mature B cells, and are primed to 

rapidly respond to pathogens and inflammatory signals [5-9]. B cells that pass the 

necessary checkpoints during development and differentiation receive tonic survival 

signals allowing them to survive for weeks and providing plenty of opportunity for them to 

sample the blood (spleen), gut (Payer’s Patches), and periphery (lymph nodes) for 

potential pathogens [4,10].   

Unlike most other immune cells, B cells play important roles in both the innate 

and adaptive immune responses [11]. Adaptive immunity is achieved through 

diversification followed by rapid clonal selection and the establishment of immune 

memory. During B cell development, B cells recombine immunoglobin (Ig) heavy and 

light chains via a specialized genetic editing mechanism that is able to generate 

incredible receptor diversity, thereby ensuring that any potential pathogen will be 

recognized [12,13]. Furthermore, since B-cells are clonal, rapid proliferation upon 
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pathogen recognition will produce a geometrically increasing population of B-cells that 

recognize the specific pathogen [6]. B cell receptor binding is further optimized during 

clonal expansion in germinal centers (GC) due to somatic hyper-mutation of the Ig genes 

[14].  After the threat is neutralized, most of the proliferating B cells die, leaving a 

population of long-lived memory B-cells that are poised to rapidly reactivate in the event 

of a subsequent reinfection by the same pathogen potentially decades later. This 

adaptability comes at the cost of speed as the response ramps up over the span of days 

and even weeks, requiring the presence of the right B cell that is expressing the right 

antigen-specific receptor, secondary signaling from other immune cells, and clonal 

selection prior to full activation. On the other hand, the more ancient innate immune 

response results in the immediate activation of B cells expressing sets of highly-

conserved receptors that recognize specific pathogen-associated molecular patterns 

(PAMPS) [15]. There are three main classes of pattern recognition receptors (PRRs) that 

have evolved to recognize various pathogen-specific structures [16]. In addition to Nod-

like receptors (NLRs) and RIG-I-like receptors (RLRs) which sense viruses and other 

pathogens in the cytosol, Toll-like receptors (TLRs) span the cell membrane or 

internalized endosomes and recognize structures indicative of bacteria, viruses, or fungi 

outside of the cell [17]. There are at least 13 different TLRs known to exist, however the 

specific combination of TLRs expressed differs between species (Table 1.1).  Of 

particular interest, TLR9, which recognizes bacterial and viral unmethylated CG-rich 

sequences, is found in both mice an humans,  and leads to T-cell independent B-cell 

expansion and cytokine/chemokine/growth-factor production when exposed to nM 

concentrations of  CpG [18-20]. Furthermore, cells stimulated with CpG are not self-

adherent, enabling direct imaging and tracking of stimulated B cells with a microscope 

[21]. Figure 1.1 shows an overview of B cell development and activation.  
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An efficient B-cell immune response is essential for survival while dysregulation 

is the hallmark of B-cell cancers, autoimmunty, and immune deficiency. B-cell 

lymphomas, like other types of cancers, occur due to a loss of proliferative/death checks 

and balances in B cells, causing uncontrolled accumulation of lymphocytes. Lymphomas 

are the fifth most common type of cancer in the United States and are the sixth deadliest 

causing an estimated 21,530 deaths in 2010 [22]. B cell lymphomas typically arise 

during an error in V(D)J recombination, somatic hyper mutation during the germinal 

center (GC) expansion, or class-switch recombination [23]. For example, the anti-

apoptotic Bcl2 regulator is found to be translocated into the heavy chain Ig locus in 90% 

of follicular lymphomas, promoting its constitutive transcription and immortality. Other 

types of lymphomas arise from similar translocations of growth and cell-cycle regulators 

such as Myc and Cyclin D. Importantly, cancerous transformation results in considerable 

cell-to-cell heterogeneity within even clonal sub-sets of cells, posing significant 

challenges for drug-based treatment [24-30]. In addition to B cell cancers, buildup of 

constitutively active B cells can lead to autoimmune disorders and chronic inflammation, 

due to excess proliferation, cytokine production, or antigen presentation to auto-reactive 

T-cells [31]. Excessive B-cell activation can be caused by defects in the B-cell ablation 

mechanisms during Ig maturation in the bone marrow or caused by somatic hyper 

mutation in the GC, as well as due to aberrant signaling through pro-survival BAFF 

receptor and defective TLR signaling as reviewed in recent works [31-33].  

Unfortunately, since B-cell activation and survival are hallmarks of cancer, autoimmune 

diseases often predispose individuals to B cell cancers [34].  While out of control B cell 

activation can lead to autoimmunity, chronic inflammation, and lymphomas, 

developmental blocks caused by dysfunctional Ig production and problems with 

activation or survival result in immune deficiency and susceptibility to diseases [35] . 
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Interestingly, a shift in B cell subsets caused by developmental blocks can result in 

autoimmunity [36] and further highlights the complexity of the immune system as well as 

a need for stringent regulation for proper function. Thus, the complexity, heterogeneity, 

and dynamic nature of B cell homeostasis and function demands stringent regulation at 

all points during B cell development and activation. The potential for malignancy cannot 

be overstated as activated B-cells essentially resemble specialized “cancer” cells due to 

their fast proliferation, anaerobic metabolism, and the upregulation of potentially 

mutagenic processes (i.e. V(D)J recombination, somatic hyper-mutation, class-switch 

recombination).   

 
Table 1.1. Summary of various TLRs and their abundance in mice and humans. 
Compiled from various sources [16,17,37-42]. 

TLR PAMPS recognized 
Mouse Human 

1/2 Triacyl lipopeptides + + 

2 
Peptidoglycan, LAM, Hemagglutinin, phospholipomannan, 

Glycosylphosphophatidyl inositol mucin 
+ +/- 

3 ssRNA virus, dsRNA virus, RSV, MCMV +/- +/- 

4 
Lipopolysaccharides, Mannan, Glycoinositolphospholipids, 

Envelope proteins 
+ - 

5 Flagellin + + 

6/2 Diacyl lipopeptides, LTA, Zymosan + + 

7 ssRNA viruses + + 

8 ssRNA from RNA virus - + 

9 
dsDNA viruses, CpG motifs from bacteria and viruses, 

Hemozoin 
+* + 

10 Bacterial peptidoglycan - + 

11 Uropathogenic bacteria, profillin-like molecule + - 

12 Profilin + - 

13 Bacterial RNA + - 

*-TLR9 is expressed in B1, marginal zone, and follicular murine B-cells  
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Figure 1.1. Diagram summarizing the development and activation of B cells. B cells 
develop from lymphoid progenitors in the bone marrow, undergo selection for self-
tolerance, and finish maturation in the spleen. Quiescent mature naïve B cells undergo 
rapid population expansion and differentiate into long- or short-lived antibody producing 
plasma cells, or memory cells. Innate toll-like receptors (red), membrane-bound and 
excreted IgM (green), class-switched IgD (blue), and somatically hypermutated Igs 
(purple) are depicted on cell membranes. Recently reviewed in [4-6,9].   
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1.2.  Stochastic cellular behavior orchestrates the response  

Given the complexity of B cell signaling, presence of numerous B cell subtypes, 

and inherent randomization of Igs during development, it is clear that heterogeneity is a 

central theme of the B-cell immune response. Strikingly, the apparent stochasticity is 

most evident when observing individual B-cells stimulated with mitogenic signals such as 

unmethylated bacterial or viral CpG DNA (Figure 1.2). Individual B cells interpret these 

signals by undergoing 1-6 rounds of cell cycling, followed by cell cycle exit, and death by 

programmed cell death [21]. The population response is the sum of these single-cell 

decisions and characteristically lasts several days to a week by first producing a 

dramatic increase in the number of activated B cells for several days, followed by a 

return to starting cell counts [43]. While the population response is robust (i.e. 

reproducible total cell coun dynamics), the behavior of individual cells is seemingly 

stochastic since only a fraction of cells respond in each generation and because the 

timing of division and death is highly variable between these genetically identical 

synchronized cells. In fact, the timing of division and death is well-modeled by long-tailed 

distributions (e.g. log-normal) as a function of cell age, resulting in a distribution of cells 

across many generations after only a few days of stimulation [21,44]. Furthermore, 

progenitor cells (generation 0) typically take much longer to divide or die, while dividing 

cells (generation 1+) divide again within six to twelve hours [21,45]. After several days of 

intense proliferation, the population response returns back to basal levels which is 

caused primarily by cell-cycle exit followed by programmed cell death [21]. In fact, the 

fraction of cells that progress to the next generation (i.e. the fraction that divides) 

decreases approximately sigmoidally with each generation such that the final division 

number, or “division destiny” of a cells is approximately normally distributed as a function 

of generation [20,21,44].   
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But what gives rise to this variability in cell fate and timing? Previous studies offer 

evidence that the inherent variability in timing of the apoptosis is caused primarily by 

cell-to-cell protein abundance variability [24] and presumably variability in cell-cycle 

regulators generate cell-to-cell variability in cell-cycle duration, however, it is still unclear 

if variability in timing of competing division/death processes determine fate. There are 

competing theories for how fate (division/death) is determined.  On one hand there is 

recent support for a molecular race hypothesis, which posits that cell-cycle and 

apoptosis processes are proceeding concurrently within cells, and that fate is 

determined by the faster of these mutually exclusive outcomes [44,46]. Specifically, an 

age-structured population model, the cyton model, which incorporates competition 

between division and death fates can reproduce the major population features and 

produces excellent fits to experimental datasets [44]. Furthermore, a recent study [46] 

demonstrated that a probabilistic model that assumes correlation of fate timing between 

siblings and mutual censorship between competing processes (e.g. division and death) 

can reproduce the correlations between non-concordant fates as well as the observed 

censored distributions for the time to divide, time to isotype switch, and time to 

plasmablast differentiation (although the best-fit censored model death time distributions 

were typically earlier than the observed death distributions). On the other hand, there is 

also evidence that cells decide their fate early and are protected from the alternate 

outcome. Single-cell time-lapse videos of stimulated B cells revealed that cells that died 

did not grow, while cells grew prior to dividing in all except the last and pen-ultimate 

generations, indicative of a lack of fate competition [21]. Furthermore, the authors found 

that the size of the progenitor cells was predictive of the number of divisions suggesting 

that fate is decided in the initial generation. As a result, we described the fcyton model, 

which unlike the cyton model, commits responding cells to division, and showed that cell 
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commitment to a specific fate nevertheless resulted in excellent model fits for all 

experimental datasets [47]. Further support for a molecular decision comes from a 

recent study, demonstrating that levels of cell cycle inhibitor p21, which directly inhibits 

CDK2 activity is sufficient for promoting cell-cycle reentry in cell lines and human primary 

cells [48]. Therefore, while extrinsic variation in initial protein levels determines timing of 

cell death (and presumably cell-cycle timing), cell fate may be a function of competing 

mutually exclusive processes or stochastic variation in the concentrations of key 

regulators. Knowing whether cells make decisions will determine how we model cell fate 

determination on the molecular level and in turn informs experimental and drug design. 

 

 

Figure 1.2. The B cell population response is composed of heterogeneous single-
cell behaviors. While the population response is robust with a period of expansion 
followed by programmed cell death, timing and fate of individual cells is heterogeneous. 
Results were obtained from fitting mixed Gaussian distributions to CFSE log-
fluorescence histograms measured by flow cytometry after the indicated times of 250 nM 
CpG stimulation.  
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1.3.  The role of NFκB signaling in the B cell response 

While it is unclear how B cell fate is ultimately determined, the underlying 

biochemical processes involved in transducing receptor signals, cell growth, cell cycling, 

and programmed cell death by apoptosis are known and well-studied (recently reviewed 

in [4,17], [49], [50], respectively).  In B cells, which remain small and in an actively 

maintained quiescent state (G0 phase of the cell-cycle), activation can be achieved 

through TLR signaling as well as through the BCR resulting in the activation of growth, 

cell-cycling, and apoptosis pathways through various signaling networks. As mentioned 

previously, signaling through TLR9 by adding nM-uM concentrations of non-methylated 

CpG independently leads to dramatic non-self-adherent B cell activation, providing a 

convenient window into the behavior of proliferating B cells. Importantly, CpG robustly 

activates the canonical branch of the well-studied and essential NFκB signaling pathway 

(Figure 1.3) [51], resulting in the upregulation of hundreds of genes associated with 

survival and proliferation, providing a natural molecular connection between signaling 

and cell fate [52]. Specifically, activation of TLR9 by CpG results in the activation of the 

kinase IKK2, which rapidly phosphorylates NFκB inhibitor proteins, the IkBs, which 

sequester NFκB dimers in the cytoplasm. Phosphorylation of IkBs results in their 

ubiquitination and degradation, releasing NFκB dimers (primarily RelA:p50 and cRel:p50 

in B cells [4]) and allowing them to enter the nucleus where they bind to promoters of 

genes containing the NFκB motif, and activate gene expression. Importantly, the genes 

coding for cRel [53] and p50 [54] as well as the inhibitors IkBα [55] and IkBε [56] are 

themselves target genes, resulting in waves of NFκB activation lasting potentially 

several days (Figure 1.4).  Therefore, many essential molecular players involved in the B 

cell immune response have been identified but it remains unknown how their dynamics 
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lead to the observed cell fate and timing variability and in turn the B cell population 

response.  
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Figure 1.3. Components of the NFκB signal transduction system. Receptors lead to 

the downstream activation of kinases, the IKKs, which phosphorylate inhibitors of NFκB, 
the IkBs, targeting them for ubiquitin-mediated protease degradation.  IkB degradation 

leads to release of NFκB dimers that are free to enter the nucleus and upregulate gene 
expression programs. While RelA:p50 is the canonical dimer responsible for signaling in 
most cells, in B-cells both RelA:p50 and cRel:p50 can activate growth, cell-cycle 
progression, and survival programs. Recently reviewed by [57] and [4]. 
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Figure 1.4. NFκB signaling pathway in B-cells. The canonical and non-canonical 

branches of the NFκB signaling pathway are shown. Receptors initiate downstream 
signaling through the canonical or non-canonical branches by activating kinases IKK1 
and IKK2. Canonical signaling results in IKK2-mediated degradation of IkBs which serve 

to sequester NFκB dimers in the cytoplasm, whereas non-canonical activation of NIK 

results in processing of p100 precursor to p52. Free NFκB dimers that contain 
transactivation domains (A,B, or C) bind to kB elements in the promoters of genes and 

promote activation of growth/cell-cycle and survival genes. Importantly, NFκB can 

upregulate the production of IkBα and IkBε as well as p105, p100, RelB, and cRel 
proteins, leading to waves of NFκB activation. Recently reviewed by [57] and [4].    
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1.4. NFκB, Myc, and mTOR in B cell division and death 

While NFκB can activate survival and proliferative genetic programs, the exact 

mechanisms leading to cell growth, cell-cycle progression, and survival, as well as the 

roles that central regulators myc and mTOR play are still not fully understood.   

Like NFκB, myc is a central transcription factor that promotes growth and 

proliferation by promoting the production of cellular machinery (e.g. ribosomes)[4,49]. 

Whereas, myc has traditionally been traditionally associated with the control of growth in 

cells, recently, it has been shown that myc is best thought of as a global regulator of 

transcriptional activation in lymphocytes, a central regulator of cell activation [58].  

Unsurprisingly, myc dysfunction is prevalent in cancers which exist in a perpetually 

active state [49].  Importantly, myc is a direct downstream target of NFκB activation, 

providing a direct link between NFκB signaling to cell growth and activation [59]. In 

addition to being NFκB target genes, genetic knockout of NFκB cRel and p105/p50 

(leading to effective removal of canonical gene-inducing NFκB dimers cRel:p50 and 

RelA:p50) results in B cells that are unable to grow and proliferate due to a failure to 

upregulate myc, showing that at least in B cells, signaling through NFκB is essential for 

activation and function [60]. NFκB-dependent regulation of myc has also been observed 

in T-cells further enforcing an NFκB regulation in myc activity.  

Mammalian target of rapamycin (mTOR) is another key regulator of metabolism 

in cells, and acts to promote growth and proliferation by inducing general cellular 

machinery required for metabolite uptake, protein synthesis, and DNA replication 

[61,62]. Importantly, mTOR is activated by the presence of metabolites as well as by 

general mitogenic signals, enabling it to serve as a general sensor and regulator of 

metabolism. As with NFκB and myc, mTOR dysfunction is a hallmark of cancer and 
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inhibitors of mTOR such as rapamycin, hold promise for cancer treatment [63-65]. 

However, the interplay between Myc or NFκB with mTOR signaling in lymphocytes 

remains poorly understood. Myc and mTOR signaling seem to form a mutual feedback 

loop, as depeletion of myc leads to lower mTOR, while inhibition of mTOR function leads 

to lower Myc [66]. The crosstalk between NFκB and mTOR remains uncertain.  

Signaling through the Akt/mTOR axis has been shown to activate NFκB via IKK in a 

prostate cancer cell line [67]. On the other hand, in myocytes NFκB and mTOR impose a 

mutual bidirectional control [68]. Finally, NFκB and mTOR may be activated in parallel 

through IKK signaling to mTOR and NFκB in a cancer cell line [69].  

How can NFκB, Myc, and mTOR control cell growth, cell-cycle progression and 

survival in B cells? In addition to NFκB control of myc, the genes coding for CyclinD [70-

72], E2F3 [73], and BclXL [74], which are essential for cell-cycle progression and survival, 

are all known to be NFκB target genes. Cyclins D1-3, are cell-cycle regulator 

responsible for G1-S checkpoint progression by phosphorylating and thereby inactivating 

retinoblastoma protein [75], however only Cyclin D2 and D3 have been shown to be 

important for G1-S checkpoint progression in B cells[76-78] and reviewed in [79]. 

Inhibition of NFκB signaling in lymphoma cell lines resulted in cell-cycle arrest in the G1 

phase due to downregulation of Cyclin D1 expression, further supporting a direct link 

between NFκB signaling and cyclin D1 driven cell-cycle progression in B cells [80]. 

Furthermore, NFκB promotes the activation of transcription factor E2F3 which helps 

drive cell-cycle progression in the G1 phase of the cell cycle. E2F3 is a transcription 

factor that is typically bound to the retinoblastoma protein (Rb) in quiescent cells, and 

upon Rb hyperphosphorylation can activate the transcription of other cyclins [81,82]. In 

addition to its role in growth and cell-cycle progression, there is a direct link between 
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NFκB signaling and survival in B cells. NFκB is known to promote the expression of anti-

apoptotic BCL family members BclXL [73] as well as A1[83].  A1 is thought to serve an 

early survival function, while BclXL builds up to provide prolonged survival [73,83]. 

Furthermore, NFκB signaling contributes to the ERK-dependent degradation of the pro-

apoptotic BH3-only protein Bim, via the IKK/p105/Tpl2 axis[84-87].  Both myc and mTOR 

are important for turning on general machinery and show bi-directional regulation. In 

addition, myc and mTOR play indirect roles in survival as gene expression and protein 

synthesis are required for programmed cell death. As such, quiescent cells are protected 

from death as compared to actively growing and metabolically active cells.  Whereas 

NFκB can control myc expression directly, its role in mTOR signaling is currently poorly 

understood. These interdependencies are summarized in Figure 1.5. 
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Figure 1.5. The NFκB, Myc, mTOR interplay in B cell division and death. NFκB 
signaling promotes the expression of Myc, cell-cycle progression genes, and anti-
apoptotic Bcl proteins. Myc serves to upregulate global gene expression programs as 
well as general machinery proteins which are required for cell growth and subsequently 
for B cell progression through the cell-cycle. In addition, mTOR is important for ribosome 
activation and protein synthesis. Cell death is caused by the oligomerization of Bax 
protein on the mitochondria leading to pore formation, release of cytochrome c and 
subsequent apoptosome-mediated executioner caspase activation and death. Interplay 

between NFκB, Myc, and mTOR is poorly understood with possible cross-talk between 
NFκB and mTOR as well as Myc.  
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1.5.  Interpreting B cell CFSE population dynamics  

A current experimental approach for tracking lymphocyte population dynamics 

involves flow cytometry of carboxyfluorescein succimidyl ester (CFSE)-stained cells. 

First introduced in 1990 [88], CFSE tracking relies on the fact that CFSE is irreversibly 

bound to proteins in cells, resulting in progressive halving of cellular fluorescence with 

each cell division. By measuring the fluorescence of thousands of cells at various points 

in time after stimulation, fluorescence histograms with peaks representing divisions are 

obtained. However, interpreting CFSE data confronts two challenges.  In addition to 

intrinsic biological complexity arising from generation- and cell age-dependent variability 

in cellular processes, fluorescence signals for a specific generation are not truly uniform 

due to heterogeneity in (i) staining of the founder population, (ii) partitioning of the dye 

during division, and (iii) dye clearance from cells over time. Thus, while high-throughput 

experimental approaches enable population-level measurements, deconvolution of 

CFSE time courses into biologically-intuitive cellular parameters objectively remains a 

major challenge and is susceptible to misinterpretation [89].   

To address the experimental and biological variability associated with CFSE time 

courses, a number of theoretical models have been developed (see [90,91] for recent 

reviews) and some of the most recent are summarized in Table 1. Early models adopted 

the ordinary differential equation (ODE) approach, modeling division [92-99] and death 

[92-95,97-105] as first-order processes. As experimental information about cellular 

processes became available, models were updated to account for the non-exponential 

nature of division, imposing a delay, or skewed distribution for the interdivision time 

[44,92,100-109]. While both the time to divide and time to die are well-modeled by 

skewed distributions, only several models allow arbitrary distributions for cell death times 

[44,107-111].To account for the large difference in the division and death times between 
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undivided and dividing cells, most recent models have explicit generation structure or 

heterogeneity [44,100-102,104-109,111,112]. Also, some models explicitly incorporate 

mechanisms that can account for the decrease in cell numbers after an initial period of 

population expansion [44,93,95,101,104,105,107-109,111].  In addition, a few models 

incorporate fractional progression of cells to the next division [44,101,104-106,109,111]. 

Finally, more recent models are formulated to account for both sources of variability, 

modeling population dynamics and fluorescence effects in an integrated manner 

[98,99,107,108], while others account for cell fluorescence with a time-independent 

mixture of Gaussians models [107,111,112]. Modeling the population fluorescence 

dynamics is advantageous as models can be compared to the experimental data directly 

during fitting, but this approach typically suffers from computational intractability.  While 

the computational complexity has been shown to be greatly reduced by decoupling dye 

intrinsic effects from population dynamics and employing approximations [107], 

potentially important biological features such as cell age-dependent rates for division 

and death and late-phase population contraction (in the form of decreasing fractions of 

responding cells) must be taken into account. Several extensions of the DLSP model 

[107] incorporating age-structure and fractional responses of cell populations have 

recently been proposed which incorporate cell age structure [108], or fractional response 

to stimulus [109], however there is no label-structured model available that incorporates 

all of the important biological features. Of note, the Hyrien-Chen-Zand general branching 

process model [111] can be adopted to include all desired biological features, however, 

efficient computation is not straightforward, and a late-phase contraction mechanism is 

not explicitly shown.  Upon comparing recent models (Table 1.2), only the generalized 

cyton model explicitly accounts for all of the essential biological features: age- and 

generation-structured division and death, fractional response to stimulus, and late-phase 



20 
 

 
 

contraction of the population [44]. A competition between independent division and 

death pathways in responding cells is at the heart of the cyton model. Responding cells 

have a non-zero probability of dying before division. However, more recent single-cell 

microscopy studies have shown that growing cells are protected from death [21]. 

Therefore, the cyton model was recently reformulated to include an explicit decoupling of 

the division and death pathways [113]. In the reformulated fcyton model responding cells 

are committed to age-dependent division, while non-responding cells are committed to 

age-dependent death. This model is covered in depth in chapter 2.  

 The biggest challenge for interpreting heterogeneous CFSE datasets is the 

availability of validated computational tools for deriving biological insights. To date, only 

two freely available user-friendly computational tools for interpreting CFSE datasets are 

available. The Cellular Calculator (Cyton Calculator) is a free polished computational tool 

that relies on user-provided generational cell counts and manual estimates of cyton 

model parameters to find the a local optimum set of cyton model parameters [44,45].  

The problem with this approach is that it confidence in the solution was not known. First, 

any computational tool requires a characterization of its performance to establish how 

the solution accuracy, sensitivity, and redundancy will depend on the underlying data. 

Second, solutions were provided as is, leaving the user without a measure of solution 

confidence. Third, the tool found a local optimum, precluding multiple solutions. Finally, 

the source code for the tool was not provided, severely limiting its expandability. Our 

approach was to create, validate, and use a user-friendly open-source computational 

tool for fitting population model parameters to CFSE datasets with measures of 

confidence [47]. This tool is the subject of chapter 2 of this thesis.  
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Table 1.2 Summary of recent cell population models for interpreting CFSE 

datasets. 

Reference Cell Cycle Cell Death 
Late-phase  
contraction 

Fractional 
activation 

Fl. Dyn. 

Gett et al 
(2000) [100] 

Tdiv0 ~normal. Tdiv1 const. 
Exponential decay. 

Generation-invariant. 
N/A N/A N/A 

De Boer et al 

(2001) [93] 
Piece-wise constant division 

rate of activated cells 
Piece-wise constant 

generation-invariant rate. 
Fate = f(t) N/A N/A 

Revy et al 

(2001) 
Constant division rate. 

Exponential decay. 
Generation-invariant. 

N/A N/A N/A 

De Boer et al 
(2003) [95] 

Constant division rate for 
activated cells  

Constant death rate. Differs 
between active/resting cells 

Cells inactivate 
at constant rate 

N/A N/A 

Deenick et al 
(2003) [106] 

Age-dependent division rate for 
responding undivided cells. 
Constant division time for 

dividing cells 

Constant death rate for 
undivided cells, constant 

fractional survival of divided 
cells. 

N/A 
Undivided 
cells only 

N/A 

Pilyugin et al 
(2003) [96] 

Average cell cycle time and 
variance of generation times 

can be calculated 

Prob. dying during each 
division can be calculated. 
Death is generation- and 

time-invariant.  

N/A N/A N/A 

Leon et al 
(2004) 

R. G-H  [101] 

Gamma-distributed division 
rates. Dif. parameters for gen 0 

and gen 1+ cells. 

Exponential decay. 
Generation-invariant. 

N/A N/A N/A 

Leon et al 
(2004) 

E Nordon [101] 

Delayed exponential division 
for undivided cells. Gen 1+ 

have constant division times. 

Exponential decay of resting 
cells. Generation-invariant. 

Active cells 
inactivate with 
constant prob. 

Prob. to 
continue 
cycling 

N/A 

Ganusov et al 
(2005) [103] 

Delayed exponential Tdiv0. 
Rate is generation-invariant 

Exponential decay with 
different rates: 
resting/cycling 

N/A N/A N/A 

De Boer et al 
(2005) [102] 

Delayed exponential division 
that differs for dividing cells. 

Constant death rates 
specific to resting and 

cycling cells. 
N/A N/A N/A 

De Boer et al 
(2006) [104] 

Tdiv0 ~ delayed log-normal. 
Tdiv1 ~ const. 

Exponential decay with 
death rate dependent on 

generation 

Gen. dependent 
exponential 

decay 

Undivided 
cells only 

N/A 

Luzyanina et al 
(2007a) [97] 

Constant generation-
dependent rates for div. 

Constant generation-
dependent rates for death. 

N/A N/A N/A 

Luzyanina et al 
(2007b) [98] 

Constant generation-
independent rates for division. 

Constant generation-
independent rates for death. 

N/A N/A 
Dye decay, 
and dilution. 

Hawkins et al 
(2007) [44] 

Age- and generation-
dependent Tdiv. Tdiv0 different 

from Tdiv1+ 

Age- and generation-
dependent Tdie. Tdie0 
different from Tdiv1+. 
Responders can die. 

Number of 
divisions ~ 

normal. 

Gen 0 
const. Gen 
1+ decays. 

N/A 

Lee et al 
(2008) [105] 

Tdiv0 follows delayed Gamma 
distribution, then generation-

dependent constant Tdiv. 

Exponential decay with 
different rates for dividing vs 

undivided cells.  

Linearly-
increasing 

Tdivs. 

Undivided 
cells only. 

N/A 

Banks et al 
(2011) [99] 

Constant generation-
independent rates for division. 

Constant generation-
independent rates for death. 

N/A N/A 
Gompertz 

decay, auto-
fluroescence 

Hasenauer et 
al (2012) [110] 

Age- and generation-specific 
rates for division*. 

Age- and generation-specific 
rates for death*. 

Not explicitly 
but framework 

general    
N/A 

Dye decay, 
auto fl, and 

dilution. 

Shokhirev and 
Hoffmann 

(2013) [113] 

Age- and generation-
dependent Tdiv. Tdiv0 different 
from Tdiv1+. Non-responders 

do not divide. 

Age- and generation-
dependent Tdie. Tdie0 
different from Tdiv1+. 

Responders do not die.  

Number of 
divisions ~ 

normal. 

Gen 0 
const. Gen 
1+ decays 

Manual input 
and auto fl. 

*- optimized computation method for age-independent division and death only  [110]. 
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1.6.  Time-lapse imaging and cell tracking approaches 

The dynamics of individual cells are lost when using traditional bulk biochemical 

assays (e.g. western blot, real-time PCR, gel-electrophoresis, and etc.). Flow cytometry 

and classical microscopy experiments provide snapshots of cell populations. 

Unfortunately the assayed cells are typically fixed or lost after measurement, making it 

impossible to analyze single-cell behavior across time.  An alternative approach is to 

culture cells on an incubated microscope and take periodic images, making it possible to 

track single-cell behavior over long periods. This was recently performed using primary 

B cells stimulated with the TLR9 agonist CpG [21]. To avoid issues with cell motility and 

to simplify cell tracking, microfluidic devices that confine cells to small compartments 

have also been used with success [46,114,115], although paracrine signaling maybe 

disrupted if cells are forced to grow in micro-wells. After cell growth on microscopes has 

been optimized, the challenge of digitizing cell behavior (tracking) remains. Tracking B 

cells is especially challenging because B cells are non-adherent, motile, and divide or 

die. This problem is further compounded by the fact that primary B cells are difficult to 

manipulate ex vivo, as they readily die and are resistant to viral transduction.  

Approaches to tracking cells in images are diverse but can be placed into three 

main categories (recently reviewed in [116,117]: fully automated, semi-automated, and 

manual. Each approach has associated benefits and drawbacks. Automated approaches 

maximize throughput while minimizing human labor at the cost of accuracy. Numerous 

algorithms for automated cell tracking have been described, but are not implemented or 

readily available to the public [118-124]. Other tools are freely available for automated 

tracking [125-127] but typically do not allow for track curation in real-time and/or do not 

handle cell division/death events, making them ill-suited for accurate tracking of dividing 

and dying B-cell contours over time. Furthermore, the accuracy of extant automated 
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tracking tools is typically low (especially if only phase-contrast images are 

available)[120], necessitating track curation. On the other hand, manual approaches 

provide the best tracking accuracy at the high cost of human labor and therefore 

throughput/statistical power [21,46,128,129]. Semi-automated approaches, which strive 

to automate as much as possible, while relying on human input for error-prone tasks (i.e. 

track curation), represent a compromise between throughput and accuracy. Since 

curation of cell-tracks is essential to avoid runaway error propagation [124], tools that 

enable the identification and correction of errors are a pre-requisite for accurate lineage 

tracking. An automated error identification and correction methodology was recently 

developed, however it does not handle apoptosis events and has not been integrated 

into freely available tools [124]. Specialized tools for tracking embryogenesis and which 

allow track curation have been developed, but are not applicable to studies where cells 

are motile and dying [130,131].  Of particular note, the recently-developed tracking tool: 

TrackAssist [116] allows for semi-automated tracking of B-cells by providing automated 

cell detection and tracking in addition to manual track curation tools. A pre-requisite of 

the tool is that cells must be easily discernable in all images, which requires the use of 

transgenic mice expressing fluorescently-labeled cells, or manually identification of all 

cells in all images (i.e. manual tracking). Nevertheless, this tool highlights the importance 

of semi-automated approaches for deriving meaningful information from B-cell time 

lapse microscopy datasets.  

In summary, automated tracking remains inaccurate (as even a miniscule error 

rate rapidly propagates), while manual tracking is intractable for more than a few dozen 

cells [116]. Semi-automated methods promise a viable alternative as long as tracks can 

be easily curated, however most tools do not offer real-time track curation. Time-lapse 
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microscopy imaging of B cells and the semi-automated tracking tool, FAST, are the topic 

of the third chapter of this thesis. 

 

1.7.  Single-cell RNA sequencing and immunofluorescence 

Single-cell molecular assays are useful for correlating cellular features (e.g. size) 

to molecular pathways. Specifically, immunofluorescence (IF) allows for quantitative 

measurement of fluorescently-labeled proteins in hundreds of individual cells [132,133]. 

This is accomplished by fixing cell samples with formaldehyde or other fixatives, followed 

by permeabilization of the cell membrane, and “staining” via introduction of antibodies 

raised against the protein of interest. Typically, this is followed by secondary staining 

with an antibody raised against the particular species that produced the first antibody. 

The secondary “detector” antibody is conjugated to a fluorescent marker which enables 

visualization of the proteins of interest by flow cytometry or microscopy. Alternatively, a 

fluorescently-labeled primary antibody specific for the protein of interest may be used 

bypassing the secondary staining step.  Unfortunately, antibody specificity is often an 

issue, resulting in non-specific binding. Therefore, each experiment must include control 

experiments which show that the antibody is binding only to the protein of interest. 

Furthermore, staining/measurement conditions may change from sample to sample, 

requiring that all samples are measured simultaneously and compared to baseline 

controls (e.g. a 0 h control measured at the same time). Finally, IF requires chemical 

crosslinking, resulting in cell death and making single-cell tracking impossible. The 

upside is that IF provides high-throughput measurements of individual cells in a 

population, enabling the simultaneous measurement of several proteins as well as the 

cell size.  
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On the other hand, single-cell RNA sequencing can be used to quantify whole 

transcriptomes of individual cells [134-138]. A relatively new technology, single cell 

RNAseq uses microfluidic devices to trap individual cells and perform the necessary 

chemistry to lyse cells, and reverse transcribe transcripts into cDNA for library 

preparation (purification, segmentation, barcoding, normalization, and etc.) and 

sequencing. Furthermore, captured cells can be stained and measured under the 

microscope prior to lysis, allowing for filtering of transcriptomes by cell size, surface 

markers, and viability. This allows for the unbiased whole-genome testing of differential 

gene expression between individual cells. There are several considerations associated 

with single-cell RNA sequencing. First, since the amount of RNA fluctuates between 

individual cells due to differences in cell-cycle phase, activation, as well as extrinsic cell 

state, RNA spike-in controls are required to provide an accurate normalization of 

transcript counts, this is achieved by addition of RNA spike-ins directly into microfluidics 

chip prior to lysis, ensuring that each cell receives approximately equal amounts of the 

spike-in RNA[138]. Furthermore, since cell size is typically used to isolate cells in the 

microfluidics chambers, cells with particular sizes and geometries may be captured with 

different efficiencies. Finally, since there is considerable cell-to-cell biological variability, 

the number of cells analyzed should be significantly high to avoid artifacts and sample 

bias (typically dozens of cells in each tested category). 

Analysis of IF and single-cell RNAseq datasets requires software tools. 

Fluorescence can be measured by flow cytometry, or by taking fluorescence microscopy 

images. Flow cytometry datasets are then typically analyzed with commercial third-party 

software such as FlowJo (TreeStar Inc.), or FCS Express (De Novo Software), however, 

fluorescence localization within cells cannot be accurately measured by flow cytometry, 

and fixing cells often diminishes the forward scatter characteristics of cells [139], making 
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cell size quantification potentially problematic. Alternatively, fixed and stained cells may 

be quantified by fluorescence microscopy. On the other hand, fluorescence microscopy 

provides direct measurements of cell size and protein localization, but requires image 

processing techniques for identifying cells in images (segmentation), and as such is 

more labor intensive. Single-cell RNA sequencing results in the quantification of global 

gene expression for individual cells. Typically, bar-coded libraries are pooled and 

sequenced in parallel, with outputs comprising several hundred million read-barcode 

pairs. Software for aligning the reads to a reference genome, and associating the read 

with a genomic feature (e.g. gene) is freely available (recently reviewed in [140]). Of 

particular interest, the STAR algorithm was implemented and characterized recently 

which shows advances in both alignment sensitivity and speed as it aligns reads directly 

to the genome [141]. After reads are aligned and associated with genomic features (i.e. 

genes), read counts are normalized using counts from artificial spike-in sequences and 

counts from different conditions are evaluated for differential expression using statistical 

software such as Homer [142] or WebGestalt [143] among others (reviewed in 

[134,144]). Immunofluorescence and single-cell RNA sequencing are used to interrogate 

individual B cells in chapter 4 of the thesis. 
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1.8.  Computational modeling across scales 

Systems biology offers an understanding of how simple rules lead to the 

emergent complexity as one zooms out from macromolecules to biochemical pathways 

to cells to organs and indeed to entire organisms [145,146]. Typically, computational 

models connect two scales. For example, biochemical interactions can be modeled to 

produce cellular outcomes such as NFκB activation [147-150], cell-cycle progression 

[151-154], and apoptosis [24,155,156]. This is typically done using the law of mass 

action, which assumes under the limiting conditions of perfectly mixed infinite systems, 

biochemical reactions are proportional to the product of the reaction concentrations 

[157], while rule-based models naturally abstract reactions between related 

reactants[158], and stochastic Gillespie-type models [159] enable modeling of low copy 

number species (e.g. individual allele activities, chromatin rearrangements, or the 

dynamics of relatively scarce proteins in non-mammalian cells). Alternatively, cell 

populations have been modeled as stochastic processes incorporating cellular 

parameters (such as the distribution of division and death times) to predict population 

dynamics  [44,93,95-106,110,113]. However, since the cellular decisions are themselves 

the product of the underlying biochemical connections, predicting the effects of drug 

targets require an ability to directly model the molecular interactions occurring inside 

heterogeneous cells [160].  

Bridging the scale gap requires alternate modeling strategies. Kinetic models 

consisting of multiple compartments or multiple models operating on multiple scales 

provide link scales with logical/event-driven rules [153,161,162].  For example, the Basic 

Immune Simulator models tissues comprised of autonomous agents existing in a two 

dimensional plane, enabling rule-based modeling of cells and tissues during an infection 

[163]. In a more recent example, angiogenesis was modeled using a combination of 
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agent-based cellular agents, algebraic equations, and partial differential equations for 

oxygen diffusion and blood flow [164]. Finally, agent-based models have been used to 

simulate the evolution of murine populations under specific selective genetic pressures 

[165,166].  

As the B-cell immune response is comprised of a heterogeneous population of 

individual B-cells making seemingly-stochastic decisions to divide and die, multi-scale 

agent-based models, consisting of cellular agents simulating the biochemical processes 

driving signaling, growth, cell-cycle progression, and death are required to bridge the 

gap. A mechanistic framework for exploring the effects of molecular perturbations on the 

population response enables in silico hypothesis testing and clinical trials, facilitating an 

era of personalized medicine [167,168].   
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1.9.  Motivation 

The B-cell immune response is a multi-scale process with key molecular plays 

controlling heterogeneous cellular processes which interleave from generation to 

generation to produce a robust population response to pathogens. While B-cell immune 

response is essential for vaccine design whereas dysregulation leads to autoimmune 

disorders, immune deficiencies, and cancers, a multi-scale mechanistic understanding of 

this essential process is still an outstanding problem. To date, the B-cell immune 

response has been studied using traditional bulk biochemical assays, flow cytometric 

assays that quantify snapshots of populations, time-lapse microscopy studies, as well as 

ordinary differential equation and stochastic process models.  These studies have 

amassed a wealth of observations about the biochemical, cellular, and population level 

characteristics of the response, but the complexity and heterogeneity of B cells make 

meaningful interpretation in specific contexts challenging.  Therefore, we developed 

experimental and computational pipelines and tools for deriving mechanistic insights 

which we used to construct, calibrate, and validate a multi-scale agent-based predictive 

model, utilizing established ODE-based models of NFκB signaling, growth, cell-cycle 

progression, and apoptosis (Figure 1.6). The methods and tools developed as part of 

these studies were designed to enable model-driven derivation of meaningful biological 

insights in the lab and clinic and are provided free-of charge in the supplementary files. 
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Figure 1.6. Summary of the approach. The first task is to develop, characterize, and 
validate a methodology and tool for deconvoluting CFSE histograms into cellular 
parameters. Next, an experimental and computational pipeline must be designed for 
extracting single-cell B-cell behavior directly. Next, single-cell molecular assays are used 
to test key molecular plays associated with B-cell decision enforcement. Finally, the 
multi-scale observations are combined into a multi-scale agent based model which is 
used to predict molecular perturbations. 
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Chapter 2 

FlowMax: a computational tool for 

maximum likelihood deconvolution of 

CFSE time courses 

The immune response is a concerted dynamic multi-cellular process. Upon 

infection, the dynamics of lymphocyte populations are an aggregate of molecular 

processes that determine the activation, division, and longevity of individual cells.  The 

timing of these single-cell processes is remarkably widely distributed with some cells 

undergoing their third division while others undergo their first. High cell-to-cell variability 

and technical noise pose challenges for interpreting popular dye-dilution experiments 

objectively.  It remains an unresolved challenge to avoid under- or over-interpretation of 

such data when phenotyping gene-targeted mouse models or patient samples. Here we 

develop and characterize a computational methodology to parameterize a cell population 

model in the context of noisy dye-dilution data. To enable objective interpretation of 

model fits, our method estimates fit sensitivity and redundancy by stochastically 

sampling the solution landscape, calculating parameter sensitivities, and clustering to 

determine the maximum-likelihood solution ranges. Our methodology accounts for both 

technical and biological variability by using a cell fluorescence model as an adaptor 

during population model fitting, resulting in improved fit accuracy without the need for ad 

hoc objective functions. We have incorporated our methodology into an integrated 
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phenotyping tool, FlowMax, and used it to analyze B cells from two NFκB knockout mice 

with distinct phenotypes; we not only confirm previously published findings at a fraction 

of the expended effort and cost, but reveal a novel phenotype of NFκB1/p105/50 in 

limiting the proliferative capacity of B cells following B-cell receptor stimulation. In 

addition to complementing experimental work, FlowMax is suitable for high throughput 

analysis of dye dilution studies within clinical and pharmacological screens with objective 

and quantitative conclusions. 

 

2.1. Introduction 

Lymphocyte population dynamics within the mammalian immune response have 

been extensively studied, as they are a predictor of vaccine efficacy, while their 

misregulation may lead to cancers or autoimmunity [1]. Lymphocyte population 

dynamics involve seemingly stochastic cellular parameters describing the decision to 

respond to the stimulus, the time spent progressing through the cell cycle, the time until 

programmed cell death, and the number of divisions progenitor cells undergo [44].  

Specifically, experimental observations show that population dynamics are well modeled 

at the cellular level by skewed distributions for the time to divide and die, that these 

distributions are different for undivided and dividing cells, and that the proliferative 

capacity is limited [21]. Recently, Hawkins et al showed that cells, that exhibit growth in 

size invariably divide (though at highly variable times), while cells that do not are 

committed to cell death, albeit at highly variable times [21]. A high degree of biological 

variability may ensure that population-level immune responses are robust [44,169], but 

renders the deconvolution of experimental data and their subsequent interpretation 

challenging.  
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A current experimental approach for tracking lymphocyte population dynamics 

involves flow cytometry of carboxyfluorescein succimidyl ester (CFSE)-stained cells. 

First introduced in 1990 [88], CFSE tracking relies on the fact that CFSE is irreversibly 

bound to proteins in cells, resulting in progressive halving of cellular fluorescence with 

each cell division. By measuring the fluorescence of thousands of cells at various points 

in time after stimulation, fluorescence histograms with peaks representing generations of 

divided cells are obtained. However, interpreting CFSE data confronts two challenges.  

In addition to intrinsic biological complexity arising from generation- and cell age-

dependent variability in cellular processes, fluorescence signals for a specific generation 

are not truly uniform due to heterogeneity in (i) staining of the founder population, (ii) 

partitioning of the dye during division, and (iii) dye clearance from cells over time. Thus, 

while high-throughput experimental approaches enable population-level measurements, 

deconvolution of CFSE time courses into biologically-intuitive cellular parameters is 

susceptible to misinterpretation [170].   

To recapitulate lymphocyte population dynamics a number of theoretical models 

have been developed (see [90,91] for recent reviews). However, the available 

computational methodologies to utilize them for analyzing CFSE time series data remain 

cumbersome, and these are prone to under- or over- interpretation. First, commercial 

software such as FlowJo (Tree Star Inc.) and FCExpress (De Novo Software) is typically 

used to fit Gaussian distributions to log-fluorescence data on a histogram-by-histogram 

basis to determine cell counts at each generation, but these do not provide an objective 

measure of fit quality. Then mathematical models of population dynamics must be 

employed to fit cell cycle and cell death parameters to the fitted generational cell counts 

[45,104]; however, they also do not provide a measure of fit quality, and they are 

affected by errors in cell-counts determined by aforementioned software tools. Without 
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an estimate of solution sensitivity and redundancy in the quantitative conclusions, 

computational tools do not give a sense of whether the information contained in CFSE 

data is used appropriately (or whether it is under- or over-interpreted).  This may be the 

underlying reason for why population dynamic models have not yet impacted 

experimental or clinical research for the interpretation of ubiquitous CFSE data.  

Here, we introduce an integrated computational methodology for phenotyping 

lymphocyte expansion in terms of single-cell parameters. We first evaluate the 

theoretical accuracy of each module in the phenotyping process by fitting generated 

data. We then show that implementing them in an integrated, rather than sequential, 

workflow reduces expected parameter error. Next, we describe our approach to 

estimating the quality of the fit and demonstrate the advantages of using our integrated 

methodology compared to phenotyping with the current state-of-the-art approach, the 

Cyton Calculator [45]. We then evaluate how different types of imperfections in data 

quality affect performance. Finally, we demonstrate the method’s utility in phenotyping B 

cells from NFκB1-/- and rel-/- mice stimulated with anti-IgM and LPS, extending the 

conclusions of previously published studies [60,171] and disaggregating the role of 

distinct cellular parameters by using the model simulation capabilities. FlowMax, a Java 

tool implementation of our methodology as well as the experimental datasets are 

available for download from http://signalingsystems.ucsd.edu/models-and-code/.  The 

FlowMax code and program is provided as FlowMax.zip in the supplementary materials, 

while the FCS 3.0 flow cytometry datasets are available as CFSEdatasets.zip.  

 

2.2.  Results 

To enable objective interpretation of dye dilution lymphocyte proliferation studies, 

we constructed a suite of integrated computational modules (Figure 2.1). Given a CFSE 
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dye-dilution time course, the first step involves fitting the cell fluorescence model to 

CFSE fluorescence histograms recorded at various times, accounting for dye dilution 

from cell division and intrinsic variability from biological and technical sources. In a 

second step, a cell population model, describing the fraction of responding cells in each 

generation and times to cell division or death, is fit to the CFSE time series data directly, 

using the best-fit cell fluorescence parameters as adaptors during fitting.  Repeating the 

second fitting step numerous times allows for a critical third step: estimating the 

sensitivity and degeneracy of the best fit parameter set, providing the maximum 

likelihood non-redundant solutions ranges.  

 

Figure 2.1. Proposed integrated phenotyping approach (FlowMax). CFSE flow-

cytometry time series are preprocessed to create one-dimensional fluorescence 

histograms that are used to determine the cell proliferation parameters for each time 

point, using the parameters of the previous time points as added constraints (step 1). 

Fluorescence parameters are then used to extend a cell population model and allow for 

direct training of the cell population parameters on the fluorescence histograms (step 2). 

To estimate solution sensitivity and redundancy, step 2 is repeated many times, 

solutions are filtered by score, parameter sensitivities are determined for each solution, 

non-redundant maximum-likelihood parameter ranges are found after clustering, and a 

final filtering step eliminates clusters representing poor solutions (step 3).   
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2.2.1.  Evaluating the accuracy of cell fluorescence model fitting 

The first computational module addresses the challenge of converting 

fluorescence histograms of CFSE data into generation-specific cell counts and 

experimental dye parameters. We selected a simple time-independent cell fluorescence 

model (Figure 2.2A) similar to the models used in current flow cytometry analysis tools 

(TreeStar Inc., De Novo Software) and recent studies [107,111,112]. We assume that 

the log-transformed fluorescence of populations of cells is well-modeled by a mixture of 

Gaussians, as observed previously [45]. We selected this simple model because recent 

models [98,99,107,108], which incorporate both cell dynamics and dye dynamics, do not 

naturally account for both cell age-dependent death and division rates, as well as for the 

observation that only a fraction of lymphocytes choose to respond to the stimulus. While 

the cell fluorescence model does not explicitly account for time-dependent dye 

catabolism, the model allows for the fluorescence of the initial population, 0µ , to be 

manually specified for each time point when log-fluorescence histograms are 

constructed.  

 In order to quantify the cell fluorescence model fitting accuracy, we tested it with 

a panel of generated realistic CFSE time courses. Specifically, the cell fluorescence 

model was fitted to the generated histograms and the average normalized % error 

between generated and fitted peak counts as a function of time point (Figure 2.2B). As 

expected, the average error in generation counts was highest for early time points due to 

absence of a second peak, which may help constrain parameter fitting. However, the % 

error between generated and fitted peak counts (Figure 2.2B) suggested that the 

fluorescence model fitting was on average quite successful as the maximum average 

normalized error was 7.1%. Finally, direct comparison of cell fluorescence model fits to 
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experimental data showed good agreement throughout the entire time course, even 

when late generation peaks are poorly resolved (Figure 2.2C).  

 

Figure 2.2. The cell fluorescence model. (A) Noisy log-transformed cell fluorescence 
is modeled by a weighted mixture of Gaussian distributions for each cell division: 

( , )g gg
w N µ σ

∑

, parameterized according to equations describing variability in staining 

(CV), background fluorescence (b), dye dilution (r), and a small correction for the 
fluorescence of the initial population of cells (s). Weights for each Gaussian correspond 
to cell counts in each generation. (B)  Analysis of the cell fluorescence model fitting 
accuracy for 1,000 generated CFSE fluorescence time courses (see also Tables 2.3 and 
2.4). Average percent error in generational cell counts normalized to the maximum 

generational cell count for each time course. Numbers indicate an error ≥ 0.5%. (C) 
Representative cell fluorescence model fitting to experimental data from wildtype B cells 
at indicated time points after start of lipopolysaccharides (LPS) stimulation (red lines 
indicate undivided population). 
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2.2.2.  Evaluating the accuracy of cell population model fitting 

Employing the fcyton model described above (Figure 2.3A), we examined the 

accuracy associated with fitting the fcyton population model with the generated panel of 

datasets directly to the known generational cell counts, and calculated both the average 

normalized cell count error (Figure 2.3B) as well as the error distributions associated 

with fitting particular fcyton parameters (Figure 2.3C). Fitting the fcyton model to given 

counts resulted in very low generational cell count errors : the maximum average 

normalized error was 3.5%, while the maximum average normalized error for all time 

points ≤ 120 h was always less than 2%. The median errors in the key parameters N, F0, 

E[Tdiv0], E[Tdie0], E[Tdiv1+]) were small: 1.2%, 0.02, 5.8%,4.0%, and 2.6%, respectively. 

However, interestingly, even with perfect knowledge of generational cell counts and a 

large number of time points, not all cellular parameters were accurately determined. This 

is illustrated by a median % error value of about 18% for E[Tdie1+] and a median error of 

about 1 generation for Dµ, the average number of divisions a divided cell will undergo, 

and suggests that these parameters do not contribute substantially to the cell count data 

within the physiologically relevant parameter regime.  
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Figure 2.3. The fcyton cell proliferation model. (A) A graphical representation 
summarizing the model parameters required to calculate the total number of cells in 
each generation as a function of time. Division and death times are assumed to be log-
normally distributed and different between undivided and dividing cells. Progressor 
fractions (Fs) determine the fraction of responding cells in each generation committed to 
division and protected from death. (B,C)  Analysis of the accuracy associated with fitting 
fcyton parameters for a set of 1,000 generated realistic datasets of generational cell 
counts assuming perfect cell counts and an optimized ad hoc objective function (see 
Text 2.1 and Tables 2.3 and 2.4). (B) Average percent error in generational cell counts 
normalized to the maximum generational cell count for each time course. Numbers 

indicate an error ≥ 0.5%.  (C) Analysis of the error associated with determining key 
fcyton parameters. Box plots represent 5, 25, 50, 75, and 95 percentile values. Outliers 
are not shown. For analysis of all fcyton parameter errors see also Figure 2.9 (green). 
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2.2.3.  Evaluating the accuracy when both model fitting steps are incorporated 

Interpreting the population dynamics provided by dye dilution data in terms of 

cellular parameters requires both computational modules: the cell fluorescence model 

describes variability in experimental staining, while cell proliferation modeling explains 

evolution of the population through time.  We first assessed their performance when 

linked sequentially, fitting the population model to best-fit cell counts, using the above-

described generated dataset. Since the objective function that determines the fit of 

model output to experimental cell counts is a key determinant of the performance, we 

compared a simple squared deviation scoring function (SD) with a more complex, 

manually-optimized objective function which takes into account multiple measures of 

similarity (Equations 46 and 47). The results showed that a complex ad hoc optimized 

scoring function drastically outperformed the simpler SD-based scoring function with all 

fcyton parameter error distributions significantly (each p-value < 1E-12; Mann-Whitney U 

test) shifted toward zero (Figure 2.4).   
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Figure 2.4. Accuracy of fitting the population model to generated fitted 
generational cell counts. The simple squared deviation (grey) and ad hoc optimized 
(blue) scoring functions were used to fit the fcyton model to fitted generational cell 
counts for 1,000 sets of randomly generated CFSE time courses with parameters 
sampled uniformly from ranges in Table 2.3, and evaluated at times described in Table 
2.4. (A) Average percent error in fitted generational cell counts normalized to the 
maximum generational cell count for each generated time course. Numbers indicate an 

error ≥ 0.5%. (B) Analysis of the error associated with determining all fcyton cellular 
parameters. Box plots represent 5, 25, 50, 75, and 95 percentile values. Outliers are not 
shown.  
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Next, we integrated the two modules (Figure 2.1) and characterized the resulting 

performance. This integrated approach uses the best-fit cell fluorescence parameters to 

represent the cell population solutions as fluorescence histograms, enabling direct 

comparison to the experimental data, and obviating the need for an ad hoc objective 

function during population model fitting (compare Equations 47 and 48). After applying 

each approach to the panel of generated datasets, we calculated the generational 

average normalized percent count errors (Figure 2.5A), as well as parameter error 

distributions (Figure 2.5B). Both the sequential and integrated approaches resulted in 

relatively low generational cell count errors on average, however, the integrated 

approach outperformed sequential model fitting for predicting the generational cell 

counts at late time points (Figure 2.5A). The improvement was more readily apparent in 

the distribution of parameter fit errors: all parameter error distributions were shifted 

toward zero when the integrated rather than the sequential model fitting approach was 

used (p-values for each parameter distribution ≤ 1E-5, Mann-Whitney U test). In fact, all 

but the Tdie1+ parameter errors showed a very dramatic improvement (p-value ≤ 1E-10, 

Mann-Whitney U test). To determine if the improvement was due to a propagation of fit 

errors caused by sequential fitting steps, we compared both the sequential and 

integrated method when the population model was fitted to perfect counts or when 

perfect fluorescence parameters were used, respectively. (Figure 2.6) When comparing 

both approaches under ideal conditions, integrated fitting resulted in overall better cell 

count errors at later time points (Figure 2.6A.), and improved error distributions for fcyton 

parameters F0 and N (p-value ≤ 0.05, Mann-Whitney U test). Next, by comparing the 

integrated approach to individual computational modules, we found that the accuracy of 

the integrated approach was comparable to the accuracy associated with fitting the 

fcyton model cell counts to known counts using the ad hoc optimized objective function, 
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as well as when the integrated method was used with known cell fluorescence 

parameters (Figure 2.6).  This suggests that the integrated method minimizes the 

propagation of errors, as it is comparable to fitting to the original generated cell counts 

using a complex optimized objective function, and because eliminating the fluorescence 

model fitting error did not significantly improve the fit.  
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Figure 2.5. Accuracy of phenotyping generated datasets in a sequential or 
integrated manner.  The accuracy associated with sequential fitting Gaussians to 
fluorescence data to obtain cell counts for each generation (blue) and integrated fitting of 
the fcyton model to fluorescence data directly using fitted fluorescence parameters as 
adaptors (purple) was determined for 1,000 sets of randomly generated realistic CFSE 
time courses (see also Tables 2.3 and 2.4). (A) Average percent error in generational 
cell counts normalized to the maximum generational cell count for each time course. 

Numbers indicate an error ≥ 0.5%.  (B) Analysis of the error associated with determining 
key fcyton cellular parameters. Box plots represent 5,25,50,75, and 95 percentile values. 
Outliers are not shown. For a comparison of all 12 parameters see Figure 2.4 (blue) and 
Figure 2.6 (purple). 
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Figure 2.6. Comparison of the integrated model fitting approach to training each 
model independently. A collection of 1,000 randomly generated sets of CFSE time 
courses was used to analyze the errors associated with training the cell fluorescence 
model only (red), training the fcyton model on known cell counts (green), training the 
fcyton model using the known (orange) or fitted (purple) cell fluorescence parameters as 
adaptors during fcyton population model fitting. See also Tables 2.3, and 2.4. (A) 
Average percent error in fitted generational cell counts normalized to the maximum 

generational cell count for each generated time course. Numbers indicate an error ≥ 
0.5%. (B) Analysis of the error associated with determining all fcyton cellular parameters. 
Box plots represent 5, 25, 50, 75, and 95 percentile values. Outliers are not shown.  
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To develop best practices for employing integrated fitting, we examined how the 

number of experimental time points, the number of computational fit attempts, and 

selection of the objective function would affect fitting accuracy. We found that using the 

best of eight, three or one computational fit attempts decreased the average normalized 

generational cell count errors and asymptotically improved the distributions of parameter 

errors (Figure 2.7). Since choice of time points can also affect solution quality, we 

repeated our error analysis with fewer time points. While more frequent sampling 

improved the median and variance of the error distributions, key time points turned out to 

be those close to the start of the experiment, just when the first cell divisions have 

occurred, and when the founding generation has all but disappeared, affecting fcyton 

parameters F0, N, and Tdie0 to a higher degree (Figure 2.8). To test which objective 

function to use for integrated model fitting, we tested three objective functions of 

increasing complexity: simple mean sum of absolution deviations (MAD), mean root sum 

of squared deviations (MRSD), and mean root sum of squared deviations with Pearson 

correlation (MRSD+). We fitted sets of 1,000 generated time courses (see Methods) with 

each of the three objective functions (Figure 2.9B) and we calculated the generational 

average normalized percent count errors (Figure 2.9A), as well as parameter error 

distributions (Figure 2.9C). The results showed that using the MRSD+ objective function 

resulted in the lowest average normalized generation percent count errors, however all 

three objective functions resulted in comparable fcyton parameter error distributions (p-

value>0.05, Mann-Whitney U test), except error in N for MAD was significantly higher 

compared to MRSD/MRSD+ (p-value < 1E-10, Mann-Whitney U test). 
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Figure 2.7. Analysis of the phenotyping accuracy as a function of the number of fit 
attempts (trials). For each experiment, 1,000 CFSE time courses were generated with 
model parameters within ranges described in Table 2.3 and times described in Table 
2.4. Generated time courses were used to fit the fcyton population model using the fitted 
cell fluorescence parameters as adaptors,  using the best of one (light), three (medium), 
or eight (dark) fit trials. (A) Average percent error in fitted generational cell counts 
normalized to the maximum generational cell count for each generated time course. 

Numbers indicate an error ≥ 0.5%.  (B) Analysis of the error associated with determining 
all fcyton cellular parameters. Box plots represent 5, 25, 50, 75, and 95 percentile 
values. Outliers are not shown.  
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Figure 2.8. Analysis of the fitting accuracy when using fewer experimental time 
points. For each experiment, three (light), five (medium), or ten (dark) time points were 
considered from a collection of 1,000 generated CFSE time courses with parameters 
sampled uniformly from ranges in Table 2.3, and evaluated at times described in Table 
2.4. Generated time courses were then phenotyped using the integrated computational 
method (cell fluorescence parameters used as adaptors during fcyton fitting). (A) 
Average percent error in fitted generational cell counts normalized to the maximum 

generational cell count for each generated time course. Numbers indicate an error ≥ 
0.3%. (B) Box plots represent 5, 25, 50, 75, and 95 percentile error values. Outliers are 
not shown. 
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Figure 2.9. Analysis of the fitting accuracy as a function of objective function 
choice. For each experiment, a mean absolute deviation (ObjMAD, light), a mean root 
square deviation (ObjMRSD, medium), and a mean root square deviation with correlation 
(ObjMRSD+, dark) were used to phenotype a collection of 1,000 generated CFSE time 
courses with parameter sampled uniformly from ranges in Table 2.3, and evaluated at 
times described in Table 2.4, using the integrated computational method (cell 
fluorescence parameters used as adaptors during fcyton fitting). (A) Average percent 
error in fitted generational cell counts normalized to the maximum generational cell count 

for each generated time course. Numbers indicate an error ≥ 0.5%. (B) Mathematical 
description of the objective functions used. (C) Analysis of the error associated with 
determining all fcyton cellular parameters. Box plots represent 5, 25, 50, 75, and 95 
percentile values. Outliers are not shown. 
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Finally, we tested how the length of time needed to fit both of the models 

depends on the number of time points and cell generations used. As expected, the 

running time increased approximately linearly with the number of time points fitted and 

number of generations modeled, with typical time courses (9 generations, 7 time points) 

taking on average 2.11 minutes to fit (Table 2.1).  

 

Table 2.1. Analysis of fit running time dependence on the number of time points 
and generations. The average running time for fitting the cell fluorescence followed by 
fitting the fcyton cell population model using the best-fit cell fluorescence parameters to 
300 generated time courses with four, seven, and ten time points is shown. Fitting was 
carried out using an assumed 6, 9, or 12 generations during fitting. Times are in minutes 
and errors are SEM. See also Table 2.3 and 2.4 
 

Generations Four Time Points Seven Time Points Ten Time Points 

6 0.86±0.01 1.37±0.01 1.62±0.01 

9 1.43±0.01 2.11±0.02 2.54±0.02 

12 1.84±0.01 2.82±0.02 3.52±0.02 

 

 

2.2.4. Developing solution confidence and comparison to the most recent tool 

As part of a crucial third step, we developed a computational pipeline for 

estimating both the sensitivity and redundancy of solutions. At the end of population 

model fitting, multiple candidate best-fit parameter sets are found (Figure 2.1, step 2). To 

enable objective evaluation of solutions, we estimate parameter sensitivities for 

candidate fits with particularly low ending objective function values and use an 

agglomerative clustering approach to combine pairs of candidate solutions until only 

disjoint clusters remain, representing non-redundant maximum-likelihood parameter 

ranges (Figure 2.10A and see Methods).  To demonstrate the benefit of using our 

solution sensitivity and redundancy estimation procedure, we compared our approach to 

the most recent phenotyping tool, the Cyton Calculator [45]. The Cyton Calculator was 

designed for fitting the cyton model [44] to generational cell counts determined using 
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flow cytometry analysis tools. The cyton model incorporates most of the key biological 

features of proliferating lymphocytes, with the exception that responding cells are subject 

to competing death and division processes. We demonstrated the utility of our method, 

by phenotyping a CFSE time course of wildtype B cells stimulated with bacterial 

lipopolysaccharides (LPS) with both the Cyton Calculator as well as FlowMax, a tool 

implementing our methodology.  While several qualitatively good solutions were found 

using the Cyton Calculator for four different starting combinations of parameters (Table 

2.2), we could not objectively determine if the best-fit solutions were representative of 

one solution with relatively insensitive parameters, or four unique solutions (Figure 2.10B 

blue dots). As a comparison, we repeated the fitting using FlowMax under identical fitting 

conditions (Figure 2.10B, red individual solutions and clustered averages in green). 

Best-fit clustered FlowMax cyton parameters yielded one unique quantitatively excellent 

average fit (3.01% difference in normalized percent histogram areas). The best-fit 

parameter ranges showed that the division times and the propensity to enter the first 

round of division are important for obtaining a good solution, while predicted death times 

can be more variable without introducing too much fit error (Figure 2.10C). Plotting cell 

count trajectories using parameters sampled uniformly from maximum-likelihood 

parameter sensitivity ranges revealed that while the early B cell response is constrained, 

the peak and late response is more difficult to determine accurately (Figure 2.10D). 
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Table 2.2. Starting and fitted cyton model parameters for four successful Cyton 
Calculator fitting trials. Starting cyton model parameter values that resulted in 
successful fits of our CFSE LPS-stimulated wildype B cell time course (columns 2-5) 
were chosen manually within ranges specified in Table 2.3. Corresponding Cyton 
Calculator [45]  best-fit parameters are shown in columns 6-9. The data for experimental 
replicates is shown in Figure 2.13 (WT LPS). 
 

Parameter 
Starting 
Value 1 

Starting 
Value 2 

Starting 
Value 3 

Starting 
Value 4 

Fitted 
Value 1 

Fitted 
Value 2 

Fitted 
Value 3 

Fitted 
Value 4 

F0 0.001 1 0.57 0.72 0.41 0.67 0.47 0.37 
E[Tdiv

0
] 30.6 80.8 41.2 33.8 39.3 45.1 43 38.6 

s.d.[Tdiv
0
] 0.21 0.33 0.68 0.22 7.58 19.9 14.1 8.54 

E[Tdiv
1+

] 17.6 49 20.7 14.5 14 17.7 9.43 8.96 

s.d.[Tdiv
1+

] 0.18 0.35 0.36 0.35 13.3 11.6 0.48 2.2 

E[Tdie
0
] 110 94.7 200 130 130 275 137 119 

s.d.[Tdie
0
] 0.57 0.42 0.8 0.6 123 260 129 113 

E[Tdie
1+

] 32.9 52.3 66.3 51.6 45.2 18.7 49.5 69.6 

s.d.[Tdie
1+

] 0.8 0.5 0.17 0.8 42.7 0.95 46.8 47.2 

D µµµµ 1.04 1.16 2.37 4.7 3.16 1.37 1.57 1.23 

D σσσσ 1.28 0.53 4.91 5.7 1.53 5.9 1.95 1.95 
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Table 2.3. Cell fluorescence and population parameter ranges used to generate 

realistic CFSE time courses. Selected ranges were chosen to exclude biologically 

implausible scenarios. Parameters were sampled evenly from the specified ranges 

whenever generating 1,000 time courses. The standard deviation parameters for the log-

normal distributions: Tdiv0, Tdiv1+, Tdie0, Tdie1+ were further restricted to be less than or 

equal to their corresponding log-normal expected value parameters (e.g. s.d[Tdiv0] ≤ 

E[Tdiv0]). Model fitting was restricted within these parameter ranges. Refer to Table 2.4 

for the specific time points used. 

 

Cell Fluorescence Parameter Minimum Maximum  

Peak width(CV) 0.015 0.021 

Dye Dilution Ratio 0.45 0.5 

Background Fluorescence 0 1000 

Fluorescence Shift -0.001 0.001 

Population Parameter Minimum Maximum  

E[Tdiv
0
] 6 h 72 h 

E[Tdie
0
] 6 h 192 h 

E[Tdiv
1+

] 6 h 48 h 

E[Tdie
1+

] 6 h 96 h 

s.d.[Tdiv
0
] 0.001 h 72 h 

s.d.[Tdie
0
] 0.001 h 192 h 

s.d.[Tdiv
1+

] 0.001 h 48 h 

s.d.[Tdie
1+

] 0.001 h 96 h 

D µ -3 generations 8 generations 

D σ 0.001 generations 10 generations 

F
0
 0.001 1 

Start Cells (N) 10,000 cells 200,000 cells 

K mech death 0 0 

Fraction mech death 0 0 
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Table 2.4. Time points considered for analysis of generated time courses. For 
generated time courses, model solutions were sampled according to these time course 
schedules. Three, five, and ten time points were used in Figure 2.8. Four, four early, and 
eight time points were used in Figure 2.11. Four, seven, and ten time points were used 
when generating Table 2.1. Otherwise 10 time points were sampled from generated 
datasets. See also Table 2.3. 
 

Time 
Point 

3 Time 
points 

4 Time 
points 

4 early 
time 

points 

5 Time 
Points 

7 Time 
Points 

8 Time 
Points 

10 
Time 

Points 

1 48 h 24 h 12 h 24 h 24 h 24 h 6 h 

2 96 h 60 h 24 h 48 h 48 h 32 h 24 h 

3 144 h 96 h 36 h 72 h 60 h 48 h 36 h 

4  144 h 48 h 96 h 72 h 60 h 48 h 

5    144 h 96 h 80 h 60 h 

6     144 h 100 h 72 h 

7     180 h 144 h 96 h 

8      192 h 120 h 

9       144 h 

10       192 h 
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Figure 2.10. Comparison of FlowMax to the Cyton Calculator. The Cyton Calculator 
[45] and a computational tool implementing our methodology, “FlowMax,” were used to 
train the cyton model with log-normally distributed division and death times on a CFSE 
time course of wildtype B cells stimulated with lipopolysaccharides (LPS). The best-fit 
generational cell counts were input to the Cyton Calculator. (A) Visual summary of 
solution quality estimation pipeline implemented as part of FlowMax. Candidate 
parameter sets are filtered by the normalized % area difference score, parameter 
sensitivity ranges are calculated, parameter sensitivity ranges are clustered to reveal 
non-redundant maximum-likelihood parameter ranges (red ranges). Jagged lines 
represent the sum of uniform parameter distributions in each cluster. (B) Best fit cyton 
model parameters determined using the Cyton Calculator (blue dots) and our 
phenotyping tool, FlowMax (square red individual fits with sensitivity ranges represented 
by error bars and square green weighted cluster averages with error bars representing 
the intersection of parameter sensitivity ranges for 41 solutions in the only identified 
cluster). (C) Plots of Fs (the fraction of cells dividing to the next generation), and log-
normal distributions for the time to divide and die of undivided and dividing cells sampled 
uniformly from best-fit cluster ranges in (B). (D) Generational (colors) and total cell 
counts (black) are plotted as a function of time for 250 cyton parameter sets sampled 
uniformly from the intersection of best-fit cluster parameter ranges. Red dots show 
average experimental cell counts for each time point.  Error bars show standard 
deviation for duplicate runs.  
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2.2.5. Investigating how data quality affects solution sensitivity and redundancy  

We tested how sources of imperfections in typical experimental CFSE data 

affected the outcome of our integrated fitting procedure. Starting with the best fit average 

wildtype B cell time course stimulated with bacterial lipopolysaccharides (LPS), we 

generated in silico CFSE datasets. Specifically, we wanted to test the effect of time point 

frequency, increased fluorescence CV (e.g. due to poor CFSE staining), increased 

Gaussian noise in generational counts (e.g. mixed populations), and increased Gaussian 

noise in the total number of cells collected during each time point (e.g. 

mixing/preparation noise) (Figure 2.11). For each generated dataset, we fitted cell 

fluorescence parameters, used the best-fit fluorescence parameters as adaptors during 

a subsequent 100 rounds of population model fitting, filtered poor solutions, calculated 

parameter sensitivities, and clustered the solution ranges to obtain maximum-likelihood 

non-redundant solution ranges (Figure 2.1).  

Results show that increasing CV or using only four, albeit well positioned time 

points, does not significantly impact the quality of the fit, with all parameters still 

accurately recovered (blue triangles, pink crosses). On the other hand, adding random 

noise in the number of cells per peak or per time point results in increased error in fcyton 

parameters F0, Tdie0 and to a lesser degree s.d.[Tdiv0] and s.d.[Tdiv1+] (Figure 2.11 

green circles and purple bars). However, only using early time points resulted in 

egregious errors with most parameters displaying diminished sensitivity and higher 

deviation from the actual parameter value. Indeed, our method identified four non-

redundant solutions when fitting the early time point only time course (Figure 2.11, 

orange).   
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Figure 2.11. Testing the accuracy of the proposed approach as a function of data 
quality. Six typical CFSE time courses of varying quality were generated and fitted using 
our methodology (Figure 2.1). (A-F) The best-fit cluster solutions are shown as overlays 
on top of black histograms for indicated time points. Conditions tested were (A) low CV, 
(B) high CV (e.g. poor staining), (C) 10% Gaussian count noise (e.g. mixed populations), 
(D) 10% Gaussian scale noise (poor mixing of cells), (E) four distributed time points (e.g. 
infrequent time points), (F) four early time points from the first 48 hours (see Methods for 
full description). (G) Parameter sensitivity ranges for each solution in each non-
redundant cluster next to the maximum likelihood parameter ranges are shown for fcyton 
fitting. The actual parameter value is shown first (black dot).  
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2.2.6. Pheotyping B lymphocytes lacking NFκB family members  

We next applied the integrated phenotyping tool, FlowMax, to a well-studied 

experimental system: the dynamics of B cell populations triggered by ex vivo stimulation 

with pathogen-associated molecular patterns (PAMPs) or antigen-receptor agonists. B 

cell expansion is regulated by the transcription factor NFκB, which may control cell 

division and/or survival.  Indeed, mice lacking different NFκB family members have been 

shown to have distinct B cell expansion phenotypes in response to different mitogenic 

stimuli [33].  

Using published studies as a benchmark, we tested the utility of FlowMax. Using 

purified naïve B lymphocytes from WT, nfkb1-/-, and rel-/- mice, stained with CFSE, we 

obtained flow-cytometry data following LPS and anti-IgM stimulation over a six day time 

course.  We then used FlowMax to arrive at the best-fit single-cell representation of the 

CFSE population data for each experimental condition tested (Figure 2.12A and Figure 

2.13) and tabulated the cellular parameter values from the best family of clustered 

solutions for all conditions tested alongside our summary of the previously-published 

results (Figure 2.12B). The best-fit solution clusters fit the time courses well (11.95% 

median normalized percent area error), with the larger errors naturally biased toward 

weekly proliferating populations (Figure 2.13). Our analysis revealed that in response to 

anti-IgM cRel-deficient B cells are unable to enter the cell division program, as 

evidenced by a low F0 value.  However, in response to LPS, rel-/- and nfkb1-/- B-cells 

show both cell survival and activation phenotypes, suggesting the involvement of other 

nfkb1 functions downstream of the receptor TLR4 (Figure 2.14).  These computational 

phenotyping results are in agreement with the conclusions reached in prior studies using 

traditional methods such as tritiated thymidine incorporation, as well as staining for DNA 

content or membrane integrity (propidium iodide) to measure cell population growth as 
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well as the fractions of cycling and dying cells, respectively [171]. In particular, in 

response to LPS, the nfkb1 gene product p105 (rather than p50) was shown to mediate 

B-cell survival via the Tpl2/ERK axis [60].  However, our results extend the published 

analysis by quantifying the contributions of the cell survival and decision making 

functions of these genes to B lymphocyte expansion.  For example, whereas NFκB1 and 

rel appear to equally contribute to cell cycle and survival, rel has a more critical role in 

the cellular decision to enter the cell division program (Figure 2.12 and Figure 2.14).    

Interestingly, in response to anti-IgM, our analysis reveals a previously unknown 

suppressive role for nfkb1 of limiting the number of divisions that cells undergo (Figure 

2.12, compare Dµ and Dσ). In response to LPS, Fs are reduced in nfkb1-/- B cells, but 

they are higher in response to anti-IgM. This affects mostly the later progressor fractions, 

e.g. F1, F2.  To examine the contribution of each parameter type (decision making, cell 

cycle times, death times) we developed a solution analysis tool, which allows for model 

simulations with mixed knockout- and wildtype-specific parameters to illustrate which 

parameter or combination of cellular processes substantially contribute to the knockout 

phenotype.  In the case of IgM-stimulated nfkb1-/-, this analysis reveals that the later cell 

decision parameters (e.g. F1,2,...) are necessary and largely sufficient to produce the 

observed phenotype (Figure 2.12C, Figure 2.14).  
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Figure 2.12. Phenotyping WT, nfkb1
-/-, and rel

-/- B cells stimulated with anti-IgM and 
LPS. (A) Visual summaries of best-fit phenotype clusters for WT (top), nfkb1-/- (middle), 
and rel-/- (bottom) genotypes stimulated with anti-IgM (left), and LPS (right). To visualize 
cellular parameter sensitivity, 250 sets of parameters were selected randomly from 
within parameter sensitivity ranges and used to depict individual curves for the fraction of 
responding cells in each generation (Fs) and lognormal distributions for time-dependent 
probabilities to divide (Tdiv) and die (Tdie) for undivided and divided cells. (B) Tables 
summarizing the best fit cellular parameters determined using the integrated 
computational tool, FlowMax, as well as the relative amount of cell cycling and survival 
reported in previous studies [60]. Values in parentheses represent the lognormal 
standard deviation parameters. (C) Total cell counts simulated with the fcyton model 
when indicated combinations of nfkb1-/--specific parameters were substituted by WT-
specific parameters during anti-IgM stimulation (“chimeric” solutions). Dots show WT 
(red) and nfkb1-/- (blue) experimental counts. Error bars show cell count standard 
deviation for duplicate runs. 
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Figure 2.13. Best-fit fcyton solution overlays for stimulated wildtype, nfkb1
-/-, and 

rel
-/- B cell CFSE time courses. CFSE fluorescence data was collected and 

phenotyped using FlowMax, a computational tool that implements our integrated 
methodology. Green overlays show the weighted average best-fit model solutions for six 
duplicate log-fluorescence CFSE time courses (filled histograms). Columns represent 
individual time points. Histograms are normalized to the highest count for each time 
course across experimental duplicates. X-axes are in log-fluorescence units and 
automatically chosen to encompass all fluorescence values across all time-points and 
experimental runs. Red line shows manually selected position of the undivided 
population. Times of collection are indicated next to each histogram. Background 
indicates stimulus (blue = LPS, purple = anti-IgM). See also Figure 2.12. 
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Figure 2.14. Using chimeric model solutions to identify key fcyton parameters. 
Total model cell counts determined when combinations of best-fit wildtype parameters 
were replaced by nfkb1-/- -specific (rows 1 and 3) and rel-/--specific (rows 2 and 4) best-fit 
maximum-likelihood parameter ranges for anti-IgM (rows 1 and 2) and LPS (rows 3 and 
4) stimulation. Dots show wildtype (red) and knockout (blue) experimental counts. Error 
bars show standard deviation of cell counts from duplicate runs. Poor fitting indicates 
that the indicated parameters do not sufficiently describe the mutant phenotype. 
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2.3.  Discussion 

Recent advances in flow cytometry and mathematical modeling have made it 

possible to study cell population dynamics in terms of stochastic cellular processes that 

describe cell response, cell cycle, and life span. Interpreting CFSE dye dilution 

population experiments in terms of biologically intuitive cellular parameters remains a 

difficult problem due to experimental and biological heterogeneity on the cellular level.  

While available population models may be fitted to generational cell counts, a remaining 

challenge lies in determining the redundancy and size of the solution space, a 

requirement for developing confidence in the quantitative deconvolution of CFSE data.  

Developing a methodology for objective interpretation of CFSE data may lead to 

quantitative mechanism-oriented insights about cellular decision-making, and allow for 

improved and automated diagnosis of such data in the clinic.  

In this study we present an integrated phenotyping methodology, exemplified by 

the computational tool FlowMax, which addresses these challenges.  FlowMax 

comprises the tools needed to construct CFSE histograms from flow cytometry data, fit a 

fluorescence model to each histogram, determine sets of best fit cellular parameters that 

best describe the CFSE fluorescence time series, and estimate the sensitivity and 

redundancy of the best fit parameters (Figure 2.1). By using the cell fluorescence model 

to translate between generation-specific cell counts of the cell population model and the 

CFSE fluorescence profiles, the method ensures that the population dynamics model is 

trained directly on the experimental fluorescence data, without relying on ad hoc scoring 

functions.  While our general methodology can be relatively easily adopted for use with 

any population dynamics and cell fluorescence models (including population models that 

incorporate both CFSE label and population dynamics [98,99,107,108]), we adopted a 

version of the cyton model because it explicitly incorporates most features of 
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proliferating lymphocytes in an intuitive manner, forms the basis of the Cyton Calculator 

tool, and could be easily adapted to include new observations from single-cell studies. 

While, the cyton model is over-determined and it is possible that minimal alternative 

models may describe the noisy CFSE data equally-well [90]. For example, it is possible 

that models with exponential distributions for the time to divide and die, or models which 

do not include generational dependence for division/death may be able to describe the 

data. However, independent studies have shown that lymphocyte cycling and 

programmed cell death show delay times and conform to log-normal distributions, and 

that the fraction of lymphocytes exiting the cell cycle as well as the timing for division 

and death of lymphocytes are generation-dependent [21,44,46]. Our attempts at fitting a 

typical experimental dataset using minimal models confirmed that to model B cell 

dynamics both a delay in division/death timing (e.g. using log-normal distributions) as 

well as distinguishing between generations (e.g. undivided/divided) is essential 

(unpublished data). Within FlowMax we chose to decouple treatment of cell fluorescence 

from population dynamics and allow for manual compensation for general fluorescence 

changes such as dye catabolism (supplementary file FlowMax.zip). Treating such 

experimental heterogeneity separately from biological variability was essential for 

computational tractability of solution finding via repeated fitting.  

Fitting generated datasets allowed us to evaluate individual fitting steps, and 

when these were combined in an integrated or sequential manner. While, the cell 

fluorescence model is readily trained on the generated data, especially if multiple peaks 

are present (Figure 2.2B-C), not all fcyton model parameters are equally determinable, 

as parameters for Tdie1+ and Dµ were associated with significant median errors (Figure 

2.3C and Figure 2.6).  When both models were fitted, doing so in an integrated manner 

(using the fitted cell fluorescence parameters as adaptors during population model 
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optimization) outperformed doing so sequentially in terms of both solution statistical 

significance (Figure 2.5A) and fcyton parameter error distributions (Figure 2.5B and 

Figure 2.4). This is not surprising as the integrated method avoids errors introduced 

during fluorescence model fitting, by optimizing the cell population model on the 

fluorescence histograms directly (Figure 2.6). Furthermore, by using the fluorescence 

model as an adaptor, contributions from each fluorescence intensity bin are 

automatically given appropriate weight during population model fitting, while the 

sequential approach must rely on ad hoc scoring functions to achieve reasonable, albeit 

worse, fits. The accuracy of the integrated fitting approach improves asymptotically with 

the number of fit points used (Figure 2.7), and is dependent on the choice of time points 

used, with errors in key fcyton model early F0, N, and late Tdie0 parameters especially 

sensitive to sufficiently early and late time points, respectively  (Figure 2.8). Testing 

potential scoring functions demonstrated that while the methodology is relatively robust 

to specific objective function selection, an objective function including both a mean root 

sum of squared deviations as well as a correlation term resulted in lower errors in 

average fitted generational counts (Figure 2.9). Finally, fitting both the cell fluorescence 

and fcyton model typically requires only a few minutes on a modern computer (Table 

2.1), suggesting that our methodology and tool can be used to process a long duplicate 

time course in about a day.  

The analysis of our fitting methodology revealed a limit on the accuracy of fitted 

model parameters, even under idealized conditions of perfect knowledge of experimental 

heterogeneity and assuming the fcyton model is a perfect description of B cell dynamics 

(Figure 2.3), suggesting that objective interpretation requires solution sensitivity and 

redundancy estimation. We compared several qualitatively good model fits obtained with 

the Cyton Calculator [45] to our phenotyping tool FlowMax (Table 2.2 and Figure 2.10). 
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Using the Cyton Calculator, best-fit parameter sets (Figure 2.10B blue dots) are subject 

to choice of initial parameters (Table 2.2).  Repeated fitting with different fitting 

conditions yielded qualitatively good solutions with different parameter values. 

Conversely, the solution quality estimation integrated into our methodology (Figure 

2.10A) revealed that only one set of parameters best describes the dataset, and that 

only a relatively small range of maximum-likelihood parameter values was common to 

good fits (Figure 2.10B green dots and ranges). Interestingly, most of the fitted 

parameters are in approximate quantitative agreement between the two methods, 

however, the maximum-likelihood parameter ranges determined by our methodology 

usually showed agreement with outlying parameter values determined by the Cyton 

Calculator, suggesting that picking a specific or average solution may be inappropriate 

(Figure 2.10B).  

Testing how data quality affects solution redundancy and sensitivity reveals that 

the methodology is relatively robust to poor CFSE staining (high CV) as well as the 

frequency of time points used for fitting, assuming they are spaced throughout the time 

course (Figure 2.11). However, this is only true if time points are selected such that they 

capture the population behavior throughout the response, as picking only early time 

points resulted in global parameter insensitivity, degeneracy, and large parameter errors. 

Furthermore, poor mixing/preparation of cells (scale noise) or the presence of other cell 

populations (count noise) resulted in qualitatively good fits at the cost of some errors in 

perceived population parameters, highlighting the importance of fitting to two or more 

replicate time courses and working with a single cell type. 

Finally, to demonstrate that our computational tool can provide valuable insights 

into the cellular processes underlying lymphocyte dynamics, we used FlowMax to 

phenotype B cells from NFκB-deficient mice, which show strong proliferative and 
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survival phenotypes when stimulated with anti-IgM and LPS mitogenic signals (Figure 

2.13). Our analysis of these cells confirmed the previously published data [60,171] and 

extended the analysis to specific cellular processes in a quantitative manner. We found 

for example that the phenotype of NFκB1-/- and rel-/- is similar in the proliferation and 

survival of B-cells, except in the ability of resting B cells to exit the G0 stage, which is 

more critically controlled by rel gene product cRel (Figure 2.12A).  This may reflect that 

while cRel is activated early and required for all aspects of B-cell proliferation, the 

NFκB1 gene product p105 is thought to provide for lasting ERK1 activity [86] that may 

facilitate primarily later stages of B-cell proliferation.  Furthermore, our analysis revealed 

a previously unappreciated anti-proliferative role for NFκB gene NFκB1 during anti-IgM 

stimulation (Figure 2.12B). Although more subtle, this phenotype was revealed because 

we were able to distinguish between early pro-proliferative cellular processes (F0, Tdiv0, 

Tdie0) and later ones (F1+, Tdiv1+, Tdie1+), which may otherwise be overshadowed by 

early parameters that more prominently determine bulk population dynamics, but 

importantly determine the proliferative capacity of B cells.  We confirmed the importance 

of the later parameters by modeling population dynamics with “chimeric” parameter sets 

derived from wildtype and knockout model fits (Figure 2.12C and Figure 2.14).  How 

NFκB1 may dampen late proliferative functions in response to anti-IgM but not LPS 

remains to be investigated.  Preliminary results indicate that the NFκB1 gene product 

p50, which may have repressive effects as homodimers, is actually less abundant 

following anti-IgM than LPS stimulation. Conversely the NFκB1 gene product p105 is 

more abundant following anti-IgM than LPS stimulation and could inhibit signaling in two 

ways. Induced expression of p105 may block MEK1/ERK activation by Tpl2 [85], or it 

may function to provide negative feedback on NFκB activity, as a component of the 
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inhibitory IκBsome complex [148,172]. Future studies may distinguish between these 

mechanisms and examine the role of the IκBsome in limiting the proliferative capacity of 

antigen-stimulated B cells. 

 

2.4.  Models and Methods 

FlowMax source code, executable, and a short tutorial can be found in 

supplementary file FlowMax.zip. CFSE datasets used are provided as CFSEdatasets.zip 

supplementary file. 

 

2.4.1.  Ethics Statement 

Wildtype and gene-deficient rel and NFκB1 mice were maintained in ventilated 

cages. Animal studies were approved by the Institutional Animal Care and Use 

Committee of the University of California, San Diego. 

 

2.4.2.  Modeling experimental fluorescence variability 

For the cell fluorescence model, we adopted a mixture of Gaussians model for 

representing log-fluorescence CFSE histograms. The mean, µ, and standard deviation, 

σ, for a Gaussian distribution of cellular fluorescence in a specific generation, g, is 

calculated as 

0

10log (10  )g

g
r b s

µµ = ⋅ + +  ,                                                     (1) 

0 g CVµσ σ= ⋅=  ,                                                                   (2) 
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where r represents the halving ratio (~0.5), b the background (autofluorescence) [173], s 

is a shift parameter used to adjust the fluorescence of the whole distribution during 

fitting, and CV is the generation-invariant Gaussian coefficient of variation. While the CV 

is generation-invariant, fluorescence parameters are allowed to vary from time point to 

time point during fitting. These fluorescence parameters must be combined with 

generation-specific cell counts to describe a weighted fluorescence histogram that 

resembles typical CFSE data. Recent studies have shown that a mixture of Gaussians 

closely approximates experimental CFSE log-fluorescence histograms [45,111,112]. Our 

model is based on those suggested by Hodgkin et al [45]. In addition, Hasenauer et al 

suggest a mixture of log-normal distributions to approximate the combined heterogeneity 

in CFSE staining and autofluorescence [107]. A description of our model fitting strategy 

can be found below. 

 

2.4.3.  Modeling Population Dynamics 

For modeling population dynamics, we started with the generalized cyton model, 

which straightforwardly incorporates most biological features of lymphocyte proliferation 

[44], and forms the basis of the Cyton Calculator [45], the current state-of-the-art 

computational tool for interpreting CFSE-derived generational cell count data. To reflect 

the recent experimental finding that growing (i.e. responding) cells are resistant to death 

[21] we logically decoupled the division and death processes by explicitly removing the 

cell fate competition. In the so called, fcyton model, the fraction of responding cells in 

each generation (the Fs) control cell fate by ensuring that responding cells are protected 

from death, however the timing to the chosen fate (division or death) is still stochastically 

distributed. Specifically, the number of cells that divide and die for each cell generation, 

g, as a function of time, t, is found using 
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( ) ( )0 0 0

div

gn t F N tφ= = ⋅ ⋅  , (3) 

( )0 0 0(1 ) ( )die

gn t F N tψ= = − ⋅ ⋅ , (4) 

( ) ( ) ( )' ' '

0 1 1

0

2 ,

t

div div

g g g
n t F n t t t dtφ> − += ⋅ ⋅ −

∫

  (5) 

( ) ( ) ( ) ( )' ' '

0 1 1

0

2 1 .

t

die div

g g g
n t F n t t t dtψ> − += ⋅ − ⋅ ⋅ −

∫

  (6) 

In equations (3-6) ( )0 tφ , ( )1 tφ + , 0 ( ), tψ and 1 ( )tψ +  represent the cell age-dependent 

probability density functions that undivided cells will divide, divided cells will divide, 

undivided cells will die, and divided cells will die, respectively. The parameters N and iF , 

represent the starting cell count, and fraction of cells responding in generation i, 

respectively. The total number of cells, ( )gN t at time t and generation g is given by 

( ) ( ) ( )( )' ' '

0 0 0

0

,

t

div die

g
N t N n t n t dt= = − +

∫

 (7) 

( ) ( ) ( ) ( )( )' ' ' '

0 1

0

2 .

t

div div die

g g g g
N t n t n t n t dt> −= − −

∫

 (8) 

The progressor fractions, 1iF≥ , are calculated using a truncated Gaussian distribution 

similar to the “division destiny” curve suggested by Hawkins et al in the cyton model [44]:  



77 
 

 
 

 1

1 ( )
, ( 1) 1

1 ( 1)

0, ( 1) 1

i

cdf i
cdf i

cdf iF

cdf i

≥

−


− <


− −=


 − =


 , (9) 

where ( )cdf i  is the cumulative normal distribution with mean Dµ  and standard deviation

Dσ . Since lymphocyte inter-division and death times are well-approximated by log-

normal distributions [44], a total of 12 parameters are required to determine the cell 

count at any point in time in each generation: N, 0F , Dµ , Dσ , and eight parameters 

specifying the log-normal division and death distributions. For a full list of parameters 

and the ranges used during fitting, refer to Table 2.3.  

 

2.4.4.  Testing model accuracy with generated CFSE fluorescence time courses 

A total of 1,000 sets of randomized fcyton and fluorescence parameters within 

realistic ranges [21,44,45,174], were generated (Table 2.3). The randomized fcyton 

parameters were applied to construct cell counts for eight generations ten time points up 

to192 hours (Table 2.4). The randomly chosen fluorescence parameters were then 

applied to construct weighted fluorescence histograms (Figure 2.2A). To test the 

accuracy of cell fluorescence model fitting, we trained the fluorescence model on the 

generated histogram time courses one histogram at a time. During fitting, peak weights 

were calculated analytically using a non-linear regression approach (see below). 

Resulting best-fit model histogram areas under each peak were compared to their 

generated counterparts and the average percent errors of the counts normalized to the 

maximum generational count for each parameter set were plotted (Figure 2.2B, 2.3B, 

2.4A, 2.5A, 2.6A, 2.7A, 2.8A, and 2.9A). To test the fcyton cell population model, we 
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trained the model on known generational cell counts from the generated datasets. 

Resulting best-fit model generational counts and fcyton parameters were compared to 

their generated counterparts (Figure 2.2). To evaluate the accuracy of sequential model 

fitting, the generated datasets were used to first train the cell fluorescence model 

followed by a round of fcyton model fitting on the resulting best-fit generational cell 

counts using a simple squared deviation and a more complex ad hoc objective function 

(Figure 2.5 (blue) and Figure 2.4). Next, the generated datasets were used to first train 

the cell fluorescence model followed by a round of fcyton model fitting to the 

fluorescence histograms using the best-fit cell fluorescence parameters to generate log-

fluorescence histograms with peak weights determined by the population model, which 

were compared to generated histograms directly (proposed integrated fitting 

methodology). Different time point schedules were used when testing three or five time 

point time courses (see Table 2.4). For demonstrating how data quality affects fitting of 

typical time courses, we used the fitted experimental wildtype LPS cluster solutions to 

generate six separate in silico time courses: a low CV time course (8 time points, 

CV=0.18, ratio=0.5, background=100,shift=0), a high CV time course (8 time points, 

CV=0.23, ratio=0.5, background = 100, shift = 0), a generation count noise time course 

(8 time points, CV=0.18, ratio=0.5, background = 100, shift = 0, each peak count scaled 

randomly by 1+N(µ=0,σ=0.1)), a scaled noise time course (8 time points, CV=0.18, 

ratio=0.5, background=100, shift=0, number of cells in histogram scaled randomly by 

1+N(µ=0,σ=0.1)), an infrequent time point time course (4 time points from 24-144 h, 

CV=0.18, ratio=0.5, background=100, shift=0), and an early time point time course (4 

time points from 12-48 h, CV=0.18, ratio=0.5, background=100, shift=0). Each time 

course was fitted 100 times using our full methodology (Figure 2.1), and parameter 
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solution clusters were plotted (Figure 2.11). Refer to Table 2.4 for specific time point 

schedules used.   

 

2.4.5.  Developing measures of confidence for parameter fits 

We implemented a computational pipeline for estimating the redundancy and 

sensitivity of model solutions (Figure 2.1 step 3). A stochastic simulated annealing fitting 

procedure [175] was used to determine multiple best-fit solutions with random initial 

parameters (see below). Next, we used a normalized percent area error (NPAE) metric 

for solution quality estimation which ranges between 0% and 100% difference in 

histogram areas:   

[ ] [ ]
1 1 1

1 1

50

t r mj j

i i ii j k

t r j

ii j

Cells H k
N

M k
PAE

Cells

= = =

= =

⋅ −
= ⋅

∑ ∑ ∑

∑ ∑

,
 

(10) 

where i and j represent time point i, and experimental run j, and Cells, H, and M 

represent total cell counts, experimental discrete histogram density, and model discrete 

histogram density with m total bins, respectively. Solution candidates with NPAE within 

0.1 of the top were kept for quality estimation: 

 1 2{ , , , }nCandidates S S S= …
,
 (11) 

where xS  represents the xth set of best-fit parameters. These fits were subjected to one-

dimensional parameter sensitivity estimation, which establishes an upper and lower 

bound on each parameter value that would result in the weighted percent histogram area 

error (NPAE) to, increase by 1 (1% normalized area difference increase), yielding two 

sets of sensitivity values for each parameter: 

1 1 2 2{ , , , , , , }n nSensitivities L H L H L H= < > < > … < >
,
 (12) 
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where ,x xL H< >  represents a 2-tuple consisting of sets of lower and upper parameter 

sets for xS , respectively. Since more than one non-redundant set of parameters may 

exist, we developed an agglomerative clustering algorithm which is designed to combine 

clusters with the highest parameter sensitivity overlap, arriving at sets of non-redundant 

maximum likelihood parameter ranges. Briefly, the solutions are clustered by continually 

agglomerating pairs of clusters xC , yC  with highest total normalized overlap ,x yD  between 

parameters: 

[ ] [ ]( ) [ ]

[ ]

[ ] [ ]( ) [ ]

[ ]

,

( [ ])
,  

| [ ] | | [ ] [ ] |

( [ ])
,  
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(13) 

where xA  and yA are weighted parameter averages for clusters xC  and yC , respectively. 

The agglomerated parameter sensitivity ranges are defined to be the intersection of 

ranges supported by all candidate solutions in the cluster, resulting in increasingly tighter 

estimates of the maximum likelihood parameter sensitivity ranges as more solutions are 

incorporated into the cluster. Clustering is terminated when cluster pairs for which 

parameter ranges are overlapping for all parameters no longer exist. When clustering 

parameter ranges, we keep track of a weighted average value that is guaranteed to be 

within the overlap between ranges being clustered, however its position is weighted 

according to the relative maximum distance from the average of each of the starting 

cluster averages: 
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(14) 

where the distance ( d ), high( H ), average ( A ), and low ( L ) values are used to 

agglomerate clusters a and b into cluster c and letting aA < bA . Finally, since solution 

clusters represent linear independent combinations of parameters, solution clusters are 

sampled uniformly (n=1,000) within the clustered maximum- likelihood parameter ranges 

for all parameters simultaneously and clusters with median NPAE within 1% of the top 

cluster’s NPAE are kept to ensure that unrealistic parameter combinations were 

removed.  

A simple divide-and-conquer algorithm was chosen for calculating the parameter 

sensitivity ranges which operates on the best-fit fcyton model parameters, X = { , 0F , 

, , , , , , , , , }, and 

a constant values for the fit tolerance,ε  :  

ALGORITHM CalParamSensitivities (X, ε) 

( )MinScore AreaDiff X←   

Define array Upper of size |X| 

Define array Lower of size |X| 

FOREACH parameter ix X∈ : 

 iOriginal x=   

 
| max( ) |

1000

i i
x x

StepSize
−

←     

 WHILE 
| max( ) |

10000

i i
x x

StepSize
−

>  

N

Dµ Dσ
0Tdiv µ 0Tdiv σ 0Tdie µ 0Tdie σ 1Tdiv µ+ 1Tdiv σ+ 1Tdie µ+ 1Tdie σ+
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  i ix x StepSize← +   

  ( )CurrScore AreaDiff X←  

  IF (1 )CurrScore MinScore ε< ⋅ +   

i ix x StepSize← −  

   
2

StepSize
StepSize ←   

  ELSE 

   min( 2, max( ) )i iStepSize StepSize x x← ⋅ −   

  ENDIF 

 ENDWHILE 

 i iUpper x←   

 ix Original=   

ENDFOREACH 

FOR EACH parameter ix X∈ : 

 iOriginal x=   

 
| min( ) |

1000

i i
x x

StepSize
−

←     

 WHILE 
| min( ) |

10000

i i
x x

StepSize
−

>  

  i ix x StepSize← −   

  ( )CurrScore AreaDiff X←  

  IF (1 )CurrScore MinScore ε< ⋅ +   

i ix x StepSize← +  
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2

StepSize
StepSize ←   

  ELSE 

   min( 2, min( ))i iStepSize StepSize x x← ⋅ −   

  ENDIF 

 ENDWHILE 

 i iLower x←   

 ix Original=   

ENDFOREACH 

RETURN Upper and Lower 

 

Since the value of the tolerance parameter ε, or the maximum percent increase 

in the overall normalized percent area error (NPAE), is an important implicit parameter 

for sensitivity analysis, an appropriate value must be used. In our experience, a value 

that is too small resulted in small sensitivity ranges for each parameter tested and a 

large number of non-overlapping solutions. Conversely, high tolerance resulted in large 

acceptable parameter sensitivity ranges, increasing the chance that linear sampling of 

parameters introduced errors into sensitivity estimation and underestimating the 

sensitivity of the solution to model parameters. The parameter ε was set to 1% 

normalized percent area error (NPAE) empirically because this resulted in parameter 

sensitivities of approximately ±10% of the best-fit parameter value for the determinable 

parameters such as F0, Tdiv0, and Tdiv1+. In addition, this resulted in fewer than three 

solution clusters for experimental datasets. Conversely, values of ε smaller than 1% 

resulted in more than five solution clusters for the experimental datasets.  
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The main motivation for clustering parameters is to identify solution uniqueness 

since more than one set of model parameters can sufficiently describe the data. To 

determine if more than one solution space can fit the data, we perform a parameter 

sensitivity analysis for each best-fit solution then successively combine solutions with the 

largest overlap in the solution space until only non-disjoint solutions remain. By doing 

this we guarantee that the clustered solution space(s) are non-redundant.   

Since parameter fits are obtained using a non-deterministic fitting procedure, the 

best-fit parameter solution is only an estimate of the true solution. Furthermore, we 

established that parameters exhibit widely varying degrees of sensitivity that is heavily 

determined by the underlying dataset. Therefore, we first estimate the sensitivity of each 

best-fit parameter in a solution, obtaining a set of independent lower and higher 

parameter values for each parameter, p.  Repeating the fitting n times we get the set of 

best-fit parameter ranges for parameter p: 

. { },1 ,1 ,2 ,2 , ,[ , ],[ , ], ,[ , ] .p p p p p p n p nS L H L H L H= …  

We assume that each distribution of p found is equally likely and therefore the probability 

of p is modeled as: 

, ,

1 , ,

( )1
( | ) ,

n
x p i p i

p p

i p i p i

I L x H
f p x S

n H L
φ

=

≤ ≤
= = =

−
∑

 

Where , ,( )p i p iI L x H≤ ≤ is the indicator function and returns 1 if p  is within the ith range.  

In other words, 
p

φ  assumes a linear combination of uniform distributions for , which 

comes about if one marginalizes the distribution on all other model parameters.  Since 

 represents the probability distribution model of the parameter p given the observed 

best-fit ranges, the region of maximum likelihood is the range of parameter values such 

that the overlap count is maximized.  Furthermore, by ensuring that only overlapping 

p

p
φ
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parameter ranges are clustered together, we guarantee that only one such maximum 

region exists for each cluster:  

{ }

{ }

,max

,1 ,2 ,

,1 ,2 ,

( | ) [ , ],

max , , ,

min , , ,

p p p p

p p p p n

p p p p n

f p x S x L H

L L L L

H H H H
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∧

∧

= = ∀ ∈

=

=

…

…

 

(15) 

The maximum likelihood estimator for  are all values of  within the range [ , ]
p p

L H
∧ ∧

 

or the intersection of all of the parameter ranges in 
p

S . In other words,  
p

L
∧

 and 
p

H
∧

are 

the maximum likelihood estimators of the lower and upper value of , due to the 

resolution of the data and methodology (i.e. the probability of  is uniform for any ith 

best-fit sensitivity range , ,[ , ]
p i p i

L H ). We report the region of defined by  and for 

which is maximized, or the mode of .  

An added potential benefit of clustering is to minimize bias in how we calculate 

the sensitivity of each solution. Since solution spaces are created by varying parameters 

around the best-fit value, an implicit parameter is the amount by which a solution can 

worsen as we vary each parameter independently. If the allowed error is inappropriate, 

the clustering will either return too many similar solutions (error tolerance too low) or 

both clusters with poor and good fits (tolerance is too high). The later happens because 

only the intersection of parameter spaces is kept during the agglomeration process, 

which means that an overestimate of the parameter range for solutions about a region 

containing a local minimum will still only contain good fits, while an over estimate of the 

parameter range for solutions about a region containing poor fits will contain poor 

solutions. A subsequent filtering of the solution clusters can be used to remove these 

p p

p

p

p pL
∧

pH
∧

p
φ

p
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“artifact” clusters containing poor solutions and we can alleviate the bias in selecting the 

error tolerance parameter. 

Choosing the representative parameter value (the cluster “average”) for a 

specific cluster is somewhat arbitrary as the probability of the parameter within a range 

was assumed to be uniform during clustering. In reality, the probability of any parameter 

 is likely to decrease with the distance from a best-fit value. Therefore when clustering 

parameter ranges, we keep track of a weighted average value of  that is guaranteed 

to be within the overlap between ranges being clustered, but its position is weighted 

according to the relative maximum distance from the average of each of the starting 

cluster averages: 

[ ] [ ]

,

,

,

a c a

b b c

b a
c c c c c c c

a b a b

d H A

d A L

d d
A H L L H H L

d d d d

= −

= −

= − + = − −
+ +

 

(16) 

where the distance ( d ), high( H ), average ( A ), and low ( L ) values are used to 

agglomerate clusters a and b into cluster c and letting aA < bA . 

The pseudo code for clustering the candidates by maximizing the parameter sensitivity 

overlap given the set of candidate best-fit fcyton parameter values and their 

corresponding lower and upper bound sensitivity ranges is shown below: 

ALGORITHM: ClusterBySensitivityAgglomeration (Candidates, Sensitivities) 

Define { } { } { }1 1 2 2{ , , ,  }n nClusters C S C S C S= = = … =  

Define 1 1 2 2{ , , , }n nAverages A S A S A S= = = … =  

Define 1 1 2 2{ , , ,  }n nLows D L D L D L= = = … =  

Define 1 1 2 2{ , , , }n nHighs U H U H U H= = = … =  

p

p
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Define best_c1 = best_c2 = -1 

Define largestOverlap =0 

Define clustering = true 

WHILE clustering = true 

 FOR , , a bA Averages A Averages a b∈ ∈ ≠  

  Define dist = 0 

  FOREACH parameter, i 

   Define  

[ ] [ ]( ) [ ]
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,  

| [ ] | | [ ] [ ] |
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a a b b

a b b

a b

a

b

i

a a b b

a

A i U i A i D i
if A A

A i U i A i U i

A i U i A i D i
if A A

A i U i A i U i

d

 + − −
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+ + +

 + − −
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=


+ + +







 

   dist = dist+di 

  ENDFOREACH 

  IF dist > 0 and dist > largestOverlap 

   largestOverlap =dist 

   best_c1 = a 

   best_c2 = b 

  ENDIF 

 ENDFOR 

 IF best_c1 ≠ -1 and best_c2 ≠ -1 

  Define , ,newA newD newU   

  FOREACH parameter, i 

   Define x = y=z=0 

   IF _ 1[ ]
best c

A i  < _ 2[ ]
best c

A i  
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    _ 2[ ]
best c

x D i=   

_ 1[ ]
best c

y U i=  

_ 2 _ 1[ ] [ ]
best c best c

z A i A i= −  

   ELSE 

    _ 1[ ]
best c

x D i=   

_ 2[ ]
best c

y U i=  

_ 1 _ 2[ ] [ ]
best c best c

z A i A i= −  

   ENDIF 

Define 
int

z y
x

y x

⋅
=

+
 

[ ]newA i =  _ 1 int[ ]
best c

A i x+  

[ ]newD i =  

_ 1 _ 1 _ 2 _ 2[ ] max( [ ] [ ], [ ] [ ])
best c best c best c best c

newA i A i L i A i L i− − −  

 

_ 1 _ 1 _ 2 _ 2[ ] min( [ ] [ ], [ ] [ ]) [ ]
best c best c best c best c

newU i A i U i A i U i newA i= + + −   

 

  ENDFOREACH 

  
c1 2best ( / {A , }

cbest
Averages Averages A= )∪  newA  

   (Lows Lows= /{ _ 1best c
D , _ 2best c

D })∪  newD  

   (Highs Highs= /{ _ 1best c
U , _ 2best c

U })∪  newU  

   (Clusters Clusters= /{ _ 1best c
C , _ 2best c

C })∪ _ 1 _ 2(
best c best c

C C ) 

 ELSE 
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  clustering = false 

 ENDIF 

ENDWHILE 

RETURN <  , , ,Averages Lows Highs Clusters > 

END 

 

2.4.6.  Comparing FlowMax to the Cyton Calculator 

We used counts derived after fitting the cellular fluorescence model to the 

experimental wildtype B cell proliferation time courses stimulated with LPS (Figure 2.13), 

to repeatedly fit the cyton model using the Cyton Calculator [45] and compared to results 

from fitting the cyton model using FlowMax, a tool that implements our methodology and 

solution quality estimation procedure (Figure 2.10A). For the Cyton Calculator we used 

counts derived from fitting the cellular fluorescence model as input, while for FlowMax, 

we used the fluorescence data directly. To find Cyton Calculator solutions, we carried 

out Cyton Calculator fitting multiple times using varied starting parameters values 

sampled from ranges in Table 2.3, as suggested. Most-parameter combinations yielded 

qualitatively poor fits (determined visually by comparing total and generation cell counts 

to experimental data), and were discarded. Four qualitatively good solutions, determined 

visually by comparing total and generational cell counts to experimental data, were 

found using starting parameters listed in Table 2.2 (Figure 2.10B, blue dots). Using 

FlowMax involved 1,000 fits, automated solution filtering, parameter sensitivity 

estimation, and solution clustering. This allowed visualization of a family of solutions 

sampled from the maximum-likelihood sensitivity ranges for the only solution cluster 

identified. 
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2.4.7.  Testing how our methodology is affected by the choice of objective 

function 

To analyze how our methodology is affected by choice of objective function 

during fitting, we used 1,000 generated time courses to fit the fcyton model using best-fit 

cell fluorescence parameters as adaptors (our proposed integrated methodology). We 

tested three objective functions for comparing the model histograms to generated 

histograms: a simple mean sum of absolute deviations (MAD): 
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(17) 

a mean root sum of squared deviations (MRSD) objective function:  
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(18) 

and a mean root sum of squared deviations with Pearson correlation (MRSD+) objective 

function: 
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(19) 

In the above equations,
 

j

iCells  is the total cell count in run j for time point i, and cor(x,y) 

represents the Pearson correlation coefficient between the experimental histogram, 
j

iH , 

and modeled histogram, iM . See also Figure 2.10. 

 

2.4.8.  Generating chimeric solutions from two phenotypes 
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To dissect the contributions of several components of complex phenotypes, we 

used two sets of parameters (i.e. wildtype and mutant) and generated a “chimeric” set of 

parameters with combinations of F0, F1+ (Dµ, Dσ), Tdivs (E[Tdiv0], s.d.[Tdiv0],E[Tdiv1+], 

s.d.[Tdiv1+]), and Tdies (E[Tdie0], s.d.[Tdie0],E[Tdie1+], s.d.[Tdie1+]), copied from either 

set. The generated “chimeric” phenotypes were visualized (see below) and qualitatively 

compared to visualizations from the two originating phenotypes. In the case of NFκB1-/- 

anti-IgM stimulated B cells, this analysis confirmed that misregulation of the late 

progressor fractions (F1+) constituted the primary phenotype (Figure 2.12C). 

 

2.4.9.  Visualizing solution clusters 

Solution clusters were defined as sets of maximum-likelihood parameter 

sensitivity ranges that are overlapping between all solutions in a cluster. To visualize 

these solutions, parameter sets were sampled uniformly from within the clustered 

maximum-likelihood parameter sensitivity ranges independently for each parameter. For 

parameter visualization, the sampled parameters were used to plot the four lognormal 

distribution probability density functions (Tdiv0, Tdie0, Tdiv1+, Tdie1+), normalizing by the 

maximum probability per distribution. The fraction of responding cells in each generation 

(Fs) are plotted using connected dots on a scale between 0 and 1 for each generation (x 

axis), with the larger dot representing the independent F0 parameter (Figure 2.12). For 

population count visualization, the sampled parameter values were used to calculate cell 

count time series data by solving the fcyton model with the sampled parameters (Figure 

2.12C and Figure 2.14). FlowMax provides options for plotting either the sampled 

solutions or the best-fit solutions found during model fitting. The best-fit cluster average 

solution is shown as an overlay for each experimental dataset (Figure 2.13).  
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2.4.10. Using FlowMax to phenotype CFSE time courses 

We used a computational tool, which implements all of the steps for fitting 

experimental CFSE B cell datasets. A succinct tutorial is included in the supplementary 

text (Supplementary File 2.3). In brief, we used our computational tool to construct log-

fluorescence CFSE histograms of viable B cells from raw CFSE data (see experimental 

methods below). For each log fluorescence histogram, the average fluorescence of 

undivided cells was selected manually based on previous time points. Then the cell 

fluorescence parameters were automatically determined for each time course subject to 

user constraints for the coefficient of variation, background autofluorescence, and die 

halving ratio, and shift of the undivided peak as well as an estimate of the maximum 

number of generations to be fitted to each time course (The default is set to eight 

[45]).The fitted cell fluorescence parameters were then used during the population 

dynamics fitting step to represent generational cell counts derived from the fcyton model. 

The population dynamics fitting step was repeated 1,000 times, poor results were 

removed from consideration, parameter sensitivity ranges were calculated and solutions 

were clustered to estimate solution redundancy. The resulting best-fit families of 

solutions (determined by average error in histogram area sampled from parameter 

sensitivity ranges) for each experimental condition were compared. 

 

2.4.11. Experimental Methods 

Primary splenocytes were isolated from 6-8 week old mice, naïve B cells purified 

using magnetic bead separation (Miltenyi Biotec), labeled with 4 µM 5(6)-

Carboxyfluorescein diacetate, N-succinimidyl ester (CFSE) dye (Axxora) for 5 minutes at 

room temperature, and stimulated with 10 µg/mL LPS (Sigma) or 10 µg/mL goat anti-

mouse IgM (Jackson Immunoresearch Inc.) B cells were grown in fresh media with 1% 
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penicillin streptomycin solution (Mediatech Inc.), 5 mM L-glutamine (Mediatech Inc.), 25 

mM HEPES buffer (Mediatech Inc.), 10% FCS and 2 µL/500 mL BME (Fisher Scientific) 

at a concentration of 2.5x105 cells/mL in 48 well plates at 37oC for a period of 6 

days.Cells were removed from media, stained with 10 ng/mL propidium iodide, and 

measured using an Accuri C6 Flow Cytometer (Accuri Inc.) at 28, 40, 43, 54, 59.5, 67.5, 

74.5, 89, and 145 hours post stimulation. CFSE histograms were constructed after 

software compensation for fluorescence spillover and manual gating on viable (PI-

negative) B cells using the FlowMax software. All measurements were performed in 

duplicate (B cells from the same spleen were cultured in separate wells, two wells per 

time point to ensure that each time course represented a single population of cells 

subject to only experimental variability). 

 

2.4.12. Description of CFSE time courses 

A typical CFSE time course consists of a set of time points. Each time point 

consists of one or more experimental bulk CFSE fluorescence measurements 

(experimental runs/replicates). Each experimental run consists of a set of CFSE 

fluorescence measurements which are typically represented by 2D log-transformed (or 

log-fluorescence) histograms. We assume that the total number of cells per run is also 

known.  

 

2.4.13. Fitting the cell fluorescence model 

The simulated annealing approach [176] was used to arrive at the set of cell 

fluorescence parameters (CV, Ratio, Background, and Shift) that best describe a log-

fluorescence histogram. Each simulated annealing optimization routine was initialized 

such that for time {1,2, , }t n∈ … : 
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where the subscripts “min” and “max” signify the given lower and upper limit for a 

parameter, respectively. We used the best-fit CV parameters from each time point to 

constrain the CV parameter range for the subsequent time point. This was useful for 

fitting later time points for which individual peaks were harder to discern without some 

prior knowledge of the approximate CV from previous time points.   

In summary, if both early and late time points are available, FlowMax uses 

information from fitting the early time points to constrain the cell fluorescence 

parameters for later time points (described in the supplementary section “Fitting the cell 

fluorescence model”). In this way, if the CV or dye halving ratio “drifts” between time 

points, the early time points can be used to guide the fitting of these parameters for later 

time points. However, the position of the undivided population is one of the parameters 

supplied by the user for each histogram as it depends on the experimental conditions 

(cell staining conditions, cell type, dye catabolism, cytometer setup, etc.). Instead of 

trying to model how these factors affect the position of the undivided peak across 

time/generations (which is computationally intractable [98,99] and outside of the scope 
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of this study), we rely on the user to specify the approximate position of the undivided 

peak based on the location from previous time points. To help with this, we include a 

fourth “shift” term in the model to find the optimal peak placement.  

A score-based annealing schedule was used during simulated annealing. Initial 

temperature was set to half of the fit score of the initial random parameter set. The 

minimum temperature was set to 1/1,000 of that value. Temperature was multiplied by 

0.99 at the end of each iteration. In addition, if a better solution was found, the 

temperature was set to the minimum of the initial temperature or the current temperature 

multiplied by 1.1. This “heating” was used to discourage local trapping of the solution. In 

practice, this artificial heating helped in cases where solutions were stuck for many 

iterations in a high score parameter space but proceeded toward a better solution toward 

the end of the optimization, in which case, the sudden frequent improvement in the 

solution “reheated” the system and allowed for optimization to finish. While this approach 

resulted in satisfactory optimization, other optimization schemes of equal or better 

efficiency may be possible. 

A scoring function which penalized both the squared distance as well as the 

difference in correlation between the fluorescence histograms for a particular time point, 

t, and experimental run, r 
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(26) 

was used where normalH  is the histogram of d observed fluorescence values, M is the 

model histogram of fluorescence values, n is the number of cells measured 

experimentally, and cor(x,y) represents the Pearson correlation coefficient between the 

histograms of x and y. The average run score was used as the time point score, and the 
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average time point score was used as the overall objective function during fitting. The 

scoring function was manually optimized for experimental data fitting: correlation was 

included to help guide initial optimization toward a suitable histogram shape.  

While the choice of algorithm for fitting the cell-fluorescence model did not 

qualitatively affect the conclusions, we desired a fitting algorithm which would allow us to 

quickly find appropriate cell fluorescence model parameters (i.e. peak CV, ratio between 

peaks, autofluorescence, and offset from user-specified µ0), while taking into account 

solutions from previous time points. We also wanted to exclude solutions that were 

outside of user-specified ranges. In addition, we wanted a fitting approach which dealt 

with solution trapping in local minima, as is often the case with noisy experimental data.  

We are not aware of a conventional method for achieving this efficiently. Therefore, we 

selected the stochastic simulated annealing approach for fitting the model parameters, 

while explicitly solving for peak weights during each step (using a conventional non-

linear regression approach described above), and allowing for information from earlier 

time points to contribute to the fit. Our evaluation of the fitting methodology suggests 

good agreement between fitted and generated data (see Figure 2.2); however other 

methods for fitting may also be appropriate. In addition, our methodology can be 

adapted to incorporate other models for cell fluorescence and/or fitting approaches if 

desired by changing the cell fluorescence computational module.  

 

2.4.14. Peak weight calculations during cell fluorescence model fitting 

The problem of solving for the optimal model weights given the cell fluorescence 

parameters can be formulated as a nonlinear least squares regression problem. Given a 

log-fluorescence histogram with fluorescence, x , and bin size ∆ x : 
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Defining the cellular fluorescence model solution, ( )F x , as a weighted sum of Gaussian 

distributions, ( )
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where w represents a weight multiplier and ( , )
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To solve for the optimal set of weights, minimize E.  Rewriting E:  
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To solve the minimization problem, solve:  
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M is a G x G matrix and both c
�

 and  w
�

are vectors of size G, where G is the number of 

generations being modeled. To calculate each element of M, and c
�
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where xG  is the Gaussian distribution ( , )x x xG  representing fluorescence distributions 

for cells in division class x from equations (1) and (2). Solving for the optimal weights,  ,w
�

 

associated with each Gaussian distribution: 
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we further ensure that the weights are non-negative and sum to 1: 
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By solving for the weights at the end of each iteration of fluorescence model optimization 

(see above), excellent fluorescence model parameters were found relatively quickly. 

Furthermore, solving explicitly for the peak weights subjected only the cell fluorescence 

model parameters to optimization, minimizing fitting bias that could arise due to errors in 

weight optimization. 

2.4.15. Fitting the fcyton model to cell counts derived from fluorescence 

histograms 

In order to fit the fcyton cell population model parameters ( N , 0F , Dµ , Dσ , 

0Tdiv µ , 0Tdiv σ , 0Tdie µ , 0Tdie σ , 1Tdiv µ+ , 1Tdiv σ+ , 1Tdie µ+ , 1Tdie σ+ ) to sets of 

division specific cell counts, a simulated annealing [176]  approach was used. 

Specifically, fitting started with 4,000 iterations of randomized guess and check trials to 

establish a coarse approximation of the parameters. Then the best parameter set out of 

the 4,000 randomly selected parameter sets was used as the starting point for simulated 

annealing. Prior to the first round of optimization by simulated annealing, the 

temperature, T, was set to the current best-fit score, and Tmin, or the stopping 

temperature, was initialized to 1/100,000 of T. Each simulated annealing iteration 

consisted of three steps: the current parameters were modified slightly (Gaussian 

sampling with sigma = 1% of the current value), the fit score was calculated for the new 

parameter set, and the new parameter set was adopted with probability p such that: 

1,      

,  
diff k

T

if thenewscore was lower

p

e otherwise
⋅

−





=






.  

(45) 

where diff is the new score minus the previous score and k is a score scaling factor.  

Similarly to the optimization process used to fit the fluorescence model, if the 

new score was an improvement over the current global best fit score, the temperature 
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was set to the minimum of the current temperature*1.1 or the initial temperature. This 

artificial “heating” was implemented to ensure that all improving parameter sets find a 

local minimum after leaving a parameter space of relatively poor fit scores. The 

annealing factor was 0.9995.  

Two objective functions were used during this optimization process: a simple 

objective function consisting of the square deviation between the model and generated 

counts, and a more complex optimized objective function that takes into account multiple 

difference measures: 
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(47) 

where Count[t] represents the total cell count at time point t, and Prop[i,t] is the 

proportion of cells at time point t in generation i. The cor(x,y) function represents the 

Pearson correlation coefficient between the functions x and y.  In the optimized scoring 

function, G is defined as the maximum number of division classes at time point t such 

that Countdata[G+1] = 0 and G > 6. Therefore, all cells in division classes > 6 are treated 

as one population in order to reduce the penalty for cells assigned to division classes 7 

and higher. This was implemented due to an increased difficulty in discriminating CFSE 

peaks after 6 divisions experimentally. This complex objective function was developed in 

a step-by-step manner, starting with a basic sum of squared differences objective 
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function (46), followed by the addition of correlations, and the use of ad hoc weights for 

each part of the scoring function.  The annealing schedule was optimized to allow for 

efficient optimization of both fit scores. 

After an initial round of simulated annealing, a subsequent fast round of localized 

simulated annealing centered on the optimal solution was carried out. Analogously to the 

first round, the temperature was set equal to the fit score for the current optimal solution 

and annealing continued until the temperature dropped below 1/1,000 of this 

temperature. At the beginning of each iteration a new set of parameters was generated 

randomly by modifying the best parameter set (Gaussian sampling with sigma = 0.1% of 

the current value). This limited the search to the local parameter space around the best-

fit solution. In practice this often only yielded minor improvements to the fit, but on rare 

occasions, allowed a very poor solution to be improved significantly before it was used in 

the post-processing steps following model parameterization. 

 

2.4.16. Fitting the fcyton models to fluorescence histograms directly 

Analogously to the fitting approach used to fit the fcyton models to generational 

cell counts, a stochastic  method was used to fit the models to experimental 

fluorescence histograms directly. The fluorescence model was used to adapt the derived 

model cell counts to log-fluorescence histograms. Specifically, for each set of predicted 

division-specific cell counts a fluorescence histogram was generated using the 

previously fitted cell fluorescence parameters and generational cell counts as weights 

(see Figure 2.2A). This facilitated the use of a relatively simple objective function for 

calculating the difference between the model fluorescence histograms and the 

experimental fluorescence histograms. A manually optimized objective function which 

accounted for the difference between the fluorescence histograms, the correlation 
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between the fluorescence histograms, and the proportion of the total cells represented in 

each histogram was used: 
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where j

i
Cells  is the total cell count in run j for time point i, and cor(x,y) represents the 

Pearson correlation coefficient between the experimental histogram, j

i
H , and modeled 

histogram, iM  . We also tested if simpler scoring functions were sufficient for fitting 

generated datasets. Specifically we tried a simple mean absolute deviation objective 

function (MAD): 
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as well as a mean root square deviation objective function: 
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While even the simplest scoring function we tried produced similar results, the more 

complex objective function produced lower average errors in generational counts and 

outperformed the simplest (MAD) objective function when fitting the fcyton N parameter 

(see Figure 2.9). Therefore, we decided that the more complex objective function 

(MRSD+) was justified. 
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Chapter 3 

Observing cell-to-cell variability in fate 

decisions and timing 

B lymphocyte population dynamics dictate the veracity of the immune response 

and vaccine effectiveness. Yet individual cells appear to undergo division or death 

stochastically possibly as a result of a race of the two processes running in parallel. To 

characterize the behaviors of hundreds of cells under various conditions, we developed 

a time-lapse microscopy experimental and semi-automated tracking pipeline which 

enabled the accurate measurement of cell size trajectories and lineages across six days 

and eight generations. Strikingly, we found that cells decide early whether to enter a 

rapid growth phase during which they are protected from death.  This was verified using 

three different approaches: direct measurement of cell death in growing cells within a 24 

h period, using the observed time to growth, time to division, and time to death 

distributions to predict the expect fraction of dying cells that grow, and by using two 

different population models (one assuming a race, and another that assumes 

commitment to decision) to fit CFSE time courses. All three approaches showed that a 

decision is more congruent with the observed behavior, while a molecular race between 

division and death is not. 
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3.1. Introduction 

B cells are immune cells that are central to both the innate and adaptive immune 

response.  When B cells encounter pathogens, a specific class of TOL-like receptors 

(TLRs) recognizes specific pathogen associated molecular patterns (PAMPS) such as 

unmethylated bacterial DNA (CpG), and initiates a dynamic cellular response [1]. 

Individual B cells interpret these signals by undergoing 1-6 rounds of cell cycling, 

followed by cell cycle exit, and death by programmed cell death [21]. Individual cells 

make up the populations response, which characteristically lasts several days to a week 

and produces a dramatic increase in the number of activated B cells for several days, 

followed by a return to starting cell counts [43]. Importantly, while the population 

response is robust, the behavior of individual cells is seemingly stochastic since only a 

fraction of cells respond in each generation and because the timing of division and death 

is highly variable between these genetically identical synchronized cells. In fact, the 

timing of division and death is well-modeled by long-tailed distributions (e.g. log-normal) 

as a function of cell age, resulting in a distribution of cells across many generations after 

only a few days of stimulation [21,44]. Furthermore, progenitor cells (generation 0) 

typically take much longer to divide or die, while dividing cells (generation 1+) divide 

again within six to twelve hours [21,45]. Understanding this stochastic multi-scale 

process is of paramount importance as it is essential for vaccine design and 

dysregulated in B cell lymphomas and can lead to autoimmune diseases, and immune 

deficiency. 

Previous studies offer evidence that the inherent variability in timing of the 

apoptosis is caused primarily by cell-to-cell protein abundance [24] and presumably 

variability in cell-cycle regulators generate cell-to-cell variability in cell-cycle duration, 

however, it is still unclear if variability in timing of competing division/death processes 



106 
 

 
 

determine fate. There are competing theories for how fate (i.e. whether the cell divides 

or dies) is determined. Recent studies support a molecular race hypothesis, which posits 

that cell-cycle and apoptosis processes are proceeding concurrently within cells, and 

that fate is determined by the faster of these mutually exclusive outcomes. Specifically, 

an age-structured population model, the cyton model, which incorporates competition 

between division and death fates can reproduce the major population features and 

produces excellent fits to experimental datasets[44]. Furthermore, a recent study [46] 

demonstrated that a probabilistic model that assumes correlation of fate timing between 

siblings and mutual censorship between competing processes (e.g. division and death) 

can reproduce the correlations between non-concordant fates as well as the observed 

censored distributions for the time to divide, time to isotype switch, and time to 

plasmablast differentiation (although the best-fit censored model death time distributions 

were typically earlier than the observed death distributions). On the other hand, there is 

also evidence that cells decide their fate early and are protected from the alternate 

outcome. Single-cell time-lapse videos of stimulated B cells revealed that cells that died 

did not grow, while cells grew prior to dividing in all except the last and pen-ultimate 

generations, indicative of a lack of fate competition [21]. Furthermore, the authors found 

that the size of the progenitor cells was predictive of the number of divisions suggesting 

that fate is decided in the initial generation. As a result, we described the fcyton model, 

which unlike the cyton model, commits responding cells to division, and showed that cell 

commitment to a specific fate nevertheless resulted in excellent model fits for all 

experimental datasets [47]. Providing further support for a molecular decision, levels of 

cell cycle inhibitor p21, which directly inhibits CDK2 activity was recently shown to be 

sufficient for promoting cell-cycle reentry in cell lines and human primary cells[48]. 
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Knowing whether cells make decisions will determine how we model cell fate 

determination on the molecular level and in turn informs experimental and drug design. 

 

3.2. Results 

 

3.2.1. Time-lapse microscopy reveals generation specific single-cell behavior 

First, in order to determine the key cellular behaviors of the response, we tracked 

1,295 live primary B cells using a time-lapse microscopy pipeline (Figure 3.1A). Since 

manually tracking hundreds of individual cells is impractical, while automated tracking 

suffers from rapid error accumulation, we developed a semi-automated computational 

tool which leverages human input to minimize errors, while ensuring tractability. Analysis 

of wildtype B cells growing under high CpG stimulation, confirmed the expected 

population expansion followed by a contraction period during which most cells died by 

programmed cell death (Figure 3.1B). After cells that died from mechanical death were 

filtered out (Figure 3.2), we see that approximately 38% of the progenitor cells divided 

while subsequent generations showed a steady decrease in the fraction of cells dividing 

in each generation with approximately 85% cells dividing in generation 1 but just 9% of 

cells dividing in generation 6 (Figure 3.1C). To quantify cell response, we classified cell 

size trajectories into two categories: a) cells that grew by at least 350 µM3 or reached a 

final size of at least 800 µM3 by the time of their division or death, dubbed “growers” and 

b) cells that did not which we labeled as “non-growers” (Figure 3.1D). Averaging the 

growth trajectories of “growers” (Figure 3.1E) and “non-growers” (Figure 3.1F) in each 

generation normalized by percent cell lifespan revealed that progenitors (generation 0) 

that grew exhibited a growth delay followed by rapid growth to ~ 5 fold their starting size, 

while “non-growers” by did not exhibit the delay phase, and started growing immediately 
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after mitosis. Furthermore, “grower” cells grew to the same size on average in all but 

perhaps the last generation. While “non-growers” by definition did not exhibit significant 

growth, they nevertheless typically exhibited some growth on average, especially in 

generation 1.  
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Figure 3.1. Time-lapse microscopy reveals two distinct generation-dependent 
growth patterns for B cells.  A) Overview of the time-lapse microscopy experimental 
and analysis pipeline. B cells were purified from mouse spleen, stimulated with TLR9 
agonist CpG, imaged on an environmentally controlled microscope for six days and 
tracked using a semi-automated tracking tool to quantify generation-dependent cell 
statistics. B) Generational cell counts relative to initial count. C) The observed fraction of 
cells dividing or dying in each generation. Error bars = 1/n D) Growth trajectories of 

generation 0 cells that grew by more than 350 µM3 or ended with a volume of at least 

800 µM3 (blue) and trajectories of generation 0 cells that did not end with a large volume 
(black). E) Cell size trajectories as a function of % lifetime for growers in each generation 
(colors as in B). F) Cell size trajectories as a function of % lifetime for non-growers in 
each generation (colors as in B).  
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Figure 3.2. The minimum biologically-relevant death time in progenitor cells is 

distinct. To filter out cells that died due to artificial manipulation during preparation 

(mechanical death), dying generation 0 cells were binned according to their death time 

and biologically-relevant apoptosis was defined as death that occurred after the first 

wave of early death (A). Similarly, when ordered by death time, cells with death times 

higher than 12 h typically show increased separation from the previous death time (B).  

Cells that were dead at the start of time-lapse imaging were not included in this analysis. 
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3.2.2. B cell fate is decided: growing B cells are protected from death 

To further establish the fundamental cellular mechanisms, we next tested if the 

cell-cycle and apoptosis were indeed parallel racing processes (Figure 3.3A), or if 

growth was predictive of fate (Figure 3.3B). Intuitively, if cells “decide” their fate early, 

one would expect most growing cells to divide, and vise-versa. We tallied the fraction of 

“growers” that divided and died within the first 36 (generation 0) or 24 hours (generations 

1+) for each generation (Figure 3.3C) as well as the fraction of “non-growers” that 

divided and died within the same periods for each generation (Figure 3.3D). Our results 

indicate that almost all “growers” divided in the first four generations, followed by loss of 

decision robustness in the last two generations, indicative of an early decision that 

predisposed B cells to a particular fate (Figure 3.3B). Interestingly, except in the first 

generation, there was a significant fraction of “non-growers” that divided, due to primarily 

poor growth prior to the last division (Figure 3.4). To further test this important 

distinction, we used the observed time to decide (start of growth), time to division, and 

time to death of progenitor cells, and calculated the expected lower bound probability 

that a dying cell would have grown, given the molecular race (Figure 3.3A), and decision 

(Figure 3.3B) models (Figure 3.3E-F).  Our analysis revealed that even under relatively 

relaxed assumptions, the data are inconsistent with both processes occurring 

simultaneously in cells (i.e. race). On the other hand, a decision which commits cells to 

either fate is more appropriate as grown dead cells are rare. In other words, because 

time to death is typically earlier than time to division, and because time to decision (i.e. 

growth start) is typically much earlier than division or death our analysis predicts most 

cells to start growing prior to death if the two processes were indeed running in parallel 

within B cells.  
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Figure 3.3. B cells decide to divide or die and are protected from the alternate fate 
A) Flowchart depicting activated cell fate determined by a race between division (green) 
and death (red) as well as hypothetical division and death time distributions before and 
after mutual censorship B) Flowchart showing an early commitment to one fate, and the 
independent division (green) and death (red) time distributions. C-F) Analysis of 
response (growth), division, and death statistics for WT B cells. Error bars = 1/n. C) 
Measured generational probabilities that a growing (C) or non-growing (D) cell divided 
(green) or died (red) within a 24 hour period (12-36 h for gen 0). E) Measured cumulative 
distributions for the time to start growing (blue), time to divide (green), and time to die 
(red) of generation 0 cells. Distributions were used to calculate the lower bound 
expected probability that a dying cell had started to grow (F) assuming a molecular race 
between fates or an early commitment to one fate, as compared to the measured 
probability. For further details please see supplementary materials. 
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Figure 3.4. Cells typically grow less prior to the last division. Wildtype purified naïve 

B cells were stimulated with 250 nM CpG and tracked by time lapse microscopy. The 

fraction of “non-growing” cells that divided (A green) or died (A red) are shown for each 

generation. Error bars = 1/n.  The quantification was repeated with penultimate dividing 

cells removed from consideration (B).  
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3.2.3. A molecular race cannot recapitulate progenitor death timing 

Alternatively, if the CFSE deconvolution methodology developed in chapter 2 

(Figure 3.5A) can be used to test the decision and molecular race hypothesis.  To do 

this, we obtained CFSE fluorescence histograms for populations of B cells from the 

same mouse by flow cytometry. FlowMax deconvolution of the datasets into the 

maximum-likelihood cyton (Figure 3.5B) model and fcyton model (Figure 3.5C) 

parameters allowed us to test which hypothesis best agrees with the cellular parameters 

observed by time-lapse microscopy (Figure 3.5D), as the cyton model assumes that 

responding cells may die, while the fcyton model does not. While both models accurately 

fit the CFSE time course (Figure 3.5E), the molecular race model requires a much later 

Tdie0 (Figure 3.5F), while the fcyton model, which assumes independence between 

fates, allows for a much earlier Tdie0 concordant with the experimental microscopy 

dataset. Interestingly, both models were able to capture the experimentally observed 

fraction of dividing cells in each generation (Fs), but largely failed to predict the relatively 

late division time experienced by generation 0, and 1+ cells (Figure 3.5D green and blue 

distributions). 
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Figure 3.5. FlowMax deconvolution of WT 250 nM CpG stimulated CFSE time 
series. CFSE-stained purified murine B cells were stimulated with 250 nM CpG, 
assayed by flow cytometry and a computational tool, FlowMax, was applied to determine 
non-redundant sets of maximum-likelihood population model parameters (A).To test if a 
molecular race or a decision are more appropriate, the cyton model, which assumes a 
race between division and death, (B) and fcyton decision-based model (C) were used as 
part of the FlowMax phenotyping. Maximum-likelihood parameter sets obtained from 
fitting each model to the experimental CFSE time courses were sampled using a Monte-
Carlo approach to expose the fraction of responding cells in each generation (Fs), as 
well as division and death time distributions for undivided (Tdiv0,Tdie0) and dividing cells 
(Tdiv1+,Tdie1+) expected to be observed after any potential censorship and compared to 
the actual cellular distributions measured by time-lapse microscopy (D). The best-fit 
modeled CFSE histograms from the best-fit cluster of cyton (E purple) or fcyton (E blue) 
model parameters overlaid on experimental CFSE histograms collected in duplicate 
across six days at the indicated time points.    
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While our results suggest that cell fate is determined early, variability in the 

decision and fate timing is consistent with extrinsic cell-to-cell protein heterogeneity. To 

check this, we measured the correlation in the timing of the decision process (i.e. time to 

growth), the time to division, and the time to death in between sister and cousin cells 

(Figure 3.6). The timing of the decision process, interdivision time, and to a smaller 

extent lifespan were significantly correlated between sister cells: Pr(∆Tdecide≤ 4 

h)=0.90, R2=0.74, and R2=0.39, respectively. Furthermore, the correlations decreased 

with a subsequent division (i.e. between cousins): Pr(∆Tdecide≤ 4 h)=0.77, R2=0.44, and 

R2=0.38, respectively, consistent with mixing times on the order of hours to days, ruling 

out genetic and epigenetic sources of cell-to-cell variability [Sorger 2011, 2009]. 

 
Figure 3.6. The decision, division, and death times are correlated between siblings 
and cousins. B cell lineages from WT 250 nM CpG time-lapse microscopy video were 
determined by semi-automated tracking. Correlations in timing to the start of growth, 
division, or death of sister cells (blue) and cousins (red) were calculated. Histogram of 
the differences between the times to decide to start growing (A) is shown. Division (B) 
and death (C) times are plotted between sister and cousin cells across all generations. 
Colored lines represent the linear fit through the origin with r-squared values for sisters 
(top) and cousins (bottom) as indicated. 
 
 
3.3. Discussion 

Key to parameterizing a multi-scale response was the development of a B cell live 

cell microscopy experimental and computational tracking pipeline, which we used to 

obtain accurate cell-size trajectories and lineages for hundreds of cells across a six day 
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period (Figure 3.1). Tracking wildtype B cells revealed several key properties of the 

response. B cells undergo 1-7 divisions, increasing total cell counts several fold and then 

most cells die by apoptosis (Figure 3.1B-C).There is a noticeable but variable delay in 

growth initiation prior to the first division, while generation 1+ cells start growing 

immediately (Figure 3.1D). This is consistent with a model in which activated generation 

0 cells must prepare for several rounds of rapid divisions by simultaneously deactivating 

quiescence [21,177] and activating the appropriate growth pathways such as Myc and 

mTOR [66,178]. Tracking cell size trajectories and their eventual fate allowed us to 

confirm that B cells that grow are protected from death, suggesting that B cells have 

underlying molecular mechanisms for upregulating both survival and the cell-cycle 

(Figure 3.3). Furthermore, even in the absence of cell growth trajectories, a 

mathematical model which assumed a race between division and death [44] could not 

account for the typically early death we see with microscopy experiments (Figure 3.5), 

especially considering that we filter out death that occurs within the first 12 h caused by 

the experimental process (Figure 3.2)  We were also able to confirm that both division 

and death are correlated between sibling cells (Figure 3.6), which is consistent with 

differences in protein turnover processes [24,25] resulting in distributions of single-cell 

proteomes within a population. Taken together, these data suggest an upstream 

decision to divide or die, while the variability in timing is caused by cell-to-cell variability 

in protein turnover (protein remixing).  
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3.4. Methods  

A video showing the tracking of wildtype B cells, WT250nM.mpg can be found in 

the supplementary files along with FAST.jar, the tracker code and executable used to 

perform semi-automated tracking. 

 

3.4.1. B cell purification and incubation 

Primary splenocytes were isolated from 6-8 week old mice, naïve B cells purified 

using magnetic bead separation (Miltenyi Biotec), and stimulated with 250 ng/mL, or 10 

ng/mL CpG ODN 1668 (Invivogen). mTORc1 inhibition was achieved by 1 hr 

pretreatment of 1 ng/mL Rapamycin (Sigma) prior to addition of stimulus. B cells were 

grown in fresh media with 1% penicillin streptomycin solution (Mediatech Inc.), 5 mM L-

glutamine (Mediatech Inc.), 25 mM HEPES buffer (Mediatech Inc.), 10% FCS and 55 uM 

2-ME (Fisher Scientific) at a concentration of 5x104 cells/mL in 48 well plates, or 1536 

flat-bottom tissue-culture plates at 37oC for a period of 1-6 days.  

 

3.4.2. CFSE flow cytometry and FlowMax analysis 

Cells were removed from media, stained with 10 ng/mL propidium iodide, and 

measured using an Accuri C6 Flow Cytometer (Accuri Inc.) over a six day time course. 

CFSE histograms were constructed after software compensation for fluorescence 

spillover and manual gating on viable (PI-negative) B cells using FlowMax software. All 

measurements were performed in duplicate (B cells from the same spleen were cultured 

in separate wells, two wells per time point to ensure that each time course represented a 

single population of cells subject to only experimental variability). The FlowMax 

computational tool [47] was used to construct 1D log-transformed CFSE histograms of 

viable cells. After specifying the fluorescence of the undivided peak manually for each 
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time point, maximum-likelihood fcyton model parameter ranges were determined by 

filtering, and clustering 1000 best-fit solutions and their corresponding sensitivity ranges. 

The top solution cluster was plotted by randomly sampling parameters from within the 

maximum-likelihood parameter ranges. To account for potential censorship of the 

fraction of dividing cells or division and death time distributions when both division and 

death processes were active simultaneously (i.e. cyton model), Monte-Carlo sampling of 

cell populations was used to approximate population model parameters directly.  

 

3.4.3. Time-lapse microscopy 

Purified naïve B cells were grown in 1536 flat-bottom tissue-culture treated 

microwells (Greiner Bio-One). Images were acquired on an Axio Observer Z1 inverted 

microscope (Carl Zeiss Microscopy GmbH, Germany) with a 10x, 0.3 NA air immersion 

objective to a Coolsnap HQ2 CCDcamera (Photometrics, Canada) using ZEN imaging 

software (Carl Zeiss Microscopy GmbH, Germany). Environmental conditions were 

maintained at 37º C, 10% CO2 with a heated enclosure and CO2 controller (Pecon, 

Germany). Phase contrast images were taken every minute for six days. 

 

3.4.4. Cell tracking 

A semi-automated computational approach was used to track B cells in phase-

contrast images. First, image intensities were normalized to maximize contrast. Next, 

edges were identified using a Sobel transformation and global thresholding. Cells were 

identified using a customized Hough transformation assuming cells were approximately 

circular. Next, approximate linear paths were manually drawn for each cell until the cell 

was observed to divide, die, or leave the field of view. Cells entering the field of view 

after 24 hours (i.e. potentially after the first division), and debris were tracked but 
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removed from the subsequent analysis. After all paths were drawn, all cell boundaries 

were optimized simultaneously from frame to frame. During automatic optimization, cells 

were modeled as deformable two-dimensional polygons with forces acting upon each 

vertex that ensured the polygons did not grow/shrink too quickly, did not overlap other 

polygons, were attracted to edges in the image, and were attracted to their respective 

manually-curated path. The relative magnitudes of the forces were manually calibrated 

to ensure appropriate behavior. Cell size trajectories were fitted using a piece-wise 

function consisting of a linear no-growth period, followed by exponential growth: 

0
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The quality of individual cell tracks were assessed by calculating RMSD from ( )V t , and 

the decidet  value was assumed to be the fitted inflection point in this function (i.e. when 

cells were predicted to start exponential growth). Growing cells were defined as having 

an average ending volume at least 350 µM3 above the average starting volume, or if the 

final volume was at least 800 µM3. Cells that grew but then decreased in size, or that 

didn’t meet any of these conditions were labeled as non-growing. For implementation 

details please see Supplementary File CellTracker.zip. A video showing the output of 

tracking for the WT 250 nM CpG condition is provided as Supplementary File 

WT250nM.mpg.  

 

3.4.5. Calculating the expected probability that a dying cell would have started 

growing 

In order to test if the molecular race (Figure 3.3A) and/or the molecular decision 

(Figure 3.3B) hypotheses are consistent with our datasets, we used the observed 
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0

0 ( )growT t , 0

0 ( )
div

T t , and 0

0 ( )
die

T t distributions (Figure 3.3E), designed with a superscript “o”, 

to determine a lower bound on the fraction of dying cells that are expected to grow under 

the race or decision hypothesis. While under the decision hypothesis we would expect 

that all responding cells are subject only to eventual division, while non-responders will 

not grow or divided, the fraction of growing cells that will die, or vise-versa are not readily 

apparent. Therefore, we derived a lower limit on the expected probability that a dying (

fate death= ) cell will grow under the race hypothesis in terms of observed distributions, 

and show that the observed probability of this happening is inconsistent. We are 

interested in the probability that progenitors (generation 0) cells started growing and 

died: 

0 0 0Pr( , | )
grow die

T T F fate death< = , (51) 

where 0dieT and 0growT are the true probability distributions for the time to die or start 

growing, and 0F is the true fraction of cells that respond to the stimulus and start growing 

(still subject to death) in the race model. We define the probability censoring of some 

probability distribution ( )f t  by a competing probability distribution ( )g t as: 

( )
( )

( ) |

( ) 1 ( )

( | ( )) ( ) 1 ( )

( ) 1 ( )

t

t

f gt

f t g t dt

f t g t f t g t dt w

f t g t dt dt

−∞

∞ −∞

−∞ −∞

′ ′−
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∫

∫

∫ ∫

, 

(52) 

where ( | ( ))f t g t represents ( )f t  given that a competing mutually explosive event has 

probability distribution ( )g t , and |f g
w  is a rescaling constant. From this definition it 

follows that 

( | ( )) ( ) , , ( )
t t

f t g t dt f t dt t g t
−∞ −∞

≥ ∀ ∀
∫ ∫

. 
(53) 



124 
 

 
 

Furthermore, since under the race hypothesis, all cells are subject to age-dependent 

death, 0 ( )dieT t , and since 0 ( )dieT t is typically earlier than 0 ( )divT t , then for each cell that 

divided, there must have been at least another cell that would have divided but died, or 

in terms of the fraction of observed generation 0 responders:  

0 02 oF F≤ . (54) 

Using (53) the observed 0 ( )
grow

T t , 0 ( )
div

T t , and 0 ( )
die

T t distributions are biased toward 

earlier values, since death will censor decision and division fates, while division will 

censor late death fates: 

0 0( ) ( ) ,
t t

o

grow grow
T t dt T t dt t

−∞ −∞
≥ ∀

∫ ∫

, 

0 0( ) ( ) ,
t t

o

die die
T t dt T t dt t

−∞ −∞
≥ ∀

∫ ∫

. 

(55) 

However, of the cells for which both division and death are running in parallel (at least 

twice as many as had been observed to divide from equation (54)) a fraction would not 

have started measurably growing prior to dying (i.e. died before growth decision was 

reached and observed). Therefore, to calculate the true fraction of dying cells that are 

expected to start growing we first calculated the probability that a cell will start 

measurably growing prior to dying: 

( )0 0 0 0Pr( ) ( ) 1 ( )
t

grow die grow die
T T T t T t dt dt

∞

−∞ −∞
′ ′< = −

∫ ∫

. 
(56) 

To do this, we used (55) to show that  

0 0 0 0Pr( ) Pr( )o

grow die grow die
T T T T< ≥ < . (57) 

Furthermore, we can define a new function 
*

0 ( )growT t  in terms of observed distributions: 

*

0 0 0( ) ( | ( ))o o

grow grow die
T t T t T t= . (58) 

Since by definition of function censorship: 
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0 0 0( ) ( | ( ))o

grow grow die
T t T t T t= . (59) 

and since from (55) the 0 ( )o

die
T t distribution is shifted toward lower values compare to 

0 ( )dieT t , it follows that 
*

0 ( )growT t is typically shifted toward later values when compared to 

the true 0 ( )growT t : 

*

0 0( ) ( ) ,
t t

grow grow
T t dt T t dt t

−∞ −∞
≤ ∀

∫ ∫

. 
(60) 

Therefore, from eq. (57) and (60) we can establish a lower bound on 0 0Pr( )grow dieT T< : 

*

0 0 0 0 0 0Pr( ) Pr( ) Pr( )o o

grow die grow die grow die
T T T T T T< ≥ < ≥ < . (61) 

Since both 
*

0 ( )growT t , and 0 ( )o

dieT t are defined in terms of observed continuous probability 

functions, we next developed an expression for calculating 
*

0 0Pr( )o

grow dieT T< using a 

collection of discrete observations. Specifically, to calculate *

0 ( )
grow

cdf t from 0 ( )o

grow
cdf t

we reweighed the contribution of each, ith, observed 0growT  value according to the 

observed 0

o

diecdf : 
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w
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−
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(62) 

Finally, we used (62) with (54) to obtain an expression on the lower bound for (51) given 

m observed 0growT  values, and n observed 0dieT values: 
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(63) 

In essence, we used the observed 0dieT distribution to obtain a 0grow
T   distribution that is 

guaranteed to be equal to or more biased toward later values than the true 0grow
T   

distribution. Combined with the fact that under the race hypothesis, the observed fraction 

of dividing cells is at least twice as small as the true fraction of responders, this allowed 

us to calculate a lower bound on the probability that a dying cell would start growing prior 

to actually dying (Figure 3.3F). Under the molecular decision model, cells commit to 

either division or death early, and are therefore protected from the alternative (growth 

and division for cells committed to death, and death for cells committed to growth and 

division). The fraction of dying cells that are expected to be also growing under the 

molecular decision hypothesis is zero. To test which hypothesis is best supported, we 

measured the fraction of dying generation 0 cells that were growing at the time of death 

defined as: 

max 0 max, ( , ) ( ) 350 | ( , ) 800

,
i

true V i t V i m V i t m
Growing

false otherwise

µ µ> + >


=




, 
(64) 

where max( , )V i t  and 0 ( )V i are the average final 30 volumes and the average first 30 

volume measurements for cell i, respectively.  
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Chapter 4 

Molecular Determinants of Fate 

Decision and Timing 

 

In Chapter 3, we established that B cells indeed make decisions, as growing B 

cells are protected from death. However, it remains unclear how fate is determined and 

enforced on the molecular level. Therefore, we performed a single-cell transcriptome 

analysis revealing an NFκB signature in growing cells. This is concordant with decades 

of studies establishing NFκB signaling as essential for B-cell proliferation and survival; 

however it remained unclear whether NFκB signaling played a direct role in the decision 

enforcement.  Therefore, we applied an immunofluorescence and traditional biochemical 

assays to characterize the abundance of key molecular players in individual cells after 

24 h of stimulation.  We found that both NFκB RelA and cRel are upregulated at 24 h. 

Furthermore, mammalian target of rapamycin (mTORc1) abundance was upregulated 

approximately 4.5-fold in wildtype and only approximately 1.5 fold in cells deficient in 

NFκB cRel 24 h post stimulation. Rapamycin pretreatment resulted in reduced cell size 

while the abundance of cRel remained high; suggesting that cell growth is mediated by 

NFκB cRel activity.  In addition to cell growth, NFκB is essential for the upregulation of 

the anti-apoptotic regulator BclXL at 24 h as NFκB cRel deficient cells have dramatically 

reduced  BclXL mRNA and protein levels.  These findings suggest that NFκB cRel serves 
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to enforce the B-cell decision to grow and survive by simultaneously upregulating growth 

and survival programs.  

 

4.1. Introduction 

TLR9 robustly activates the well-studied and essential NFκB signaling pathway 

[51], resulting in the upregulation of hundreds of genes associated with survival and 

proliferation, providing a natural molecular connection between signaling and cell fate 

[52]. Specifically, activation of TLR9 by CpG results in the activation of the kinase IKKb, 

which rapidly phosphorylates NFκB inhibitor proteins, the IkBs, which sequester NFκB 

dimers in the cytoplasm. Phosphorylation of IkBs results in their ubiquitination and 

degradation, releasing NFκB dimers (primarily RelA:p50 and cRel:p50 in B cells [4]) and 

allowing them to enter the nucleus where they bind to promoters of genes containing the 

NFκB motif, and activate gene expression. Importantly, the genes coding for cRel[53] 

and p50[54] as well as the inhibitors IkBα[55] and IkBε[56] are themselves target genes, 

resulting in waves of NFκB activation lasting potentially several days. Furthermore the 

genes coding for CyclinD [70-72], Myc [59], and BclXL [74], which are essential for cell-

cycle progression, growth, and survival, respectively, are all known to be NFκB target 

genes. Therefore, many essential molecular players involved in the B cell immune 

response have been identified but it remains unknown how their dynamics lead to the 

observed cell fate and timing variability and in turn the B cell population response. 

Finally, single-cell molecular assays are useful for correlating cellular features 

(e.g. size) to molecular pathways. Specifically, immunofluorescence (IF) allows for 

quantitative measurement of fluorescently-labeled proteins in hundreds of individual 

cells. On the other hand, IF requires chemical crosslinking, which makes single-cell 
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tracking impossible. While IF can provide high-throughput single-cell results for specific 

proteins of interest, single-cell RNA sequencing can be used to quantify whole 

transcriptomes of individual cells [134]. A relatively new technology, single cell RNAseq 

uses microfluidic devices to trap individual cells and perform the necessary chemistry. 

Furthermore, captured cells can be stained and measured under the microscope prior to 

lysis, allowing for filtering of transcriptomes by the cell size and viability. This allows for 

the unbiased whole-genome testing of differential gene expression between individual 

cells. 

 

4.2. Results 

 

4.2.1. Single-cell transcriptome sequencing reveals NFκB signatures in big cells 

We next turned to single-cell molecular assays to test the importance of key 

molecular players in determining fate and timing. Specifically, we stimulated purified 

primary naïve murine B cells, stimulated with a high dose of CpG for 24 hours and 

performed both single-cell RNA sequencing, as well as multi-channel 

immunofluorescence experiments (Figure 4.1A). We sequenced the transcriptomes of 

five large and small cells using the single-cell autoprep system, which allowed us to 

image and measure the size of individual B cells trapped inside of a microfluidics chip 

(Figure 4.1B). After preparing and sequencing oligomer cDNA libraries, we normalized 

transcript counts to RNA spikein controls, and identified 369 and 121 genes upregulated 

or downregulated in large cell, respectively (Figure 4.1C). We next identified and 

summarized the pathways that were significantly upregulated in large or small cells 

(Figure 4.1D). Next, since the NFκB signal transduction systems is known to be 

essential for the B cell immune response and because NFκB signaling was one of the 
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upregulated pathways in B cells, we checked if big cells had an NFκB gene expression 

signature compared to small cells. To do this, we performed a transcription factor 

enrichment analysis on the upregulated and downregulated gene sets, and tallied the 

transcription factors that are themselves known to be NFκB targets (Figure 4.1E). Our 

analysis revealed the signature of nine transcription factors that are known NFκB target 

genes, as well as NFκB itself among the genes upregulated in big cells (Figure 4.1E 

red), while we only identified p53 as a known NFκB target gene transcription factor in the 

set of genes downregulated in big cells, suggesting that large B cells tended to 

upregulate NFκB activity.  
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Figure. 4.1. Molecular assays suggest that NFκB enforces an upstream fate 
decision. Naïve purified B cells were stimulated with 250 nM CpG for 24 h, and 
analyzed using single-cell RNA sequencing (A top). Five small and five large B cells 
were captured in a microfluidics chip (B) and their transcriptomes were sequenced to 
reveal sets of genes typically upregulated in big cells (C, red) or small cells (C, green). 
Pathway analysis on genes upregulated in large B cells (D, top) and small cells (D, 
bottom) was performed. E) Transcription factor motif enrichment analysis on the genes 
upregulated in large cells (E, top) and small cells (E, bottom) was performed and 

filtered to show only significantly upregulated (p-value < 0.05) and known NFκB target 

genes or NFκB itself.  
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4.2.2. NFκB cRel mediates growth and survival in B cells 

Next, we stained fixed B cells which were stimulated for 24 hours (Figure 4.2A), 

and measured average NFκB cRel fluorescence as a function of cell area by microscopy 

(Figure 4.2B). We found that compared to a 0 h control, B cells were larger (63% of 

cells) and had higher cRel fluorescence (63% of cells) after 24 h of stimulation. 

Furthermore, 68% of large cells had upregulated cRel at 24 h. To test the specificity of 

our immunofluorescence methodology, we showed that NFκB cRel deficient B cells had 

no detectable cRel fluorescence at 24 h (Figure 4.3A). Similarly to NFκB cRel, 50% of 

cells showed significantly increased levels of NFκB RelA after 24 h, with 70% of large 

cells showing increased NFκB RelA abundance after 24 h of stimulation (Figure 4.3B). In 

addition, we tested the role of NFκB cRel in cell growth by repeating the 

immunofluorescence analysis in the presence of 1 ng/mL rapamycin, the mTORc1 

inhibitor (Figure 4.3C). We found that while the same fraction of cells had upregulated 

cRel abundance after 24 h of stimulation, the fraction of large cells was reduced, 

suggesting that cRel is independent of mTORc1. Furthermore, we tested the role of 

NFκB cRel on regulating mTORc1 directly, by measuring the abundance of p-S6, an 

indicator of mTORc1 activity, by western blot in wildtype and NFκB cRel deficient mice 

(Figure 4.2C). The data suggest that in the absence of NFκB cRel the signal is reduced 

by approximately a factor of 2. We also, checked the dependence of BcLXL a known 

NFκB cRel target gene and anti-apoptotic regulator by measuring average BcLXL 

abundance (Figure 4.2D) as well as by measuring BcLXL mRNA levels by qPCR at 

several time points in wildtype and NFκB cRel deficient B cells (Figure 4.3E). The results 

show that 84% of all cells upregulated BcLXL and that NFκB cRel deficient results in 

three-fold decrease in BcLXL expression at 20 h suggesting that NFκB cRel contributes 
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to roughly 2/3 of the BcLXL expression at 20 h. Concurrently, immunofluorescence 

analysis reveals that only 8% of cells upregulate BcLXL in the absence of NFκB cRel and 

that only 8% of large cells have an upregulated BcLXL abundance (Figure 4.3D).  
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Figure 4.2. NFκB mediates growth and survival. NFκB cRel abundances of purified 
naïve B cells stimulated with 250 nM CpG for 24 h were obtained by quantifying average 
fluorescence in fixed B cells in the presence of fluorescently-labeled antibodies (A). 

NFκB cRel fluorescence as a function of cell area at 0 h and 24 h (B). Quantification of 
pS6, a downstream target of mTORc1 after 24 h by western blot normalized to tubulin 
control in WT and cRel deficient B cells (C). Anti-apoptotic BclXL fluorescence as a 
function of cell size at 0 h and 24 h (D). BclXL mRNA levels were measured by 

quantitative PCR at 0, 1, 6, and 20 h in wildtype and NFκB cRel deficient B cells (E). 
Significant fluorescence in (B) and (D) determined using 0 h fluorescence distribution. 
Large cells empirically defined as > 100 pixels. Error bars=s.d. 
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Figure. 4.3. Immunofluorescence control experiments. Immunofluorescence control 
experiments were performed in wildtype and cRel deficient B cells stimulated with 250 

nM CpG.  Average NFκB cRel fluorescence at 0 h and 24 h in NFκB cRel deficient cells 

(A). Analogously to NFκB cRel, NFκB RelA average fluorescence was quantified at 0 h 
and 24 h post stimulation (B). Average cRel fluorescence at 0 h and 24 h and 1 h 
pretreatment with 1 ng/mL rapamycin (C). Average BcLXL fluorescence at 0 h and 24 h in 

NFκB cRel deficient B cells (D). Quadrants delineate significance at 24 h compared to 0 
h. 
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4.2.3. Time-lapse microscopy confirms NFκB cRel as a decision enforcer 

Since our data implicated NFκB cRel as an essential driver of the decision in B 

cells, we tracked NFκB cRel deficient B cells and compared the dataset against the 

wildtype dataset (Figure 4.4). We find that the population result is noticeably decreased 

in the cRel deficient dataset (Figure 4.4A) with most cell only undergoing two or three 

divisions compared to at least seven observed generations in wildtype cells (Figure 

4.4B). Nevertheless, the growth trajectories of responding and non-responding cells 

remained nearly-identical with responding cells growing to approximately 1000 µM3 

before division on average (Figure 4.4C), while “non-growing” cells remained largely the 

same size on average (Figure 4.4D). Concomitant with the molecular observations that 

NFκB cRel is important for enforcing the decision, we see an elevated fraction of 

growing cells dying in cRel deficient cells (Figure 4.4E). In fact, we observe 40% of 

growing cells dying in generation 0 when NFκB cRel is knocked out, while just 12.5% of 

growing cells were observed to die under wildtype conditions. On the other hand, we see 

that non-growing cells almost never divided in the cRel knockout condition, while this 

was relatively common for wildtype B cells (Figure 4.4F) due to poor growth prior to the 

last division (Figure 3.4).  Furthermore, while there wasn’t a significant fate timing 

phenotype in NFκB cRel deficient cells (Figure 4.4G), the fraction of dying cells which 

grew was elevated (31%±1% compare to 8%±2% for wildtype) under knockout 

conditions (Figure 4.4H).  

Therefore, NFκB seems to play a role in enforcing the decision to survive and 

progress through the cell cycle, while the timing of the cell-cycle and apoptosis remains 

largely independent. 
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Figure 4.4. Time-lapse microscopy confirms NFκB cRel as an enforcer of cell 
decision making. Time-lapse microscopy experiments were performed on wildtype and 
cRel deficient B cells stimulated with 250 nM CpG and cell size trajectories and lineages 
were tracked using a semi-automated approach. Cellular statistics are shown for 
wildtype (left column) and cRel deficient cells (right column). Generation cell counts 
normalized to starting cell count (A). Fractional division and death probabilities are 
shown for each generation (B). Error bars are 1/n. Cell size trajectories as a function of 
percent lifetime for growing (C) and non-growing (D) cells are plotted for each generation 
(blue to orange curves). Error bars show SEM. Fraction of growing (E) and non-growing 
(D) cells that divided or died within a 24 h period (12-36 h after stimulation) in each 
generation. Error bars show 1/n. Cumulative density functions for the observed 
progenitor time to decide to grow (blue), time to die (red), and time to divide (green) are 
shown (G). The observed cumulative distributions and fraction of dividing cells in 
generation 0 were used to calculate the minimum probability that dying cells were also 
grower cells under the molecular race or decision scenarios and compared to the 
fraction measured from time-lapse cell tracking.       
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4.3. Discussion 

So what enforces the decision to divide and survive? Previous studies have 

shown that in B cells, the NFκB signaling system plays a central role in the determining 

fate of stimulated B cells for a wide assortment of mitogenic signals [60], therefore, we 

characterized key molecular players in individual cells by IF and by sequencing the 

transcriptomes of small and large cells after the cells have had a chance to grow, but 

have not yet divided. While, there was significant cell-to-cell transcriptome variability 

(Table 4.1), there was nevertheless an NFκB signaling signature readily apparent in 

large cells (Figure 4.1). Taking advantage of other molecular assays, we showed that 

NFκB cRel, and RelA are upregualted after 24 h of stimulation and large cells show 

increased NFκB abundance as compared to 0 h (Figure 4.2B and Figure 4.3B). 

Furthermore, inhibition of mTORc1 by rapamycin resulted in an appreciable growth 

defect at 24 h, while maintaining nearly identical proportions of NFκB cRel positive cells 

(Figure 4.3C), confirming that mTORc1 is downstream or independent of NFκB 

signaling. We confirmed that mTORc1 is downstream of cRel by western blot and 

showed that in the absence of NFκB cRel, mTORc1 activity is roughly halved (Figure 

4.2C).  Analogously, the anti-apoptotic regulator BclXL was dramatically upregulated after 

24 h and correlated with cell size (Figure 4.2D). Furthermore, BclXL levels were 

dramatically reduced in the NFκB cRel knockout, suggesting that NFκB cRel is required 

for roughly 2/3 of the BclXL transcripts at 24 h (Figure 4.2E). Therefore, molecular assays 

suggest that NFκB acts as an enforcer of an upstream decision by simultaneously 

upregulating cell growth (via mTOR), as well as survival in B cells (via BclXL). However, it 

remained unclear how cRel deficiency is manifested on the population scale.  
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To test this, we repeated the time-lapse microscopy experiments with B cells 

missing NFκB cRel, and quantified the degree to which cRel is important for promoting 

an efficient response. Cell growth trajectories and fate time distributions were similar to 

wildtype, but we saw a dramatic decrease in the population response caused primarily 

by a failure to commit to more than a few rounds of division (Figure 4.4B). Critically, we 

see that NFκB cRel deficient cells were having trouble enforcing their fate, with the 

fraction of grown dying cells increasing four-fold (Figure 4.4H). Thus, time-lapse 

microscopy confirms that NFκB cRel enforces decisions during the B cell immune 

response. 

Taken together, these results suggest that the early commitment to one fate in B 

cells is driven by NFκB-mediated activation of survival and cell-cycle activation.  

 

4.4. Methods 

The single-cell RNA sequencing analysis (CSV format), pertinent 

immunofluorescence images, and CFAnalyzer, the tool we developed for quickly 

quantifying fluorescence in IF images are part of the supplementary materials as 

IFAnalysis.csv, IFImages.zip, and CFAnalyzer.zip, respectively. 

  

4.4.1. Single-Cell RNAseq 

Stimulated wildtype B cells were collected at 24 h post stimulation and 

concentrated to 5x105 cells per mL. Cells were loaded onto a 10-17 uM primed C1 

single-cell auto prep array IFC (Fluidigm), and phase contrast images were taken of all 

viable cells as determined by the Live/Dead® Viability/Cytotoxicity Kit (Invitrogen). 

ERCC RNA spikein controls (LifeTechnologies) were added to the lysis mix at a 1:200 

dilution. Tube controls (bulk cell positive control, and no cell negative control) were also 
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prepared according to the Fluidigm protocol. Lysis, reverse transcription, and PCR were 

performed using the SMARTer Ultra Low RNA Kit (CloneTech) and Advantage® 2 PCR 

Kit (CloneTech) on individual cells using the C1 Single-Cell Auto Prep System (Fluidigm). 

Cell size was manually determined from images using ImageJ software. Sample libraries 

for the five smallest and five largest cells along with the controls were prepared using the 

Nextera XT DNA Sample Preparation (Illumina), and library quality was assayed using 

the Quant-iT PicoGreen dye (Life Technologies) quantification on a Qubit® 2.0 

Fluorometer (LifeTechnologies) and by gel electrophoresis. Libraries were sequenced by 

the UCLA Broad Stem Cell Research Center High Throughput Sequencing Core on 

Illumina HiSeq 2000 sequencers according to manufacturer recommendations. Reads 

were aligned to the ENSEMBL NCBI m37 genome [179] using rna-STAR [141]. To 

compute spikein concentrations for normalization purposes, the 23 most abundant RNA 

spikein concentrations (at least one read in all samples) were compared to the expected 

concenrations in log-log space, and the y-intercept in log-space was used to compute a 

normalized spike in concentrations for each sample, 
*[ ]jSpikein . The normalized 

expression of gene i, in sample j was then computed as: 

,

, *
100

[ ]

i j

i j

j

Gene
Gene

Spikein
= +

, 

where 
*[ ]jSpikein is the normalized spikein concentration that is ≥ 1. A constant count of 

100 was added because Spikeins with counts with counts < 100 were variable across 

samples. To assess the overall quality of each cell, we correlated their transcriptomes to 

the average across all cells as well as to the positive tube control. We found that one 

large cell had significantly lower correlation, so we omitted it from further analysis (Table 
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4.1). To determine if a particular gene was upregulated in big cells, we computed an 

expression score: 

( 300) ( 300)

# #

i i
big small

i

big small

I gene I gene

Escore
cells cells

> >

= −
∑

∑

, 

where ( 300)iI gene > is 1 if gene i has above 300 read count in a particular sample. A 

gene with an expression score ≥ 0.5 was considered upregulated in big cells, while a 

gene with an expression score ≤ -0.5 was considered downregulated in big cells. These 

sets of upregulated and downregulated genes were analyzed for pathway enrichment 

and transcription factor motif enrichment using WebGestalt [143]. Significant 

transcription factors were further filtered to remove non-NFκB downstream targets as 

defined in Table 4.2. 

Table 4.1: Correlations between cell transcriptomes.  Transcriptomes of five large 
and five small cells were sequenced and aligned to the mouse genome. Gene counts 
were normalized to RNA spike in pseudo-counts and a constant positive count of 100 
was added to all genes to represent experimental sensitivity as seen in the variability in 
spikein counts between samples (see methods). Colors represent degree of correlation 
(Pearson’s r). The second large cell was removed from further analysis due to poor 
correlation with all other cells (similar to negative).  

Small 1 Small 2 Small 3 Small 4 Small 5 Large 1 Large 2 Large 3 Large 4 Large 5 Neg. bulk + 

Small 1 1.00 0.77 0.58 0.63 0.63 0.65 0.40 0.65 0.67 0.59 0.27 0.61 

Small 2 0.77 1.00 0.70 0.64 0.65 0.65 0.45 0.71 0.70 0.66 0.33 0.65 

Small 3 0.58 0.70 1.00 0.59 0.73 0.67 0.49 0.63 0.72 0.74 0.34 0.62 

Small 4 0.63 0.64 0.59 1.00 0.73 0.83 0.45 0.81 0.79 0.61 0.41 0.82 

Small 5 0.63 0.65 0.73 0.73 1.00 0.82 0.49 0.76 0.87 0.77 0.39 0.73 

Large 1 0.65 0.65 0.67 0.83 0.82 1.00 0.46 0.82 0.84 0.66 0.37 0.81 

Large 2 0.40 0.45 0.49 0.45 0.49 0.46 1.00 0.44 0.51 0.51 0.30 0.44 

Large 3 0.65 0.71 0.63 0.81 0.76 0.82 0.44 1.00 0.83 0.62 0.40 0.80 

Large 4 0.67 0.70 0.72 0.79 0.87 0.84 0.51 0.83 1.00 0.71 0.43 0.75 

Large 5 0.59 0.66 0.74 0.61 0.77 0.66 0.51 0.62 0.71 1.00 0.35 0.64 

Negative 0.27 0.33 0.34 0.41 0.39 0.37 0.30 0.40 0.43 0.35 1.00 0.37 

bulk + 0.61 0.65 0.62 0.82 0.73 0.81 0.44 0.80 0.75 0.64 0.37 1.00 
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Table 4.2: NFκB target genes that are transcriptional regulators. This list was 
adapted from [180]. Transcription factors with motifs upregulated in large (red) or small 
(green) cells have been highlighted. 
Name Description Name Description 
Androgen receptor Hormone receptor IRF-2 Interferon regulatory factor-2 
Bcl-3 Coactivator for NF-kB p50 and p52 IRF-4 Interferon regulatory factor-4 

BMI-1 Polycomb chromatin modifier IRF-7 
Interferon regulatory factor -
7 

CDX1 Homeobox protein junB Proto-oncogene 

c-fos  Proto-oncogene Lef1 
Transcription factor in Wnt/b-
catenin pathway 

c-myb Proto-oncogene LZIP Leukocyte cell mobility 

c-myc Proto-oncogene NLRP2 NF-kB pathway inhibitor 
c-rel Proto-oncogene NURR1 Nuclear orphan receptor 
C/EBPdelta Transcription factor Osterix Bone transcription factor 

DC-SCRIPT Dendritic cell zinc finger protein p53 TF, Tumor suppressor 

Dmp1 Myb-like transcription factor 
Progesterone 
receptor 

Transcription factor 

E2F3a Cell cycle regulator PU.1 Transcription factor 
Elf3 Ets family transcription factor relb Transcription factor 

ELYS 
Embryonic large molecule derived 
from yolk sac 

Snail Transcription factor 

Egr-1 
Mitogen-induced early response 
gene; zinc finger 

Sox9 Transcription factor 

ETR101 
TPA-inducible, Jun-like transcription 
factor 

Stat5a Transcription factor 

Gata-3 T-cell differentiation Factor Tfec Transcription factor 
Glucocorticoid 
receptor 

Promoter 1B of the GR Twist Transcription repressor 

HIF-1alpha Hypoxia-inducible factor WT1 
Zinc finger transcription 
factor 

HOXA9 Homeobox protein YY1 Transcription factor 

IRF-1 Interferon regulatory factor-1   

 

 

 

4.4.2. Western blot analysis 

Whole cell lysates were prepared using RIPA buffer lysis of B cells. The resulting 

lysates were resolved on a 10% SDS-PAGE, proteins detected using the Bio-Rad 

ChemiDoc XRS System and SuperSignal west femto substrate (Thermo Scientific). 

Antibodies used to identify the protein of interest: S6 Ribosomal Protein (Cell signaling 

#2217) and αtubulin (Santa Cruz sc-5286). 
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4.4.3. RT PCR 

RNA extraction was performed using RNAeasy Mini Kit (Qiagen). cDNA 

synthesis of purified RNA was done with iScript cDNA Synthesis kit (Bio-Rad). 

Quantitative RT-PCR was performed with SYBR Green PCR Master Mix reagent 

(Stratagene) and Eppendorf Mastercycler realplex system using the ∆(∆Ct) method with 

β-actin as normalization control. 
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Chapter 5 

Multi-scale agent-based modeling of B-

cell population dynamics 

In chapters 3 and 4 we determined that B cells make decisions to survive and 

divide or remain quiescent and die by programmed cell death and that NFκB cRel 

enforces this decision by promoting the production of growth and survival processes. In 

fact, deficiency in NFκB cRel results in premature contraction, with cells exiting the cell 

cycle and dying after just a few divisions (Figure 4.4). Presumably, variability in the 

extrinsic state of a cell at the time of stimulation determines if a cell will respond to the 

stimulus as well as the observed variability in the timing until division or death. Given the 

complexity and non-linearity of the biochemical pathways leading to decision making, 

division, and apoptosis it is not apparent how the interplay between these pathways 

leads to the observed variability in cell fate, fate timing, and ultimately the population 

response. Therefore, we constructed an agent-based multi-modular computational 

model to simulate lymphocyte population dynamics in terms of the molecular networks 

that control NFκB signaling, apoptosis, and cell-cycle.  Testing genetic perturbations by 

modeling and subsequent experimentation, we found that NFκB cRel enhancement of 

survival and cell-cycle progression allows it to play an essential role in enforcing the 

execution of the cellular decision of mutually exclusive fates. Our work demonstrates 

how a multi-scale modeling approach allows the harnessing of molecular mechanistic 

knowledge to an understanding of dynamic organ level physiology.  
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5.1. Introduction 

At first glance, the complexity of biological systems is daunting (Figure 5.1). 

Coupled with the fact that hundreds of different cell types exist, and that even clonal 

cells of one type can have discordant fates (e.g. division vs. death in B cells) in response 

to the same stimuli, it is unclear how multi-cellular organisms can function. Nonetheless, 

multi-cellular heterogeneity and population robustness are hallmarks of the immune 

response and are essential for proper function [44].  Fortunately, there are fundamental 

rules governing biological function, making a bottom-up systems biology an attractive 

avenue. The central tenant of bottom up systems biology is the mechanistic description 

of the complex behavior of organisms, organs, and tissues in terms of underlying basic 

rules enabling targeted disease intervention [168,181]. Scaling from biochemical 

networks up to cells and ultimately organs, requires a method for connecting the output 

of biochemical reactions to cellular outcomes as well as a way to predict population 

behavior given the cellular parameters. Computational modeling provides a 

mathematically rigorous and powerful methodology for testing multi-scale hypothesis, 

enabling meaningful interpretation and iterative rounds of hypothesis generation.  

Fortunately we can stand on the shoulders of giants that have successfully 

pioneered models connecting the interactions of macromolecules to cellular outcomes in 

mammalian cells. Specifically, kinetic models for NFκB signaling are well 

established[149,150,182-187] and recently reviewed in [188] and a recent iteration has 

been specifically trained on experimental data from stimulated B cells [150], which unlike 

most cells has mostly cRel-containg NFκB dimers [4].  Also, ODE models of the cell-

cycle are abundant [152,153] and recently reviewed by [189]. Computational models of 

apoptosis are also available and experimentally validated in single-cells [24,155]. Of 

note, Loriaux and coworkers have recently published an updated version of these well-
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established models that incorporates protein turnover dynamics and can allow for cell 

survival given extrinsic protein turnover variability [156]. Therefore, the filed is set for an 

integrated modeling approach, combining extant models of NFκB signaling, cell-cycle 

progression, and apoptosis. 

What is required to bridge the cell-population divide? Since population models 

have already been established that map cellular parameters to population dynamics 

(e.g. cyton-like models that are the topic of chapter 2), one approach is to reduce the 

complex dynamics of the biochemical networks to a probabilistic mapping from a set to 

features to the parameters dictating distributions of the population network (Figure 5.2A). 

However, this results in essentially a parameterized black box which cannot be used to 

predict output under novel (i.e. unseen) conditions as the underlying mechanisms 

mapping inputs to output are ad hoc. On the other hand, physicochemical models which 

assume mass-action kinetics [157] and concentration-proportional rates for biochemical 

interactions between reactants and products can be used to test specific biologically-

meaningful hypothesis a priori (Figure 5.2B).  

Unfortunately, there is no elegant and efficient strategy for employing 

physicochemical models to model entire populations of cells. Each reaction in each cell 

must be modeled explicitly since a minimum of approximately 100 reactants must be 

simulated with slightly different starting conditions/reactions rates within each of at least 

several hundred in silico cells, with each generation depending on the behavior of 

previous generations. Typically, this is done by encapsulating each in silico cell into an 

autonomously-operating computational agent, which is responsible for the accurate 

bookkeeping and model iteration. Agent-based models have enjoyed popularity as 

hypothesis testing tools in the recent past [163-166,190,191], with the added benefit of 



149 
 

 
 

allowing one to test biological systems across scales even when much of the biological 

details are poorly understood. 

In this chapter we used extant ODE models describing NFκB signaling, 

apoptosis, and cell-cycling to construct a multi-scale agent-based model of the 

population response. We parameterize the connections between these modules using 

results from time-lapse microscopy and molecular assays described in chapters 3 and 4. 

We show that the model can predict the observed behavior of cell stimulated with a 

lower dose of the stimulus, cells deficient in NFκB cRel, and cells pre-treated with 

rapamycin. Furthermore, we use the model to explore the propagation of extrinsic 

variability across scales.  
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Figure 5.1 Biological processes are complex non-linear processes.  The current 
metabolic pathway map in the Kyoto Encyclopedia of Genes and Genomes [192]. 
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Figure 5.2. Data-driven probabilistic vs physicokinetic modeling. An example of a 
probabilistic model that assumes ad hoc dependence of variables comprising a belief 
network. Data is used to parameterize the probabilities associated with the connections 
as well as the state of unobserved variables (A). If information about the components 
are known (e.g. the interactions and reaction rates), pharmacokinetic models can be 
used to mechanistically describe the abundances of all species as a function of time. An 
example biochemical model is shown under the assumption of mass-action kinetics and 
a condition governing the occurrence of some “event” (B). 
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5.2. Results 

 

5.2.1. Multi-scale models integrate observations and predict population dynamics 

Results from CFSE time courses, time-lapse microscopy, and molecular studies 

demonstrated the intricate behavior of B cells across biological scales, however, the 

mechanics of how biochemical variability leads to the observed single-cell behavior and 

ultimately the robust population response remained untested. Our strategy for doing this 

was to first implement  established ordinary differential equation kinetic models of the 

NFκB signaling system, apoptosis, and the cell-cycle (Figure 5.3A), and introduce 

sources of extrinsic variability to determine if these models were sufficient for generating 

the variability in decision and timing we observed in our microscopy datasets. We found 

that, variability in protein levels alone was sufficient for producing cell-to-cell variability in 

nuclear NFκB concentration, cell-cycle duration, and lifetime typically observed (Figure 

5.3B). Importantly, the cell-cycle model with added sources of extrinsic noise produces 

relatively short cell-cycle durations of ~ 10-20 h, similar to generation1+ cells, but cannot 

readily account for the increased delay and the six-fold increase in size (Figure 2.2). 

Furthermore, we found that introducing extrinsic protein variability resulted in significant 

cell death timing variability, with a significant fraction of cells surviving after 144 h of 

death stimulation as expected in heterogeneous populations of cells. 
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Figure. 5.3. Extrinsic noise results in cell-to-cell NFκκκκB, division, and death 

variability. Models for NFκB signaling, cell-cycling, and apoptosis are summarized (A). 
Bolded species represent the input (active IKK), and output event nodes (cleaved PARP 
signals death, cdh1 accumulation signals cytokinesis). Extrinsic noise in the form of 
protein synthesis and degradation rate variability (~normal(rate,rate*0.1)), total protein 
abundance (~log-normal([protein], [protein]*0.25)), and initial cell size (~normal(1,0.07)) 
was introduced to each module and 100 simulations were carried out. Active IKK (B), 
nuclear RelA:p50 and nuclear cRel:p50 (C), cyclin and cdh1 (F), cell mass (G), BclXL (H) 
and cleaved PARP (I) are shown. The published cell-cycle model [152] which does not 
include cell growth control (D) and the results for solving 100 independently-distributed 
simulations (E) are shown for reference. Overlapping histograms indicate division 
(green) and death (red) events. Error bars in (B,C) represent s.d. 

  

153 
 



154 
 

 
 

 



155 
 

 
 

Confident that these models could be combined to model NFκB driven B cell 

division and death, we constructed an integrated ODE model (Figure 5.4A) with NFκB-

controlled synthesis of anti-apoptotic BclXL, a key protein in the apoptosis model, as well 

as NFκB-controlled synthesis of CycD, which is explicitly modeled in the cell-cycle 

model. Furthermore, in the cell-cycle model, growth is controlled by general machinery, 

GM, which represents the ribosomes and all other cellular components that promote the 

accumulation of cell mass. Mass in turn promotes the growth of general machinery, 

creating a positive feedback loop that results in exponential growth and cellular 

progression through the cell cycle. However, since we observed B cells to delay growth 

prior to the first division (Figure 2.2), we needed to model the control of general cell 

machinery in more detail. To do this, we incorporated NFκB-controlled synthesis of c-

Myc, a transcription factor that promotes cell growth, which is typically low in quiescent 

cells prior to activation, and which is a known NFκB target gene. To obtain population 

dynamics, the integrated ODE model was incorporated into cellular agents (Figure 5.4B), 

which kept track of their generation, age, and independent set of starting 

synthesis/degradation or total protein concentrations, which were draw from normal or 

log-normal distributions, respectively. The models were solved until the agent died 

(defined as [cPARP]>25,000 molecules/cell) or finished mitosis ([cdh6]>0.2), at which 

point it was either removed or two new daughter agents were created, respectively. 

Daughter agents we subject to extrinsic re-mixing noise to account for loss of correlation 

with successive generations. When training the model on our results from the wildtype 

condition, we left all NFκB, cell-cycle, and apoptosis parameters largely intact leaving a 

set of free parameters involving the control of BclXL, CycD, and Myc transcript synthesis 

and degradation, as well as parameters controlling the growth of cells (Appendix ). 

Importantly, we were able to recapitulate the population dynamics (Figure 5.4C), the 
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fraction of cells dividing or dying in each generation (Figure 5.4D), as well as the growth 

curves of growing and non-growing cells in each generation.  
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Figure 5.4. Multi-scale agent-based modeling of the B cell response. Established ordinary 

differential equation models for NFκB signaling (Almaden, in press), apoptosis [193], and the 
cell cycle [152] were implemented and combined into one integrated model (A). Blue, green, 

and red colors represent NFκB, apoptosis, and cell-cycle modules, respectively, while bolded 
species represent active IKK (input), cleaved PARP (death readout), and cdh1 abundance 
(mitosis readout). Instances of the integrated model were incorporated into cellular agents, 
extrinsic noise was introduced to mimic cell-to-cell variability, and the agent-based model was 
solved one generation at a time, with division resulting in the creation of two new agents, and 
death resulting in the removal of the agent from the population (B). A comparison of agent-
based modeling solutions to the time-lapse microscopy dataset is shown (C-F).  Cell counts 
normalized to start count (C), fraction of cells dividing or dying in each generation (D), average 
size of growers in each generation as a function of % lifetime (E), and average size of non-
growers in each generation as a function of % lifetime (F) are compared. Error bars represent 
SEM or 1/n. 
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5.2.2. Predicting population behavior  

Next we used the model to predict the population behavior in B cells missing 

NFκB cRel, in cells exposed to lower concentrations of the stimulus, and in cells treated 

with rapamycin.  This was achieved by increasing the IKK activity decay, removal of cRel 

monomer production, and a 30% decrease in translation rates, respectively. Time lapse 

imaging showed that NFκB cRel deficient cells had reduced cell counts caused by  

premature cell-cycle exit (Figure 4.4A-B) as well as a commitment defect (Figure 

4.4E,H), while cell growth remained largely the same (Figure 4.4C). Importantly, the 

multi-scale model predicts exactly this behavior (Figure 5.5 B-F; red vs blue), although 

the decrease in cell-cycle commitment is not predicted to be as pronounced (Figure 

5.5C). Importantly, the model also predicts an increased tendency for progenitor cells to 

start growing and then die, demonstrating a decision enforcement phenotype for NFκB 

cRel (Figure 5.5D). Furthermore, the model readily predicted the population response for 

cells stimulated with a lower dose of CpG (Figure 5.5, green), as well as the effects of 

rapamycin pre-treatment (Figure 5.5, purple). Specifically, the model predicts that a 

lower concentration of the mitogen should decrease the fraction of cells that divide in 

generations 3+ (Figure 5.5C, green), which adds up to a dramatic decrease in the total B 

cell population (Figure 5.5B, green). Rapamycin pre-treatment, which results in defective 

cell growth and ribosome biosynthesis, as well as a dramatic decrease in cells that 

divide more than once, can be recapitulated accurately by simply decreasing the protein 

translation rate by 30% (Figure 5.5, purple). Importantly, this also results in longer delays 

prior to death in both simulations and time-lapse microscopy datasets (Figure 5.5D, 

purple lines). Cell growth remained constant with respect to % cell lifetime under all 

conditions in both experiment and model simulations (Figure 5.5 F,G), suggesting that 

cell size is correlated with cell-cycle progression.  
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Figure. 5.5. The multi-scale model predicts the effects of low stimulus, cRel 
knockout, and rapamycin treatment. After parameterizing the multi-scale model using 
results from wildtype B cells stimulated with 250 nM CpG (red), we predicted the effects 

of decreasing IKK duration (green), lack of NFκB cRel (blue), and decreased protein 
synthesis (purple) in silico, and compared the results to those from analogous time-lapse 
microscopy experiments where we stimulated with only 10 nM CpG, used cRel deficient 
cells, or pretreated with 1 ng/mL rapamycin (A). B-F) Side-by-side comparison of 
modeling and experimental results: total cell counts (B), fraction of dividing cells in each 
generation (C), cumulative distribution of progenitor death times (D),fraction of growing 
progenitors that died (E), average growth trajectories for growing (F) and non-growing 
(G) generation 0 and 1 cells as a function of % lifetime. Error bars = 1/n.  
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5.2.3. Testing how extrinsic variability affects the population response 

Given that our model incorporates parameters for various sources of extrinsic 

noise, NFκB induction strength, and total IKK protein levels, we concluded our study by 

simulating how protein variability, and the strength of NFκB signaling affects the 

population response (Figure 5.6). We found that protein variability plays a dramatic role 

in controlling both the fraction of responding cells in each generation as well as the 

duration of the cell-cycle and death pathways. Specifically, doubling the coefficient of 

variation associated with protein synthesis/degradation kinetics, or total protein amounts 

resulted in a dramatic increase in the total population of cells caused by a sustained cell-

cycling, faster interdivision times, and longer survival times (Figure 5.6, red). The 

opposite is true if protein variability is halved (Figure 5.6, blue). Interestingly, increasing 

the variability of the total IKK between cells resulted in a nearly identical outcome, 

however increasing the induction strength of NFκB cRel, and p50 as well as the amount 

of IKK resulted in ~2.5 fold increase in the population response, while leaving division 

and death timing intact. This was caused by an increase in the fraction of dividing cells 

for all generations, however increase NFκB induction had a large effect on late activation 

(generations 4+), while increased IKK tended to upregulate early activation (generation 

0).  
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Figure 5.6. NFκB levels determine fate, while protein variability affects both timing 
variability and fate. Simulations were repeated with lower protein variability (blue), 

higher protein variability (red), higher IKK abundance variability (green), increased NFκB 
cRel and p50 induction (purple), and increased IKK abundance (yellow). Population 
count dynamics (A), fraction of dividing cells in each generation (B), and generation 1+ 
division (C), and death (D) times are shown. Insets summarize mean and standard 
deviation of the fate time distributions.  
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5.3. Discussion 

Agent-based models (ABMs) explicitly model autonomous entities within a 

system and provide a natural computational framework for modeling immune processes 

(recently reviewed in [145,146]). As such, ABMs have been successfully utilized to 

provide insights into molecular dynamics of the NFκB signaling system [191], wound 

healing [190], the multi-scale effects of acute inflammation [194], as well as the 

implications of transgenerational epigenetic inheritance [165], and even the evolution of 

aging [166]. We constructed a multi-scale agent-based model to test if NFκB 

enforcement of the decision, coupled with extrinsic heterogeneity in the cellular state 

could describe the observed time-lapse cellular dynamics an population response. Since 

the number of parameters typically scales non-linearly with the size of the model, our 

strategy was to use previously established models, and manually parameterize just the 

connections between them based on the aforementioned experimental observations. 

Surprisingly, we were able to recapitulate all of the major features of the cellular and 

population responses (Figure 5.4) by imposing reasonable NFκB driven BclXL, Myc, 

cyclinD transcription, and Myc-dependent general machinery production (general 

machinery synthesis was originally controlled by mass, which was in turn controlled by 

the general machinery forming a positive feedback loop [152]). To simulate the 

population response, we encapsulated the integrated B cell model into cellular agents 

which were initialized with differences in starting protein concentrations or 

synthesis/degradation rates analogously to previous studies [193,195]. It is important to 

note, that we did not explicitly bias cells toward one fate or the other in our simulations, 

instead allowing both processes to run simultaneously, however in practice fate was 

biased by the nuclear dynamics of NFκB, which promoted transcription of anti-apoptotic 

BclXL as well as growth via the upregulation of Myc, and cell-cycle progression by 
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enhancing transcription of cyclinD.  Furthermore, in silico knockout of NFκB cRel, which 

can promote its own transcription, essentially halves the population response as NFκB 

RelA, the only remaining NFκB family member that is able to trans-activate gene 

expression, drops to levels that are insufficient for promoting growth/cell-cycle progress 

and survival after only a few generations (Figure 5.5). Decreasing the duration of the IKK 

input faithfully captured the population and cellular behavior of cells stimulated with a 

decreased concentration of the CpG stimulus, suggesting that a graded response to the 

intensity of the stimulus may be achieved on the population level by modulating the 

duration that upstream kinases remain active. Simulations suggest that further gradation 

may be achieved by modulating the amount of upstream kinases (Figure 5.6, yellow), or 

the strength of NFκB induction (Figure 5.6, purple), affecting the fraction of cells that 

divide in early or late generations, respectively.  Interestingly, simulations reveal that the 

amount of extrinsic protein variability controlled both the fraction of cells dividing in later 

generations, as well as the timing of division and apoptosis in cells. Higher protein 

variability alone led to out of control growth and prolonged survival of B cell populations, 

indicative of a tumor state. Treatment with rapamycin, which results in slowed growth 

and cell-cycle exit after just one division (Figure 5.6, purple), can be modeled by simply 

decreasing the protein translation rate by 30%, indicating that even a modest decrease 

in general cellular machinery or metabolism can dramatically decrease the population 

dynamics of rapidly dividing cell populations.  
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5.4. Methods 

The multi-scale modeling Matlab 2012b files are included as MultiScale.zip in the 

supplementary files. Videos of tracked B cells stimulated with 10 nM CpG, missing NFκB 

cRel, or treated with rapamycin, are included in the supplemental files as WT10nM.mpg, 

CKO250nM.mpg, and Rap250nM.mpg. 

 

5.4.1. Multi-scale agent-based modeling 

Ordinary differential equation models of the cell-cycle [152], apoptosis [193] and 

NFκB signaling (Almaden, in press) were implemented in Matlab (Mathworks), using the 

ode15s solver for stiff problems. The modules were connected by imposing cooperative 

Hill activation of the CyclinD, Myc, and BclXL promoters: 
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where 50Ak and 50Ck  are constants determining the relative activation strength of nuclear 

RelA:p50 heterodimer and cRel:p50 heterodimer, respectively. The constants xa , 1

x
a− ,

x
b  

and 
x

k  determine the transcription rate, transcript degradation rate, the degree of basal 

activation and the concentration resulting in half-maximal activation of the promoter for 

gene x, respectively. Our molecular assays revealed that cRel deficient cells had 

approximately half the mTORc activity and approximately one third the BclXL activity, 

therefore we set and to 0.5 for all promoters except for the BclXL promoter for 

which we decreased to 0.333, while increasing to 0.666. For simplicity, we also 

assumed that the growth of general cellular machinery, the model species representing 
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catabolism and protein synthesis in the cell, was dependent on the current mass, and 

the concentration of Myc: 
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where GMa , 1

GM
a− ,

GM
b ,

GM
c ,

GM
d , and 

GM
k are constants that normalize for synthesis rate, 

degradation rate, basal activity, early mass-dependent growth rate, and maximum cell 

size, respectively. The integrated model consisting of these three modules constituted 

one cellular agent, and was solved independently in a generation-by-generation fashion 

until the simulation time limit was reached, the cell divided ([cdh20] >0.2), or the cell died 

([cPARP] ≥ 25,000 molecules/cell). Upon division, two new copies of the model were 

generated with half the mass and general machinery (we assumed that the 

concentration of all other species was unchanged). If daughter volume variability was 

modeled, the mass and general machinery were multiplied by a constant 
a

r  or 
b

r  such 

that ~ (1.0, )
a partition

r CVΝ  and 1
b a

r r= − , where 
partition

CV is a the coefficient of variability 

of daughters measured from wildtype microscopy. In addition, to mimic protein 

concentration remixing which leads to the loss of correlation with subsequent divisions, 

we generated independent log-normally distributed (if not modeling synthesis and 

degradation), or normally distributed protein synthesis and degradation reactions 

concentrations as well as log-normally distributed total IKK concentrations and set the 

daughter values to the average of the newly generated and the value inherited from the 

mother. This ensured that the daughter cells had correlated protein dynamics, but that 

the correlation decreased with each generation. At the time of division, nuclear proteins 

were redistributed evenly among the nucleus and cytoplasm to mimic nuclear envelope 
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breakdown. Models that ended in death were removed from the pool of running models. 

Multi-scale models, which consisted of many such cellular agents, were initialized at 

generation 0 to contain n independent integrated models. To model cell-to-cell protein 

abundances, we initialized each model with initial protein concentrations sampled from 

lognormal distributions if the total protein concentration was fixed, or with normally-

distributed protein synthesis and degradation rates if the protein had explicit synthesis 

and degradation reactions defined. In addition, the total amount of IKK, the upstream 

signal responsible for NFκB activation, was also assumed to be log-normally distributed. 

Finally, we assumed that the initial mass and general machinery of cells was normally 

distributed as determined by microscopy. After an initial equilibration phase with only 

basal IKK signaling to NFκB, a quiescent steady state was achieved as defined by lack 

of cell-cycle progression and species stabilization. Then, all models were solved 

independently for each generation until the simulation time was elapsed. For a full 

description of model reactants, parameters, fluxes, and species, please see refer to the 

appendices. 
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Chapter 6 

Conclusion 

In this chapter I would like to briefly and informally provide a historic context for 

each chapter, summarize major findings, discuss the possible implications of the results, 

and elaborate on how these studies can be extended in the future.  

 

6.1. Chapter 2 

Chapter 2 is the culmination of four-year effort to develop and publish a tool for 

interpreting CFSE flow cytometry time courses. This began as a rotation project in the 

summer of 2009, when my thesis advisor, Alex, showed me a then recently published 

paper detailing the cyton model [44], which introduced me to the complexity and 

heterogeneity of the B-cell immune response. I spent the next few days implementing 

the model and experimenting with the parameters. My rotation project culminated in a 

computational tool for fitting generation cell counts using various algorithms. I drafted the 

first outline for the paper in September of 2010 and began to write it up soon after. One 

of the goals of the study was to account for the inherent measurement noise by 

repeatedly fitting generational cell counts fitted using a third-party software called FlowJo 

(TreeStar). This seemed very ad hoc to me as the solutions depended on a very 

complex objective function and the quality of the FlowJo fitting, making quantitative 

validation of the tool challenging. Therefore, I decided to try to fit the CFSE data directly, 

thereby eliminating the middle man (FlowJo). Unfortunately, this turned out to be a major 

programming challenge as the interpretation of CFSE datasets requires user input in the 

form of manual gating, channel compensation, and peak calling. This resulted in the 
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development of FlowMax, a computational suite that incorporates all of the necessary 

function for flow cytometry analysis as well as peak calling, and cyton model fitting tools 

(see supplementary files for source code and succinct tutorial). In late 2009, the group 

that published the cyton model published the most influential paper of my Ph.D. career 

[21], in which they detailed a single-cell time-lapse microscopy study of stimulated 

primary B cells. The results indicated that B cells did not grow in their last division, 

suggesting that instead of a race, B cells may in fact be “deciding” their fate. This 

prompted us to reformulate the original cyton model, in which dividing cells can still die, 

to the fcyton model in which growing B cells can only divide, while non-responding cells 

can only die. With FlowMax as my sandbox, and the reformulated fcyton model in hand, 

I spent the next two years characterizing the FlowMax methodology (Figure 2.1), 

applying the tool to CFSE time courses of wildtype and NFκB deficient B cells, and 

periodically resubmitting the manuscript.  

There were several key results that surfaced during the course of our 

investigations. First, it became apparent that some parameters were always accurately 

determined, while others could not be systematically determined even in the presence of 

perfect datasets. This suggests that some parameters have a large impact on the 

solution (e.g. the fraction of responding progenitors), while other parameters could be 

typically be kept random without significant loss of concordance (e.g. the average death 

time of responding cells). Furthermore, we found that solution accuracy was robust to 

poor CFSE staining (wide peaks), but sensitive to the quality of the initial purification 

process. In addition, the number of time points is not as crucial as long as the population 

dynamics can be sampled at early, intermediate, and late times. Therefore, it is generally 

better to sample at say 24 h, 72 h, and 120 h post stimulation than at 48 h, 60 h, 72 h, 

84 h, 96 h post stimulation as the later time course is likely to miss both the initial 
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divisions and late-phase contraction of a typical B-cell response. Together, these results 

demonstrate that a single-set of “best-fit” solutions is meaningless without some 

measure of sensitivity and degeneracy, which is achieved during FlowMax fitting using 

sensitivity estimation, and subsequent agglomerative clustering of the sensitivity ranges 

until only disjoint solution spaces remain. Finally, when we turned FlowMax to 

phenotyping of NFκB deficient B-cells stimulated with LPS and anti-Igm, we confirmed 

that cRel is essential for BCR signaling and important for TLR4 signaling, affecting 

primarily the fraction of cells that respond, as well as survival in TLR4 stimulated cells. 

On the other hand, NFκB1, the gene encoding NFκB p105/p50 plays a repressive role 

during BCR signaling by turning down late cell-cycle reentry, while playing a role similar 

to cRel in the enforcement of B-cell activation and survival during TLR4 stimulation.  

While the tool has already been used subsequent studies [150] and (Almaden, in 

press; and Chapter 3), it took several years of resubmissions (from PNAS, to Immunity, 

PLoS Comp. Biology, and finally to PLoS One), before it was finally accepted for 

publication. In hindsight, a better approach may have been to focus on characterizing 

other CFSE datasets, while devoting only several figures to the description and 

characterization of the tool, which resulted in a long and technical paper that generated 

considerable friction with reviewers. Instead, we could have focused on analyzing CFSE 

datasets from B cells treated with various NFκB, cell-cycle, and apoptosis inhibitors to 

characterize the effect that pharmalogical perturbation has on the distributions of cellular 

outcomes (e.g. how do specific inhibitors affect division timing, the fraction of 

responders, etc.). In addition, it would have been interesting to see how the proliferative 

patterns changed when various cell types were mixed, as populations could be 

distinguished with the help of fluorescently labeled antibodies specific for B cells, such 

as B220. By tracking two populations simultaneously and comparing the behavior to that 
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of purified subsets alone, it should be possible to determine the contributions that 

cohabitation has on specific cellular parameters (such as the fraction of responding 

cells). Importantly, since the population response is robust, FlowMax can be used as a 

fast user-friendly tool for the characterization of patient samples. For example, 

lymphomas may be characterized in the presence of chemotherapeutic drugs targeting 

specific components of the cell death, signaling, or cell-cycle pathways followed by 

FlowMax analysis to test if the target pathway was indeed affected (Figure 6.1). Tumor 

characterization is typically done using gene expression profiling, however, due to the 

extreme heterogeneity of tumor samples, a better approach may be to phenotype the 

collective population dynamics of the tumor, resulting in potentially more robust 

classification, personalized treatment, and improved survival [22,168,196] FlowMax is 

available free of charge as a supplemental file, and its source may be adapted as better 

population models become available, thereby serving as a general computational 

framework for analyzing ubiquitous CFSE flow cytometry datasets. At a minimum it can 

be used in lieu of costly commercial packages for routine flow cytometry analysis and 

quantification.  
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Figure 6.1 Diagram showing how FlowMax phenotyping may be used to 
characterize the mechanics of B cell tumors from specific individuals. 
 
 
 
6.2. Chapter 3 

In this chapter, we developed a time-lapse microscopy and cell-tracking pipeline 

to characterize the growth pattern and genealogy of hundreds of individual B cells. I first 

proposed using time-lapse microscopy to characterize the behavior of B cells shortly 
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after reading the study by Hawkins and coworkers which showed that it is feasible and 

highly informative [21]. In addition, a recent paper by the Covert group showed that 

NFκB signaling is heterogeneous on the single-cell level [197], reinforcing the idea that 

microscopy can be used to tie together molecular and cellular scales. In fact, I 

suggested measuring single-cell NFκB dynamics in B-cells as part of my second year 

qualifying exam. This was a risky venture at the time, as I had no prior experience with 

microscopy and our lab had just started to look into purchasing a microscope.  

Nevertheless, I started to routinely take videos of B cells as soon as we purchased our 

first microscope. To say that this was a daunting challenge would be an understatement. 

In fact, it took over a year before I could find the optimal conditions under which B cells 

would not immediately die, get swept away by convection currents, or die from dried out 

well conditions. After trying everything from 3D printing of custom designed micro grids, 

application of various coatings to the bottom of the well, etc. I ended up finding that B-

cells at a concentration of ~ 50,000 per/mL stimulated with 10-250 nM CpG, and seeded 

into 1536-well clear-bottom uncoated plastic micro plates resulted in minimal convection, 

typical cell proliferation of 7-8 division rounds, and typically at least 120 h of imaging 

time before the wells started to appreciable dry out.  

After successfully taking 8,000 images of hundreds of cells, I quickly became 

overwhelmed with data, and had to find methods for reliably quantifying cellular behavior 

in the images. At the time, no freely available tools were available for accurately tracking 

B cells, which are highly mobile, deformable, growing, dividing, and dying. In the first 

year, I attempted to automate cell tracking with modest results obtained when B cell 

boundaries were easy to discern. Unfortunately, automated tracking of B cell dynamics 

turns out to be a computationally hard problem and my automated methods ultimately 

ended in disaster after tracking cells for just several hours due to runaway error 
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accumulation. In desperation, I turned to a semi-automated approach which relied on 

human input to tackle the challenging problem of resolving ambiguous tracks. I spent the 

next year building training and utilizing a software tool that used a modified Hough 

transform [198] to detect cells, followed by an active-contour approach [118,199] for 

predicting cell shape from one frame to the next by taking into account nearby edges, 

cell shape, size, and rough paths laid out by the curator. When parameterized, this 

approach allowed me to track arbitrarily difficult cell paths as fast as my own mind could 

solve the problem, reducing the time to track a single cell from many hours to several 

minutes on average.  The tracking tool dubbed Force-based Algorithm Semi-automated 

Tracker (FAST), is provided as a supplemental file along with videos of tracked cells 

from wildtype, NFκB cRel deficient, and drug-treated cells.   

Tracking wildtype B cells revealed that B cells can be described as either 

growing and dividing, or poorly growing and dying, suggesting that only one process is 

active in the cells at the same time. This was also shown using the observed time to 

decision (start of growth), time to death, and time to division distributions, which predict 

that most cells would start to grow and then die if division and death processes were 

occurring in simultaneously in cells. In fact, we observe the opposite as almost all 

growing cells are protected from death especially since death typically occurs earlier 

than division in generation 0 cells. This prompted us to explore the molecular drivers of 

this decision making process using molecular assays. 

Having established the experimental and computational pipeline for tracking 

populations of dividing and dying B cells, and having applied it to four particular datasets 

of interest, it is clear that the stage is set to characterize the single-cell behavior of 

lymphocytes under other conditions. For example, cell-cycle and apoptosis inhibitors can 

be used to further phenotype the mechanistic roles of cyclins (primarily cyclin E which is 
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implicated in controlling cell cycle reentry in proliferating cells [25]), and cell cycle 

inhibitors p21cip and p27kip. Furthermore, it would be great to test if B cells treated with 

apoptosis blockers were indeed quiescent, as it entirely possible that decision 

enforcement is not permanent, but acts transiently in the first several division rounds to 

ensure rapid expansion. Indeed, we observed that decision enforcement is typically lost 

after the first few rounds of division even when NFκB cRel is present to act as enforcer, 

reinforcing the general theme that NFκB cRel is important for keeping cells committed 

for at least several cell-cycles. Under this hypothesis, tracking IkBδ deficient cells should 

reveal a prolonged response caused by late-phase loss of NFκB inhibition and 

prolonged decision enforcement provided the upstream signaling mediators remain 

activated by receptor activity for sufficiently long periods. Finally, it would be informative 

to see if B cells that have decreased receptor turnover rates experience a prolonged 

response, as receptor signaling to IKK drives NFκB activation, and tapers off as 

receptors and mediators are recycled.  

 

6.3. Chapter 4 

Single cell molecular assays are the subject of Chapter 4 and are the culmination 

of several fruitful collaborative efforts between myself various members of the signaling 

systems lab and the Fluidigm Corp. which provided training, materials, and live expertise 

for performing the single-cell RNA sequencing experiments. Andrew Doedens, a post-

doctoral scholar in Ananda Goldraths lab generously lent us a fluorescently labeled anti-

NFκB cRel antibody to use in immunofluorescence studies, which was useful for 

determining the abundance of cRel in single cells. Jesse Vargas helped design the IF 

experiments and trained me to carry out the protocol. Jon Almaden ran a series of 

western blots testing for mTORc1 activation and an RT-PCR analysis of BclXL 
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transcription. Finally, Jeremy Davis-Turak, and Harry Birnbaum collaborated together to 

align, map, and normalize the single-cell RNA sequencing dataset.  

This project was first developed in the fall of 2013 as it became clear that we did 

not know how the B-cell decision was determined on the molecular level. Single-cell 

RNA sequencing and immunofluorescence studies were carried out simultaneously in an 

attempt to characterize the global transcriptome signature of large (i.e decided to 

respond) and small cells (i.e. failed to respond). As single-cell transcriptome sequencing 

was still brand new at the time and required considerable investment of time and money 

to optimize, we decided to take advantage of a live demonstration to facilitate discovery, 

while avoiding early mistakes that typically pop up when first starting to optimize a new 

experimental methodology. Luckily, we were able to capture several dozen B cells and 

proceeded to prepare oligonucleotide libraries for the five smallest and five largest cells 

as well as bulk positive, bulk 0 h, and negative controls. Analyzing the results, we found 

that there was high cell-to-cell variability in transcript levels even within groups of large 

and small cells. Nevertheless when we scored each gene using a metric that took into 

account significant counts for all cells within a group a familiar pattern arose. Big cells 

tended to upregulate gene regulation, metabolism, cell-cycle, and apoptosis genes, 

while down-regulating adhesion and autophagy/senescence pathways. Furthermore, the 

NFκB signaling pathway was significantly upregulated in large cells. This prompted us to 

probe for specific NFκB monomers and relevant downstream targets of NFκB by 

immunofluorescence and traditional biochemical studies confirming that NFκB cRel 

mediates growth and survival in B cells. 

In the immediate future, it would be great to confirm the effect of NFκB cRel on 

the abundance of Myc, and Cyclin D2/3 in B cells by RT-PCR and western blot, The 

relative magnitude of the change would help to further constrain the multi-scale model 
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presented in chapter 5. In addition, looking at several time points prior to 24 h (at 2 h and 

8 h post stimulation) could help trace the dynamics of essential molecular players 

providing temporal constraints for the multi-scale modeling effort. This work could be 

carried out in the span of a few weeks or months by the next generation of 

undergraduate and graduate students. 

Future single-cell assays promise exciting revelations of single cell behaviors. 

Clearly, being able to directly link readouts for several proteins and cell size in individual 

cells is key to deciphering molecular relationships in the context of dramatic 

heterogeneity caused by variability in extrinsic cell states (e.g. tumors and organs). The 

challenge will be in proper sampling. Single-cell transcriptome sequencing is expensive 

and at best currently yields 96 cell samples per microfluidic chip, making studies of low-

abundance cell subsets laborious and exceedingly expensive. Nevertheless, this is a 

powerful method for studying cellular processes that are driven by heterogeneous 

cellular states. As these data quantify the abundance of tens of thousands of transcripts 

within each cell, data analysis will continue to dominate experimental workflow. Given 

the chance and resources, it would be interesting to scale up the experiment we 

performed in this chapter tenfold to obtain transcriptome information on approximately 

50 small and 50 large cells for both wildtype and aberrant B cells at 2 h, 8h, an 24 h post 

stimulation with CpG, BAFF, and CD40L, which signal through the canonical, non-

canonical, and both NFκB pathways, respectively, providing a wealth of data on cell-to-

cell variability, dynamics, disease mechanisms, and signaling crosstalk. The future of 

single-cell fluorescence in B-cells likely lies in live-cell microscopy of B cells from 

genetically engineered mice expressing fluorescently-labeled NFκB cRel, Myc, BclXL and 

Cyclins D2/3 and E. As it is possible to reconstruct B-cell genealogical trees, concurrent 

measurements of key molecular players will provide essential clues to how dynamics 
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dictate decision making, as the history of signaling molecules provides more information 

content than individual snapshots. Furthermore, as the timing of division and death 

processes varies considerably between cells, dynamic observations of key molecular 

regulators can be directly compared to the timing of events in individual cells. 

 

6.4. Chapter 5 

The culmination of the dissertation lies with the construction and 

parameterization of a multi-scale agent-based model consisting of a population of 

integrated ODE models running in parallel, thereby simulating the population response 

as a function of the biochemical reactions governing NFκB signaling, apoptosis, and cell-

cycling. The first step in model construction was the reimplementation of the established 

Conradie/Tyson model [152] of the mammalian cell cycle into a common language 

(Matlab). Matlab was selected for two main reasons. First, the NFκB signaling models 

developed in our lab are all implemented in Matlab, second Matlab offers convenient and 

efficient solvers for inherently stiff systems of ODEs (all three of these models are 

inherently stiff) as well as conventions for parallelizing computation across up to 12 

cores, essentially speeding up the computation by another order of magnitude (essential 

considering the size the model and the fact that hundreds of copies of the model will 

need to be simulated in parallel to obtain a single multi-scale solution). In the early days, 

I even considered implementing a GPU-based solver, but luckily realized that this is not 

feasible for models of this size (not to mention the complexity of implementing an ODE 

solver).  Model integration proceeded in three steps over the next year. First, the cell-

cycle model was implemented in Matlab and tested for solution accuracy. Next, the cell-

cycle model was combined with the xEARM model that was being developed by Paul 

Loriaux in the lab [156] and a basic population consisting of competing outcomes could 
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be modeled for the first time. At this time, the sensitivity of various parameters on the 

timing of division and death was performed (Figure 5.2). Finally, the NFκB model was 

incorporated and implicated in the production of Myc, CyclinD, and BclXL. By 

encompassing each integrated model within autonomous agents, we could readily 

account for cell-to-cell extrinsic variability by distributing the starting protein 

concentrations (or synthesis an degradation rates which are themselves functions of 

proteasome and ribosome abundance variability), the initial size of cells, and the 

variability associated with uneven distribution of cell mass at the time of division. 

Furthermore, this enabled us to explicitly account for correlations in the timing of 

processes between sister and cousin cells by implementing remixing of protein 

abundances inherited from the mother cell.   
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Figure 6.2. Early iteration of the integrated cell-cycle/apoptosis models.  A) 
Variability in the timing of the first division. B) Variability in the timing of the subsequent 
division. C) Variability in the timing of cell death (notice that many cells survived 
indefinitely). D) Population counts of agents in each generation. Notice that cell 
populations increased indefinitely as there was no mechanism for controlling 
division/death rates as a function of generation or time. 
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Upon completing chapters 3 and 4, we were finally poised to parameterize the 

model, with NFκB-driven synthesis of pro-survival BclXL, Myc, and CyclinD using the 

results from the molecular assays and time-lapse imaging studies to ensure that the 

model could accurately recapitulate the observed doubling in total cell count during peak 

response, an initial ~35% of progenitors dividing, monotonically decreasing fractions of 

cells that divide in subsequent divisions starting with a high fraction of cells dividing 

again after the first division, as well as the characteristic observed size trajectories of 

growing and non-growing cells, and observed Tdiv and Tdie distributions. The resulting 

model was then used to predict the effects decreased stimulation (faster decaying IKK 

activity), cRel deficiency, and rapamycin pretreatment (30% drop in protein synthesis). 

Subsequent time-lapse imaging experiments showed remarkably similar responses, 

suggesting that the model was generally applicable to many different situations.  Finally, 

we used the model to demonstrate that protein variability is expected to affect both 

timing variability as well as the magnitude of the population response, while increased 

average IKK levels and NFκB cRel transcription resulted in increased population 

responses but unchanged variability in the timing of division or death. 

 While the multi-scale model will undoubtedly be continuously modified as new 

parameters and molecular players come to light, an exciting next step would be to 

explicitly model the activation of various TLRs and the BCR, enabling the prediction of 

pathogen specific immunity different pathogens will activate specific receptors with 

varied strengths. Furthermore, by explicitly modeling receptor dynamics, we can predict 

how receptor, and receptor-proximal components will affect the population response. 

Finally, since the B cell receptor is unique and undergoes class-switching and somatic 

hyper mutation, an agent-based model could be readily extended to study the population 
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dynamics of the GC reaction and adaptive immunity providing insights into both 

branches of the immune response (Figure 6.3).  

 

 

Figure 6.3. The multi-scale receptor-specific population model. 
By incorporating modules for TLR and BCR mediated activation of Kinases via TRIF 
and/or MyD88, we can expand the multi-scale model to explore pathogen specificity, 
receptor editing, as well as paracrine/autocrine signaling across scales.
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Appendices 
These appendices tabulate the various reactants, reactions, parameters, fluxes, 

and extrinsic variability coefficients required for modeling the integrated B cell multi-scale 

model. Matlab model files are included as MultiScale.zip in the supplementary files. 

 

A. Integrated B-cell model species. Prior to simulation, the model was equilibrated 

starting from initial concentrations, x0, with basal IKK signaling and no death signal (L=0) 

for a period of 24 h. Due to relatively high initial cyclin levels, the equilibration was 

repeated until the cell divided ([Mass] and [GM] was halved as usual).  

 
# Species x0 # Species x0 # Species x0 # Species x0 

1 tIkBa 0 37 IkBbA50n 0 73 pC3 10000 109 CytoC 0 

2 IkBa 0 38 IkBeA50 0 74 C8-pC3 0 110 Apaf 100000 

3 IkBan 0 39 IkBeA50n 0 75 C3 0 111 Apaf-CytoC 0 

4 tIkBb 0 40 IkBdA50 0 76 pC6 10000 112 act_Apaf 0 

5 IkBb 0 41 IkBdA50n 0 77 C3-pC6 0 113 pC9 100000 

6 IkBbn 0 42 5050 0 78 C6 0 114 Apop 0 

7 tIkBe 0 43 5050n 0 79 C6-pC8 0 115 Apop-pC3 0 

8 IkBe 0 44 IkBa5050 0 80 XIAP 100000 116 cSmac 0 

9 IkBen 0 45 IkBa5050n 0 81 XIAP-C3 0 117 Apop-XIAP 0 

10 tIkBd 0 46 IkBb5050 0 82 PARP 1000000 118 cSmac-XIAP 0 

11 IkBd 0 47 IkBb5050n 0 83 C3-PARP 0 119 C3_Ub 0 

12 IkBdn 0 48 IkBe5050 0 84 CPARP 0 120 CycA 0.014254 

13 tRelA 0 49 IkBe5050n 0 85 Bid 60000 121 CycB 2.228995 

14 RelA 0 50 IkBd5050 0 86 C8-Bid 0 122 CycD 0.411217 

15 RelAn 0 51 IkBd5050n 0 87 tBid 0 123 CycE 0.170235 

16 tP50 0 52 C50 0 88 Mcl1 20000 124 tCycD 0 

17 P50 0 53 C50n 0 89 Mcl1-tBid 0 125 tBclXL 1000 

18 P50n 0 54 IkBaC50 0 90 Bax 80000 126 Cdh1 1 

19 tcRel 0 55 IkBaC50n 0 91 tBid-Bax 0 127 CA 0.001343 

20 cRel 0 56 IkBbC50 0 92 act_Bax 0 128 CD 0.039049 

21 cReln 0 57 IkBbC50n 0 93 Baxm 0 129 CDc20 0.610581 

22 AA 0 58 IkBeC50 0 94 BclXL 30000 130 CDc20T 2.967532 

23 AAn 0 59 IkBeC50n 0 95 Baxm-Bcl2 0 131 CE 0.016231 

24 IkBaAA 0 60 IkBdC50 0 96 Bax2 0 132 GM 0.747611 

25 IkBaAAn 0 61 IkBdC50n 0 97 Bax2-Bcl2 0 133 IEP 0.791894 

26 IkBbAA 0 62 L 0 98 Bax4 0 134 Mass 0.930762 

27 IkBaAAn 0 63 R 1000 99 Bax4-Bcl2 0 135 p27 0.024804 

28 IkBeAA 0 64 L-R 0 100 M 500000 136 PPX 1 

29 IkBeAAn 0 65 DISC 0 101 Bax4-M 0 137 pp-Rb 9.859403 

30 IkBdAA 0 66 flip 2000 102 AMito 0 138 E2F 1.2212 

31 IkBdAAn 0 67 flip-DISC 0 103 mCytoC 500000 139 p-E2F 3.639173 

32 A50 0 68 pC8 10e4 104 AMito-mCytoC 0 140 Rb 0.000975 

33 A50n 0 69 DISC-pC8 0 105 aCytoC 0 141 E2F-Rb 0.035082 

34 IkBaA50 0 70 C8 0 106 mSmac 100000 142 p-E2F-Rb 0.104543 

35 IkBaA50n 0 71 Bar 1000 107 AMito-mSmac 0 143 Myc 0 

36 IkBbA50 0 72 Bar-C8 0 108 aSmac 0 144 tMyc 0 
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B. Integrated B-cell model parameters.  
# Parameter Description Value Units Justification 

1 

ki(1,αααα) →tIkbα 0.0009 nM min
-1 

Parameter value chosen to fit mRNA 
and protein Expression profiles as 
measure by RNase Protection (RPA) 
and Western blot assays, 
reformulated from [147]to fit a Hill 
function where Hill coefficient = 1.1 

2 ki(2,αααα) tIkbα→ 0.0438 min
-1

 [148] 

3 

ki(3,αααα) tIkbα→Ikbα 12 
Proteins/ 
mRNA min

-1
 

Derived from the elongation rate of 
the ribosome and corrected for th 
nucleotide spacing between 
adjacent ribosomes on the same 
transcript: 30 nt sec

-1
/150 nt = 12 

min
-1

 

4 ki(4,αααα) Ikbα→ 0.12 min
-1

 As in #2 

5 ki(5,αααα) nIkbα→ 0.12 min
-1

 As in #2 

6 ki(6,αααα) Ikbα→ nIkbα 0.06 min
-1

 As in #2 

7 ki(7,αααα) nIkbα→ Ikbα 0.012 min
-1

 As in #2 

8 ki(8,αααα) transcription delay 0 min As in #1 

9 ki(9,αααα) Hill c for inducible txn. 1.1  [150] 

10 ki(10,αααα) Hill Kd 150 nM As in #1 

11 
ki(11,αααα) Ikbα+IKK→IKK 0.00135 nM

-1
 min

-1
 

Based on measured IkB degradation 
time courses given numerical input 

12 ki(12,αααα) Ikbα:NFκB+IKK→IKK 0.00135 nM
-1

 min
-1

 As in #11 

13 ki(13,αααα) Ikbα:NFκB→ 0.00024 min
-1

 Based on estimated 48 h half-life 

14 ki(14,αααα) nIkbα:NFκB→ 0.00024 min
-1

 As in #13 

15 ki(1,ββββ) →tIkbβ 0.0006 nM min
-1

 As in #1 

16 ki(2,ββββ) tIkbβ→ 0.00288 min
-1

 As in #2 

17 
ki(3,ββββ) tIkbβ→Ikbβ 12 

Proteins/ 
mRNA min

-1
 

As in #3 

18 ki(4,ββββ) Ikbβ→ 0.12 min
-1

 As in #2 

19 ki(5,ββββ) nIkbβ→ 0.12 min
-1

 As in #2 

20 ki(6,ββββ) Ikbβ→ nIkbβ 0.009 min
-1

 As in #2 

21 ki(7,ββββ) nIkbβ→ Ikbβ 0.012 min
-1

 As in #2 

22 ki(8,ββββ) transcription delay 45 min As in #1 

23 ki(9,ββββ) Hill c for inducible txn. 1.1  As in #9 

24 ki(10,ββββ) Hill Kd 150 nM As in #1 

25 ki(11,ββββ) Ikbβ+IKK→IKK 0.00045 nM
-1

 min
-1

 As in #11 

26 ki(12,ββββ) Ikbβ:NFκB+IKK→IKK 0.00045 nM
-1

 min
-1

 As in #11 

27 ki(13,ββββ) Ikbβ:NFκB→ 0.00024 min
-1

 As in #13 

28 ki(14,ββββ) nIkbβ:NFκB→ 0.00024 min
-1

 As in #13 

29 ki(1,εεεε) →tIkbε 7.20E-05 nM min
-1

 As in #1 

30 ki(2,εεεε) tIkbε→ 0.00384 min
-1

 As in #2 

31 
ki(3,εεεε) tIkbε→Ikbε 12 

Proteins/ 
mRNA min

-1
 

As in #3 

32 
ki(4,εεεε) Ikbε→ 0.01155 min

-1
 

Schuerenberg and Hoffmann, in 
preparation 

33 ki(5,εεεε) nIkbε→ 0.01155 min
-1

 As in #32 

34 ki(6,εεεε) Ikbε→ nIkbε 0.045 min
-1

 As in #2 

35 ki(7,εεεε) nIkbε→ Ikbε 0.012 min
-1

 As in #2 

36 ki(8,εεεε) transcription delay 45 min As in #1 

37 ki(9,εεεε) Hill c for inducible txn. 1.1  As in #9 

38 ki(10,εεεε) Hill Kd 150 nM As in #1 

39 ki(11,εεεε) Ikbε+IKK→IKK 0.0003375 nM
-1

 min
-1

 As in #11 

40 ki(12,εεεε) Ikbε:NFκB+IKK→IKK 0.0003375 nM
-1

 min
-1

 As in #11 

41 ki(13,εεεε) Ikbε:NFκB→ 0.00024 min
-1

 As in #13 

42 ki(14,εεεε) nIkbε:NFκB→ 0.00024 min
-1

 As in #13 

43 km(1,RelA) →tRelA 7.20E-05 nM min
-1

 As in #1 
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# Parameter Description Value Units Justification 

44 km(2,RelA) tRelA→ 0.00288 min
-1

 As in #2 

45 
km(3,RelA) tRelA→RelA 12 Proteins/ 

mRNA min 
As in #3 

46 

km(4,RelA) RelA→ 0.0231 
min

-1
 

Based on estimated 30 min half-life 

of NFκB monomers 

47 km(5,RelA) nRelA→ 0.0231 min
-1

 As in #46 

48 
km(6,RelA) transcription delay 60 

min 
Based on estimated 1 h delay from 
RPA experiments 

49 km(7,RelA) Hill c for inducible txn. 1  Assumed to be similar to #9 

50 km(8,RelA) Hill Kd 150 nM As in #1 

51 

km(1,p50) →tp50 4.68E-05 nM min
-1

 Reduced to account for induced 
expression and a basal steady state 
of 4 nM RelA:p50 and 2 nM 
cRel:p50 in the nucleus. 

52 km(2,p50) tp50→ 0.00288 min
-1

 As in #2 

53 
km(3,p50) tp50→p50 12 Proteins/ 

mRNA min 
As in #3 

54 km(4,p50) p50→ 0.0231 min
-1

 As in #46 

55 km(5,p50) np50→ 0.0231 min
-1

 As in #46 

56 km(6,p50) transcription delay 60 min As in #48 

57 km(7,p50) Hill c for inducible txn. 1  As in #49 

58 km(8,p50) Hill Kd 150 nM As in #1 

59 km(1,cRel) →tcRel 4.68E-05 nM min
-1

 As in #51 

60 km(2,cRel) tcRel→ 0.00288 min
-1

 As in #2 

61 
km(3,cRel) tcRel→cRel 12 Proteins/ 

mRNA min 
As in #3 

62 km(4,cRel) cRel→ 0.0231 min
-1

 As in #46 

63 km(5,cRel) ncRel→ 0.0231 min
-1

 As in #46 

64 km(6,cRel) transcription delay 60 min As in #48 

65 km(7,cRel) Hill c for inducible txn. 1  As in #49 

66 km(8,cRel) Hill Kd 150 nM As in #1 

67 kd(1,AA) RelA+RelA→AA 0.0006 nM
-1

 min
-1

 Tsui et al. in press 

68 kd(2,AA) nRelA+nRelA→nAA 0.0006 nM
-1

 min
-1

 As in #67 

69 kd(3,AA) AA→ RelA+RelA 0.48 min
-1

 As in #67 

70 kd(4,AA) nAA→nRelA+nRelA 0.048 min
-1

 As in #67 

71 kd(5,AA) AA→nAA 5.4 min
-1

 As in #2 

72 kd(6,AA) nAA→AA 0.0048 min
-1

 As in #2 

73 kd(7,AA) AA→ 0.00024 min
-1

 Based on estimated 48 hour half-life 

74 kd(8,AA) nAA→ 0.00024 min
-1

 As in #73 

75 kd(9,AA) IkB:AA→IkB 0.00024 min
-1

 See #13 

76 kd(10,AA) nIkB:AA→nIkB 0.00024 min
-1

 See #13 

77 kd(1,A50) RelA+p50→A50 0.001896 nM
-1

 min
-1

 As in #67 

78 kd(2,A50) nRelA+np50→nA50 0.001896 nM
-1

 min
-1

 As in #67 

79 kd(3,A50) A50→ RelA+p50 0.01896 min
-1

 As in #67 

80 kd(4,A50) nA50→nRelA+np50 0.001896 min
-1

 As in #67 

81 kd(5,A50) A50→nA50 5.4 min
-1

 As in #2 

82 kd(6,A50) nA50→A50 0.0048 min
-1

 As in #2 

83 kd(7,A50) A50→ 0.00024 min
-1

 As in #73 

84 kd(8,A50) nA50→ 0.00024 min
-1

 As in #73 

85 kd(9,A50) IkB:A50→IkB 0.00024 min
-1

 See #13 

86 kd(10,A50) nIkB:A50→nIkB 0.00024 min
-1

 See #13 

87 kd(1,5050) p50+p50→A50 0.0018 nM
-1

 min
-1

 As in #67 

88 kd(2,5050) np50+np50→nA50 0.0018 nM
-1

 min
-1

 As in #67 

89 kd(3,5050) 5050→ p50+p50 0.054 min
-1

 

As in #67 
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# Parameter Description Value Units Justification 

90 kd(4,5050) N5050→np50+np50 0.0054 min
-1

 As in #67 

91 kd(5,5050) 5050→n5050 5.4 min
-1

 As in #2 

92 kd(6,5050) N5050→5050 0.0048 min
-1

 As in #2 

93 kd(7,5050) 5050→ 0.00024 min
-1

 As in #73 

94 kd(8,5050) N5050→ 0.00024 min
-1

 As in #73 

95 kd(9,5050) IkB:5050→IkB 0.00024 min
-1

 See #13 

96 kd(10,5050) nIkB:5050→nIkB 0.00024 min
-1

 See #13 

97 kd(1,C50) cRel+p50→A50 0.0018 nM
-1

 min
-1

 As in #67 

98 kd(2,C50) ncRel +np50→nA50 0.0018 nM
-1

 min
-1

 As in #67 

99 kd(3,C50) C50→ cRel +p50 0.054 min
-1

 As in #67 

100 kd(4,C50) nC50→ncRel+np50 0.0054 min
-1

 As in #67 

101 kd(5,C50) C50→nC50 5.4 min
-1

 As in #2 

102 kd(6,C50) nC50→C50 0.0048 min
-1

 As in #2 

103 kd(7,C50) C50→ 0.00024 min
-1

 As in #73 

104 kd(8,C50) nC50→ 0.00024 min
-1

 As in #73 

105 kd(9,C50) IkB:C50→IkB 0.00024 min
-1

 See #13 

106 kd(10,C50) nIkB:C50→nIkB 0.00024 min
-1

 See #13 

107 

kdm(AA,A) Monomer induction 0  RelA is not induced by NFκB 

dimers. 

108 

kdm(AA,50) Monomer induction 0  Set to 0 since RelA homodimer is 
1000 fold less than RelA:p50 or 
cRel:p50 heterodimers in the 
nucleus. 

109 kdm(AA,C) Monomer induction. 0  As in #108 

110 kdm(A50,A) Monomer induction 0  As in #107 

111 

kdm(A50,50) Monomer induction 10  Manually calibrated to ensure late-
phase signaling of cRel:p50 
heterodimer. 

112 kdm(A50,C) Monomer induction. 10  As in #111 

113 
kdm(5050,A) Monomer induction 0  As in #107, also p50 homodimer 

does not induce gene expression. 

114 kdm(5050,50) Monomer induction 0  As in #113 

115 kdm(5050,C) Monomer induction. 0  As in #113 

116 kdm(C50,A) Monomer induction 0  As in #107 

117 kdm(C50,50) Monomer induction 10  As in #111 

118 kdm(C50,C) Monomer induction. 10  As in #111 

119 kp(1,AA,αααα) AA+IkBα→AA:IkBα 0.001344 nM
-1

 min
-1

 As in #67 

120 kp(2,AA,αααα) AA:IkBα→ AA+IkBα 0.001344 min
-1

 As in #67 

121 kp (3,AA,αααα) nAA+nIkBα→nAA:IkBα 2.68E-05 nM
-1

 min
-1

 As in #67 

122 kp(4,AA,αααα) nAA:IkBα→ nAA+IkBα 2.68E-05 min
-1

 As in #67 

123 kp(5,AA,αααα) AA:IkBα→ nAA:IkBα 0.276 min
-1

 As in #2 

124 kp(6,AA,αααα) nAA:IkBα→ AA:IkBα 0.84 min
-1

 As in #2 

125 kp(7,AA,αααα) Induction strength 25  As in #1 

126 kp(1,AA,ββββ) AA+IkBβ→AA:IkBβ 0.3 nM
-1

 min
-1

 As in #67 

127 kp(2,AA,ββββ) AA:IkBβ→ AA+IkBβ 0.3 min
-1

 As in #67 

128 kp (3,AA,ββββ) nAA+nIkββ→nAA:IkBβ 0.0012 nM
-1

 min
-1

 As in #67 

129 kp(4,AA,ββββ) nAA:IkBβ→ nAA+IkBβ 0.0012 min
-1

 As in #67 

130 kp(5,AA,ββββ) AA:IkBβ→ nAA:IkBβ 0.0276 min
-1

 As in #2 

131 kp(6,AA,ββββ) nAA:IkBβ→ AA:IkBβ 0.42 min
-1

 As in #2 

132 kp(7,AA,ββββ) Induction strength 1  As in #1 

133 kp(1,AA,εεεε) AA+IkBε→AA:IkBε 0.000213 nM
-1

 min
-1

 As in #67 

134 kp(2,AA,εεεε) AA:IkBε→ AA+IkBε 0.000213 min
-1

 As in #67 

135 kp (3,AA,εεεε) nAA+nIkβε→nAA:IkBε 0.01692 nM
-1

 min
-1

 As in #67 

136 kp(4,AA,εεεε) nAA:IkBε→ nAA+IkBε 0.01692 min
-1

 As in #67 

137 kp(5,AA,εεεε) AA:IkBε→ nAA:IkBε 0.138 min
-1

 As in #2 

138 

kp(6,AA,εεεε) nAA:IkBε→ AA:IkBε 0.42 min
-1

 As in #2 
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# Parameter Description Value Units Justification 

139 kp(7,AA,εεεε) Induction strength 25  As in #1 

140 kp(1,A50,αααα) A50+IkBα→A50:IkBα 0.004806 nM
-1

 min
-1

 As in #67 

141 kp(2,A50,αααα) A50:IkBα→ A50+IkBα 0.004806 min
-1

 As in #67 

142 kp (3,A50,αααα) nA50+nIkBα→nA50:IkBα 0.0006 nM
-1

 min
-1

 As in #67 

143 kp(4,A50,αααα) nA50:IkBα→ nA50+IkBα 0.0006 min
-1

 As in #67 

144 kp(5,A50,αααα) A50:IkBα→ nA50:IkBα 0.276 min
-1

 As in #2 

145 kp(6,A50,αααα) nA50:IkBα→ A50:IkBα 0.84 min
-1

 As in #2 

146 kp(7,A50,αααα) Induction strength 200  As in #1 

147 kp(1,A50,ββββ) A50+IkBβ→A50:IkBβ 0.000213 nM
-1

 min
-1

 As in #67 

148 kp(2,A50,ββββ) A50:IkBβ→ A50+IkBβ 0.000213 min
-1

 As in #67 

149 kp (3,A50,ββββ) nA50+nIkββ→nA50:IkBβ 0.01692 nM
-1

 min
-1

 As in #67 

150 kp(4,A50,ββββ) nA50:IkBβ→ nA50+IkBβ 0.01692 min
-1

 As in #67 

151 kp(5,A50,ββββ) A50:IkBβ→ nA50:IkBβ 0.0276 min
-1

 As in #2 

152 kp(6,A50,ββββ) nA50:IkBβ→ A50:IkBβ 0.42 min
-1

 As in #2 

153 kp(7,A50,ββββ) Induction strength 1  As in #1 

154 kp(1,A50,εεεε) A50+IkBε→A50:IkBε 0.001344 nM
-1

 min
-1

 As in #67 

155 kp(2,A50,εεεε) A50:IkBε→ A50+IkBε 0.001344 min
-1

 As in #67 

156 kp (3,A50,εεεε) nA50+nIkβε→nA50:IkBε 0.006 nM
-1

 min
-1

 As in #67 

157 kp(4,A50,εεεε) nA50:IkBε→ nA50+IkBε 0.006 min
-1

 As in #67 

158 kp(5,A50,εεεε) A50:IkBε→ nA50:IkBε 0.138 min
-1

 As in #2 

159 kp(6,A50,εεεε) nA50:IkBε→ A50:IkBε 0.42 min
-1

 As in #2 

160 kp(7,A50,εεεε) Induction strength 25  As in #1 

161 kp(1,5050,αααα) 5050+IkBα→5050:IkBα 0 nM
-1

 min
-1

 As in #67 

162 kp(2,5050,αααα) 5050:IkBα→ 5050+IkBα 0 min
-1

 As in #67 

163 kp (3,5050,αααα) n5050+nIkBα→n5050:IkBα 0 nM
-1

 min
-1

 As in #67 

164 kp(4,5050,αααα) n5050:IkBα→ n5050+IkBα 0 min
-1

 As in #67 

165 kp(5,5050,αααα) 5050:IkBα→ n5050:IkBα 0 min
-1

 As in #2 

166 kp(6,5050,αααα) n5050:IkBα→ 5050:IkBα 0 min
-1

 As in #2 

167 kp(7,5050,αααα) Induction strength 0  As in #1 

168 kp(1,5050,ββββ) 5050+IkBβ→5050:IkBβ 0 nM
-1

 min
-1

 As in #67 

169 kp(2,5050,ββββ) 5050:IkBβ→ 5050+IkBβ 0 min
-1

 As in #67 

170 kp (3,5050,ββββ) n5050+nIkββ→n5050:IkBβ 0 nM
-1

 min
-1

 As in #67 

171 kp(4,5050,ββββ) n5050:IkBβ→ 50A50+IkBβ 0 min
-1

 As in #67 

172 kp(5,5050,ββββ) 5050:IkBβ→ 50A50:IkBβ 0 min
-1

 As in #2 

173 kp(6,5050,ββββ) n5050:IkBβ→ 5050:IkBβ 0 min
-1

 As in #2 

174 kp(7,5050,ββββ) Induction strength 0  As in #1 

175 kp(1,5050,εεεε) 5050+IkBε→5050:IkBε 0 nM
-1

 min
-1

 As in #67 

176 kp(2,5050,εεεε) 5050:IkBε→ 5050+IkBε 0 min
-1

 As in #67 

177 kp (3,5050,εεεε) n5050+nIkβε→n5050:IkBε 0 nM
-1

 min
-1

 As in #67 

178 kp(4,5050,εεεε) n5050:IkBε→ n5050+IkBε 0 min
-1

 As in #67 

179 kp(5,5050,εεεε) 5050:IkBε→ n5050:IkBε 0 min
-1

 As in #2 

180 kp(6,5050,εεεε) n5050:IkBε→ 5050:IkBε 0 min
-1

 As in #2 

181 kp(7,5050,εεεε) Induction strength 0  As in #1 

182 kp(1,C50,αααα) C50+IkBα→A50:IkBα 0.003006 nM
-1

 min
-1

 As in #67 

183 kp(2,C50,αααα) C50:IkBα→ A50+IkBα 0.003006 min
-1

 As in #67 

184 kp (3,C50,αααα) nC50+nIkBα→nA50:IkBα 0.0048 nM
-1

 min
-1

 As in #67 

185 kp(4,C50,αααα) nC50:IkBα→ nA50+IkBα 0.0048 min
-1

 As in #67 

186 kp(5,C50,αααα) C50:IkBα→ nA50:IkBα 0.276 min
-1

 As in #2 

187 kp(6,C50,αααα) nC50:IkBα→ A50:IkBα 0.84 min
-1

 As in #2 

188 kp(7,C50,αααα) Induction strength 1  As in #1 

189 kp(1,C50,ββββ) C50+IkBβ→C50:IkBβ 0.000213 nM
-1

 min
-1

 As in #67 

190 kp(2,C50,ββββ) C50:IkBβ→ C50+IkBβ 0.000213 min
-1

 As in #67 

191 kp (3,C50,ββββ) nC50+nIkββ→nC50:IkBβ 0.01692 nM
-1

 min
-1

 As in #67 

192 kp(4,C50,ββββ) nC50:IkBβ→ nC50+IkBβ 0.01692 min
-1

 As in #67 

193 kp(5,C50,ββββ) C50:IkBβ→ nC50:IkBβ 0.0276 min
-1

 As in #2 

194 kp(6,C50,ββββ) nC50:IkBβ→ C50:IkBβ 0.42 min
-1

 As in #2 

195 kp(7,C50,ββββ) Induction strength 1  As in #1 

196 kp(1,C50,εεεε) C50+IkBε→C50:IkBε 0.001344 nM
-1

 min
-1

 As in #67 

197 
kp(2,C50,εεεε) C50:IkBε→ C50+IkBε 0.001344 min

-1
 As in #67 
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198 kp (3,C50,εεεε) nC50+nIkβε→nC50:IkBε 2.68E-05 nM
-1

 min
-1

 As in #67 

199 kp(4,C50,εεεε) nC50:IkBε→ nC50+IkBε 2.68E-05 min
-1

 As in #67 

200 kp(5,C50,εεεε) C50:IkBε→ nC50:IkBε 0.138 min
-1

 As in #2 

201 kp(6,C50,εεεε) nC50:IkBε→ C50:IkBε 0.42 min
-1

 As in #2 

202 kp(7,C50,εεεε) Induction strength 250  As in #1 

203 ka(1) 

L+R→L:R 

2.40E-05 

mol
-1

 min
-1

 

Constants were derived using py-
substitution to achieve similar steady 
state concentrations of species as 
described in an extant model of 
mammalian apoptosis [155], while 
also allowing cells to survive low 
doses of stimuluation. See [156].  

204 ka(2) L:R→L+R 6.00E-05 min
-1 As in #203 

205 ka(3) L:R→DISC (R*) 0.6 min
-1 As in #203 

206 ka(4) flip + DISC → flip:DISC  6.00E-05 mol
-1

 min
-1

 As in #203 

207 ka(5) flip:DISC → flip + DISC 0.06 min
-1

 As in #203 

208 ka(6) pC8 + DISC → DISC:pC8 6.00E-06 mol
-1

 min
-1

 As in #203 

209 ka(7) DISC:pC8 → pC8 + DISC 0.06 min
-1

 As in #203 

210 ka(8) DISC:pC8 → C8 + DISC 60 min
-1

 As in #203 

211 ka(9) C8 + BAR → BAR:C8 6.00E-05 mol
-1

 min
-1

 As in #203 

212 ka(10) BAR:C8 → C8 + BAR 0.06 min
-1

 As in #203 

213 ka(11) pC3 + C8 → pC3:C8 6.00E-06 mol
-1

 min
-1

 As in #203 

214 ka(12) pC3:C8 → pC3 + C8 0.06 min
-1

 As in #203 

215 ka(13) pC3:C8 → C3 + C8 60 min
-1

 As in #203 

216 ka(14) pC6 + C3 → pC6:C3 6.00E-06 mol
-1

 min
-1

 As in #203 

217 ka(15) pC6:C3 → pC6 + C3 0.06 min
-1

 As in #203 

218 ka(16) pC6:C3 → C6 + C3 60 min
-1

 As in #203 

219 ka(17) pC8 + C6 →pC8:C6 6.00E-06 mol
-1

 min
-1

 As in #203 

220 ka(18) pC8:C6 → pC8 + C6 0.06 min
-1

 As in #203 

221 ka(19) pC8:C6 → C8 + C6 60 min
-1

 As in #203 

222 ka(20) XIAP + C3 → XIAP:C3 0.00012 mol
-1

 min
-1

 As in #203 

223 ka(21) XIAP:C3 →XIAP + C3 0.06 min
-1

 As in #203 
224 ka(22) XIAP:C3 →XIAP + C3_U 6 min

-1
 As in #203 

225 ka(23) PARP + C3 → PARP:C3 6.00E-05 mol
-1

 min
-1

 As in #203 
226 ka(24) PARP:C3 → PARP + C3 0.06 min

-1
 As in #203 

227 ka(25) PARP:C3 → CPARP + C3 1200 min
-1

 As in #203 
228 ka(26) Bid + C8 → Bid:C8 6.00E-06 mol

-1
 min

-1
 As in #203 

229 ka(27) Bid:C8 → Bid + C8 0.06 min
-1

 As in #203 
230 ka(28) Bid:C8→ tBid + C8 60 min

-1
 As in #203 

231 ka(29) tBid + Bcl2c → tBid:Bcl2c 6.00E-05 mol
-1

 min
-1

 As in #203 

232 ka(30) tBid:Bcl2c → tBid + Bcl2c 0.06 min
-1

 As in #203 

233 ka(31) Bax + tBid →Bax:tBid 6.00E-06 mol
-1

 min
-1

 As in #203 
234 ka(32) Bax:tBid → Bax + tBid 0.06 min

-1
 As in #203 

235 ka(33) Bax:tBid → aBax + tBid 60 min
-1

 As in #203 
236 ka(34) aBax → MBax  0.6 min

-1
 As in #203 

237 ka(35) MBax → aBax 60 min
-1

 As in #203 
238 ka(36) MBax + BclXL → MBax:BclXL 6.00E-05 mol

-1
 min

-1
 As in #203 

239 ka(37) MBax:BclXL → MBax + BclXL 0.06 min
-1

 As in #203 
240 ka(38) MBax + MBax → Bax2 6.00E-05 min

-1
 As in #203 

241 ka(39) Bax2 → MBax + MBax 0.06 min
-1

 As in #203 
242 ka(40) Bax2 + Bcl2 → MBax2:Bcl2 6.00E-05 mol

-1
 min

-1
 As in #203 

243 ka(41) MBax2:Bcl2 →Bax2 + Bcl2 0.06 min
-1

 As in #203 
244 ka(42) Bax2 + Bax2→ Bax4 6.00E-05 mol

-1
 min

-1
 As in #203 

245 ka(43) Bax4 → Bax2 + Bax2 0.06 min
-1

 As in #203 
246 ka(44) Bax4 + Bcl2 → MBax4:Bcl2 6.00E-05 mol

-1
 min

-1
 As in #203 

247 ka(45) MBax4:cl2→Bax4 + Bcl2 0.06 min
-1

 As in #203 
248 ka(46) Bax4 + Mito → Bax4:Mito 6.00E-05 mol

-1
 min

-1
 As in #203 

249 ka(47) Bax4:Mito →Bax4 + Mito 0.06 min
-1

 As in #203 
250 ka(48) Bax4:Mito → AMito 60 min

-1
 As in #203 
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251 ka(49) AMito + mCytoC → AMito:mCytoC 0.00012 mol
-1

 min
-1

 As in #203 

252 ka(50) AMito:mCytoC → AMito + mCytoC 0.06 min
-1

 As in #203 

253 ka(51) AMito:mCytoC → AMito + ACytoC 600 min
-1

 As in #203 

254 ka(52) AMito + mSMac → AMito:mSmac 0.00012 mol
-1

 min
-1

 As in #203 

255 ka(53) AMito:mSMac →AMito + mSmac 0.06 min
-1

 As in #203 

256 ka(54) AMito + mSMac→ AMito + ASmac 600 mol
-1

 min
-1

 As in #203 

257 ka(55) ACytoC → cCytoC 60 min
-1

 As in #203 

258 ka(56) cCytoC → ACytoC 0.6 min
-1

 As in #203 

259 ka(57) Apaf + cCytoC → Apaf:cCytoC 3.00E-05 mol
-1

 min
-1

 As in #203 
260 ka(58) Apaf:cCytoC → Apaf + cCytoC 0.06 min

-1
 As in #203 

261 ka(59) Apaf:cCytoC → Apaf* + cCytoC 60 min
-1

 As in #203 

262 ka(60) Apaf* + Procasp9→ Apoptosome 3.00E-06 mol
-1

 min
-1

 As in #203 

263 ka(61) Apoptosome →Apaf* + Procasp9 0.06 min
-1

 As in #203 

264 ka(62) Apop + pC3→Apop:pC3 3.00E-07 mol
-1

 min
-1

 As in #203 

265 ka(63) Apop:pC3 → Apop + pC3 0.06 min
-1

 As in #203 

266 ka(64) Apop:pC3→Apop + C3 60 min
-1

 As in #203 

267 ka(65) ASmac →cSmac 60 min
-1

 As in #203 

268 ka(66) cSmac →ASmac 0.6 min
-1

 As in #203 

269 ka(67) Apop + XIAP→Apop:XIAP 0.00012 mol
-1

 min
-1

 As in #203 

270 ka(68) Apop:XIAP → Apop + XIAP 0.06 min
-1

 As in #203 

271 ka(69) cSmac + XIAP→ cSmac:XIAP 0.00042 mol
-1

 min
-1

 As in #203 

272 ka(70) cSmac:XIAP→cSmac + XIAP 0.06 min
-1

 As in #203 

273 ka(71) →R 2.312439 mol/min As in #203 

274 ka(72) R → 0.01155245 min
-1

 As in #203 

275 ka(73) →flip 1.15719366 mol/min As in #203 

276 ka(74) flip→ 0.01155245 min
-1

 As in #203 

277 ka(75) flip:DISC→ 0.01155245 min
-1

 As in #203 

278 ka(76) →pC8 233.519067 mol/min As in #203 

279 ka(77) pC8→ 0.01155245 min
-1

 As in #203 

280 ka(78) → BAR 21.1716068 mol/min As in #203 

281 ka(79) BAR→ 0.03465736 min
-1

 As in #203 

282 ka(80) BAR:C8→ 0.11552453 min
-1

 As in #203 

283 ka(81) →Bid 477.094542 mol/min As in #203 

284 ka(82) Bid→ 0.01155245 min
-1

 As in #203 

285 ka(83) →Mcl1 246.045482 mol/min As in #203 

286 ka(84) Mcl1→ 0.01155245 min
-1

 As in #203 

287 ka(85) tBid:Bcl2c → 0.01155245 min
-1

 As in #203 

288 ka(86) →Bax 1201.64059 mol/min As in #203 

289 ka(87) Bax → 0.01155245 min
-1

 As in #203 

290 ka(88) BclXLt →BclXL 
.307 
 

min
-1

 

Value was derived such that the 
steady-state flux was identical to the 
original BclXL production flux, which 
did not explicitly model translation 
from transcript. 
 

291 ka(89) BclXL→ 0.01155245 min
-1

 As in #203 

292 ka(90) Baxm:BclXL → 0.01155245 min
-1

 As in #203 

293 ka(91) Bax2:BclXL→ 0.01155245 min
-1

 As in #203 

294 ka(92) Bax4:BclXL→ 0.01155245 min
-1

 As in #203 

295 ka(93) AMito→Mito 0.11552453 min
-1

 As in #203 

296 ka(94) Apaf*→Apaf 0.11552453 min
-1

 As in #203 

297 ka(95) →XIAP 69320.9971 mol/min As in #203 

298 ka(96) XIAP→ 0.01155245 min
-1

 As in #203 

299 ka(97) →mSmac 69315.2463 mol/min As in #203 
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300 ka(98) mSmac → 0.01155245 min
-1

 As in #203 

301 ka(99) cSmac → 0.01155245 min
-1

 As in #203 

302 ka(100) cSmac:XIAP→ 0.01155245 min
-1

 As in #203 

303 ka(101) → pC3 7156.42702 mol/min As in #203 

304 ka(102) pC3 → 0.01155245 min
-1

 As in #203 

305 ka(103) C3_U → 0.01155245 min
-1

 As in #203 

306 ka(104) →pC6 6942.8207 mol/min As in #203 

307 ka(105) pC6→ 0.01155245 min
-1

 As in #203 

308 ka(106) C6 → 0.11552453 min
-1

 As in #203 

309 ka(107) Apop:XIAP → Apop 0.01155245 min
-1

 As in #203 

310 ka(108) →Parp 11571.1993 mol/min As in #203 

311 ka(109) Parp→ 0.01155245 min
-1

 As in #203 

312 ka(110) cParp→ 0.06931472 min
-1

 As in #203 

313 ka(111) →L 0 mol/min 

Set to zero to synchronize ligand 
abundance across cells (i.e. the 
ligand concentration is assumed to 
be constant) 

314 ka(112) L → 0 min
-1

 As in #313 

315 ka(113) →mCytoC 5776.27053 mol/min As in #203 

316 ka(114) mCytoC → 0.01155245 min
-1

 As in #203 

317 ka(115) cCytoC→ 0.11552453 min
-1

 As in #203 

399 PP1A kcc(44)/(kcc(43)*(kcc(45)*([CycA]+[CycE])+kcc(46)*[CycB])+1) As in #318 

318 kcc(1) 

Early and Delayed Response 
Genes (ERG/DERG) parameters in 
the original model that have been 

replaced with NFκB-mediated 

activation of CyclinD  
0.004167 

Units are 
arbitrary and 
non-
biological. All 
rate constants 
are per min as 
with the 

NFκB and 

apoptosis 
models. 

Refer to [152] for details. 

319 kcc(2) 0.004167 As in #318 As in #318 

320 kcc(3) 0.1 As in #318 As in #318 

321 kcc(4) 0.005833 As in #318 As in #318 

322 kcc(5) 0.000833 As in #318 As in #318 

323 kcc(6) 0.3 As in #318 As in #318 

324 kcc(7) 0.166667 As in #318 As in #318 

325 kcc(8) 
kcc(77)kcc(8)[tCycD] 
 0.833333 

As in #318 As in #318 

326 kcc(9) 
kcc(9)[CD] 
kcc(9)[CycD] 0.083333 

As in #318 As in #318 

327 kcc(10) 
kcc(10)[p27][CycD] 
 16.66667 

As in #318 As in #318 

328 kcc(11) kcc(11)[CD] 0.166667 As in #318 As in #318 

329 kcc(12) 
kcc(77)(kcc(12)+kcc(13)[E2F]) 

0 As in #318 As in #318 

330 kcc(13) 0.01 As in #318 As in #318 

331 kcc(14) V8 0.001667 As in #318 As in #318 

332 kcc(15) V8 0.033333 As in #318 As in #318 

333 kcc(16) 
kcc(16)[p27][CycE] 
kcc(16)[p27][CycA] 16.66667 

As in #318 As in #318 

334 kcc(17) 
kcc(17)[CE] 
kcc(17)[CA] 0.166667 

As in #318 As in #318 

335 kcc(18) 
V8 
 

0.1 As in #318 As in #318 

336 kcc(19) 1 As in #318 As in #318 

337 kcc(20) 0.05 As in #318 As in #318 

338 kcc(21) 
kcc(77)kcc(21)[E2F]max(0,GMAct*(
vcc(33)-vcc(55))*300)) if [Mass] > 
0.5, 0 otherwise 

0.008333 As in #318 As in #318 

339 
kcc(22) 
 

kcc(22)[CDc20][CycA] 
kcc(22)[CDc20][CA] 0.333333 

As in #318 As in #318 
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340 kcc(23) kcc(77)(kcc(24)*(([CycB]/kcc(25))^2
/([CycB]/kcc(25))^2+1))+kcc(23) 
 

0.001667 As in #318 As in #318 

341 kcc(24) 0.01 As in #318 As in #318 

342 kcc(25) 0.1 As in #318 As in #318 

343 kcc(26) 

V2 

0.000833 As in #318 As in #318 

344 kcc(27) 0.333333 As in #318 As in #318 

345 kcc(28) 0.016667 As in #318 As in #318 

346 kcc(29) kcc(77)kcc(29) 0.333333 As in #318 As in #318 
 

347 kcc(30) 

V6 

0.166667 As in #318 As in #318 

348 kcc(31) 1.666667 As in #318 As in #318 

349 kcc(32) 0.5 As in #318 As in #318 

350 kcc(33) 1 As in #318 As in #318 

351 kcc(34) 0.5 As in #318 As in #318 

352 kcc(35) RB total (not used) 1.666667 As in #318 As in #318 

353 kcc(36) [E2F-Rb](kcc(40) 
(([CycD]+[CD])kcc(36)+kcc(39)[Cyc
A]+kcc(38)[CycB]+kcc(37)[CycD])) 
[p-E2F-Rb](kcc(40) 
(([CycD]+[CD])kcc(36)+kcc(39)[Cyc
A]+kcc(38)[CycB]+kcc(37)[CycD])) 

3.3 As in #318 As in #318 

354 kcc(37) 5 As in #318 As in #318 

355 kcc(38) 5 As in #318 As in #318 

356 kcc(39) 3 As in #318 As in #318 

357 kcc(40) 0.166667 
As in #318 As in #318 

358 kcc(41) [pp-Rb](kcc(41)(kcc(44)-
PP1A)+kcc(42)PP1A) 

0 As in #318 As in #318 

359 kcc(42) 0.333333 As in #318 As in #318 

360 kcc(43) PP1A 1 As in #318 As in #318 

361 kcc(44) 
[pp-Rb](kcc(41)(kcc(44)-
PP1A)+kcc(42)PP1A) 1 

As in #318 As in #318 

362 kcc(45) PP1A 25 As in #318 As in #318 

363 kcc(46) PP1A 2 As in #318 As in #318 

364 kcc(47) ((kcc(47)+kcc(48)[CDc20](1-
[Cdh1]))/(kcc(49)-[Cdh1]+1) if 
[Cdh1] <=1 else 0 

0.125 As in #318 As in #318 

365 kcc(48) 2.333333 As in #318 As in #318 

366 kcc(49) 0.01 As in #318 As in #318 

367 kcc(50) V4[Cdh1])/(kcc(50)+[Cdh1]) 0.01 As in #318 As in #318 

368 kcc(51) 

V4 

0.666667 As in #318 As in #318 

369 kcc(52) 0 As in #318 As in #318 

370 kcc(53) 1 As in #318 As in #318 

371 kcc(54) 0.3 As in #318 As in #318 

372 kcc(55) kcc(77)kcc(55) 0.000833 As in #318 As in #318 

373 kcc(56) kcc(56)[PPX] 0.000833 As in #318 As in #318 

374 kcc(57) 
(kcc(57)[CycB](1-[IEP]))/(kcc(59)-
[IEP]+1) 
 

0.011667 As in #318 As in #318 

375 kcc(58) (kcc(58)[PPX][IEP])/(kcc(60)+[IEP]) 0.03 As in #318 As in #318 

376 kcc(59) 
(kcc(57)[CycB](1-[IEP]))/(kcc(59)-
[IEP]+1) 0.01 

As in #318 As in #318 

377 kcc(60) (kcc(58)[PPX][IEP])/(kcc(60)+[IEP]) 0.01 As in #318 As in #318 

378 kcc(61) 
kcc(77)(kcc(61)+kcc(62)[CycB]) 

0 As in #318 As in #318 

379 kcc(62) 0.025 As in #318 As in #318 

380 kcc(63) kcc(63)[CDc20T] kcc(63)[CDc20] 0.025 As in #318 As in #318 

381 kcc(64) 
(kcc(64)[IEP]([CDc20T]-
[CDc20]))/(kcc(66)-
[CDc20]+[CDc20T]) 

0.083333 As in #318 As in #318 

382 kcc(65) kcc(65)[CDc20]/(kcc(67)+[CDC20]) 0.041667 As in #318 As in #318 

383 kcc(66) 
(kcc(64)[IEP]([CDc20T]-
[CDc20]))/(kcc(66)-
[CDc20]+[CDc20T]) 

0.005 As in #318 As in #318 

384 kcc(67) kcc(65)[CDc20]/(kcc(67)+[CDC20]) 0.005 As in #318 As in #318 

385 kcc(68) E2F Total (not used) 0.833333 As in #318 As in #318 

386 kcc(69) [p-E2F]kcc(69) 0.016667 As in #318 As in #318 

387 kcc(70) [E2F](kcc(70)+kcc(71) 
*([CycA]+[CycB]))) 

8.33E-05 As in #318 As in #318 

388 kcc(71) 0.016667 As in #318 As in #318 

389 kcc(72) 
[E2F][Rb]kcc(72) 
 [Rb][p-E2F]kcc(72) 166.6667 

As in #318 As in #318 

390 kcc(73) [p-E2F-Rb]kcc(73) 3.333333 As in #318 As in #318 

391 kcc(74) 
kcc(74)(0.01+0.99*GMAct*GMSize) 
if RbFrac < 0.8, kcc(74)*0.01 else 

0.002 As in #318 As in #318 
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392 kcc(75) kcc(75)[GM] 0.00015 As in #318 As in #318 

393 kcc(76) kcc(77)kcc(76)[GM] 0.0045 As in #318 As in #318 

394 kcc(77) 
Eps, the efficiency of protein 
translation reactions. 

1 or 0.7 
when 
simulating 
rapamycin 

As in #318 As in #318 
0.7 was manually derived. 

395 kcc(78) kcc(78)CycDAct 0.003 As in #318 Free parameters with values∈ [0.001-
0.01] 

396 kcc(79) kcc(79)[tCycD] 0.002 As in #318 As in #395 

397 kcc(80) max(kcc(80)BclAct,0.01kcc(80) 8 As in #318 Free parameters with values∈ [1-10] 

398 kcc(81) kcc(81)[tBcl2] 0.005 As in #318 As in #395 

399 kcc(82) kcc(82)[tMycTor] 0.0035 As in #318 As in #395 

400 kcc(83) kcc(83)[MycTor] 0.0025 As in #318 As in #395 

401 kcc(84) kcc(84)[Mass] 0.0025 As in #318 As in #395 

402 kcc(85) kcc(85)MycAct 1 As in #318 As in #397 

403 kcc(86) kcc(86)[tMycTor] 0.0231 As in #318 Given 30 min half-life [200] 

404 V2 kcc(28)*[CDc20]+kcc(26)*(1-[Cdh1])+kcc(27)*[Cdh1] As in #318 
405 V4 kcc(51)*(kcc(54)[CycA]+kcc(53)[CycB]+kcc(52)[CycE]) As in #318 
406 V6 kcc(30)+kcc(31)*(kcc(34)[CycA]+kcc(33)[CycB]+kcc(32)[CycE] As in #318 
407 V8 ((kcc(19)*([CycA]+[CycE])+kcc(20)[CycB]))*kcc(15))/ 

([CycE]+[CE]_kcc(18))+kcc(14) 
As in #318 

408 H Hill coefficient for Myc/Bcl/CycD/GM promoter 
activation 

2 Manually fitted to ensure delayed 
dynamics in generation  0 cells as 
observed in this study. 

409 k(1,Myc/TOR) d[tMyc]/dt parameter 0.45 Derived from [178] and from pS6/IF 
measurements in this study 

410 k(2,Myc/TOR) d[tMyc]/dt parameter 0.45 As in #409 

411 k(3,Myc/TOR) d[tMyc]/dt parameter 0.1 NFκB independent activity assumed 

to be low  
As in #409 

412 k(4,Myc/TOR) d[tMyc]/dt parameter 1 Scaling factor 

413 k(5,Myc/TOR) d[tMyc]/dt parameter 0.01 Basal transcription 

413 k(1,Bcl) d[tBclXL]/dt parameter 0.3 Derived from IF and RT-PCR in this 
study 

414 k(2,Bcl) d[tBclXL]/dt parameter 0.6 As in #413 

415 k(3,Bcl) d[tBclXL]/dt parameter 0.1 NFκB independent activity assumed 

to be low 

416 k(4,Bcl) d[tBclXL]/dt parameter 1 As in #412 

417 k(5,Bcl) d[tBclXL]/dt parameter 0.01 As in #413 

418 k(1,CycD) d[tCycD]/dt parameter 0.45 We assumed equal NFκB RelA and 

cRel dependence for Cyclin D 
transcription as it is unclear how each 
monomer contributes to  cyclin D2 or 
3 mediated cell-cycle progression.[79] 

419 k(2,CycD) d[tCycD]/dt parameter 0.45 

420 k(3,CycD) d[tCycD]/dt parameter 0.1 NFκB independent activity assumed 

to be low to ensure the observed 
dynamics.  

421 k(4,CycD) d[tCycD]/dt parameter 1 As in #412 

422 k(5,CycD) d[tCycD]/dt parameter 0.01 As in #413 

423 MycTor Kd NFκB scaling parameter that determines 

NFκB-mediated Myc/TOR activation 

40 nM Manually fitted to ensure wildtype B 
cell population dynamics. 

424 BclXLKd NFκB scaling parameter that determines 

NFκB-mediated BclXL activation 

40 nM As in #423 

425 CycDKd NFκB scaling parameter that determines 

NFκB-mediated CycD activation 

 

40 nM As in #423 

426 GMKd Myc/TOR scaling parameter that determines 
Myc/TOR-mediated GM growth 
 
 

40 nM As in #423 
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# Parameter Description Units Justification 

427 MycTORAct (((k(1,Myc)[nA50]+k(2,Myc)[nC50]+k(3,Myc)[IK
K*])/MycTorKd)^H)/(k(4,Myc)+ 
((k(1,Myc)[nA50]+k(2,Myc)[nC50]+k(3,Myc)[IKK
*])/MycTorKd)^H)*(1-k(5,Myc))+k(5,Myc) 

Unitless 0-1 Hill-based expression of Myc/TOR 
transcription activity. See #408-413 

428 BclAct (((k(1,Bcl)[nA50]+k(2, Bcl)[nC50]+k(3, 
Bcl)[IKK*])/ Bcl XLKd)^H)/(k(4, Bcl)+ ((k(1, 
Bcl)[nA50]+k(2, Bcl)[nC50]+k(3, Bcl)[IKK*])/ 
BclXL Kd)^H)*(1-k(5,Bcl))+k(5,Bcl) 

Unitless 0-1 Hill-based expression of BclXL 
transcription activity. See #413-417 

429 CycDAct (((k(1,CycD)[nA50]+k(2,CycD)[nC50]+k(3,CycD
)[IKK*])/CycDKd)^H)/(k(4,CycD)+ 
((k(1,CycD)[nA50]+k(2,CycD)[nC50]+k(3,CycD)[
IKK*])/CycDKd)^H)*(1-k(5,CycD))+k(5,CycD) 

Unitless 0-1 Hill-based expression of CycD 
transcription activity. See #418-422 

430 GMAct ([Myc/TOR]/GMKd)^H/(1+([Myc/TOR]/GMKd)^H
) 

Unitless 0-1 Assume basic Hill relationships 
between Myc/TOR and the 
accumulation of general machinery in 
the cell. See [49,58,66] and [61,62] 
reviewing myc and mTOR in the 
context of B-cell growth. 

431 RbFrac ([Rb]+[E2F-Rb]+[p-E2F-Rb])/( [Rb]+[E2F-
Rb]+[p-E2F-Rb]+[pp-Rb]) 

Unitless 0-1 As in #318 

 
C. Integrated B-cell model fluxes 
# Name Flux equation Justification 

1-4 vd(1,d∈{AA,A50,5050,C50}) kd(1,d)[m∈{RelA,RelA,p50,cRel}][ n∈{RelA,p50,p50,p50}] See [150] 

5-8 vd(2, d∈{AA,A50,5050,C50}) kd(2,d) [m∈{nRelA,nRelA,np50,ncRel}][ 

n∈{nRelA,np50,np50,np50}] 

As in #1 

9-12 vd(3,d∈{AA,A50,5050,C50}) kd(3,d)[d] As in #1 
13-
16 

vd(4,d∈{AA,A50,5050,C50}) kd(4,d)[ e∈{nAA,nA50,n5050,nC50}] As in #1 

17-
20 

vd(5,d∈{AA,A50,5050,C50}) kd(5,d)[d] As in #1 

21-
24 

vd(6,d∈{AA,A50,5050,C50}) kd(6,d)[ e∈{nAA,nA50,n5050,nC50}] As in #1 

25-
28 

vd(7,d∈{AA,A50,5050,C50}) kd(7,d)[d] As in #1 

29-
32 

vd(8,d∈{AA,A50,5050,C50}) kd(8,d)[ e∈{nAA,nA50,n5050,nC50}] As in #1 

33-
44 

vdi(1, d∈{AA,A50,5050,C50}, 

i∈{α,β,∈}) 

kp(1,d,i)[d][ j∈{IkBα, IkBβ,IkB∈}] As in #1 

45-
56 

vdi(2, d∈{AA,A50,5050,C50}, 

i∈{α,β,∈}) 

kp(2,d,i)[e ∈{nAA,nA50,n5050,nC50}][j∈{nIkBα, nIkBβ,nIkB∈}] As in #1 

57-
68 

vdi(3, d∈{AA,A50,5050,C50}, 

i∈{α,β,∈}) 

kp(3,d,i)[d: j∈{IkBα, IkBβ,IkB∈}] As in #1 

69-
80 

vdi(4, d∈{AA,A50,5050,C50}, 

i∈{α,β,∈}) 

kp(4,d,i)[ e ∈{nAA,nA50,n5050,nC50} : j∈{nIkBα, nIkBβ,nIkB∈}] As in #1 

81-
92 

vdi(5, d∈{AA,A50,5050,C50}, 

i∈{α,β,∈}) 

kp(5,d,i)[d: j∈{IkBα, IkBβ,IkB∈}] As in #1 

93-
104 

vdi(6, d∈{AA,A50,5050,C50}, 

i∈{α,β,∈}) 

kp(6,d,i)[ e ∈{nAA,nA50,n5050,nC50} : j∈{nIkBα, nIkBβ,nIkB∈}] As in #1 

105-
116 

vdi(7, d∈{AA,A50,5050,C50}, 

i∈{α,β,∈}) 

ki(12, j∈{IkBα, IkBβ,IkB∈}) [d: j∈{IkBα, IkBβ,IkB∈}][IKK*] As in #1 

117-
128 

vdi(8, d∈{AA,A50,5050,C50}, 

i∈{α,β,∈}) 

ki(13, i)[d: j∈{IkBα, IkBβ,IkB∈}] As in #1 

129-
140 

vdi(9, d∈{AA,A50,5050,C50}, 

i∈{α,β,∈}) 

ki(14, i)[ e ∈{nAA,nA50,n5050,nC50} : j∈{nIkBα, nIkBβ,nIkB∈}] As in #1 

141-
152 

vdi(10, d∈{AA,A50,5050,C50}, 

i∈{α,β,∈}) 

kd(9, d)[d: j∈{IkBα, IkBβ,IkB∈}] As in #1 

153-
164 

vdi(11, d∈{AA,A50,5050,C50}, 

i∈{α,β,∈}) 
 
 
 
 

ki(10, d)[ e ∈{nAA,nA50,n5050,nC50} : j∈{nIkBα, nIkBβ,nIkB∈}] As in #1 
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# Name Flux equation Justification 

165-
167 

vi(i∈{α,β,∈},t) ki(1,i)(1+Σd∈(AA,A50,C50)(kp(7,i)([e 

∈{nAA,nA50,n5050,nC50}]|t-ki(8,i) /ki(10,i))^ ki(9, 

i))/ (1+Σd∈(AA,A50,C50)(([e 

∈{nAA,nA50,n5050,nC50}]|t-ki(8,i) /ki(10,i))^ ki(9, 
i))/ 

As in #1. The 
transcription rate is 
computed using a 
modified hill function 
which uses a sum of 
weighted 
contributions from 
each dimer and an 
explicit 
transcriptional delay 
to compute the 
transcription rate of 
each IkB transcript. 

168-
170 

vm(m∈{A,50,C},t) km(1,m)(1+Σd∈(AA,A50,C50)(kdm(d,m)([e 

∈{nAA,nA50,n5050,nC50}]|t-km(6,i) /km(8,m))^ 

km(7,m)) /(1+Σd∈(AA,A50,C50)(([e 

∈{nAA,nA50,n5050,nC50}]|t-km(6,i) 
/km(8,m))^km(7,m)) 

As in #165-167. The 
transcription rate is 
computed using a 
modified hill function 
which uses a sum of 
weighted 
contributions from 
each dimer and an 
explicit 
transcriptional delay 
to compute the 
transcription rate of 

each NFκB 

monomer. 
171 vtm(1,m∈{A,50,C}) km(2,m)[n∈{tRelA,tp50,tcRel}] As in #1 

172 vtm(2,m∈{A,50,C}) kcc(77)km(3,m)[n∈{tRelA,tp50,tcRel}] As in #1 

173 vtm(3,m∈{A,50,C}) km(4,m)[m] As in #1 

174 vtm(4,m∈{A,50,C}) km(5,m)[ n∈{nRelA,np50,ncRel}]] As in #1 

175 vti(1, i∈{α,β,∈}) ki(2,i)[ j∈{tIkBα, tIkBβ,tIkB∈}] As in #1 

176 vti(2, i∈{α,β,∈}) kcc(77)ki(3,i)[ j∈{tIkBα, tIkBβ,tIkB∈}] As in #1 

177 vti(3, i∈{α,β,∈}) ki(11,i) [ j∈{IkBα, IkBβ,IkB∈}][IKK*] As in #1 

178 vti(4, i∈{α,β,∈}) ki(4,i) [ j∈{IkBα, IkBβ,IkB∈}] As in #1 

179 vti(5, i∈{α,β,∈}) ki(5,i) [ j∈{nIkBα, nIkBβ,nIkB∈}] As in #1 

180 vti(6, i∈{α,β,∈}) ki(6,i) [ j∈{IkBα, IkBβ,IkB∈}] As in #1 

181 vti(7, i∈{α,β,∈}) ki(7,i) [ j∈{nIkBα, nIkBβ,nIkB∈}] As in #1 

182 
va(1) ka(1)[L][R] See the original 

paper [156] 

183 va(2) ka(2)[L-R] As in #182 

184 va(3) ka(3)[flip][DISC] As in #182 
185 va(4) ka(4)[flip-DISC] As in #182 
186 va(5) ka(5)[pC8][DISC] As in #182 
187 va(6) ka(6)[DISC-pC8] As in #182 
188 va(7) ka(7)[DISC-pC8] As in #182 
189 va(8) ka(8)[C8][BAR] As in #182 
190 va(9) ka(9)[BAR-C8] As in #182 
191 va(10) ka(10)[pC3][C8] As in #182 
192 va(11) ka(11)[pC3-C8] As in #182 
193 va(12) ka(12)[pC3-C8] As in #182 
194 va(13) ka(13)[pC6][C3] As in #182 
195 va(14) ka(14)[pC6-C3] As in #182 
196 va(15) ka(15)[pC6-C3] As in #182 
197 va(16) ka(16)[pC8][C6] As in #182 
198 va(17) ka(17)[pC8-C6] As in #182 
199 va(18) ka(18)[pC8-C6] As in #182 
200 va(19) ka(19)[XIAP][C3] As in #182 
201 va(20) ka(20)[XIAP-C3] As in #182 
202 va(21) ka(21)[XIAP-C3] As in #182 
203 va(22) ka(22)[PARP][C3] As in #182 
204 va(23) ka(23)[PARP-C3] As in #182 
205 va(24) ka(24)[PARP-C3] As in #182 
206 va(25) ka(25)[Bid][C8] As in #182 
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# Name Flux equation Justification 

207 va(26) ka(26)[Bid-C8] As in #182 
208 va(27) ka(27)[Bid-C8] As in #182 
209 va(28) ka(28)[tBid][Mcl1] As in #182 
210 va(29) ka(29)[tBid-Mcl1] As in #182 
211 va(30) ka(30)[Bax][tBid] As in #182 
212 va(31) ka(31)[Bax-tBid] As in #182 
213 va(32) ka(32)[Bax-tBid] As in #182 
214 va(33) ka(33)[aBax] As in #182 
215 va(34) ka(34)[mBax] As in #182 
216 va(35) ka(35)[mBax][BclXL] As in #182 
217 va(36) ka(36)[mBax-BclXL] As in #182 
218 va(37) ka(37)[mBax]^2 As in #182 
219 va(38) ka(38)[Bax2] As in #182 
220 va(39) ka(39)[Bax2][BclXL] As in #182 
221 va(40) ka(40)[mBax2-BclXL] As in #182 
222 va(41) ka(41)[Bax2]^2 As in #182 
223 va(42) ka(42)[Bax4] As in #182 
224 va(43) ka(43)[Bax4][BclXL] As in #182 
225 va(44) ka(44)[mBax4-BclXL] As in #182 
226 va(45) ka(45)[Bax4][Mito] As in #182 
227 va(46) ka(46)[Bax4-Mito] As in #182 
228 va(47) ka(47)[Bax4-Mito] As in #182 
229 va(48) ka(48)[AMito][mCytoC] As in #182 
230 va(49) ka(49)[AMito-mCytoC] As in #182 
231 va(50) ka(50)[AMito-mCytoC] As in #182 
232 va(51) ka(51)[AMito][mSMac] As in #182 

233 va(52) ka(52)[AMito-mSMac] As in #182 
234 va(53) ka(53)[AMito][mSMac] As in #182 
235 va(54) ka(54)[aCytoC] As in #182 
236 va(55) ka(55)[cCytoC] As in #182 
237 va(56) ka(56)[Apaf][cCytoC] As in #182 
238 va(57) ka(57)[Apaf-cCytoC] As in #182 
239 va(58) ka(58)[Apaf-cCytoC] As in #182 
240 va(59) ka(59)[Apaf*][ProC9] As in #182 
241 va(60) ka(60)[Apop] As in #182 
242 va(61) ka(61)[Apop][pC3] As in #182 
243 va(62) ka(62)[Apop-pC3] As in #182 
244 va(63) ka(63)[Apop-pC3] As in #182 
245 va(64) ka(64)[aSmac] As in #182 
246 va(65) ka(65)[cSmac] As in #182 
247 va(66) ka(66)[Apop][XIAP] As in #182 
248 va(67) ka(67)[Apop-XIAP] As in #182 
249 va(68) ka(68)[cSmac][XIAP] As in #182 
250 va(69) ka(69)[cSmac-XIAP] As in #182 
251 va(70) ka(70) As in #182 
252 va(71) ka(71)[R} As in #182 
253 va(72) ka(72) As in #182 
254 va(73) ka(73)[flip] As in #182 
255 va(74) ka(74)[flip-DISC] As in #182 
256 va(75) ka(75) As in #182 
257 va(76) ka(76)[pC8] As in #182 
258 va(77) ka(77) As in #182 
259 va(78) ka(78)[BAR} As in #182 
260 va(79) ka(79)[BAR-C8] As in #182 
261 va(80) ka(80) As in #182 
262 va(81) ka(81)[Bid] As in #182 
263 va(82) ka(82) As in #182 
264 va(83) ka(83)[Mcl1] As in #182 
265 va(84) ka(84)[tBid-Mcl1] As in #182 
266 va(85) ka(85) As in #182 
267 va(86) ka(86)[Bax] As in #182 
268 va(87) ka(87) As in #182 
269 va(88) ka(88)[BclXL] As in #182 
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# Name Flux equation Justification 

270 va(89) ka(89)[mBax-BclXL] As in #182 
271 va(90) ka(90)[Bax2-BclXL] As in #182 
272 va(91) ka(91)[Bax4-BclXL] As in #182 
273 va(92) ka(92)[AMito] As in #182 
274 va(93) ka(93)[Apaf*] As in #182 
275 va(94) ka(94) As in #182 
276 va(95) ka(95)[XIAP] As in #182 
277 va(96) ka(96) As in #182 
278 va(97) ka(97)[mSmac] As in #182 
279 va(98) ka(98)[cSmac] As in #182 
280 va(99) ka(99)[cSmac-XIAP] As in #182 
281 va(100) ka(100) As in #182 
282 va(101) ka(101)[pC3] As in #182 
283 va(102) ka(102)[C3_U] As in #182 
284 va(103) ka(103) As in #182 
285 va(104) ka(104)[pC6] As in #182 
286 va(105) ka(105)[C6] As in #182 
287 va(106) ka(106)[Apop-XIAP] As in #182 
288 va(107) ka(107) As in #182 
289 va(108) ka(108)[Parp] As in #182 
290 va(109) ka(109)[cParp] As in #182 
291 va(110) ka(110) As in #182 
292 va(111) ka(111)[L] As in #182 
293 va(112) ka(112) As in #182 
294 va(113) ka(113)[mCytoC] As in #182 

295 va(114) ka(114)[cCytoC] As in #182 
296 vcc(1) kcc(79)[tCycD] See the original 

paper for justification 
[152]. 

297 vcc(2) kcc(81)[tBcl2] As in #296 
298 vcc(3) kcc(9)[CD] As in #296 

299 vcc(4) kcc(9)[CycD] As in #296 

300 vcc(5) kcc(16)[p27][CycE] As in #296 
301 vcc(6) kcc(16)[p27][CycA] As in #296 
302 vcc(7) kcc(10)[p27][CycD] As in #296 
303 vcc(8) kcc(11)[CD] As in #296 
304 vcc(9) kcc(22)[CDc20][CycA] As in #296 
305 vcc(10) kcc(22)[CDc20][CA] As in #296 
306 vcc(11) kcc(17)[CE] As in #296 
307 vcc(12) kcc(17)[CA] As in #296 
308 vcc(13) V8[CE] As in #296 
309 vcc(14) V8[CycE] As in #296 
310 vcc(15) V6[p27] As in #296 
311 vcc(16) V6[CE] As in #296 
312 vcc(17) V6[CD] As in #296 
313 vcc(18) V6[CA] As in #296 
314 vcc(19) V2[CycB] As in #296 
315 vcc(20) ((kcc(47)+kcc(48)[CDc20](1-[Cdh1]))/(kcc(49)-[Cdh1]+1) if 

[Cdh1] <=1 else 0 
As in #296 

316 vcc(21) V4[Cdh1])/(kcc(50)+[Cdh1]) As in #296 
317 vcc(22) kcc(56)[PPX] As in #296 
318 vcc(23) (kcc(57)[CycB](1-[IEP]))/(kcc(59)-[IEP]+1) As in #296 
319 vcc(24) (kcc(58)[PPX][IEP])/(kcc(60)+[IEP]) As in #296 
320 vcc(25) kcc(63)[CDc20T] As in #296 
321 vcc(26) (kcc(64)[IEP]([CDc20T]-[CDc20]))/(kcc(66)-[CDc20]+[CDc20T]) As in #296 
322 vcc(27) kcc(65)[CDc20]/(kcc(67)+[CDC20]) As in #296 
323 vcc(28) kcc(63)[CDc20] As in #296 
324 vcc(29) [E2F-

Rb](kcc(40)(([CycD]+[CD])kcc(36)+kcc(39)[CycA]+kcc(38)[CycB]
+kcc(37)[CycD])) 

As in #296 

325 vcc(30) [p-E2F- Rb](kcc(40)(([CycD]+[CD])kcc(36)+ 
kcc(39)[CycA]+kcc(38)[CycB]+kcc(37)[CycD])) 

As in #296 

326 vcc(31) kcc(74)(0.01+0.99*GMAct*GMSize) if RbFrac < 0.8, kcc(74)*0.01 
otherwise 

As in #296 
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# Name Flux equation Justification 

327 vcc(32) kcc(75)[GM] As in #296 
328 vcc(33) kcc(77)kcc(76)[GM] As in #296 
329 vcc(34) kcc(78)CycDAct As in #296 
330 vcc(35) kcc(77)(kcc(61)+kcc(62)[CycB]) As in #296 
331 vcc(36) kcc(77)kcc(21)[E2F]max(0,GMAct*(vcc(33)-vcc(55))*300)) if 

[Mass] > 0.5, 0 otherwise 
As in #296 

332 vcc(37) kcc(77)kcc(55) As in #296 
333 vcc(38) kcc(77)(kcc(12)+kcc(13)[E2F]) As in #296 
334 vcc(39) kcc(77)kcc(8)[tCycD] As in #296 
335 vcc(40) kcc(77)kcc(29) As in #296 
336 vcc(41) max(kcc(80)BclAct,0.01kcc(80) As in #296 
337 vcc(42) kcc(77)(kcc(24)*(([CycB]/kcc(25))^2/([CycB]/kcc(25))^2+1))+kcc(

23) 
As in #296 

338 vcc(43) [Rb](kcc(40)*([CycD]+[CD]kcc(36)+kcc(39)[CycA]+kcc(38)[CycB]
+kcc(37)[CycE])) 

As in #296 

339 vcc(44) [pp-Rb](kcc(41)(kcc(44)-PP1A)+kcc(42)PP1A) As in #296 
340 vcc(45) [E2F-Rb]kcc(73) As in #296 
341 vcc(46) [E2F](kcc(70)+kcc(71)([CycA]+[CycB]))) As in #296 
342 vcc(47) [p-E2F]kcc(69) As in #296 
343 vcc(48) [E2F][Rb]kcc(72) As in #296 
344 vcc(49) [p-E2F-Rb]kcc(73) As in #296 
345 vcc(50) [Rb][p-E2F]kcc(72) As in #296 
346 vcc(51) [p-E2F-Rb]kcc(69) As in #296 
347 vcc(52) [E2F-Rb](kcc(70)+kcc(71)([CycA]+[CycB]))) As in #296 
348 vcc(53) kcc(82)[tMycTor] As in #296 
349 vcc(54) kcc(83)[MycTor] As in #296 
350 vcc(55) kcc(84)[Mass] As in #296 
351 vcc(56) kcc(85)MycAct As in #296 
341 vcc(57) kcc(86)[tMycTor] As in #296 
     

D. Integrated B-cell model reactions 
# Species Reaction Justification 

1 d[tRelA]/dt vm(RelA)-vtm(1,RelA)[tRelA] See [150] 

2 d[tp50]/dt vm(p50)-vtm(1,p50)[tp50] As in #1 
3 d[tcRel]/dt vm(cRel)-vtm(1,cRel)[tcRel] As in #1 

4 d[RelA]/dt 
vd(3,AA)*2+vd(3,A50)-vd(1,AA)-vd(1,A50)+vtm(2,RelA)[tRelA]-
vtm(3,RelA)[RelA] 

As in #1 

5 d[nRelA]/dt vd(4,AA)*2+vd(4,A50)-vd(2,AA)-vd(2,A50)-vtm(4,RelA)[nRelA] As in #1 

6 d[p50]/dt 
vd(3,5050)*2+vd(3,A50)-+vd(3,C50)-vd(1,A50)-vd(1,C50)-vd(1,5050) 
)+vtm(2,p50)[tp50]-vtm(3,p50)[p50] 

As in #1 

7 d[np50]/dt 
vd(4,5050)*2+vd(4,A50)-+vd(4,C50)-vd(2,A50)-vd(2,C50)-vd(2,5050) -
vtm(4,p50)[np50] 

As in #1 

8 d[cRel]/dt vd(3,C50)-vd(1,C50) )+vtm(2,cRel)[tcRel]-vtm(3,cRel)[cRel] As in #1 

9 d[ncRel]/dt vd(4,C50)-vd(2,C50) -vtm(4,cRel)[ncRel] As in #1 

10 d[AA]/dt 
vd(1,AA)-vd(3,AA)-vd(5,AA)+vd(6,AA)-vd(7,AA)-vdi(1,AA,[α,β,ε])+vdi(2,AA, 

[α,β,ε])+vdi(7,AA, [α,β,ε])+vdi(8,AA,[α,β,ε]) 
As in #1 

11 d[A50]/dt 
vd(1,A50)-vd(3,A50)-vd(5,A50)+vd(6,A50)-vd(7,A50)-

vdi(1,A50,[α,β,ε])+vdi(2,A50, [α,β,ε])+vdi(7,A50, [α,β,ε])+vdi(8,A50,[α,β,ε]) 
As in #1 

12 d[5050]/dt 
vd(1,5050)-vd(3,5050)-vd(5,5050)+vd(6,5050)-vd(7,5050)-

vdi(1,5050,[α,β,ε])+vdi(2,5050, [α,β,ε])+vdi(7,5050, [α,β,ε])+vdi(8,5050,[α,β,ε]) 
As in #1 

13 d[C50]/dt 
vd(1,C50)-vd(3,C50)-vd(5,C50)+vd(6,C50)-vd(7,C50)-

vdi(1,C50,[α,β,ε])+vdi(2,C50, [α,β,ε])+vdi(7,C50, [α,β,ε])+vdi(8,C50,[α,β,ε]) 
As in #1 

14 d[nAA]/dt 
vd(2,AA)-vd(4,AA)-vd(6,AA)+vd(5,AA)-vd(8,AA)-vdi(2,AA,[α,β,ε])+vdi(4,AA, 

[α,β,ε])+vdi(9,AA, [α,β,ε]) 
As in #1 

15 d[nA50]/dt 
vd(2,A50)-vd(4,A50)-vd(6,A50)+vd(5,A50)-vd(8,A50)-

vdi(2,A50,[α,β,ε])+vdi(4,A50, [α,β,ε])+vdi(9,A50, [α,β,ε]) 
As in #1 

16 d[n5050]/dt 
vd(2,5050)-vd(4,5050)-vd(6,5050)+vd(5,5050)-vd(8,5050)-

vdi(2,5050,[α,β,ε])+vdi(4,5050, [α,β,ε])+vdi(9,5050, [α,β,ε]) 
As in #1 

17 d[nC50]/dt 

vd(2,C50)-vd(4,C50)-vd(6,C50)+vd(5,C50)-vd(8,C50)-

vdi(2,C50,[α,β,ε])+vdi(4,C50, [α,β,ε])+vdi(9,C50, [α,β,ε]) 
 
 

As in #1 
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18 
d[AA:IkBα,AA:IkBβ, 

AA:IkBε]/dt 

vdi(1,AA, [α,β,ε])-vdi(3,AA, [α,β,ε])-vdi(5,AA, [α,β,ε])+vdi(6,AA, [α,β,ε])-

vdi(7,AA, [α,β,ε])-vdi(8,AA, [α,β,ε])-vdi(10,AA, [α,β,ε]) 
As in #1 

19 
d[A50:IkBα,A50:IkBβ, 

A50:IkBε]/dt 

vdi(1,A50, [α,β,ε])-vdi(3,A50, [α,β,ε])-vdi(5,A50, [α,β,ε])+vdi(6,A50, [α,β,ε])-

vdi(7,A50, [α,β,ε])-vdi(8,A50, [α,β,ε])-vdi(10,A50, [α,β,ε]) 
As in #1 

20 

d[5050:IkBα, 

5050:IkBβ, 

5050:IkBε]/dt 

vdi(1,5050, [α,β,ε])-vdi(3,5050, [α,β,ε])-vdi(5,5050, [α,β,ε])+vdi(6,5050, [α,β,ε])-

vdi(7,5050, [α,β,ε])-vdi(8,5050, [α,β,ε])-vdi(10,5050, [α,β,ε]) 
As in #1 

21 
d[C50:IkBα,C50:IkBβ
, C50:IkBε]/dt 

vdi(1,C50, [α,β,ε])-vdi(3,C50, [α,β,ε])-vdi(5,C50, [α,β,ε])+vdi(6,C50, [α,β,ε])-

vdi(7,C50, [α,β,ε])-vdi(8,C50, [α,β,ε])-vdi(10,c50, [α,β,ε]) 
As in #1 

22 
d[nAA:nIkBα,nAA:nIk

Bβ, nAA:nIkBε]/dt 

vdi(2,AA, [α,β,ε])-vdi(4,AA, [α,β,ε])-vdi(6,AA, [α,β,ε])+vdi(5,AA, [α,β,ε])-

vdi(9,AA, [α,β,ε])-vdi(11,AA, [α,β,ε]) 
As in #1 

23 

d[nA50:nIkBα, 

nA50:nIkBβ, 

nA50:nIkBε]/dt 

vdi(2,A50, [α,β,ε])-vdi(4,A50, [α,β,ε])-vdi(6,A50, [α,β,ε])+vdi(5,A50, [α,β,ε])-

vdi(9,A50, [α,β,ε])-vdi(11,A50, [α,β,ε]) 
As in #1 

24 

d[n5050:nIkBα, 

n5050:nIkBβ, 

n5050:nIkBε]/dt 

vdi(2,5050, [α,β,ε])-vdi(4,5050, [α,β,ε])-vdi(6,5050, [α,β,ε])+vdi(5,5050, [α,β,ε])-

vdi(9,5050, [α,β,ε])-vdi(11,5050, [α,β,ε]) 
As in #1 

25 

d[nA50:nIkBα, 

nA50:nIkBβ, 

nA50:nIkBε]/dt 

vdi(2,C50, [α,β,ε])-vdi(4,C50, [α,β,ε])-vdi(6,C50, [α,β,ε])+vdi(5,C50, [α,β,ε])-

vdi(9,C50, [α,β,ε])-vdi(11,C50, [α,β,ε]) 
As in #1 

26 d[tIkbα,tIkBβ,tIkBε]/dt vi([α,β,∈])- vti(1, [α,β,ε])[tIkbα,tIkBβ,tIkBε] As in #1 

27 d[Ikbα,IkBβ,IkBε]/dt 

Σd=[AA,A50,5050,C50]{vdi(3,d, [Ikbα,IkBβ,IkBε])+vdi(10,d, 

[Ikbα,IkBβ,IkBε])- vdi(1,d, [Ikbα,IkBβ,IkBε])}+vti(2, [α,β,ε])[tIkbα,tIkBβ,tIkBε]-

vti(3, [α,β,ε])[Ikbα,IkBβ,IkBε]- vti(4, [α,β,ε])[Ikbα,IkBβ,IkBε]- vti(6, 

[α,β,ε])[nIkbα,nIkBβ,nIkBε]+ vti(7, [α,β,ε])[Ikbα,IkBβ,IkBε] 

As in #1 

28 
d[nIkbα,nIkBβ,nIkBε]/
dt 

Σd=[AA,A50,5050,C50]{vdi(4,d, [Ikbα,IkBβ,IkBε])+vdi(11,d, 

[Ikbα,IkBβ,IkBε])- vdi(2,d, [Ikbα,IkBβ,IkBε])}- vti(5, 

[α,β,ε])[nIkbα,nIkBβ,nIkBε]+ vti(6, [α,β,ε])[Ikbα,IkBβ,IkBε]- vti(7, 

[α,β,ε])[nIkbα,nIkBβ,nIkBε] 

As in #1 

29 d[L]/dt 0 See [156] 

30 d[R]/dt   -va(1) + va(2) + va(71) - va(72) As in #29 

31 d[L-R]/dt   va(1) - va(2) - va(3)  As in #29 

32 d[DISC]/dt   va(3) - va(4) + va(5) - va(6) + va(7) + va(8) As in #29 

33 d[flip]/dt   -va(4) + va(5) + va(73) - va(74) As in #29 

34 d[flip-DISC]/dt   va(4) - va(5) - va(75) As in #29 

35 d[pC8]/dt   -va(6) + va(7) - va(17) + va(18) + va(76) - va(77) As in #29 

36 d[DISC-pC8]/dt   va(6) - va(7) - va(8)  As in #29 

37 d[C8]/dt 
  va(8) - va(9) + va(10) - va(11) + va(12) + va(13) + va(19) - va(26) + va(27) + 
va(28)  

As in #29 

38 d[Bar]/dt   -va(9) + va(10) + va(78) - va(79) As in #29 

39 d[Bar-C8]/dt   va(9) - va(10) - va(80) As in #29 

40 d[pC3]/dt   -va(11) + va(12) - va(62) + va(63) + va(101) - va(102)  As in #29 

41 d[C8-pC3]/dt   va(11) - va(12) - va(13)  As in #29 

42 d[C3]/dt 
  va(13) - va(14) + va(15) + va(16) - va(20) + va(21) - va(23) + va(24) + va(25) 
+ va(64)  

As in #29 

43 d[pC6]/dt   -va(14) + va(15) + va(104) - va(105) As in #29 

44 d[C3-pC6]/dt   va(14) - va(15) - va(16)  As in #29 

45 d[C6]/dt   va(16) - va(17) + va(18) + va(19) - va(106) As in #29 

46 d[C6-pC8]/dt   va(17) - va(18) - va(19)  As in #29 

47 d[XIAP]/dt 
  -va(20) + va(21) + va(22) - va(67) + va(68) - va(69) + va(70) + va(95) - 
va(96) 

As in #29 

48 d[XIAP-C3]/dt   va(20) - va(21) - va(22)  As in #29 

49 d[PARP]/dt   -va(23) + va(24) + va(108) - va(109) As in #29 

50 d[C3-PARP]/dt   va(23) - va(24) - va(25)  As in #29 

51 d[CPARP]/dt   va(25) - va(110) As in #29 

52 d[Bid]/dt   -va(26) + va(27) + va(81) - va(82) As in #29 

53 d[C8-Bid]/dt   va(26) - va(27) - va(28)  As in #29 
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54 d[tBid]/dt   va(28) - va(29) + va(30) - va(31) + va(32) + va(33) As in #29 

55 d[Mcl1]/dt   -va(29) + va(30) + va(83) - va(84) As in #29 

56 d[Mcl1-tBid]/dt   + va(29) - va(30) - va(85) As in #29 

57 d[Bax]/dt   -va(31) + va(32) + va(86) - va(87) As in #29 

58 d[tBid-Bax]/dt   va(31) - va(32) - va(33)  As in #29 

59 d[act_Bax]/dt   va(33) - va(34) + va(35)  As in #29 

60 d[Baxm]/dt   va(34) - va(35) -1/mvol*va(36) + va(37) -1/mvol*2*va(38) +2*va(39)  As in #29 

61 d[Bcl2]/dt 
  -1/mvol*va(36) + va(37) -1/mvol*va(40) + va(41) -1/mvol*va(44) + va(45) + 
va(88) - va(89) 

As in #29 

62 d[Baxm-Bcl2]/dt   1/mvol*va(36) - va(37) - va(90) As in #29 

63 d[Bax2]/dt   1/mvol*va(38) - va(39) -1/mvol*va(40) + va(41) -2/mvol*va(42) +2*va(43)  As in #29 

64 d[Bax2-Bcl2]/dt   1/mvol*va(40) - va(41) - va(91) As in #29 

65 d[Bax4]/dt   1/mvol*va(42) - va(43)-1/mvol*va(44) + va(45) -1/mvol*va(46) + va(47)  As in #29 

66 d[Bax4-Bcl2]/dt   1/mvol*va(44) - va(45) - va(92) As in #29 

67 d[M]/dt   -1/mvol*va(46) + va(47) + va(93) As in #29 

68 d[Bax4-M]/dt   1/mvol*va(46) - va(47) - va(48)  As in #29 

69 d[AMito]/dt 
  va(48) -1/mvol*va(49) + va(50) + va(51) -1/mvol*va(52) + va(53) + va(54) - 
va(93) 

As in #29 

70 d[mCytoC]/dt   -1/mvol*va(49) + va(50) + va(113) - va(114) As in #29 

71 d[AMito-mCytoC]/dt   1/mvol*va(49) - va(50) - va(51)  As in #29 

72 d[ACytoC]/dt   va(51) - va(55) + va(56)  As in #29 

73 d[mSmac]/dt   -1/mvol*va(52) + va(53) + va(97) - va(98) As in #29 

74 d[AMito-mSmac]/dt   1/mvol*va(52) - va(53) - va(54)  As in #29 

75 d[ASmac]/dt   va(54) - va(65) + va(66)  As in #29 

76 d[CytoC]/dt   va(55) - va(56) - va(58) + va(59) + va(57) - va(115) As in #29 

77 d[Apaf]/dt   -va(58) + va(59) + va(94) As in #29 

78 d[Apaf-CytoC]/dt   va(58) - va(59) - va(57)  As in #29 

79 d[act_Apaf]/dt   va(57) - va(60) + va(61) - va(94) As in #29 

80 d[pC9]/dt   -va(60) + va(61)  As in #29 

81 d[Apop]/dt   va(60) - va(61) - va(62) + va(63) + va(64) - va(67) + va(68) + va(107) As in #29 

82 d[Apop-pC3]/dt   va(62) - va(63) - va(64)  As in #29 

83 d[cSmac]/dt   va(65) - va(66) - va(69) + va(70) - va(99) As in #29 

84 d[Apop-XIAP]/dt   va(67) - va(68) - va(107) As in #29 

85 d[cSmac-XIAP]/dt   va(69) - va(70) - va(100) As in #29 

86 d[C3_Ub]/dt   va(22) - va(103) As in #29 

87 d[CycA]/dt vcc(36)+vcc(12)+vcc(18)-vcc(9)-vcc(6) See [152] 

88 d[CycB]/dt vcc(42)-vcc(19) As in #87 

89 d[CycD]/dt vcc(39)+vcc(17)+vcc(8)-vcc(7)-vcc(4) As in #87 

90 d[CycE]/dt vcc(38)+vcc(11)+vcc(16)-vcc(14)-vcc(5) As in #87 

91 d[mCycD]/dt vcc(34)-vcc(1) As in #87 

92 d[mBcl2]/dt vcc(41)-vcc(2) As in #87 

93 d[Cdh1]/dt vcc(20)-vcc(21) As in #87 

94 d[CA]/dt vcc(6)-vcc(12)-vcc(18)-vcc(10) As in #87 

95 d[CD]/dt vcc(7)-vcc(8)-vcc(17)-vcc(3) As in #87 

96 d[CDc20]/dt vcc(26)-vcc(27)-vcc(28) As in #87 

97 d[CDc20T]/dt vcc(35)-vcc(25) As in #87 

98 d[CE]/dt vcc(5)-vcc(11)-vcc(13)-vcc(16) As in #87 

99 d[GM]/dt vcc(31)-vcc(32) As in #87 

100 d[IEP]/dt vcc(23)-vcc(24) As in #87 

101 d[Mass]/dt vcc(33)-vcc(55) As in #87 

102 d[p27]/dt 
 vcc(40)+vcc(3)+vcc(8)-vcc(15)-vcc(5)-vcc(6)-
vcc(7)+vcc(11)+vcc(12)+vcc(13)+vcc(10) 

As in #87 

103 d[PPX]/dt  vcc(37)-vcc(22) As in #87 

104 d[pp-Rb]/dt vcc(29)+vcc(30)+vcc(43)-vcc(44) As in #87 

105 d[E2F]/dt vcc(29)+vcc(45)+vcc(47)-vcc(46)-vcc(48) As in #87 

106 d[p-E2F]/dt vcc(30)+vcc(49)+vcc(46)-vcc(47)-vcc(50) As in #87 

107 d[Rb]/dt vcc(44)+vcc(45)+vcc(49)-vcc(48)-vcc(50)-vcc(43) As in #87 

108 d[E2F-Rb]/dt vcc(51)+vcc(48)-vcc(52)-vcc(29)-vcc(45) As in #87 

109 d[p-E2F-Rb]/dt vcc(52)+vcc(50)-vcc(51)-vcc(30)-vcc(49) As in #87 

110 d[MYC]/dt vcc(53)-vcc(54) As in #87 

111 d[mMYC]/dt vcc(56)-vcc(57) As in #87 

 



200 
 

 
 

E. Other simulation parameters 
# Parameter Value Description Justification 

1 RCV 

0.1 

Protein syn/deg CV 

For simplicity we assumed synthesis and degradation rates were 
normally distributed with a CV of 0.1 about the parameter value. Thi 
s is similar to the approach taken in [156] and results a steady state 
protein concentration variability with CV ~ 0.25 [24] 

2 CCV 

0.25 If no protein syn/deg 
then the total free 
protein concentration 
CV 

We assumed log-normally distributed initial protein concetrations 
about the x0 mean with a CV of 0.25 as in [24] 

3 PCV 
0.07 

Partition volume CV 
The observed variability in relative volumes was normal with mean 1 
and standard deviation of 0.07 from microscopy studies in this work 

4 VCV 
0.05 

Starting volume CV 
The observed starting volume variability of viable cells from 
microscopy studies.  

5 IKKCV 0.25 IKK CV As in #2 

6 N 
250 Initial number of 

cellular agents used in 
multiscale model. 

This number was large enough to ensure that repeated simulations 
produced very similar results.  

7 
Simulation 
Replicates 

2 Average of 2 250 
agent runs. 

Two simulations with 250 agents were used to create each 
simulation. The averages of two replicate simulations are reported. 

8 Tmax 
144 h 

Total simulation time.  
Six days of simulations was sufficient for capturing both the 
expansion and contraction periods of the population response. This 
is also the typical duration of time-lapse experiments. 

9 AbsTol 
1e-5 Absolution simulation 

tolerance for Matlab 
function ode15s 

This was sufficiently low to produce accurate results. Increasing this 
number further resulted in noticeable changes in solution accuracy. 

10 RelTol 

1e-3 Relative tolerationce 
of simulation s using 
Matlab function 
ode15s 

As in #9 
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