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Extraordinary phylogenetic diversity and metabolic
versatility in aquifer sediment
Cindy J. Castelle1, Laura A. Hug1, Kelly C. Wrighton1, Brian C. Thomas1, Kenneth H. Williams2, Dongying Wu3,

Susannah G. Tringe4,5, Steven W. Singer2, Jonathan A. Eisen3,6,7 & Jillian F. Banfield1,2

Microorganisms in the subsurface represent a substantial but poorly understood component

of the Earth’s biosphere. Subsurface environments are complex and difficult to characterize;

thus, their microbiota have remained as a ‘dark matter’ of the carbon and other biogeo-

chemical cycles. Here we deeply sequence two sediment-hosted microbial communities from

an aquifer adjacent to the Colorado River, CO, USA. No single organism represents more than

B1% of either community. Remarkably, many bacteria and archaea in these communities are

novel at the phylum level or belong to phyla lacking a sequenced representative. The

dominant organism in deeper sediment, RBG-1, is a member of a new phylum. On the basis of

its reconstructed complete genome, RBG-1 is metabolically versatile. Its wide respiration-

based repertoire may enable it to respond to the fluctuating redox environment close to the

water table. We document extraordinary microbial novelty and the importance of previously

unknown lineages in sediment biogeochemical transformations.

DOI: 10.1038/ncomms3120 OPEN

1 Department of Earth and Planetary Science, University of California, Berkeley, California 94720, USA. 2 Earth Sciences Division, Lawrence Berkeley National
Laboratory, Berkeley (LBNL), California 94720, USA. 3 UC Davis Genome Center, University of California, Davis, Davis, California 95616, USA. 4 Department
of Energy Joint Genome Institute, Walnut Creek, California 94598, USA. 5 Genomics Division, Lawrence Berkeley National Laboratory, Berkeley (LBNL),
California 94720, USA. 6 Department of Evolution and Ecology, University of California, Davis, Davis, California 95616, USA. 7 Department of Medical
Microbiology and Immunology, University of California, Davis, Davis, California 95616, USA. Correspondence and requests for materials should be addressed
to J.F.B. (email: jbanfield@berkeley.edu).

NATURE COMMUNICATIONS | 4:2120 | DOI: 10.1038/ncomms3120 | www.nature.com/naturecommunications 1

& 2013 Macmillan Publishers Limited. All rights reserved.

mailto:jbanfield@berkeley.edu
http://www.nature.com/naturecommunications


T
errestrial sediments are massive reservoirs of fresh water
and organic matter1. They also host a large fraction of the
Earth’s living biomass1–3. In the marine sedimentary

environment, microbial metabolism is responsible for both the
production and destruction of methane and other carbon
compounds, processes that influence discharge of greenhouse
gases into the atmosphere4,5. In the terrestrial environment,
sediments provide the structure for aquifers, and microorganisms
within them control the turnover of buried organic carbon6,
influence the speciation, and thus fate and transport of metals,
and alter the chemical form of contaminants, such as uranium7 or
arsenic8. Despite the many characteristics that make sediments of
great interest and importance, comparatively little is known about
their microbiology. Metagenomic approaches have opened up
new approaches for defining the microbiology of natural
environments, yet the methods have not found extensive
application to sediments due to the anticipated high complexity
of the microbial community.

In the current study, we apply shotgun sequencing to whole-
community DNA to directly analyse the membership and
reconstruct metabolic characteristics for previously unstudied
organisms from a contaminated aquifer adjacent to the Colorado
River, CO, USA. This aquifer has been intensively characterized
as part of an investigation of the potential for acetate addition to
stimulate uranium bioreduction7,9, yet essentially nothing is
known about the background sediment community. The
Geobacteraceae have been of primary interest because they
bloom in response to acetate addition and are known to impact
metal speciation9; however, their representation in background

sediment is uncertain. Our results demonstrate the utility of high-
throughput short-read sequencing for extensive and simultaneous
sampling of hundreds of genomes from sediments with very even
species abundance levels in which the dominant organism
comprises o1% of the community. Results reveal extraordinary
phylogenetic and genomic novelty. In the dominant organism, we
uncover evidence for enzymatic novelty and respiratory strategies
that are likely advantageous for life close to a fluctuating anoxic–
oxic interface.

Results
Sediment community phylogenetic novelty. Poorly consolidated
fluvial sands, gravels and silts containing visible organic
matter, such as twigs, roots and grasses, were sampled from 5
and 6 m below the ground surface in a sediment aquifer
adjacent to the Colorado River, CO, USA (Methods). DNA was
extracted and sequenced using Illumina technology, sequences
assembled, and genomes reconstructed and analysed (Methods).
Sequence assembly resulted in depths of coverage ranging
from 2� to 58� coverage for assembled genome fragments of
45 kb in length. This approach yielded average sequence cov-
erage of 28� and 37� for the 5 and 6 m samples, respectively.
No individual organism comprised more than 1% of any
community, an indication of the very high species evenness of
this ecosystem (Fig. 1 and Supplementary Data 1). The Pielou’s
index evenness score10 for the 161 highest abundance taxa in the
5 m sample is J0 ¼ 0.91, where a value of 1 indicates a perfectly
even sample. Although we reconstructed single fragments
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Figure 1 | Rank abundance and taxonomic affiliations. Top: rank abundance curve for the microbial community in the 5-m depth sample featuring

the 161 organisms for which at least 8 of the 16 selected ribosomal proteins (Rpl2, 3, 4, 5, 6, 14, 15, 16, 18, 22, 24 and RpS3, 8, 10, 17, 19) could be recovered.

The most abundant organism, RBG-1, represents o1% of the community. RBG-1 lineage members are denoted by red crosses. Bottom: summary of

taxonomic affiliations for the 161 community members, based on the concatenated ribosomal protein tree (Supplementary Fig. S1 and Methods). The first

row denotes the taxonomic assignment of each organism to a phylum or, for the Proteobacteria, class, based on placement and bootstrap support on the

tree. Roman numbers i to xii indicate distinct novel clades within each taxonomic division. Novel clades with the same number identifier in different major

groups are unrelated. There are 15 new potentially phylum-level groups (i to xii for Bacteria (in black), i to iii for Archaea (in dark blue)). Note that

abundance (%) reflects DNA fraction rather than genome copy number (OP11 and OD1 have very small genome sizes). For details, see Methods,

Supplementary Fig. S1 and Supplementary Data 1.
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encoding at least eight ribosomal proteins from organisms
comprising as little as 0.03% of the community, the previously
described Geobacter species that proliferate upon acetate
amendment of the uranium-contaminated Rifle, CO, aquifer9

remained below the detection limit. This finding emphasizes the
strength of selection imposed by acetate addition.

To evaluate genomic novelty, we constructed a phylogenetic
tree from concatenated alignments of 16 ribosomal proteins
(selected based on published metrics of lateral gene transfer
frequencies) colocated on single genome fragments11,12

(Methods). The resulting tree includes representatives of all
genomically sampled bacterial and archaeal phyla
(Supplementary Fig. S1). Remarkably, almost every genotype
detected was substantially divergent from previously sequenced
genomes (Fig. 1). For just the 161 organisms in the 5-m depth
sample with sufficient genomic sampling to enable inclusion in
Fig. 1 and Supplementary Fig. S1 (a single genome fragment
encoding at least 8 of the 16 selected ribosomal proteins), we
detect 15 previously genomically unsampled phyla, including 3
clades of archaeal sequences and 12 clades of bacterial sequences
(22 distinct sequences total) without clear affiliation to the
existing phyla (Supplementary Data 1). We also analysed and
classified 317 distinct metagenome-derived 16S rRNA gene
sequences (Supplementary Figs S2–S4 and Methods). Of these,
50 individual sequences were classifiable only as ‘Bacteria’ or
‘Unclassified Bacteria’. The SILVA classification identified an
additional 14 sequences as members of currently genomically
unsequenced phyla, including Armantimonadetes (previously
Candidate division OP10; 2 sequences), and candidate divisions
WS3 (4 sequences), KB1 (1 sequence), OP9 (1 sequence), JL-
ETNP-Z39 (1 sequence), GOUTA4 (1 sequence), SM2F11 (1
sequence), TA06 (1 sequence), TM6 (1 sequence) and WCHB1-
60 (1 sequence) (Supplementary Figs S3, S4 and Supplementary
Data 2). We found that although most of the metagenome-
derived 16S rRNA sequences (264 of 317 sequences) share
90–100% identity with publicly available database sequences, the
vast majority have o90% identity with genes from genomically
characterized organisms (262 sequences). Remarkably, 17 have
o76% identity to genes from previously reported genomes
(Supplementary Fig. S2). The 16S rRNA gene and ribosomal
protein community composition analyses are largely congruent
(Supplementary Fig. S3). Notably, in three cases the 16S rRNA
and the ribosomal proteins were encoded on the same scaffold,
confirming the phylogenetic placement. The 16S rRNA gene-
based phylogenetic analysis yielded a tree with lower overall
support values compared with the protein tree, as well as
occasional erratic placement and long branches for the shorter
16S rRNA genes (not shown). Given the better resolution and
consistent topology of the ribosomal protein data set, as well as
the use of the protein genes as a more reliable marker for
predicted genomic sampling in the metagenome, we rely on the
ribosomal protein tree for phylogenetic placements
(Supplementary Fig. S1). Overall, all results confirm that we
achieved extensive genomic sampling of dozens of new orders,
classes and phyla across the bacterial and archaeal domains
(Fig. 1).

The dominant organism represents a new phylum-level lineage.
The dominant member of the 5 and 6 m communities is a pre-
viously undescribed organism, RBG-1 (Fig. 1). Phylogenetic
analysis of RBG-1 and four related genotypes identified from the
sediment metagenomes indicates a clade novel at the phylum
level. The RBG-1 group forms a highly supported (100/100
bootstrap bipartitions) monophyletic, very deep branching out-
group to the Bacteroidetes/Chlorobi superphylum in the

ribosomal protein-concatenated tree (Fig. 2). However, only
12.8% of the predicted proteins in RBG-1 have highest sequence
similarity to proteins from this superphylum (Supplementary Fig.
S5A). Notably, 7.6% of the predicted proteins were most similar
to proteins from Caldithrix abyssi (Supplementary Fig. S5A), a
lineage represented by the single C. abyssi genotype and not
currently affiliated with a phylum13. The 16S rRNA gene
from RBG-1 shares low sequence identity (o83%) to
described bacterial phyla, but similar sequences (98% ID)
have been detected in a saturated subsurface aquifer in
Hanford, WA, USA14. The RBG-1 group clusters with low
support near the Nitrospirae and Elusimicrobia in the 16S rRNA
tree (Supplementary Fig. 5B). Given the absence of a
stable, supported relationship with a known phylum, (Fig. 2
and Fig. 3), a suggested threshold of 85% 16S rRNA gene
sequence identity as a cut-off value for distinguishing new
phyla15, and the additional support gleaned from
numerous protein-coding phylogenetic analyses, we suggest the
RBG-1 clade represents a new phylum-level lineage in the domain
bacteria.

Genome and metabolic reconstruction of the dominant
organism. The reconstructed 2,119,746 bp genome encodes 1,906
protein-coding genes and has 41.9% GC content (Supplementary
Data 3, 4). Metabolic predictions indicate that RBG-1 is non-
flagellated with a Gram-negative cell envelope. RBG-1 has the
genomic potential for respiring a variety of organic compounds
(pyruvate, glucose, and possibly acetate and propionate16) as
energy and carbon sources, coupled to oxic and anoxic terminal
electron acceptors. It has an oxidative tricarboxylic acid (TCA)
cycle, near-complete glycolysis/gluconeogenesis pathways and an
oxidative phosphorylation pathway (Fig. 3 and Supplementary
Table S1). The TCA cycle of RBG-1 includes 2-oxoglutarate
ferredoxin oxidoreductase. This enzyme catalyses the reversible
oxidative decarboxylation of 2-oxoglutarate to succinyl-CoA and
is also a key enzyme of the reductive TCA cycle. However,
another key enzyme of this reductive cycle, the ATP-dependent
citrate lyase, was not detected in RBG-1 genome, nor were any
other key functional genes of other autotrophic pathways17; thus,
an autotrophic lifestyle is unlikely in RBG-1.

Two key metabolic enzymes of the gluconeogenesis pathway
that are highly conserved in archaeal groups have been identified:
the bifunctional phosphoglucose/phosphomannose isomerase18

central to sugar metabolism and a bifunctional fructose 1,6-
bisphosphate aldolase/phosphatase proposed to represent an
ancestral enzyme19 (Supplementary Fig. S6). The amino acid
sequence of the fructose 1,6-bisphosphate aldolase/phosphatase is
highly conserved in archaea and some deeply branching lineages
of thermophilic, autotrophic bacteria19, but is rare in other
bacterial phyla19. The presence of glycolytic enzymes with high
homology to archaea in RBG-1 may support its phylogenetic
position as a deep-branching bacterial lineage, although lateral
transfer cannot be ruled out.

Typically in bacterial sugar fermentation, ATP is generated by
converting acetyl-CoA to acetate using two enzymes (phospho-
transacetylase and acetate kinase). However, RBG-1 possesses
only a single enzyme (acetyl-CoA synthetase, ADP-forming) for
acetate production and ATP generation from acetyl-CoA, a trait
shared by fermentative archaea, the early diverging thermophilic
bacterium Roseiflexus castenholzii, some obligate syntrophic
bacteria20 and members from the uncultivated bacterial
Candidate Division OD1 (ref. 21). Homologues of the RBG-1
acetyl-CoA synthetase catalyse the reverse reaction in vitro; thus,
this enzyme might enable RBG-1 to use acetate22,23. In addition
to acetate, RBG-1 can likely produce ATP, butyrate and ethanol
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from sugar fermentation (Fig. 3 and Supplementary Table S1).
When producing butyrate, acetyl-CoA is converted by the action
of four enzymes: acetyl-CoA acetyltransferase, NADP-dependent
3-hydroxybutyryl-CoA dehydrogenase (or NAD-dependent
hydroxyacyl-CoA dehydrogenase), 3-hydroxybutyryl-CoA
dehydratase, NAD-dependent butyryl-CoA dehydrogenase, and
the electron transfer flavoprotein complex (ETF) to butyryl-CoA
(Fig. 3 and Supplementary Table S1). RBG-1 lacks the typical
enzymes involved in converting butyryl-CoA to butyrate present
in most fermentative organisms, but analogous to Pyrococcus
spp.22, may be capable of utilizing the ADP-forming acetyl-CoA
synthetase to produce butyrate and generate ATP. In sugar
fermentation, the production and consumption of reducing
power must be balanced. RBG-1 can regenerate NADþ for
glycolysis via butyrate and possibly ethanol production, but lacks
lactate- or hydrogen-generating mechanisms. RBG-1 contains
several alcohol dehydrogenases and aldehyde dehydrogenases
that may have a role in ethanol production (Supplementary Table
S1). Genes for the interconversion of pyruvate and ethanol are
reversible and directionality is difficult to infer from genomic
annotation alone. Thus, in addition to ethanol fermentation,
RBG-1 might be capable of respiring ethanol. RBG-1 lacks the
RnfA-G complex that facilitates sodium translocation, as well as
any H2-evolving hydrogenase complexes for reoxidizing reduced
ferredoxin produced via pyruvate ferredoxin oxidoreductase and
2-oxoglutarate ferredoxin oxidoreductase enzymes. As a
substitute, however, RBG-1 has an alternative 11-subunit

NADH dehydrogenase complex I. This complex lacks an
NADH-binding module and has been suggested to accept
electrons from reduced ferredoxin24 to produce a proton
motive force. Thus, it may be possible that ferredoxin is
oxidized via this 11-subunit NADH dehydrogenase. Otherwise,
RBG-1 also encodes a NfnAB complex (iron-sulphur flavoprotein
complex), which couples the exergonic reduction of NADPþ

with reduced ferredoxin and the endergonic reduction of NADþ

to NADH in reversible reaction25 (Fig. 3). It has been proposed
that under low substrate (ethanol, acetate) concentrations, the
NfnAB complex and NADP-dependent 3-hydroxybutyryl-CoA
dehydrogenase balance the reducing equivalent budget in
Clostridium kluyveri during ethanol-acetate fermentation25. The
nature of the involvement of alternative complex I and NfnAB
complex for reoxidizing ferredoxin is speculative and requires
experimental confirmation.

Interestingly, we identify a large cluster of genes encoding
several ferredoxin-dependent multi-enzyme complexes, including
the alternative complex I and the transhydrogenase NfnAB
complex mentioned above (Supplementary Table S1). This
cluster also includes a cytoplasmic MvhADG/HdrABC
hydrogenase complex and its associated maturation system, a
pyruvate ferredoxin oxidoreductase and an oxoglutarate ferre-
doxin oxidoreductase. As RBG-1 lacks coenzyme M and B
biosynthetic pathways, the Mvh/Hdr is not likely coupled to
reduction of CoM-S-S-CoB with H2, as occurs in methanogen-
esis26. The cytoplasmic Mvh/Hdr complex in RBG-1 may
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function analogously to those in sulphate-reducing bacteria where
hydrogen consumption results in oxidative energy
generation27,28. In RBG-1, hydrogen is likely consumed and
electrons passed to the 11-subunit NADH dehydrogenase via reduced
ferredoxin, resulting in proton motive force generation. Overall,
ferredoxin appears important to energy generation in RBG-1.

Genes for oxidation of many organic compounds, including
short-chain fatty acids (for example, propionate) as well as
pyruvate and glucose indicate that RBG-1 is metabolically
versatile (Fig. 3). RBG-1 appears capable of metabolizing fatty
acids up to a carbon chain length of 16 via b-oxidation to produce
acetyl-CoA (Fig. 3) and also has genes involved in the anaerobic
degradation of aromatic compounds (for example, benzoate,
Fig. 3, Supplementary Note 1 and Supplementary Table 2).
Pathway(s) for electron flow during b-oxidation of acyl-CoA

intermediates may involve soluble electron transferring flavopro-
teins (ETFs) and membranous ETF–quinone oxidoreductase
(ETF:QO). In mitochondria, ETFs and ETF:QO link oxidation of
fatty acids to the mitochondrial oxidative phosphorylation
chain29. Previous studies showed that syntrophic bacteria, such
as Syntrophomonas wolfei, metabolize fatty acids by the
b-oxidation pathway. It has been proposed that ETFs may
transfer electrons to a membrane-bound FeS oxidoreductase to
make H2 or formate via reverse electron transport30. In nitrogen-
fixing bacteria, the ETFs and ETF:QO pathway refers to the
Fix(ABC) system and has a central role in nitrogen fixation31.
The Fix system is also implicated in anaerobic carnitine reduction
in Escherichia coli32. Inspection of the genome of RBG-1 reveals
the presence of ETFs and a homologue of the mitochondrial
ETF:QO. In the absence of genes required for syntrophy, nitrogen
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fixation or carnitine reduction, these enzymes might link fatty
acid degradation to oxidative phosphorylation encoded by RBG-1.

The RBG-1 genome encodes a complete oxidative phosphor-
ylation pathway, with multiple components for some complexes
that includes two type-1 NADH dehydrogenase complexes
(Complex I), a succinate dehydrogenase (Complex II), a PETAB
complex (complex III; cytochrome b-Rieske type complexes, that
is, quinol:electron acceptor oxidoreductase), a putative aa3-type
cytochrome c oxidase (Complex IV) and a F1F0-type ATPase
(Complex V; Fig. 3 and Supplementary Table S1). Of interest is
an alternative Complex III, ACIII, encoded by at least seven genes
(Supplementary Fig. S7). ACIII functionally replaces the bc1

complex33. The ACIII genes cluster with a low oxygen affinity
reductase (Complex IV, putative aa3-type) and likely form a

functional association, as they do in Rhodothermus marinus34.
RBG-1 lacks high-affinity oxygen reductases (cbb3 (ref. 35) or
bd-quinol oxidases36) suggesting this organism is adapted to
higher oxygen concentrations. Overall, the configuration of the
oxidative phosphorylation pathway indicates that RBG-1 is
capable of aerobic respiration, likely linked to carbon oxidation,
including fatty acid oxidation, in the sediment.

In the subsurface, bacteria contribute to the global carbon cycle
by completely oxidizing organic compounds, such as fatty acids,
coupled to sulphate or nitrate reduction37. RBG-1 apparently
lacks a sulphate reduction pathway, but the genome may encode a
nitrite/nitrate oxidoreductase (NXR), a critical enzyme of the
nitrification pathway. On the basis of its phylogenetic position
within the dimethyl sulphoxide reductase superfamily (Fig. 4),
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Figure 4 | Phylogenetic analysis of the catalytic subunits of the dimethyl sulphoxide (DMSO) reductase superfamily. Genes that were newly assigned

to the DMSO reductase superfamily (this study) are indicated by boxes. Red circles indicate 100% bootstrap support, green circles indicate nodes with

greater than 90% bootstrap support. ACTB1, alternative complex III, domain 1 of subunit B; ArrA, arsenate reductase; ArxA, arsenite oxidase; DmsA,
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and amino acid sequences can be found as Supplementary Data 5.
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the NXR is related to those identified from Candidatus
Kuenenia stuttgartiensis38,39 and Nitrospira defluvii40 (Fig. 4,
Supplementary Note 2 and Supplementary Fig. S8). In
Candidatus K. stuttgartiensis, NXR may facilitate anaerobic
nitrite oxidation to nitrate, providing energy and reductant for
growth38,39, whereas NXR in N. defluvii enables growth via
aerobic nitrite oxidation40. The NXRs of Candidatus K.
stuttgartiensis, N. defluvii and the putative NXR from RBG-1
are distinct from those of nitrite oxidizing Proteobacteria
(Nitrobacter or Nitrococcus species40) in that they are oriented
towards the periplasm rather than the cytoplasm. The active site
facing the periplasm is supported by the presence of a amino-
terminal twin-arginine motif via the twin-arginine protein
translocation (Tat) pathway. Moreover, it has been suggested
that the NXR complex in anammox organisms might also
function as a nitrate reductase with small organic compounds as
electron donors and nitrate as an electron acceptor38,39,41. A
similar role for the NXR complex in RBG-1 cannot be ruled out.
If so, RBG-1 could conserve energy via complete anaerobic
oxidation of carbon coupled to nitrate reduction, enabling
survival under anoxic conditions. Despite the phylogenetic and
structural similarity, the catalytic subunit of the putative NXR
(a-subunit) of RBG-1 lacks three of the five residues conserved
in other nitrate reductases and nitrite oxidoreductases42

(Supplementary Fig. S8B). These residues have been suggested
to be involved in substrate binding or to affect the conformation
of the substrate entry channel42. The RBG-1 enzyme may have a
different substrate-binding mechanism and/or substrate, and thus
represent a new enzyme type. The genome also encodes a copper-
nitrite reductase (NirK), which forms nitric oxide from nitrite. No
known nitric oxide reductase is encoded in the RBG-1 genome
and, thus, a role for NirK in denitrification seems unlikely;
however, a role in anaerobic respiration or detoxification
processes cannot be excluded. RBG-1 can assimilate ammonium
using glutamate dehydrogenase and glutamine synthetase (Fig. 3).
Given the elevated ammonium concentration in the unamended
aquifer in the vicinity of the 5 and 6 m sampling locations43, these
capacities may contribute to the dominance of RBG-1 in the
sediment.

RBG-1 encodes a previously undescribed oxidoreductase of the
dimethyl sulphoxide reductase superfamily (Fig. 4) that is encoded
near genes for soluble monoheme/multiheme cytochromes (Fig. 3
and Supplementary Fig. S7). Given its phylogenetic placement with
anaerobic complexes, the complex may enable anaerobic growth
(Fig. 4). The catalytic a-subunit is divergent from, but forms a two-
member clade with, a protein identified from a thermophilic
uncultivated member of the Candidate Division OP1 (sharing 42%
sequence identity). The RBG-1 and OP1 sequences form a deep-
branching addition to the anaerobic arsenite oxidase (ArxA) and
arsenate reductase (ArrA) enzyme clades, which is monophyletic
with high bootstrap support (93%). ArxA identified in Alkalilimni-
cola ehrlichii str. is a bidirectional enzyme exhibiting both arsenite
oxidase and arsenate reductase activities and is evolutionarily
related to arsenate reductase (ArrA)44. Amino acid sequence
alignment of the a-subunit (Supplementary Fig. S7) revealed a
motif for a [4Fe-4S] cluster and a TAT signal peptide similar to that
found in ArxA and ArrA. However, the catalytic binding pocket of
ArxA and ArrA is not conserved in the RBG-1 catalytic a-subunit
(Supplementary Fig. S7), suggesting an alternative binding motif for
arsenic compound or another substrate. Taken together,
RBG-1 might impact the arsenic geochemical cycle. However, the
physiological function of this enzyme complex must be confirmed
through experimentation to properly define its function.

RBG-1 may have a respiratory pathway for redox transforma-
tion of metals, such as iron (Supplementary Fig. S9). The genome
encodes the components of a potential Mtr respiratory pathway,

which is required for iron reduction in Shewanella species45 and
for iron oxidation by organisms, such as Sideroxydans
lithotrophicus and Rhodopseudomonas palustris (Supplementary
Fig. S9)46,47. This raises the possibility that RBG-1 may conserve
energy from iron respiration. Candidate genes from RBG-1 for
microbial iron respiration are colocated in a gene cluster
encoding homologues of Shewanella oneidensis MR-1 MtrA
(decaheme cytochrome) and MtrB (outer membrane, porin-type)
(Fig. 3 and Supplementary Fig. S9). In iron-reducing Shewanella
spp., MtrAB forms a tight complex localized in the outer
membrane where MtrB is proposed to serve as a sheath for
embedding MtrA in the membrane48. The same structural
organization has been proposed for proteins from some iron
oxidizers, including S. lithotrophicus and R. palustris46,47. The
gene cluster encoding the Mtr pathway from RBG-1 also encodes
two monoheme cytochromes, several multiheme cytochrome c
predicted to be periplasmic or localized in the inner membrane,
and a PetAB complex (cytochrome b/Rieske complex)
(Supplementary Fig. S9). Of note, however, is the lack of
homologues of extracellular cytochromes used by Shewanella or
Geobacter species for iron oxide reduction, suggesting that
mixotrophic ferrous iron oxidation rather than reduction of
extracellular ferric iron is the more likely function for this gene
cluster (although a function in soluble iron reduction cannot be
ruled out).

RBG-1 has the machinery and terminal reductases to be
capable of iron cycling in oxic and anoxic environments. In
addition to the aerobic aa3-type cytochrome c oxidase, it is
possible that the NXR complex from RBG-1 may function as a
nitrate reductase in anaerobic iron oxidation. RBG-1 may grow
via nitrate-dependent iron oxidation mixotrophically (with an
organic carbon source). In light of these findings, RBG-1 may be
capable of iron cycling in both oxic and anoxic subsurface
environments. Thus, in addition to multiple carbon degradation
pathways, nitrogen-based metabolism, hydrogen consumption,
and aerobic heterotrophic growth (Fig. 3 and Supplementary
Table S1), we infer that RBG-1 can impact metal biogeochemistry
in the sediment.

Discussion
Microbial communities likely contain thousands of different
species and can profoundly impact global biogeochemical cycles.
However, sediment-associated consortia remain highly under-
studied. Here we show that cultivation-independent metagenomic
approaches can address this knowledge gap. Specifically, we
recovered a set of genome fragments, each of which encodes a
group of (largely syntenous) ribosomal proteins, and constructed
robust phylogenetic trees to classify the more abundant organ-
isms (161 in total). The concatenated ribosomal protein tree
approach avoids biases associated with potentially multiple-copy
genes (for example, 16S rRNA genes) and, because genes are
located on single assembled fragments, the uncertainty intro-
duced by binning. Thus, we could document vast microbial
diversity and novelty in the aquifer sediment. Of note, the
community largely consists of organisms belonging to bacterial
and archaeal phyla, classes and orders not previously recognized
or sampled genomically.

Not only was it possible to document microbial community
structure in a highly complex, even community, our approach
yielded a complete genome for the dominant organism, RBG-1.
This organism, along with closely related bacteria, defines a new
phylum-level lineage, representatives of which can be detected
across a range of other environment types. We developed a
detailed metabolic model for RBG-1 and discovered evidence for
multiple new enzymes and/or biochemical mechanisms. This
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novelty reflects the substantial evolutionary distance separating
RBG-1 from well-characterized organisms. Substantial metabolic
versatility could explain the prominence of RBG-1 in aquifer
sediments impacted by seasonal fluctuations in the oxic/anoxic
boundary resulting from runoff-induced changes in Colorado
River discharge. Both the discovery of the RBG-1 lineage and the
overall novelty and diversity of its flanking microbial community
underline the vast swath of biology that remains to be explored in
Earth’s subsurface regions.

Methods
Field experiment and sample collection. The field experiment was carried out in
2007 at the Rifle Integrated Field Research Challenge site adjacent to the Colorado
River (Western Colorado, USA). A sediment core was drilled from well D04, in a
region not previously impacted by acetate amendments. Sediment samples from 5
and 6 m depths were frozen on site under anaerobic conditions and kept frozen
during transport and storage.

DNA extraction and sequencing. For each depth, 10 independent DNA extrac-
tions of 7–14 g of thawed sediment samples were conducted using PowerMax Soil
DNA Isolation Kits (MoBio Laboratories Inc., Carlsbad, CA, USA) with the
following modification to the manufacturer’s instructions. Sediment was vortexed
at maximum speed for an additional 3 min in the SDS reagent, and then incubated
for 30 min at 60 �C in place of extended bead beating. The eluted volume was 5 ml
per tube, as per the manufacturer’s instructions. DNA was concentrated by sodium
acetate/ethanol precipitation with glycogen. Following extraction, precipitation and
resuspension, the ten replicate DNA samples were pooled, generating one pooled
DNA sample from B100 g of sediment per depth. Metagenome sequencing was
conducted by the Joint Genome Institute. Two rounds of sequencing were done on
both samples. Reads from round one were assembled first, and subsequent reas-
semblies were done using both rounds. For round one (R1), 138,321,556 reads were
generated for the 5-m depth sample and 140,430,174 reads for the 6-m depth
sample. For round 2 (R2), 359,532,170 reads were generated for the 5-m depth
sample and 88,926,182 reads for the 6-m depth sample. The read length for both
rounds was 150 bp. Reads were preprocessed using Sickle (https://github.com/
najoshi/sickle) using default settings to remove low quality bases on both ends of
each read.

Assembly and annotation. Only paired end reads were used in the assemblies.
For overall community composition analysis, which focused on the 5-m depth
sample, both sequence increments (R1 and R2) for the 5-m depth sample were
coassembled using the IDBA_UD assembler under default parameters.

The RBG-1 genome was first identified based on its high sequence coverage
(B58� ) in the 5-m (R1) depth sample. The corresponding genotype in the 6-m
depth (R1) sample had lower coverage (B21� ), but assembled into much larger
fragments. Scaffolds were binned from the two data sets based on coverage and GC
content, and the scaffold sets aligned to each other generated the first draft of the
genome. Subsequently, all reads mapping to the draft genome were independently
coassembled and the result manually curated. To close gaps in this assembly, we
performed an iterative procedure of mapping paired reads to scaffold ends and
then reassembling just these reads to bridge scaffolding gaps, as described in
Sharon et al.49 The assembled scaffolds were functionally annotated. Genes were
predicted using Prodigal50. Amino acid sequences for these genes were then
submitted to similarity searches against UniRef90 (ref. 51) and the KEGG (Kyoto
Encyclopedia of Genes and Genomes)52. In addition, UniRef90 and KEGG were
searched back against the amino acid sequences to identify reciprocal best-blast
matches. Reciprocal best blast matches were filtered at a 300 bit score threshold.
One-way blast matches were filtered at a 60 bit score threshold. The amino acid
sequences were also submitted to motif analysis using InterproScan53. Transfer
RNA sequences were predicted using tRNAscan-SE. We ranked the resulting
annotations: Reciprocal best-blast matches were ranked the highest, followed by
one-way matches, followed by InterproScan matches, followed by hypothetical
proteins (just a gene prediction).

Concatenated ribosomal protein phylogeny. A core group of 16 syntenic ribo-
somal proteins was selected based on published metrics of lateral gene transfer
frequencies (rpL2, 3, 4, 5, 6, 14, 15, 16, 18, 22, 24 and rpS3, 8, 10, 17, 19)11,12.
Reference data sets were derived from the PhyloSift in-house database. The NCBI
and Joint Genome Institute IMG databases were mined for the 16 ribosomal
proteins from recently sequenced genomes from the Cyanobacteria, Chloroflexi,
Nitrospira and TM7 phyla, among others. Scaffolds containing 450% of the 16
genes were identified from the Rifle sediment 5 m depth data set. The identified
Rifle ribosomal proteins were searched against the NCBI ‘nr’ database using
BLASTp to identify the closest sequenced genome for each sequence, and any
genomes not already present in the reference set were added. The complete data set
contained 1,021 taxa. Each individual gene data set was aligned using Muscle
version 3.8.31 (ref. 54) and then manually curated to remove end gaps and single-

taxon insertions. Model selection for evolutionary analysis was determined using
ProtTest3 (ref. 55) for each single gene alignment. The curated alignments were
concatenated to form a 16-gene, 1,021 taxa alignment with 3,010 unambiguously
aligned positions. A maximum likelihood phylogeny for the concatenated
alignment was conducted using PhyML56 under the LGþ aþ g model of evolution
and with 100 bootstrap replicates. A total of 161 genotypes were phylogenetically
placed: the phylogenetic tree resolves the known phyla and shows that almost every
genotype detected was substantially divergent from previously sequenced genomes
(Fig. 1 and Supplementary Fig. S1).

Taxonomic classification. Rifle organisms were classified based on a bootstrap-
supported nearest-neighbour methodology of Wu and Eisen57. Starting from the
immediate ancestor node connecting the Rifle query sequence to a sequenced
genome with o70% bootstrap support, and moving toward the root of the tree, the
next internal node whose bootstrap support exceeded a 70% bootstrap support cut-
off was identified. The common NCBI taxonomy that was shared by all
descendants of that node represented the most conservative taxonomic prediction
for the query sequence. Exceptions to this were sequences that placed as long
branches to the base of phyla were assigned to the affliated phyla given sufficient
(470%) bootstrap support. Sequences most closely associated to phyla with only
one sequenced representative (for example, Elusimicrobium, Gemmatimonadetes)
were assigned at the phyla level to those groups. This conservative classification
method identified 22 sequences forming 15 distinct clades that were classifiable
only to the level of Domain, and which, given the taxon sampling on the tree
(Supplementary Fig. S1), are likely representatives of phyla not currently
genomically sampled. In addition, 102 sequences forming 37 distinct clades were
classifiable to the phylum level but not further, indicating these are additional novel
sequences. A minority of sequences could be classified to lower levels of taxonomy:
21, 3, 4 and 9 sequences to the class, subclass, order and family levels, respectively
(Supplementary Data 1).

Protein phylogenetic analyses. Protein tree topologies were inferred using the
neighbour-joining method. The distances were computed using the Poisson
correction method and are in the units of the number of amino acid substitutions
per site. All positions containing alignment gaps and missing data were eliminated
based on pairwise sequence comparisons (pairwise deletion option). Phylogenetic
analyses were conducted in MEGA5 (ref. 58).

Protein modelling. Three-dimensional structure predictions were generated by the
SWISS-MODEL based on protein alignment and secondary structure prediction59.
SWISS-MODEL is an automated protein homology-modelling server. The
alignment mode was utilized for a first approach based on a user-defined target-
template alignment. Conservation of key catalytic residues and the secondary
structure for each model was confirmed by manual inspection.

16S rRNA gene phylogenetic analyses. Phylogenetic placement of RBG-1 was
done using a full-length 16S rRNA gene sequence (1,552 bp) derived from the
RBG-1 genome. The RBG-1 sequence was included in a 16S rRNA reference gene
data set that contained representatives of all known bacterial phyla, candidate phyla
sequences identified from the Rifle aquifer21, as well as best matches based on
alignment of the RBG-1 16S rRNA to Greengenes (environmental and named
species) and SILVA (v108) small subunit rRNA databases60. The SILVA-derived
alignment was masked to remove positions containing only gaps or single taxon
insertions and the phylogeny conducted using PhyML under the HKY85þ g model
of evolution with 100 bootstrap resamplings.

Additional 16S rRNA genes were identified from the RBG community through
BLASTn of the metagenome scaffolds against a 16S rRNA reference database.
Three hundred and seventeen sequences longer than 600 bp were identified
(Supplementary Fig. S3). 16S rRNA genes and fragments were excised from the
scaffolds and aligned to the SILVA database using the SINA alignment tool with
concurrent classification by the SINA LCA algorithm60. All 16S rRNA genes of
600þ bp in length were additionally searched against the NCBI ‘nr’ and
‘refseq_genomic’ databases using BLASTn.
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