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Systems/Circuits

Multiple Midfrontal Thetas Revealed by Source Separation
of Simultaneous MEG and EEG

Marrit B. Zuure,1 Leighton B. Hinkley,2 Paul H.E. Tiesinga,1 Srikantan S. Nagarajan,2 and Michael X Cohen1,3
1Donders Centre for Neuroscience, Radboud University, 6525 AJ Nijmegen, The Netherlands, 2Radiology Department, University of California at
San Francisco, San Francisco, California 94143, and 3Donders Centre for Medical Neuroscience, Radboud University Medical Center, 6525 AJ
Nijmegen, The Netherlands

Theta-band (;6Hz) rhythmic activity within and over the medial PFC (“midfrontal theta”) has been identified as a distinc-
tive signature of “response conflict,” the competition between multiple actions when only one action is goal-relevant.
Midfrontal theta is traditionally conceptualized and analyzed under the assumption that it is a unitary signature of conflict
that can be uniquely identified at one electrode (typically FCz). Here we recorded simultaneous MEG and EEG (total of 328
sensors) in 9 human subjects (7 female) and applied a feature-guided multivariate source-separation decomposition to deter-
mine whether conflict-related midfrontal theta is a unitary or multidimensional feature of the data. For each subject, a gener-
alized eigendecomposition yielded spatial filters (components) that maximized the ratio between theta and broadband
activity. Components were retained based on significance thresholding and midfrontal EEG topography. All of the subjects
individually exhibited multiple (mean 5.89, SD 2.47) midfrontal components that contributed to sensor-level midfrontal theta
power during the task. Component signals were temporally uncorrelated and asynchronous, suggesting that each midfrontal
theta component was unique. Our findings call into question the dominant notion that midfrontal theta represents a unitary
process. Instead, we suggest that midfrontal theta spans a multidimensional space, indicating multiple origins, but can mani-
fest as a single feature at the sensor level because of signal mixing.

Key words: conflict processing; midfrontal cortex; multivariate analysis; response conflict; source separation; theta

Significance Statement

“Midfrontal theta” is a rhythmic electrophysiological signature of the competition between multiple response options.
Midfrontal theta is traditionally considered to reflect a single process. However, this assumption could be erroneous because
of “mixing” (multiple sources contributing to the activity recorded at a single electrode). We investigated the dimensionality
of midfrontal theta by applying advanced multivariate analysis methods to a multimodal MEG/EEG dataset. We identified
multiple topographically overlapping neural sources that drove response conflict-related midfrontal theta. Midfrontal theta
thus reflects multiple uncorrelated signals that manifest with similar EEG scalp projections. In addition to contributing to the
cognitive control literature, we demonstrate both the feasibility and the necessity of signal demixing to understand the nar-
rowband neural dynamics underlying cognitive processes.

Introduction
Oscillatory activity is driven by rhythmically active neural popu-
lations (Buzsáki and Draguhn, 2004; Wang, 2010). The temporal
properties of these oscillations can inform us about the func-
tional properties of the generating neural populations, which

presumably implement the cognitive processes co-occurring
with the oscillation (Womelsdorf et al., 2014). In this way, oscil-
latory markers of cognition can be used to understand cognition
itself.

Midfrontal theta, characterized as brief theta-frequency (5–
7Hz) power increases at midfrontal EEG electrodes in humans,
is well established as a marker of response conflict: competition
between concurrently activated responses of which only one is
goal-relevant (Botvinick et al., 2001). The power of the theta
burst covaries with reaction time and is thought to index the
level of subjective conflict (Cohen and Cavanagh, 2011).
Response conflict theta is spectrally dissociable from error-
related and other types of midfrontal theta (Cohen, 2014a; see,
e.g., Kahana et al., 2001; van de Vijver et al., 2011; Cohen and
van Gaal, 2014). It is non-phase-locked to stimulus or response
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(Cohen and Donner, 2013), suggesting that conflict enhances
ongoing oscillations in the medial frontal cortex (MFC), where
the signal is estimated to originate (Ridderinkhof et al., 2004).
Task-relevant regions phase-lock to conflict theta (Hanslmayr et
al., 2008; Cohen and Cavanagh, 2011), indicating a driving or
coordinating role for conflict theta in recruiting brain networks
for conflict processing. Despite extensive characterization of the
signal itself, its generating neural mechanisms remain unidenti-
fied, with existing neurobiological accounts (Cohen, 2014a)
being speculative at best.

Lacking mechanistic explanations, response conflict theta is
assumed to be a unitary phenomenon: that is, it consists of a sin-
gle signal that varies over time and correlates with the amount of
conflict. Indeed, EEG and fMRI studies of response conflict theta
typically capture a single source (Ridderinkhof et al., 2004), and
much of the contemporary literature reflects the unitary assump-
tion (Botvinick et al., 2001; Nigbur et al., 2011; Pastötter et al.,
2013; Cavanagh and Frank, 2014; Verguts, 2017), although
Töllner et al. (2017) reported two theta sources in PFC.
However, this assumption may be erroneous. Because electrical
signals mix linearly and instantaneously (Nunez and Srinivasan,
2006), response conflict theta may consist of multiple independ-
ent signals but appear as a singular phenomenon at the sensor
level. Similarly, the “single blob” observations typical in individ-
ual fMRI studies may hide multiple conflict-related sources,
obscured by spatial normalization, smoothing, and cross-subject
averaging.

In this study, we questioned the assumption that response
conflict theta reflects a unidimensional neural process. We
applied a feature-driven multivariate source separation method
that is optimized for determining whether narrowband activity
reflects the linear summation of independent sources or a single
(nonlinearly separable) source (de Cheveigné and Parra, 2014).
This method (generalized eigendecomposition [GED]) outper-
forms linear decomposition methods, such as principal compo-
nent analysis (PCA) and independent component analysis
(ICA), at source separation (Nikulin et al., 2011; Cohen, 2017a;
Cohen and Gulbinaite, 2017), in part because it can selectively
target data features of interest.

We applied theta-targeted source separation to simultaneous
MEG and EEG recorded during the “Simon task,” a task com-
monly used to induce response conflict (Leuthold, 2011). Our
multimodal MEG/EEG dataset lends itself especially well to
source separation, in part because of the high sensor count and
in part because MEG and EEG are sensitive to nonredundant
(i.e., predominantly tangentially vs radially oriented) neural
sources. All 9 subjects exhibited multiple linearly separable sour-
ces that contributed to sensor-level midfrontal theta. Inferential
statistics confirmed that these sources explained significant
amounts of variance in the data, and further analysis revealed
that sources were temporally uncorrelated and asynchronous,
implying uniqueness. Midfrontal theta thus does not appear to
be a singular phenomenon, but rather a linear combination of
many theta-frequency signals with overlapping topographies.

We conclude that midfrontal theta spans a multidimensional
space, indicating multiple origins, and that it can manifest as a
single feature at the sensor level because of signal mixing. We
speculate that these dimensions reflect independent computa-
tions during conflict processing.

Materials and Methods
Subjects. Ten subjects (7 female) from the University of California

San Francisco (UCSF) community participated in this study. The

UCSF Internal Review Board approved the study, and all research
was performed in accordance with UCSF Internal Review Board regu-
lations. All subjects gave written informed consent. Inclusion criteria
were the absence of psychiatric and neurologic disorders, absence of
substance dependence or substance abuse, and MRI safety criteria.

Stimulus, task, and study design. Subjects performed a conflict-
inducing Simon task (see Fig. 1A), previously described by Cohen
and Ridderinkhof (2013). A colored circle was presented on the mon-
itor, to the left or right of the fixation cross. Subjects were instructed
to perform a left or right button press in response to the stimulus
color while ignoring the stimulus location. Response conflict was
present on trials where the target response was contralateral to the
stimulus location (“incongruent trials”). Conversely, no response con-
flict was present on trials where the target response was ipsilateral to
the stimulus location (“congruent trials”). Subjects completed 1500
trials in blocks of 60.

MEG/EEG recording and preprocessing. MEG data were recorded in
a shielded room using a whole-head 275 axial gradiometer MEG system
with third-order gradient correction (CTF MEG International Services)
at a sampling rate of 1200Hz. Three MEG sensors (MLF62, MLF64,
MLT16) were inactive; 56 EEG electrodes were placed on the scalp
according to the 10–20 system. MEG/EEG data were acquired under a
bandpass filter of 0.001–300Hz. Third-order gradient noise correction
filters were applied to the MEG data and corrected for a direct-current
offset, using CTF-provided routines.

Offline MEG/EEG cleaning and processing were performed with
custom MATLAB scripts (MATLAB 2014a, The MathWorks) and the
EEGlab toolbox (Delorme and Makeig, 2004). Data were segmented
into epochs running from 1.5 s before to 2.5 s after stimulus onset.
Trials were visually inspected, and excessively noisy trials were
rejected. Trials were classified into “congruent” and “incongruent”
task conditions. As the recent history of conflict modulates reaction
times (Gratton et al., 1992) and electrophysiological effects (Pastötter
et al., 2013), potentially reflecting divergent cognitive processes, analy-
ses were performed only on trials following a congruent trial (com-
pare Cohen and Ridderinkhof, 2013). Error trials were excluded from
analysis. This left 5346 63.7 trials per subject, with a minimum of
425. MEG/EEG data were further cleaned using ICA in EEGlab.
Components with clearly identifiable nonbrain artifacts, such as eye
blinks or heartbeats, were removed.

Sensor-level time-frequency analysis. Data recorded at midfrontal
EEG electrode FCz were time-frequency decomposed through trial �
trial convolution with 40 complex Morlet wavelets. Morlet wavelets were
constructed as follows (see also Cohen, 2014b):

Wf ¼ ei2p fte�t2=2s2 (1)

s ¼ n
2p f

(2)

where t is time, f is frequency (logarithmically spaced from 2–20Hz), s is
the SD of the Gaussian that modulates the complex sine wave, and n is
the number of wavelet cycles (logarithmically spaced from 4 to 10). The
number of cycles per wavelet governs the trade-off between temporal
and spectral precision.

Frequency-specific power was extracted as the squared amplitude of
the absolute analytic signal resulting from the convolution. Power was
then dB-scaled relative to a trial-averaged �500 to �100ms baseline,
0ms being stimulus onset. One of 10 subjects exhibited uncharacteristi-
cally weak theta-frequency power at electrode FCz and was excluded
from further analysis, leaving 9 subjects (7 female).

Multivariate-guided source separation. The source separation
method used (GED), also detailed by de Cheveigné and Arzounian
(2015) and Cohen (2017b), allows for the selection of features of interest
in the data. Two channel � channel covariance matrices S and R were
constructed, based on the channels � time signal of interest Xs and the
reference signal Xr as follows:
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S ¼ n�1XsX
T
s (3)

R ¼ n�1XrX
T
r

where n is the number of time points minus 1 in Xs, Xr. A single set of
weights (in vector w) maximizing the power ratio between S and R can
be found by maximizing the Rayleigh quotient (Eq. 4), with scalar value
l capturing the power ratio (Eq. 5) as follows:

w ¼ argmax
w

wTSw
wTRw

(4)

l ¼ wTSw
wTRw

at w ¼ wmax (5)

Extending the above from a single vector to a matrix computation
yields the generalized eigenvalue equation in Equation 6, which, when
solved, gives a matrix of weightsW and a diagonal matrix of eigenvalues
K as follows:

RWK ¼ SW (6)

These weights (eigenvectors) capture the directions in which S and
R are most separable (i.e., maximize the energy ratio between S and
R). The associated eigenvalues capture the energy ratio. The eigenvec-
tors are linearly separable: each eigenvector of length n (provided it is
associated with a unique eigenvalue) points in a direction in n-dimen-
sional space that maximally separates S from R, given the constraint
that it is distinct from all other eigenvector directions. Notably, S and
R are symmetric; but because the decomposed matrix is the asymmet-
ric compound matrix R�1S, the eigenvectors are not constrained to be
orthogonal. This is an advantage over PCA, in which the orthogonal-
ity constraint limits its usefulness for source separation.

We applied this eigendecomposition procedure to our data.
Individual EEG trials (in mV) and MEG trials (in pT) were z-scored to
convert the data to a common scale, and combined into a single dataset
per subject. Data were bandpass-filtered at theta (5–7Hz), and signal
matrix S was computed from a 0–800ms time window (see Fig. 2).
Reference matrix R was computed from unfiltered (broadband) data in
the same time window, with 1% shrinkage regularization (Eq. 7) to
improve matrix separability as follows:

R
; ¼ ð1� gÞR1gaI (7)

a ¼ 1
n

Xn

i¼1

l i (8)

where R~ is the regularized matrix, y is the degree of shrinkage (here
0.01), I is the identity matrix of equal size to R, and a is the average of
the eigenvalues of R.

GED yielded 328 eigenvectors (“components”) for each subject, as
many as there were sensors. Eigenvectors were normalized to unit
length. One subject exhibited a high-energy component that was
strongly driven by a single EEG electrode (F4); this electrode was
removed from that subject’s dataset, and the GED was rerun.
Components with repeating eigenvalues (specified as ,1% difference
with the previous largest eigenvalue) were excluded from analysis, as
these possibly reflected inseparable components. This rejection affected
only a single component with midfrontal topography. Component signifi-
cance was established using permutation testing, where narrowband-fil-
tered and broadband time series were randomly shuffled into Xr and Xs

1000 times to generate a null distribution of eigenvalues (for full proce-
dure, see Hayton et al., 2004). Components explaining significant amounts
of variance (a = 0.05) were retained for further analysis.
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Figure 1. Task design, behavioral effects, and sensor-level effects. A, Subjects performed
a Simon task with congruent (one direction cued) and incongruent, that is, conflict-inducing
(two directions cued) trials. B, Reaction times (6SEM) per trial type show the expected
Simon effect (faster responses on congruent than incongruent trials) and expected modula-
tion of conflict effects by previous conflict. cC, Congruent following congruent; cI, incongruent
following congruent; iC, congruent following incongruent; iI, incongruent following incongru-
ent. C, Condition-average and conflict modulation of time-frequency power at electrode FCz.
Black rectangle represents the time-frequency window used to create the covariance matrices
for the GED. D, Subject-averaged EEG and MEG topographies for theta (u ) power
modulations.
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A component topography aj was computed for each given eigenvec-
tor wj (Eq. 9, also shown in Fig. 2D) (compare Haufe et al., 2014).
Topographies were computed separately for EEG and MEG to ensure
that topographies remained modality-specific and unaffected by cross-
covariances between EEG and MEG channels as follows:

aj ¼ wT
j S (9)

Furthermore, component time-series cj were constructed for each
trial (also shown in Fig. 2D) as follows:

cj ¼ wT
j X (10)

The component topography was used for topographical interpreta-
tion, and the component time series was used in all time-series analyses,
described later.

Selecting midfrontal sources. Response
conflict theta manifests with stereotypical mid-
frontal topography on EEG recordings. To
select components with midfrontal topogra-
phies, we constructed a topographical EEG
template (see Fig. 4) that consisted of a
Gaussian centered on midfrontal electrode
FCz, where conflict theta power is typically
maximal. Shared spatial variances (R2) between
component EEG topographies and the midfron-
tal EEG template were calculated. We visually
inspected the topographies and imposed a cutoff,
retaining components with R2 . 0.5. As eigen-
decomposition returns eigenvectors without a
canonical sign, we inverted EEG topographies so
that they correlated positively with the midfron-
tal template, thus representing the typical con-
flict-related power increase over midfrontal
electrodes. Furthermore, we inverted MEG top-
ographies so that they were positive at the right
lateral set of sensors. Sign-flipping facilitates
cross-subject averaging and visual interpretation
of topographies but does not change the time-
frequency response of the component time
series.

Confirming source robustness using ICA.
To confirm that our main observation (multi-
ple theta sources) was independent of the exact
source separation method used, we applied the
JADE algorithm for ICA to the theta band-fil-
tered data. Source separation was limited to 60
independent components (ICs) per subject to
prevent the ICA from fitting noise. This num-
ber was chosen based on the maximum num-
ber of significant GED components (46)
across subjects, plus some leeway to allow for
variability in the ordering of ICs.

Confirming source robustness using split-
half validation. We validated within-subject
source stability by performing a split-half
component validation procedure, following
the method suggested by Groppe et al. (2009)
with changes as appropriate. Briefly, compo-
nents obtained from the full dataset were
greedily paired to components obtained from
two split-halves consisting of alternating trials,
by comparing their Euclidean topographical
distances. Next, each triplet’s significance was
computed using the pooled topographical dis-
tances across subjects as the null distribution.
Triplets with significantly low topographical
distances (p, 0.05) were taken to be stable
components.

We made three notable changes to the method laid out by Groppe et
al. (2009). First, we constrained our validation procedure to the top 60
components from the split-halves and to the significant components
from the full set, to limit spurious matches arising from pairwise com-
parisons among 328 components. Second, we computed the topographi-
cal distance function differently (separately for EEG and for MEG, then
averaged together) to prevent bias toward MEG on account of the larger
number of sensors. Third, we omitted the time-series distance metric al-
together and instead used the all-to-all topographical distances for the
null distribution. This was in part because component time series and
component topographies comprise the same linear weighting of different
data and should have proportional pairwise distances, and in part
because computing 3 � 328 � 328 time series and the pairwise distances
between them was computationally infeasible.

Confirming source multimodality. Inspired by the observation that
many components had similar EEG topographies but variable MEG
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nents contributing to theta-frequency signal. A, The signal matrix S is the covariance matrix of all MEG/EEG sensor signals
bandpass-filtered at 5–7 Hz, from a 0–800 ms time window. The reference matrix R is the covariance matrix of the unfiltered
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mix EEG and MEG weightings, whereas modality-specific filters appear on the right (smaller components). C, The canonical
time course per trial for each component is constructed as a linear combination of the time series from the 328 MEG/EEG sen-
sors, using the component eigenvector as weights. D, Single-subject eigenspectrum, with significance cutoff (a = 0.05)
determined by permutation testing. Inset, EEG and MEG topographies derived from the spatial filter, and the trial-averaged
component time course (ERP).
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topographies, we investigated the possibility that the multimodality of
our observed components could have been an artifact of the GED
algorithm.

First, we quantified the degree to which our observed eigenvectors
mixed EEG and MEG sensor weights, and compared the degree of mix-
ing for significant versus nonsignificant eigenvectors. A modality domi-
nance (MD) value was computed for each component as follows:

MD ¼ RMSEEG � RMSMEG

RMSEEG1RMSMEG

� �2

(11)

where RMSEEG and RMSMEG are the root mean square of the EEG sen-
sor weights and the MEG sensor weights, respectively. An MD value of 0
means that the energy of the sensor weights is completely balanced, and
an MD value of 1 means that one of the modalities completely domi-
nates the component. To determine whether the observed multimodality
in our components was a property of the components or of the GED
procedure, MD values were compared for significant components (cap-
turing theta-related variance) and nonsignificant components (capturing
non-theta-related variance).

Next, we performed a single-subject control analysis (on S03) in
which we nullified the crossmodal covariances between EEG and MEG,
rendering the data unimodal. This was achieved by simply setting the
cross-terms in covariance matrices S and R to zero. A GED was then
performed on the unimodal covariance matrices, and an MD value was
computed for each of the resulting eigenvectors (Eq. 11). If the GED pro-
cedure respects the unimodality of the data, the identified eigenvectors
should also be purely unimodal and have MD values of 1.

Evaluating source similarity. To address the possibility that GED
artificially split a single source into multiple components, we evaluated
components on three measures of signal similarity. In preparation, theta
power (relative to a�500 to�100ms baseline) and phase were extracted
from the component time series, through convolution with a 6Hz
complex Morlet wavelet. For the first measure, pairwise component
synchrony was computed as the mean length of the phase angle differ-
ence vector at each time point, and mean synchrony over �500 to
900ms was extracted. This measure captured the component phase
similarity. Synchrony between adjacent EEG electrodes Pz and POz
(where synchronization was expected to be inflated by volume con-
duction) was computed for comparison. Second, the mean pairwise
correlation between component theta power time courses was com-
puted, capturing the similarity of within-trial power fluctuations.
Third, the pairwise correlation between mean component theta power
over 0-800ms was computed, capturing the similarity of power fluctu-
ations across trials.

Another possibility is that a single midfrontal theta source was split
into two components because of noise. To investigate this possibility, we
determined howmuch noise needed to be added to two copies of a single
spatial filter to generate synchronization of a similar magnitude as two
empirical spatial filters. This was a three-step process. First, we selected a
spatial filter (the eigenvector w from Eq. 4), made a copy of this filter,
and then added unique white noise to each copy (noise SD, SDnoise,
ranging from 0 to 10 times the eigenvector SD, SDeig, in steps of 0.1; 50
copies per noise level). Second, theta power time courses were derived
from these noisy spatial filters. Third, the expected distribution of pair-
wise correlations between time courses was computed for each of the
noise levels (a total of ½ � 50� 50 – 50= 1200 unique pairwise “noisy
self-correlations” per noise level). One-tailed t tests (a = 0.05, no multi-
ple comparisons correction) between the correlation distributions deter-
mined the noise level for which the generated self-correlations were no
longer statistically distinguishable (for at least 1 participant) from the
empirical cross-component correlations.

Component-level time-frequency analysis. The retained component
time series were time-frequency decomposed through trial � trial con-
volution with 40 complex Morlet wavelets, as previously described for
data from sensor FCz. The average time-frequency spectrum across
components was computed. To accurately represent each component’s
contribution to the overall energy, each component was weighted by the
variance it explained among the retained components per subject.

Computing Granger causality (GC). To attempt to identify a hierar-
chy in how components interacted over time, we computed windowed
GC on component time series (see Fig. 7A) using the MATLAB MVGC
toolbox (Barnett and Seth, 2014). The ERP over trials was subtracted
from each trial to limit the influence of nonstationarities. Data were
downsampled from 1200 to 300Hz. Model order was estimated per
subject, on all trials, over 0–800ms, using Bayes’ information criterion.
We selected the maximum order across subjects (6 time steps, equal-
ing 19.2ms) for all further GC calculations. Next, trial data were seg-
mented into 200ms windows with 50ms step size. Conditional GC
between each pair of components was computed over each time win-
dow as follows:

GCj!ijk ¼ ln
R1

R2
(12)

where j is the driving component, i is the receiving component, and k is
the group of all other components, on which j!i is conditional. R1 is
the error term (variance of the residual) of the autoregressive model fit
to the recent history (constrained by the order parameter) of i, with lin-
ear terms for the influence of the components in k. R2 is the error term
for the same model with the addition of a linear term for the influence of
j. Thus, if the prediction for i improves with incorporating the past of j,
the GC value exceeds 0. Averaging over “outgoing” and “incoming” GC
values yielded a “driving mass” (DM) and “receiving mass” (RM) value
for each component within each time window:

DMj ¼ 1
n� 1

Xn

i6¼j

GCj!ijk (13)

RMj ¼ 1
n� 1

Xn

i6¼j

GCi!jjk (14)

where n is the number of components for that subject. Driving and
receiving mass were computed separately for incongruent trials and con-
gruent trials, with condition-average GC being the average of these two.

Deriving task and conflict modulation. For each component, theta
power modulation during the task was computed as mean theta power
on all trials (normalized relative to a �500 to �100ms baseline) over
0–800ms. This yielded a ratio (i.e., a modulation value of 1 indicated no
change in theta power compared with baseline). Conflict-related modu-
lation was computed as mean theta power modulation on incongruent
trials minus modulation on congruent trials. These values were also
computed at midfrontal electrode FCz, for comparison purposes. One
component was rejected for being strongly negatively task-modulated,
leaving 52 components. Component-specific GC modulation was com-
puted in the same way as theta power modulation: once across all task
conditions and once per condition, although computed over driving and
receiving mass instead of theta power.

Extracting temporal and spatial component features. We applied
PCAs to identify temporal and spatial features of the component time
courses and topographies that were consistent across subjects. Separate
PCAs were applied to EEG topographies, MEG topographies, theta
power time courses, and GC time courses. The number of PCs for each
data feature was determined by visually identifying the “elbow” in the
plot of the eigenvalues (i.e., the point where additional explained var-
iance per PC sharply decreases) and retaining the PCs before that point.
This approach suggested two PCs for each data feature. As PCA returns
PCs without a canonical sign, we inverted the time course PCs and to-
pography PCs so that they were positively correlated with the majority
of original time courses and topographies.

Statistical analysis. Statistical analyses were performed using
MATLAB (MATLAB 2014a, The MathWorks). The significance level
was set at a = 0.05. Two-sample differences were compared using one-
way or two-way t tests (described in Results), with Benjamini-Hochberg
step-up multiple comparisons correction (Benjamini and Hochberg,
1995) applied when testing related hypotheses. Behavioral results were
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compared using a two-way ANOVA to identify interactions, with
Benjamini-Hochberg multiple comparisons correction applied to pre-
chosen contrasts. For GC marginals, tested at each time window and for
each pairwise combination of components, we applied false discovery
rate multiple comparisons correction as implemented in the MVGC
toolbox (Barnett and Seth, 2014). No multiple comparisons corrections
were applied when determining at which noise level the randomized and
empirical component correlation coefficients became indistinguishable
(see Fig. 5). This lack of multiple comparisons correction is intentional
so that the identified noise level represents a lower bound. Component
significance was determined by creating a null distribution using permu-
tation testing, with a cutoff for retention set at p=0.05. Correlation coef-
ficients were computed as Pearson’s r. Descriptive statistics are always
given as mean6 SD.

Code and data accessibility. The custom-written MATLAB analysis
code is available on GitHub at http://www.github.com/marrit-git/
MEEG-multiple-theta-sources. The MEG/EEG data are available from
https://data.donders.ru.nl.

Results
Behavioral results
We replicated the typical congruency sequence effect (also
known as the “Gratton effect”) of previous trial congruence
affecting performance on the next trial (Gratton et al., 1992).
Following congruent trials, accuracy was 94.76 3.1% on congru-
ent and 86.5 6 7.1% on incongruent trials, whereas following
incongruent trials, accuracy was 91.2 6 3.7% on congruent and
92.0 6 6.0% on incongruent trials (interaction between previ-
ous and current congruency: p=0.015, F(1,32) = 6.64, ANOVA).
This effect was also observed in reaction times (Fig. 1B): sub-
jects responded faster on incongruent trials following incon-
gruent (465.96 22.5ms) than congruent (489.66 26.5ms)
trials, and responded slower on congruent trials following
incongruent (477.86 31.6ms) than congruent (444.7 6
35.8ms) trials (interaction p=0.007, F(1,32) = 8.30, ANOVA).
As mentioned in Materials and Methods, we focused the

EEG MEG

Te
m

pl
at

e
E

xa
m

pl
e 

1
E

xa
m

pl
e 

2

D

B p = 0.05 midfrontal (R2 > 0.5) not midfrontal (R2 ≤ 0.5)

P
ow

er
 r

at
io

 (
λ)

Component

X

10 20

2

3

4

5

20 40

2

4

6

8

20 40

2

3

4

5

10 20 30

2

3

4

5

20 40

2

4

6

10 20 30

2

3

4

10 20

2

3

20 40

2

3

4

5

20 40

2

3

4

5

Subject 1
n = 3

Subject 2
n = 5

Subject 3
n = 11

Subject 4
n = 6

Subject 5
n = 6

Subject 6
n = 8

Subject 7
n = 3

Subject 8
n = 6

Subject 9
n = 4

Subject

Comp 1

Comp 2

E
E

G
M

E
G

.gvA1

PC1

2 3 4 5 6 7 8 9

E
E

G

PC2

M
E

G

PC1 PC2

C

Comp 1

Comp 2

22.8% 16.7%48.9% 17.2%Explained variance:

A

Figure 3. Procedure for selecting midfrontal theta components based on eigenvalue statistical significance and EEG topography template matching. A, Top, The EEG template topography
used to select midfrontal components. Middle and bottom, Components selected using this template can have diverse MEG topographies. B, Components sufficiently (R2. 0.5) correlated with
the template were retained (green). n indicates the number of components retained per subject. Most subjects had at least two midfrontal components in their top 5 theta components, indi-
cating that our conclusion that midfrontal theta is driven by more than one component is not dependent on the particulars of significance thresholding. Components were selected based on
theta energy (reflected in the power ratio) and midfrontal EEG topography; possible modulation by experiment condition was ignored during selection. C, The two top midfrontal components
(explaining most variance) per subject exhibited homogeneous EEG topographies and heterogeneous MEG topographies. D, PCAs individually applied to the EEG and MEG topographies captured
salient spatial features across all components.

Zuure et al. · Multiple Sources of Midfrontal Theta in MEG/EEG J. Neurosci., September 30, 2020 • 40(40):7702–7713 • 7707

http://www.github.com/marrit-git/MEEG-multiple-theta-sources
http://www.github.com/marrit-git/MEEG-multiple-theta-sources
https://data.donders.ru.nl


MEG/EEG analyses on trials following congruent trials, to
maximize the conflict effect.

Sensor-level analyses
Data recorded at midfrontal EEG electrode FCz were time-
frequency decomposed through complex Morlet wavelet convo-
lution. This decomposition served two purposes. The first was to
confirm that task and conflict effects were present in the sensor-
level data, rather than being artificially induced by the GED. The
second was to guide the feature selection for the GED.

The average FCz time-frequency spectra (Fig. 1C) exhibited a
task-related theta power increase, as well as conflict modulation
in the theta band. Power increased predominantly within the 4–
7Hz frequency range. This observation validated our choice of
bandpass frequency filter (5–7Hz, chosen for a priori expecta-
tions of theta manifesting at ;6Hz) for the GED signal matrix.
The condition-average theta power increase spanned 0–800ms
relative to stimulus onset, guiding our selection of this time win-
dow to construct the GED signal and reference matrices.

Condition-averaged theta power (at 0-800ms relative to a
�500 to �100ms baseline) was observed at midfrontal and lat-
eral occipital locations in EEG, and at midfrontal and frontolat-
eral locations in MEG (Fig. 1D). Conflict-modulated theta power
was maximal at midfrontal locations in EEG and was broadly
midfrontally distributed in MEG.

Theta power at FCz was significantly greater during the task
(1.386 0.68 dB) than during baseline (p= 0.0001, one-sided
t(8) = 6.08). However, FCz theta power was not significantly
greater on incongruent (1.466 0.78 dB) than congruent trials in
the window of 0-800ms (1.286 0.65 dB; p= 0.14, one-sided
t(8) = 1.15; all Benjamini-Hochberg-corrected).

Identification of midfrontal theta components
Custom spatial filters were created using GED, to identify com-
ponents in the data that maximally separated theta-band activity
from broadband data (procedure illustrated in Fig. 2). A permu-
tation testing-determined significance threshold (a = 0.05) was
applied to the resulting 328 components per participant (Fig.
2D). As shown in Figure 3, each subject exhibited between 21
and 46 significant theta components (average 33.896 9.47). A
subset of these (5.896 2.47 per subject; minimum 3, maximum
11) was midfrontal, defined as shared spatial variance R2 . 0.5
between the component’s EEG topography and the midfrontal
template shown in Figure 3A. By virtue of the template-based
selection method, component EEG topographies were homoge-
neous. However, the associated MEG topographies were highly
variable (Fig. 3C). This variability is also reflected in the salient
topographical features identified by applying PCAs to the EEG
and MEG topographies (Fig. 3D): a single PC explained 48.9% of
the variance in the EEG topographies, whereas the top two MEG
PCs together captured 39.5% of the variance.

Averaged time-frequency decompositions of the retained
components (Fig. 4) were similar to those at electrode FCz (Fig.
1C). This similarity suggests that this subset of the data retained
the salient data features, and that applying GED had no distort-
ing effects.

Alternative source separation using ICA
We confirmed that the detection of multiple midfrontal theta
components was not dependent on the source separation
method by using ICA to separate 60 ICs per subject in the theta
band-filtered data. Of these 60 ICs, an average of 6.33 ICs per
subject (6 2.95, minimum 4, maximum 13) had midfrontal

topographies according to our criteria. This is consistent with
previous reports of multiple frontal theta ICs within-subject
(Töllner et al., 2017). As GED is both spectrally specific and
more amenable to inferential statistics, we focused on GED and
did not further consider the ICs.

Within-subject component robustness
We performed split-half validation of each subject’s components,
by pairing triplets of components from the full set and two split-
halves of the data. Triplet significance was computed using the
pooled topographical distances over subjects as the null distribu-
tion. For all subjects, multiple significant midfrontal full-set com-
ponents (5.116 2.62, minimum 2, maximum 10) were stable
across both halves (i.e., had significantly low topographical dis-
tances to the full-set component, both p, 0.05).

The majority of midfrontal components (86.66 19.7% of the
originals) were thus robust against subsampling of the data. As
we cannot discern whether the remaining components were truly
spurious, were lost because of variable component ordering, or
became nonsignificant because of the reduced signal-to-noise ra-
tio from using only half the data, we continued our analyses on
all of the significant components found in the full set.

Component multimodality
Midfrontal theta components were characterized by spatial filters
that captured both EEG and MEG activity. We evaluated
whether this multimodality was a property of the components or
caused by the GED procedure. An MD value, ranging from 0
(perfectly balanced) to 1 (perfectly unimodal), was computed for
each component eigenvector (Eq. 11). MD values were compared
for significant components, which capture theta-related variance
and presumably have meaningful sensor weights, and nonsignifi-
cant components, which capture non-theta-related variance.
When pooled across subjects, significant components had lower
MD values (0.166 0.13), indicating more balanced contributions
from MEG and EEG compared with the nonsignificant compo-
nents (0.326 0.22, p, 0.0001, one-tailed t(2927) = 11.5). Within-
subject comparisons (with lower statistical power) showed
significantly lower MD values for significant than nonsignificant
components for 4 of 9 subjects (p, 0.05, one-tailed t test, vari-
able t, variable df, all Benjamini-Hochberg-corrected). From

Condition average Conflict modulation

Time (ms) Time (ms)

0min max

0 500 1000

5

10

15

20

F
re

qu
en

cy
 (

H
z)

0 500 1000

± 17 (a.u.) ± 3 (a.u.)

5

10

15

20

Figure 4. Average midfrontal component time-frequency decompositions appear qualita-
tively similar to those from electrode FCz (in Fig. 1C). Components were weighted by their
relative eigenvalue (relative to all within-subject midfrontal components), as a measure of
their contribution to the overall signal.

7708 • J. Neurosci., September 30, 2020 • 40(40):7702–7713 Zuure et al. · Multiple Sources of Midfrontal Theta in MEG/EEG



these results, we concluded that the mixing of EEG and MEG
sensor weights was a genuine property of the theta components.

We additionally performed a control analysis to verify that
the GED procedure respected data unimodality. Unimodal co-
variance matrices were created by zeroing the crossmodal coeffi-
cients in matrices S and R, and a GED was applied to these
matrices. MD values were computed for the resulting eigenvec-
tors. As expected, the MD value for each of these eigenvectors
was 1, indicating that GED correctly identified only modality-
specific spatial filters in the absence of crossmodal covariances
and did not introduce any additional mixing. We concluded that
the observed mixing of EEG and MEG weights in the larger GED
components represented a true coupling between EEG- and
MEG-measured brain dynamics.

Possible alternative accounts for multiple theta components
To rule out the possibility that the GED artificially split out a sin-
gle signal source into multiple components, we computed three
measures of component similarity, reasoning that components
representing the same source should have highly similar time
courses.

The first measure, pairwise synchrony at 6Hz, was generally
low (Fig. 5A; 0.0446 0.005) compared with synchronization
between EEG electrodes Pz and POz, which will be artificially
inflated because of volume conduction contamination. These
electrodes were significantly more synchronous than any pair of
components (0.3606 0.062, p, 0.001, two-sided t(16) = 15.2). As
such, components did not exhibit high similarity in terms of
phase.

The second measure, trial-averaged pairwise correlations
between theta power time courses, was also generally low (Fig.
5B; Pearson’s r=0.046 0.02), indicating low similarity of
within-trial power fluctuations. The third measure, pairwise cor-
relations between mean theta power on each trial, was likewise
low (Fig. 5C; Pearson’s r= 0.116 0.08).

Another potential explanation for observing multiple theta
components is that noisy data caused a single real source to be
split into multiple apparent sources. To determine the feasibility
of this explanation, we created two noisy copies of each identified
spatial filter, computed their component time series, and corre-
lated these with each other. We then increased the amount of
noise until the noise-driven time-series correlations were no lon-
ger statistically distinguishable from the empirical time-series

correlations. We found that a noise factor of SDnoise = 1.9� SDeig

for within-trial correlations, and SDnoise = 1.5� SDeig for cross-
trial correlations, was required to reach this point (lower bound
on noise; reported SDnoise measured at the first occurrence across
subjects of p. 0.05 between generated and empirical correlation
distributions; one-tailed t, 1.55 within-trial, one-tailed t, 1.52
cross-trial, varying df; no multiple comparisons correction). In
other words, if components comprised noisy representations of
the same source, the noise would have to exceed the signal by;2
SDs to generate comparably low pairwise correlations.

Finally, we tested whether multiple statistical sources may
have arisen from a single real source that changed over time
(e.g., with head movement or changes in signal quality). We rea-
soned that this account would predict negatively correlated
cross-trial power fluctuations. Pairwise correlations across trials
were not significantly negative (p. 0.99, one-sided t(8) = 3.93
against m = 0), suggesting that components were stable over
time.

Task and conflict modulation of theta power
To characterize the nature of these components, we extracted the
theta power time courses from the component time series. We
then quantified how theta power changed during the task (rela-
tive to baseline) and how it changed on incongruent versus con-
gruent trials. Results are shown in Figure 6. Component theta
power was significantly greater during the task (1.046 1.13 dB)
than during baseline (p, 0.0001, one-sided t(51) = 6.67). Com-
ponent theta power was significantly greater on incongruent
trials (1.106 1.19 dB) than on congruent trials (0.976 1.09 dB,
p = 0.0012, one-sided t(51) = 3.20; all Benjamini-Hochberg-
corrected).

Because the GED identified linearly separable components,
simple averaging may fail to identify meaningful cross-compo-
nent functional variability. We therefore applied a PCA to the
component’s theta power time courses (Fig. 6D), which identi-
fied a later peak (Fig. 6E, PC1; peaking at ;480ms after stimu-
lus) and an earlier peak (PC2; peaking at ;180ms after
stimulus) in theta power. Prestimulus effects are attributable to
temporal smoothing from the wavelet convolution.

GC
Response conflict-related midfrontal theta is classically consid-
ered to be a phenomenon with a singular origin. While our
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previous results suggest that this is not the case, we considered
the related possibility that activity from one of the identified
components dominated the other components, which would
lend credence to the singular-origin interpretation. To address
this question, we computed GC over time between components,
quantifying the extent to which component time series pre-
dicted one another. All-to-one connectivity (RM) and one-to-
all connectivity (DM) were determined for each component.
DM and RM were significant (p, 0.05 for all components and
at all time points, x 2 test, false discovery rate multiple compar-
isons corrected), as were virtually all pairwise connections at
each time point, suggesting that components exchanged in-
formation. Baseline-normalized time courses are shown in
Figure 7B.

We first investigated whether this information exchange was
modulated by task conditions. Average component DM did not
significantly differ between the task (2.436 1.12, all GC values
in this section� 10�3) and baseline (2.596 1.24; p=0.014,
Benjamini-Hochberg-corrected a = 0.0125, two-sided t(51) =
2.53). The same was true for RM (task 2.396 1.11, baseline
2.556 1.30, p=0.08, two-sided t(51) = 1.79). Similarly, compo-
nent DM did not significantly differ between incongruent
(2.466 1.24) and congruent trials (2.396 1.16; p=0.11, two-
sided t(51) = 1.60), and the same was true for RM (incongruent
2.42 6 1.18, congruent 2.376 1.05, p=0.16, two-sided t(51) =
1.42; all Benjamini-Hochberg-corrected). Information transfer
thus remained stable on average, regardless of task features.

Next, we determined how information transfer was distrib-
uted across individual components. If a single component per
subject drove the other components, we would expect to observe
(1) that one component especially strongly predicts information
in the other component time series, leading to increased DM for
that component, and (2) that one component is especially weakly
predicted by the other components, leading to decreased RM for

that component. The actual per-component DM and RM, shown
in Figure 7C, do not match either of these expectations.
Additionally, DM and RM time series per component (Fig. 7D)
were highly correlated (r=0.79, p, 0.001), suggesting strong
symmetry in components’ driving and receiving tendencies.

PCAs applied to the DM and RM time courses (shown in Fig.
7D) revealed salient temporal features (Fig. 7E). The first PC for
both DM and RM captured a slow decrease in GC. The second
PC captured a sharper increase, followed by a decrease, of GC.

Discussion
In this study, we tested the assumption that midfrontal conflict
theta is a unidimensional phenomenon (Cavanagh et al., 2012;
Cavanagh and Frank, 2014; Cohen, 2014a). We used feature-
guided source separation to attempt to identify multivariate
components contributing to midfrontal theta. All subjects exhib-
ited multiple (5.896 2.47) midfrontal components that contrib-
uted to increases in theta power during a response conflict task.
The identified midfrontal components explained significant
amounts of variance in the data, reflected unique data features,
and remained stable over time. Thus, conflict-related midfrontal
theta exists in a high-dimensional signal space, whose basis vec-
tors are sufficiently similar that they appear as a single dimension
without careful inspection and multivariate analysis methods
(Fig. 8). This multidimensionality suggests that the midfrontal
conflict theta signal consists of the aggregate activity of many,
diverse, theta generators.

GED, the feature-guided source separation method used here,
has several advantages over “blind” source separation methods,
such as PCA and ICA.Whereas PCA and ICA optimize for sour-
ces that best describe the entire dataset, GED optimizes for sour-
ces that maximally separate two specified datasets, effectively
maximizing the signal-to-noise ratio (de Cheveigné and Parra,
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2014). Thus, given a justified a priori selection of data features of
interest, GED can achieve higher sensitivity to relevant data fea-
tures. This sensitivity may explain discrepancies between the cur-
rent work and the study by Töllner et al. (2017), which used ICA
to identify midfrontal theta generators. Töllner et al. (2017)
described two frontal midline theta clusters spanning multiple
subjects. One cluster was localized to MFC and generated more
theta-frequency activity in the presence of conflict; the other was
localized to the more anterior mPFC and was unmodulated by
conflict. Importantly, these clusters manifested with dissociable
EEG topographies. We here report multiple components per
subject with highly similar EEG topographies (e.g., Fig. 3),
selected using an FCz-centric template that corresponded closely
to the MFC cluster topography found by Töllner et al. (2017).
Furthermore, Figure 6C shows that a majority of the components
we identified generated more theta-frequency activity in the
presence of conflict. In contrast, Töllner et al. (2017) reported at
most a single IC per subject that was modulated by conflict.
Given the sensitivity of GED compared with ICA, the single IC
identified by Töllner et al. (2017) may itself be a conglomeration
of multiple functionally similar, though linearly dissociable, con-
flict-related theta sources.

The functional and theoretical implications of our findings
warrant further consideration. Components were characterized
by linear independence, low synchrony, low temporal correla-
tions, and insensitivity of causal coupling to task features, all pro-
viding evidence against computational cooperation. Ergo, the
generators are likely to perform independent computations. We
can thus rule out that these sources reflect response options
which compete with one another through mutual inhibition, one
of the prevailing theoretical accounts of response conflict proc-
essing (Botvinick et al., 2001; Yeung et al., 2004).

What, then, may be the use of these parallel independent
computations? In one possible scenario, the computations may
be functionally equivalent to one another, suggesting that the
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theta generators harness comparable microcircuitry. It has been
proposed that response conflict detection and signaling are
achieved by specialized theta-resonant microcircuitry within
MFC (Cohen, 2014a). Indeed, the presence of multiple sources
of conflict theta could reflect the parallel recruitment of assem-
blies throughout a general neural substrate that is suited to con-
flict detection. Such parallelism might serve purposes along the
lines of consensus or redundancy processing, or the concurrent
processing of differing afferent inputs.

In another scenario, the different generators may implement
different computations. It is possible that response conflict
appears as a single phenomenon at the cognitive/behavioral level
but is implemented by a functionally diverse range of circuits
operating in the theta range. Indeed, response conflict is associ-
ated with activation in a range of subregions along the medial
wall of the PFC (Ridderinkhof et al., 2004).

A third explanation may be that response conflict is imple-
mented through the parallel recruitment of brain networks. In
this scenario, each component is driven not by a single anatomic
source, but by a network of sources distributed throughout corti-
cal circuits (and possibly subcortical circuits) (see, e.g., Boran et
al., 2019). This explanation would account for the more lateral
MEG findings (Figs. 1D, 3D). Distinct extra-MFC networks,
making distinct contributions to the task (potentially related to
working memory, attention, motor control, etc.), could appear as
distinct components.

From the previous two points, it follows that the midfrontal
theta dimensions identified here may be related to different
aspects of the conflict task. This possibility is consistent with dif-
ferences in neural dynamics being observed for stimulus versus
response conflict (Nigbur et al., 2012), the modality in which the
stimuli are presented (Donohue et al., 2012; Castro et al., 2018),
the complexity of the response mapping (Donohue et al., 2016),
and the speed-accuracy trade-off (Pastötter et al., 2012).
Furthermore, the exact localization of conflict theta often
depends on the task and on stimulus modality (Ridderinkhof et
al., 2004). It is possible that our dimensions originate from spa-
tially distinct midfrontal structures that cannot be distinguished
with the spatial resolution of MEG/EEG, but that can be accessed
through linear decomposition. By systematically varying or iso-
lating task features, future studies may be able to determine
which dimensions of midfrontal theta, if any, covary with differ-
ent task or conflict requirements.

In interpreting and generalizing the results of this study,
some limitations should be kept in mind. First, statistically sepa-
rable sources do not equate to anatomically local generators of
activity. A statistical source is at its core a spatial filter, the identi-
fication of which may have been driven by a single anatomic gen-
erator or by distributed anatomic generators that were strongly
coupled. As such, the identified components clearly reflected a
combination of electrodes and sensors with strong correlational
patterns, but are not necessarily driven by a single spatially re-
stricted dipole. Nonetheless, the decomposition of midfrontal
theta into multiple components demonstrates that conflict-
related midfrontal theta is distributed in a multidimensional sub-
space, as opposed to being captured by a single statistical source
(see also de Cheveigné and Parra, 2014).

Furthermore, our analyses necessitated some design choices.
We selected the theta frequency band (5–7Hz) as our frequency
range of interest, based on strong a priori expectations about the
manifestation of response conflict. This selection means that our
analysis could not capture potentially conflict-relevant sources in
other frequencies. Likewise, our explicit template-based selection

of midfrontal sources may have excluded relevant sources with
different topographical manifestations, such as those that are
driven by parietal, visual, or motor sources. However, the selec-
tion was applied only to the EEG topographies, while the MEG
topographies were left unconstrained. It is thus possible that we
captured spatially distributed networks of which the non-mid-
frontal dipoles were obscured to EEG.

In this work, we have challenged the notion that midfrontal
conflict theta is a singular phenomenon. Advanced source sepa-
ration methods on a multimodal dataset have revealed the pres-
ence of multiple theta sources in each subject. Thus, conflict
theta, which appears as a single process without close inspection,
consists of the composite activity of multiple dissociable theta
generators that are likely to implement independent computa-
tions. This conceptualization of response conflict theta as a mul-
tidimensional phenomenon allows for new functional accounts
of conflict processing. Future studies should validate the exis-
tence and investigate the nature of these theta sources in more
detail, for example, in electrophysiological data recorded at
smaller spatial scales.
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