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Summary

Alternative transcription start (ATS) and alternative polyadenylation (APA) create alternative RNA 

isoforms and modulate many aspects of RNA expression and protein production. However, ATS 

and APA remain difficult to detect in RNA sequencing (RNA-seq). Here, we developed 

mountainClimber, a de novo cumulative sum-based approach to identify ATS and APA as change 

points. Unlike many existing methods, mountainClimber runs on a single sample and identifies 

multiple ATS or APA sites anywhere in the transcript. We analyzed 2,342 GTEx samples (36 

tissues, 215 individuals) and found that tissue type is the predominant driver of transcript end 

variations. 75% and 65% of genes exhibited differential APA and ATS across tissues respectively. 

In particular, testis displayed longer 5’ untranslated regions (UTRs) and shorter 3’ UTRs, often in 

genes related to testis-specific biology. Overall, we report the largest study of transcript ends 

across human tissues to our knowledge. mountainClimber is available at github.com/gxiaolab/

mountainClimber.
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eTOC Blurb

mountainClimber identifies both ATS and APA sites de novo in RNA-seq. Unlike many existing 

methods, mountainClimber runs on a single sample and identifies multiple ATS or APA sites 

anywhere in the transcript. Analysis of 2,342 GTEx samples revealed that tissue type is the 

predominant driver of transcript end variations, and most genes exhibit ATS and/or APA. In 

particular, testis displayed longer 5’ untranslated regions (UTRs) and shorter 3’ UTRs, often in 

genes related to testis-specific biology.

Keywords

Alternative transcription start site; alternative polyadenylation; GTEx; human; tissues; change 
point; RNA-seq

Introduction

Alternative polyadenylation (APA) and alternative transcription start (ATS) are two 

important mechanisms that contribute to transcriptome diversity. Occurring in many 

mammalian genes, these processes may impose profound functional impact. APA, affecting 

>70% of mammalian genes, can influence many post-transcriptional aspects of the mRNA, 

such as mRNA stability, nuclear export and localization, and protein translation and 

localization (reviewed in Elkon et al., 2013; Mayr, 2018; Tian and Manley, 2017). In 

contrast, the primary impact of ATS, known to occur in 40-50% of mammalian genes, is the 

Cass and Xiao Page 2

Cell Syst. Author manuscript; available in PMC 2020 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



modulation of protein production by altering open reading frames or sequence/structure 

motifs in the 5' UTR (Baek et al., 2007; Carninci et al., 2005; Leppek et al., 2018). 

Compared to the well-established tissue-specific nature of APA (Wang et al., 2008; Zhang et 

al., 2005), tissue-specific ATS is relatively less well studied.

To capture ATS and APA sites, specific experimental strategies have been developed, such as 

CAGE-seq (FANTOM Consortium and the RIKEN PMI and CLST (DGT) et al., 2014; Hon 

et al., 2017), PolyA-seq (Derti et al., 2012), 3’READS (Hoque et al., 2013), and 3’-seq 

(Lianoglou et al., 2013). However, these assays are not as accessible as the widely adopted 

RNA-seq methods that have generated numerous data sets. RNA-seq data, most of which are 

publicly available, represent valuable resources to study ATS and APA. Although several 

methods exist for identifying APA from RNA-seq (Arefeen et al., 2018; Kim et al., 2015b; 

Lu and Bushel, 2013; Shenker et al., 2015; Wang et al., 2014; Xia et al., 2014; Ye et al., 

2018), no method has been developed specifically to capture both ATS and APA sites in 

RNA-seq data, to our best knowledge.

Here, we developed mountainClimber to enable de novo identification and analysis of 

transcription start sites (TSS) and polyadenylation (poly(A)) sites using RNA-seq data. This 

method has a number of unique features that distinguish it from existing methods, including 

its independence of known gene annotations, applicability to a single RNA-seq data set, and 

identification of multiple change points and different types of change points anywhere in the 

transcript. Additionally, mountainClimber is designed to analyze both the 5' and 3' ends of 

transcripts, allowing identification of ATS and APA simultaneously. We applied 

mountainClimber to the GTEx RNA-seq data (GTEx Consortium, 2015), which represents 

the largest study of tissue-specific ATS and APA in human to our knowledge. About 75% 

and 65% of tested genes had significantly differential APA and ATS in at least one pairwise 

tissue comparison, respectively. Testis exhibited widespread tissue-specific ATS, which 

often led to lengthening of the 5’ UTRs. Testis-specific APA and ATS frequently affect the 

same set of genes, but these two mechanisms tend not to co-occur relative to the same tissue. 

Nevertheless, genes with such co-occurrence are involved in mitochondria-related function, 

and cell growth, division, and proliferation. Our study expands the repertoire of human 

tissue-specific APA and ATS sites.

Results

A de novo approach for change point detection in RNA-seq

mountainClimber was developed to identify change points while remaining robust to RNA-

seq non-uniformity (Fig. 1 and Fig. S1A, STAR Methods). First, de novo transcription units 

(TUs) are identified by finding all continuous regions with RNA-seq reads (Fig. 1A). In each 

TU, mountainClimber leverages the RNA-seq non-uniformity by calculating the Cumulative 

Read Sum (CRS) and finding positions where the CRS significantly deviates from the null 

distribution (Fig. 1B). Fig. S2 illustrates two toy examples: a noisy trace without any change 

point, which generates the null CRS; another trace with one change point detectable as the 

elbow in the CRS. Such elbows in CRS are putative change points (Fig. 1C), which are 

further filtered to retain those with a significant change in read coverage (Fig. 1D and STAR 

Methods). Finally, the relative usage (RU) is calculated for each change point at the 5’ and 
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3’ ends, such that the RU of all change points at each end sums to 1 (Fig. 1E). It should be 

noted that while we refer to this value as “relative usage”, it is possible that the observed RU 

is due to different stability of APA isoforms rather than different poly(A) site usage. Each 3’ 

end is labeled as DistalPolyA (3’ most poly(A) site), TandemAPA (APA within the last 

exon), IntronicAPA (APA within an intron), or ExonicAPA (APA within an exon). Similarly, 

each 5’ end is labeled as DistalTSS, TandemATSS, IntronicATSS, or ExonicATSS (Fig. 1F). 

In contrast to other methods, mountainClimber identifies intronic and exonic change points 

because change points are examined in the entire TU.

mountainClimber performance evaluation

To evaluate the performance of mountainClimber, we simulated tandemUTRs downloaded 

from MISO (Katz et al., 2010) with Flux Simulator (Griebel et al., 2012) (STAR Methods; 

Fig. S3A,B) and compared mountainClimber with IsoSCM (Shenker et al., 2015), because 

both methods identify 5’ and 3’ ends in a single sample in a de novo manner. As expected, 

recall and precision both increased with higher fold change at the 3’ end for both methods 

(Fig. 1G,H and Fig. S3C,D). mountainClimber outperformed IsoSCM in terms of recall, 

while the two methods yielded similar precision. This higher performance in recall was 

attributed to detection of TandemAPA change points rather than DistalPolyA, suggesting 

mountainClimber's advantage in identifying alternative change points (Fig. S3C). 

Additionally, mountainClimber’s performance is robust to the number of simulated APA 

sites (1, 2, or 3) per TU (Fig. S3E, F).

We also compared the performance of mountainClimber to that of DaPars (Xia et al., 2014). 

Since DaPars requires two conditions, we compared each simulated sample described above 

with a sample simulated with no change points (STAR Methods). mountainClimber, 

IsoSCM, and DaPars all achieved similar precision (Fig. S3G, I). However, 

mountainClimber outperformed the other two methods in terms of recall, especially for 

TandomAPA sites (Fig. S3H, J). Note that DaPars by default reports the annotated distal 

PolyA site from the input annotation file when a change point is detected, which explains its 

nearly perfect performance for DistalPolyA (STAR Methods, Fig. S3I, J).

We next evaluated performance using real RNA-seq data from MAQC Universal Human 

Reference RNA and Ambion Human Brain Reference RNA. Because we analyzed MAQC 

data as single samples, we did not evaluate DaPars’ performance on this dataset. Poly(A) 

sites of these samples were experimentally identified with PolyA-seq (Derti et al., 2012) and 

TSSs identified by FANTOM CAT (Hon et al., 2017) (STAR Methods), which will be 

assumed as the ground truth for evaluation purposes. To avoid ambiguity, TUs with at most 

one gene annotation were considered for downstream analysis (STAR Methods). As shown 

in Fig. 1I, mountainClimber achieved higher precision than IsoSCM regardless of the 

window size, w, around PolyA-seq sites used to define true positives. Notably, 

mountainClimber identified more sites around true PolyA-seq sites and poly(A) signal 

motifs A[A/T]TAAA than IsoSCM (Fig. 1J vs. K, S4A vs. S4B). As expected, most 3’ ends 

predicted by mountainClimber overlapped annotated poly(A) sites and 3’UTRs (Fig. S4C). 

In contrast to IsoSCM, mountainClimber also identifies 3’ ends located in introns and 

coding regions. mountainClimber’s precision is lower in introns and coding regions than in 

Cass and Xiao Page 4

Cell Syst. Author manuscript; available in PMC 2020 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3’ UTRs (Fig. S4C), which could be partly due to the limited accuracy or sensitivity of 

PolyA-seq in these regions.

Similarly, mountainClimber outperformed IsoSCM in terms of TSS precision (Fig. 1L) and 

predicted more change points with high fold changes near FANTAM CAT-predicted 5’ ends 

(Fig. 1M, N). This observation supports mountainClimber’s likely higher sensitivity in 

capturing bona fide ATS sites with biological significance.

Global analyses of alternative 3' and 5' transcript ends in human tissues

To investigate ATS and APA in humans, we analyzed 2,342 samples from 36 tissues and 215 

individuals from GTEx (GTEx Consortium, 2015) after excluding low quality samples 

(STAR Methods and Table S1). To align thousands of samples in a reasonable amount of 

time and prioritize analysis of annotated genes, we used a simplified read mapping strategy 

(Fig. S1B) whose performance is similar to that used above (Fig. S4D, E).

A total of 5,786 TUs were identified in GTEx with at most one gene annotation and 

unambiguously inferred RNA strand (see STAR Methods for more details). We will refer to 

these TUs as genes hereafter. Most genes were predicted with one or two TSS or poly(A) 

sites and overlapped the expected Ensembl gene regions, supporting the validity of the 

predictions (Fig. S5). Additionally, some predicted poly(A) sites and TSSs were in coding 

exons and introns, which has been reported but no previous RNA-seq based methods were 

able to predict such sites (Elkon et al., 2013; Singh et al., 2018; Tian and Manley, 2017).

To quantify the total APA and ATS detected with increasing numbers of tissues, we 

calculated the average number of genes with APA and ATS sites with at least 10% RU in at 

least 10% of individuals (STAR Methods). As expected, APA and ATS were detected in 

increasingly more genes when more tissues were considered (Fig. 2A). Notably, 84% and 

60% of TUs displayed APA and ATS respectively if all 36 tissues were considered (Fig. 2A). 

This observation, higher than the 75% and 50% reported previously (Carninci et al., 2005; 

Elkon et al., 2013; Mayr, 2018; Tian and Manley, 2017), was likely enabled by the usage of 

the largest dataset to date for analysis of ATS and APA.

Tissue type is the dominant driver of variation in transcript ends

mountainClimber’s analysis of single samples enables a systematic comparison of transcript 

ends across tissues and individuals. We calculated the weighted mean extension length 

(WMEL) for the 5' and 3' ends, where each segment length is weighted by its RU (STAR 

Methods). Although different types of alternative termini exist (Fig. S6A-C), 90% of genes 

exhibited TandemAPA and/or DistalPolyA and 82% exhibited TandemATSS and/or 

DistalTSS across samples (Fig. S6D-E and STAR Methods). Thus, we focused on analyses 

of these genes hereafter.

We used a linear mixed model to examine the variation of WMEL relative to tissue types or 

individuals (STAR Methods) (Mele et al., 2015). To enable a comparison encompassing 

most samples, we required the genes to have only TandemAPA or DistalPolyA in ≥90% of 

samples, resulting in 652 genes for the analysis of 5’ end and 829 for the 3’ end. This 

analysis showed predominant variation of WMEL across tissues, rather than individuals, for 
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both 5' and 3' ends (Fig. 2B, C). Interestingly, HLA-C was highly variable at both ends and 

is known to harbor many polymorphisms (reviewed in Parham, 2005). In summary, ATS and 

APA variation is mainly explained by tissue-related differences, but individual-specific 

variation does exist possibly reflecting genetic or functional diversity of certain genes.

Global comparisons of transcript ends across tissues

Since tissue type is the main driver of transcript termini variation, we next compared the 

WMEL values of the 5' and 3' ends across tissues. Testis had relatively low WMEL 

correlation with other tissues and had the longest average 5'-end length (Fig. S7A-B). It 

should be noted that testis RIN scores did not correlate with median WMEL, suggesting that 

longer 5’ ends in testis are likely biological rather than technical artifact (Fig. S7C). At the 3' 

end, five tissues, whole blood, skeletal muscle, testis, cerebellum, and cerebellar 

hemisphere, were correlation outliers (Fig. S7D) and among those with the shortest or 

longest 3'-end length (Fig. S7E). Interestingly, the cerebellar regions were distinct from 

other brain regions in previous GTEx studies of RNA editing (Tan et al., 2017) and gene 

expression (Mele et al., 2015). These results again support the tissue-specific nature of 

transcript ends, with brain regions and testis demonstrating distinct patterns.

Tissue-specific alternative transcription start sites and polyadenylation sites

Next, we identified differential ATS and APA sites between pairwise tissues in 654 and 

1,279 ATS and APA events that met our criteria for testing (STAR Methods). Of these, 424 / 

654 (65%) and 960 / 1,279 (75%) of genes had significantly differential ATS and APA 

respectively (BH-corrected p-value ≤ 0.05 and absolute RU difference ≥ 0.05), consistent 

with the previous observations that 75% of genes have tissue-regulated APA (Wang et al., 

2008) and 40-50% of genes utilize ATS sites (Baek et al., 2007; Carninci et al., 2005). 

Consistent with the results of WMEL correlation (Fig. S7A, D), testis had the most tissue-

specific ATS events, whereas cerebellar hemisphere, cerebellum, and testis had the most 

tissue-specific APA sites (Fig. 2D, E). APH1B demonstrated a typical example of 

differential APA in a 3’UTR, where an annotated proximal poly(A) site is detected in testis, 

whereas a distal poly(A) site is detected in small intestine (Fig. 2F). CPNE5 illustrates 

typical differential ATS in cortex vs. atrial appendage (Fig. 2G).

Atypical tissue-specific differential APA sites

Intronic polyadenylation is a well-established mechanism of gene regulation, first observed 

in 2007 and recently reported to be even more widespread (Berg et al., 2012; Oh et al., 2017; 

Singh et al., 2018; Tian et al., 2007). The ability to identify this type of poly(A) sites via 

RNA-seq is an advantage of our approach. A total of 12 genes exhibited significantly 

differential TandemAPA overlapping annotated introns in at least one pairwise tissue 

comparison (480 significant comparisons in total), with an example APA in ABCF2 (Fig. 

2H).

Another advantage of our approach is the ability to identify more than two change points. A 

total of 271 and 23 genes had two and three significantly differential change points in at 

least one pairwise tissue comparison respectively (with Fig. 2I showing one example).
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Functional categories of genes with tissue-specific APA and ATS

We next tested whether ATS and APA tend to occur in tissue-specific or housekeeping 

genes. First, we observed that ATS/APA occurs in housekeeping genes (Eisenberg and 

Levanon, 2013) more often than expected (Fig. S8A). Additionally, the fraction of 

differentially expressed genes among APA and ATS genes was significantly less than the 

fraction of total genes tested (Fig. S8B and STAR Methods). Together, these results suggest 

that ATS/APA tends not to occur in ubiquitously expressed genes, consistent with previous 

observations (Lianoglou et al., 2013).

Gene Ontology analyses (Fig. S9A) revealed terms related to RNA splicing and processing 

for genes with longer 3’ ends in cerebellar regions (Fig. S9B-C), and cytoskeletal terms for 

genes with shorter 3’ ends in testis (Li et al., 2016) (Fig. S9D). On the other hand, genes 

with longer 3’ ends and those with longer 5’ ends in testis were both enriched with terms 

related to RNA splicing and processing (Fig. S9E-F).

Co-occurrence of alternative transcription start and polyadenylation sites in testis

Because tissue-specific ATS and APA were both abundant in testis and had similar 

functional terms, we next checked for their co-occurrence. As shown in Fig. S10A, there 

exists a significant overlap between genes with tissue-specific ATS and APA in any tissue 

compared with testis. However, co-occurrence of ATS and APA relative to a specific tissue 

was significantly avoided for all pairwise comparisons with testis (Fig. S10B). Together, 

these results suggest that the same set of genes in testis tend to be regulated at both the 5' 

and 3' end but avoided in the same tissue.

Nevertheless, although a minority, some genes did demonstrate a high frequency of co-

occurrence of testis-specific ATS and APA in pairwise tissue comparisons. Such dual-

regulation may reflect testis-specific function. Interestingly, three of these genes are nuclear-

coded genes with mitochondria-related function while seven genes are related to cell growth, 

division, or proliferation (Fig. S10C-E and Fig. S11). Mitochondria structure, localization, 

and activity are regulated at different spermatogenesis stages (reviewed in Ramalho-Santos 

et al., 2009). APA and ATS in cell growth/division/proliferation may also be attributed to 

spermatogenesis. Thus, ATS and APA of these genes may contribute to spermatogenesis as 

well as characterize other testicular cell types in this heterogeneous tissue.

Discussion

Here, we presented mountainClimber, a de novo approach for identifying alternative 5’ and 

3’ ends from RNA-seq. Application of mountainClimber to GTEx RNA-seq revealed that 

tissue type is the predominant driver of 5' and 3' end variations in ubiquitously expressed 

genes. Nevertheless, individual-specific 5' and 3' ends are important aspects of transcriptome 

diversity and should be examined in the future. Furthermore, the majority of genes exhibited 

ATS or APA across tissues. Both ATS and APA can impose regulation at the level of RNA 

stability, localization, and translation (Hinnebusch et al., 2016; Truitt and Ruggero, 2016). 

While further investigation of how ATS and APA relate to translational and other regulatory 

processes is important for an improved understanding of gene regulation in human tissues, 
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this question would be best addressed with matched mRNA and protein-level data, similar to 

a previous study in Saccharomyces cerevisiae (Cheng et al., 2018).

Our study demonstrated that mountainClimber is an effective method to simultaneously 

analyze both ends of transcripts in RNA-seq data. The nature of the "cumulative sum"-based 

method makes it robust to noisy read distributions. It should be noted that certain RNA-seq 

data sets may have suboptimal quality that leads to incomplete coverage of 5' or 3' ends, 

although this should not be a concern for GTEx data (Fig. S7B). If this is the case, 

interpretation of mountainClimber results should be carried out with caution. Additionally, it 

is possible that mountainClimber detects sense proximal RNAs or upstream antisense RNAs 

near the TSS when applied to non-strand-specific RNA-seq (Li et al., 2015). With the 

rapidly expanding amount of high-quality RNA-seq data (Xiang et al., 2018), we anticipate 

that mountainClimber will be a useful means to pinpoint the transcript ends and enable novel 

biological discoveries.

STAR Methods

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Xinshu Xiao (gxxiao@ucla.edu).

METHOD DETAILS

mountainClimber—mountainClimber consists of three major steps: defining de novo TUs 

in each sample, calling change points in each TU of each sample, and calculating relative 

usage (RU) of each change point. The pipeline is written in Python 2.7.2 and R 3.4.3, and 

relies on python modules pybedtools (Dale et al., 2011; Quinlan and Hall, 2010), scipy, 

numpy, peakutils, bisect, itertools, sklearn(Pedregosa et al., 2011), and pysam, and R 

packages ggplot2 (Wickham, 2009), reshape2 (Wickham, 2007), and dplyr.

De novo transcription unit identification.: Given an input bedgraph file, consecutive 

windows of size w (default = 1000) are joined if at least p percent (default = 100%) of both 

windows have at least n average reads per base pair (bp) (default = 10). After merging 

consecutive windows, the ends of TUs are extended or trimmed until there are no zero-

coverage bases. Split reads that align partially to one exon and partially to its neighboring 

exon can optionally be included as a bed file from intron start to intron end. After 

identifying TUs in each sample, overlapping TUs from all samples (for which comparisons 

will be carried out) are merged and annotated in order to have one universal set of TUs.

Change point identification.: Given a bedgraph file, bed file of split reads, and the de novo 
TUs, change points are called in each TU with length ≥ l (default = 1000) and average 

reads/bp in exons with length ≥ e (default = 10). If non-strand-specific RNA-seq is used, the 

strand is inferred by choosing the strand with the maximum number of supporting GT-AG 

splice site signals at exon-intron junctions. The Cumulative Read Sum (CRS) is defined as:

vi = ∣ xi − xi − 1 ∣
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CRSi = 1
CRSl

∑
j = 1

i
v j

Where xi is the total reads at position i in a TU of length l. The Kolmogorov-Smirnov (KS) 

test is used to test whether the CRS significantly deviates from the uniform distribution (the 

diagonal line in Fig. 1B). If the KS test p-value < t (default = 0.001), then proceed with 

calling change points. The elbows of the CRS are candidate change points. To identify them, 

the distance between the CRS and the diagonal line is calculated and denoised using a 

median filter with window size w. Then, the python peakutils module is used to call local 

maxima and minima in this distribution with parameters a and d, the normalized amplitude 

threshold and minimum distance between neighboring change points respectively. Since the 

CRS is a cumulative value, significant change points that follow a long segment of low 

coverage (e.g. a partially retained intron) do not appear to be local maxima or minima (Fig. 

1C). This motivates the weighted CRS (wCRS), which effectively amplifies this signal at 

these positions:

wi =
vi
2

vl

wCVSi = 1
wCVSl

∑
j = 1

i
∣ w j − w j − 1 ∣

On the other hand, change points in the first and last exon are more gradual due to the end-

effect of the reads. Thus, we consider the union of candidate change points from the CRS 

and wCRS in the entire TU, and those from the CRS in the first and last exon. Finally, the 

change points are called again within a +/− w window in the non-denoised data to regain any 

resolution lost by denoising.

After calling all change points, five filters are imposed consecutively: (1) T-test p < t of the 

reads per base pair (bp) in the 2w bps before vs. after each of the predicted change points, 

(2) fold change of the first w bp of neighboring change points to be at least f (default = 1.5), 

(3) require that the segments in the first and last exon have strictly increasing and decreasing 

average coverage respectively, (4) distal segment expression > s (default = 1), (5) fold 

change of entire neighboring segments before vs. after is ≥ f.

To optimize parameters w, a, and d, mountainClimber considers different values (w = 100 up 

to min(l/100, 500) with step size 100; a = 0.05, 0.1, 0.15; d = 10, 50) and leverages the exon-

intron junction information by choosing the combination that maximizes the total exon-

intron junctions with at least n reads (default = 2) predicted within u bp (default = 10). After 

choosing the optimal parameters, terminal segments are removed if they have < z relative 

usage (default = 0.01), where relative usage is defined as the terminal segment coverage / 

maximum segment coverage in the TU, to remove transcriptional noise.
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Finally, change points are labeled as follows: DistalTSS, DistalPolyA, TandemATSS, 

TandemAPA, Junction (if the change point is within u bp of an exon-exon junction with ≥ n 
reads; default u = 10; default n = 2), Exon, and Intron. The parameters selected for 

mountainClimber may affect these predictions. For example, a change point in an intron 

supported by two reads would be labeled Intron if n = 2, but would acquire one of the other 

labels if n > 2. If strand could not be inferred for nonstrand-specific RNA-seq, then change 

points are labeled: DistalLeft, DistalRight, TandemLeft, TandemRight, Exon, and Intron.

Relative usage calculation.: If a gene has three or fewer segments, only the distal 5’ and 3’ 

ends are reported. To calculate relative usage, the following change points are used to define 

5’ and 3’ ends: (1) all change points labeled “Distal” and “Tandem” in the change point 

identification step described above, and (2) all change points identified before the first and 

after the last change point labeled “Junction”. Ambiguous segments that could not be 

assigned to either 5’ or 3’ end were ignored. If a proximal segment has lower coverage than 

its neighboring distal segment (e.g. in introns) then the average reads/bp for that segment is 

set to 0. First, segments are ordered from lowest (k = 0) to highest coverage in each sample. 

RU is then calculated as follows:

RUk, s =

μk, s
max μk, s

, k = 0

μk, s − μk − 1, s
max μk, s

, k > 0

RU
k

= 1
n ∑

s = 0

n
RU

k , s

Where μk,s is the average reads/bp in each segment k and sample s. n is the total number of 

samples (excluding those with max μk,s = 0). After calculating RUk,s for each segment in 

each sample, segments are re-sorted back to distal to proximal order (indicated by k ), and 

the average is taken over all samples from each segment.

Comparison with annotation—mountainClimber change points were annotated with 

gene regions with the following priority: Junction > TSS > Poly(A) > CDS (coding exon) > 

3’UTR > 5’UTR > Non-coding (exon in non-coding gene) > Intron > Intergenic (outside of 

annotated genes). Change points were labeled Junction, TSS, and Poly(A) if they were 

within 10 bp of an annotated TSS, poly(A) site, or exon-intron junction, respectively.

Mapping pipeline—There are two mapping pipeline options: (1) align to the genome prior 

to calling de novo TUs, or (2) align directly to the transcriptome +/−10kb (Fig. S1). In both 

pipelines, RSEM (Li and Dewey, 2011) was used to assign the most likely location for 

multi-mapped reads. While pipeline #1 yielded more (unannotated) TUs, pipeline #2 was 

significantly faster. Here, we briefly describe the major steps, with more details described in 

subsequent sections for simulations, MAQC, and GTEx mapping.
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Genome alignment.: As recommended by RSEM, reads were aligned to the genome with 

up to 100 or 200 alignments. Bam files were converted to bedgraphs using bedtools 

genomecov, and TUs were called as described above. HISAT2 was run with the following 

parameters: --dta-cufflinks --mp 6,4 --no-softclip --no-mixed --no-discordant --add-chrname 

-k 100. STAR was run with the following parameters: --outSAMunmapped Within --

outFilterType BySJout --outSAMattributes NH HI AS NM MD --outFilterMultimapNmax 

200 --outFilterMismatchNmax 999 --outFilterMismatchNoverLmax 0.04 --alignlntronMin 

20 --alignlntronMax 1000000 --alignMatesGapMax 1000000 --alignSJoverhangMin 8 --

alignSJDBoverhangMin 1 --sjdbScore 1 --runThreadN 8 --genomeLoad NoSharedMemory 

--outSAMtype BAM Unsorted --outSAMheaderHD @HD VN:1.4 SO:unsorted.

Prepare RSEM reference.: The RSEM reference was prepared from both de novo TUs and 

an existing annotation so that the aligner can better identify splice sites, as the de novo TUs 

do not contain splice site information.

Transcriptome alignment.: HISAT2 was used with the following parameters to allow up to 

100 alignments per read and force HISAT2 to ignore indels in order to be compatible with 

RSEM: --mp 6,4 --no-softclip --no-unal --no-mixed --no-discordant --no-spliced-alignment 

--end-to-end --rdg 100000,100000 --rfg 100000,100000 -k 100. STAR was used with the 

following parameters: --outSAMunmapped Within -outFilterType BySJout –

outSAMattributes NH HI AS NM MD –outFilterMultimapNmax 200 –

outFilterMismatchNmax 999 –outFilterMismatchNoverLmax 0.04 –alignlntronMin 20 –

alignlntronMax 1000000 –alignMatesGapMax 1000000 –alignSJoverhangMin 8 –

alignSJDBoverhangMin 1 –sjdbScore 1 –runThreadN 8 –genomeLoad NoSharedMemory –

outSAMtype BAM Unsorted –quantMode TranscriptomeSAM –outSAMheaderHD @HD 

VN:1.4 SO:unsorted.

RSEM.: After running rsem-calculate-expression, the alignment with maximum posterior 

probability was kept for each multi-mapped read.

Simulations—Flux Simulator (Griebel et al., 2012) was used with default parameters to 

simulate 100bp paired-end RNA-seq of annotated TandemUTRs downloaded from the 

MISO website (Katz et al., 2010). TandemUTR transcript isoforms were simulated with 1, 2, 

or 3 change points with varying distal / proximal expression. Simulated RNA-seq reads were 

aligned with pipeline #1 using HISAT2 and mm10 with Ensembl release 84. RSEM and 

mountainClimber were used as described above.

IsoSCM.: IsoSCM was run with default parameters. The median read coverage per segment 

reported in the coverage.gtf file was used to calculate the fold change at each change point. 

To assign true fold changes of annotated genes to IsoSCM’s predictions, we overlapped the 

predictions with the true TandemUTR 3’ ends +/−51bp.

DaPars.: In order to evaluate DaPars’ performance on simulated data, we needed two sets of 

simulated samples. Thus, we compared each simulated sample described above with a 

sample simulated with no change points. In order to evaluate precision and recall at varying 

fold change cutoffs, we ran DaPars with relaxed criteria (FDR cutoff = 1, PDUI cutoff = 0, 
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and fold change cutoff = 0.1) and did not filter results based on significance. Fold change for 

DaPars proximal change points was calculated as (B_1_short_exp + B_1_long_exp + 1) / 

(B_1_long_exp + 1). Distal change points were defined using the Loci field, and fold change 

was either B_1_long_exp or A_1_long_exp if only detected in one sample, or the average of 

both if detected in both samples.

Performance evaluation.: A total of 14,377 TUs were called by mountainClimber, 13,289 

(92%) of which overlapped annotated genes. mountainClimber identified 6,178 TUs with at 

most one gene annotation, while IsoSCM identified 5,070. Transcripts with at most one gene 

annotation (to avoid ambiguity) and at least 10 average reads per bp in exons were 

considered for precision and recall calculations. For precision and recall calculations, 

DistalPolyA and TandemAPA change points were considered for mountainClimber and 

3p_exon change points were considered for IsoSCM. To compare varying degrees of 

difficulty in identifying 3’ ends, we created equal sized bins of fold change of (proximal 

read coverage + 1) / (distal read coverage + 1) at true and predicted change points for recall 

and precision respectively. A predicted change point was a true positive if the closest true 

simulated change point was within 50bp. For recall, once a predicted change point was 

matched with a true change point, it could no longer be matched to another true change 

point. For precision, once a true change point was matched with a predicted change point, it 

could no longer be matched to another predicted change point.

MicroArray/Sequencing Quality Control (MAQC)—Ambion Human Brain Reference 

RNA (HBRR) and Universal Human Reference RNA (UHRR) total RNA sequencing (RNA-

seq) data were downloaded from GEO accession GSE49712 (Rapaport et al., 2013). The 

following PolyA-seq sites were downloaded from the UCSC Genome Browser: MAQC 

UHR 1, UHR 2, Brain 1, Brain 2 (Derti et al., 2012). PolyA-seq sites with at least 1 RPM 

were considered. RNA-seq adapters were trimmed with cutadapt (Martin, 2011). Both 

mapping pipelines were run for comparison: pipeline #1 with STAR v2.5.2a (Dobin et al., 

2013) and GENCODE v25, and pipeline #2 with HISAT2 v2.0.5 (Kim et al., 2015a) and 

Ensembl release 75, both aligned to hg19.

For pipeline #1, reads were mapped as described above, except split reads were not used in 

calling de novo TUs after genome alignment due to many split reads spanning multiple 

genes for unknown reasons. After genome alignment, de novo TU calls and RSEM analysis 

were carried out. Subsequently, de novo TUs were called a second time using junction reads 

from the transcriptome alignment since the junction reads from the genome alignment were 

problematic. These TUs were then used for calling change points. Pipeline #2 was used as 

described above.

IsoSCM was used as described above. Because we only considered TUs with at most one 

annotated gene for mountainClimber, we did the same for IsoSCM. To do so, we first 

merged all isoforms from the same transcript as identified by IsoSCM, then merged 

overlapping TUs across all samples and both strands.

To evaluate performance of mountainClimber and IsoSCM, TUs that satisfied the following 

requirements were used: (1) have at most one annotated gene, (2) at least 10 average reads 
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per bp, and (3) have inferred strand. These TUs were interrogated for overlap on the same 

strand with FANTOM CAT TSSs (Hon et al., 2017) and PolyA-seq poly(A) sites within 50, 

100, 200, 300, 400, or 500 bp at both 5’ and 3’ ends. For predictions overlapping FANTOM 

CAT TSSs or PolyA-seq poly(A) sites within 300bp, we reported the positional precision 

binned by fold change at each position relative to the predicted change points. In this 

analysis, if a prediction was close to multiple FANTOM CAT or PolyA-seq sites, only the 

closest one was counted such that each prediction-to-FANTOM or -PolyA-seq site was a 

one-to-one match. Similarly, only the closest poly(A) signal (PAS) was plotted for each 

prediction (Fig. S3H,I). Precision was calculated as the total number of PolyA-seq poly(A) 

sites or FANTOM CAT sites (i.e. true positives) within +/−20bp of the prediction.

GTEx analysis—GTEx (GTEx Consortium, 2015) RNA-seq was downloaded through 

dbGaP under accession phs000424.v6.p1, except for subject phenotypes and sample 

attributes, which was downloaded under accession phs000424.v7. Gene-level RNA-seq read 

counts were downloaded under accession phe000020.v1.

Sample selection.: GTEx (GTEx Consortium, 2015) RNA-seq was downloaded through 

dbGaP accessions described above. A subset of GTEx samples were chosen as follows to 

maximize the number of tissues available per donor: individuals with less than 20 tissues 

(excluding cells) and tissues with less than 20 samples were excluded (esophagus, artery, 

skin sun-exposed, nerve – tibial, and minor salivary gland). Up to 100 individuals from each 

tissue were chosen, excluding those with different numbers of reads in readl and read2 and 

those from the same individual that were released multiple times (the most recent release 

was kept). Data sets with read length other than 76bp, median transcript integrity (TIN) 

score < 70 (calculated using tin.py from RSeQC (Wang et al., 2016)), and mapping rate < 

50% were excluded, resulting in 2,342 samples from 36 tissues and 215 individuals (Table 

S1).

Mapping pipeline and mountainClimber.: Adapters were trimmed with cutadapt (Martin, 

2011), adding -q 20,20 if FastQC returned “WARN” or “FAIL” for adapter content or per-

base sequence quality, and –trim-n if FastQC returned “WARN” or “FAIL” for sequence 

content (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/).

The mountainClimber mapping pipeline #2 was used (Fig. S1) with HISAT2 v2.0.5 (Kim et 

al., 2015a) and Ensembl release 75 aligned to hg19 standard chromosomes. 

mountainClimber default parameters were used except for: minimum expression -e was 5 

average reads/bp.

A total of 20,292 TUs were identified across all GTEx samples, where 11,059 had at most 

one gene annotation and any predicted change points. Of these TUs, strand and therefore 5’ 

and 3’ ends were inferred for 5,786 TUs using splice site sequences. The other 5,273 TUs 

did not have inferred strand primarily due to lack of reads spanning exon junctions, among 

which only 346 (7%) were in annotated multiexon genes. For 28 genes, there were sufficient 

junction-spanning reads, but with non-canonical splice site sequences. Thus, our strand 

inference approach was successful for the majority of TUs corresponding to multi-exon 

genes.
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Genome-wide APA and ATS calculation.: For each gene at each end, n tissues were 

randomly chosen (n = 1 to 36). The per-gene APA (or ATS) across tissues was calculated as 

the percentage of samples with more than one APA (or ATS) having at least 10% relative 

usage for each gene. The genome-wide APA (or ATS) measure was calculated as the 

percentage of genes with per-gene APA (or ATS) percentage of at least 10%. This process 

was carried out for 500 iterations.

Differential ATS and APA.: We used three major steps in the identification of significantly 

differential ATS and APA in pairwise tissues: (1) clustered change points across individuals 

and pairwise tissues, (2) calculated relative usage of clustered change points (described 

above), (3) tested for statistically significant differential ATS and APA.

First, change points were clustered across individuals and then across pairwise tissues using 

DBSCAN (sklearn.cluster). DBSCAN was chosen because it is not parameterized by the 

total number of clusters, but rather by the minimum number of points per cluster n and 

neighborhood size e. We used n = 50% of the number of individuals in the tissue of interest 

and e = the optimal window size from mountainClimber. For chrY, only males were 

clustered. The median position of each cluster was retained. Change point labels were 

prioritized as follows: Junction > DistalTSS > DistalPolyA > TandemATSS > TandemAPA > 

DistalLeft > DistalRight > Exon > Intron > TandemRight > TandemLeft.

Second, a minor modification was implemented in calculating the relative usage of each 

clustered segment; change points between the first and last exon were included if they were 

specific to one of the two tissues (e.g. an intronic poly(A) site present in one but not both 

tissues).

Third, differential ATS and APA were identified across pairwise tissues at both TU ends. 

The following criteria were used to identify genes eligible for differential testing: there were 

no ATS or APA identified and the distal segments were the same in both tissues, mean distal 

segment coverage was < d (default = 5) in both tissues, proximal coverage was < p (default = 

0) in at least one tissue, or coverage was increasing from proximal to distal. If two clustered 

segments were tandem in at least one condition, then that change point was tested for 

differential usage.

To test for differential APA or ATS, four regions were considered – the segments before and 

after the change point in tissue l and in tissue2. APA and ATS were considered differential 

between two tissues if there was a significant difference in mean read counts of the distal 

segment. In order for the distal segments in the two tissues to be comparable, the distal 

segment coverage ds in samples was scaled to the maximum proximal coverage ps across all 

samples. Formally, each ds was multiplied by λs:

λs =
max

s
ps + 1

ps + 1

Because the number of replicates per condition is typically small in a given experiment, a 

standard t-test is underpowered to detect the difference between two means. Instead, we used 

Cass and Xiao Page 14

Cell Syst. Author manuscript; available in PMC 2020 October 23.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



a data-driven estimation of expected variance across all tested distal segments for each 

pairwise tissue comparison (Yang et al., 2019). p-values were corrected with the Benjamini-

Hochberg (BH) procedure. Change points with BH-corrected p-value <= 0.05 and absolute 

RU difference >= 0.05 were considered significantly differential.

Finally, the distal ends were labeled as follows: TandemTSS, TandemAPA, AFE (alternative 

first exon), and ALE (alternative last exon) when strand was inferred, and Tandem or AE 

(alternative exon) if strand was not inferred. AFE and ALE occur when the two tissues being 

tested have different 3’ or 5’ distal exons.

5’ and 3’ end grouping and WML.: After calculating relative usage, TUs were separated 

into four categories for 5’ and 3’ ends separately: (1) alternative first or last exon (AE) 

within a single sample, (2) AE across different samples, (3) the last segment was disrupted 

by an annotated intron, (4) tandem and distal UTRs (Fig. S6). To check for AE within and 

across samples, segments were clustered across all 2,342 samples with bedtools cluster. If 

multiple clusters were identified and any of the clusters contained ≥ 10 members, then the 

cluster with the maximum number of members was considered for grouping into either 

group 3 or 4. For group 3, only intronic regions with no exon overlap in any transcript 

isoform were considered for overlap with TUs. If the cumulative overlap with introns was at 

most 10bp or the entire last segment was contained within an intron, then the segment was 

assigned to group #4. Otherwise, the end was considered disrupted by an intron and placed 

in group #3.

For each end segment in groups 2, 3, and 4, the weighted mean length (WML) was defined 

as the weighted mean of each segment length, considering the RU of each segment as its 

weight. Finally, the weighted mean extension length (WMEL) was calculated by subtracting 

the minimum WML across all 2,342 samples from each WML (example illustrated in Fig. 

S6B).

Tissue and individual variabilities.: To assess the contribution of either tissue or individual 

variability to the observed variation in WMEL, we adopted an approach similar to (Méle et 

al., 2015). Briefly, a linear mixed model was used to model log2(WMEL) with tissue and 

subject modeled as random effects, and AGE, ETHNCTY and SEX as fixed effects. The 

lmer function from the lme4 package in R (Bates et al., 2015) was utilized as follows: 

lmer(log2(WMEL) ~ (1∣tissue) + (1∣subject) + AGE + ETHNCTY + SEX). To calculate the 

contribution of tissues and subjects to the observed variation, we divided their REML-

estimated variance by the sum of the estimated variance of tissue + individual + residual.

Differential expression analysis.: We downloaded GTEx gene level read count data and 

used edgeR and limma (Ritchie et al., 2015; Robinson et al., 2010) to identify differentially 

expressed genes. Read counts for duplicated genes were summed across genomic locations. 

Lowly expressed genes were removed with the filterByExpr function with default 

parameters, resulting in 35,556 / 53,585 genes. All 2,342 samples were modeled together 

with functions model.matrix, voom, lmFit, and eBayes to assess differential expression. For 

each pairwise tissue comparison, we calculated the fraction of differentially expressed genes 

(p-value <= 0.05 and log2(fold change) >= 1). out of the total APA genes, ATS genes, and 
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total genes tested for differential expression (total genes tested was 35,556 for all pairwise 

comparisons).

Gene ontology analysis.: Gene ontology (GO) analysis was performed by testing for GO 

term enrichment of query genes compared to 10,000 sets of control genes with similar gene 

length and GC content as described previously (Lee et al., 2011). First, terms with less than 

three genes were excluded. Then, the enrichment p-value was calculated by fitting a normal 

distribution as described previously (Tran et al., 2019) and corrected with the Benjamini-

Hochberg procedure. For each pairwise tissue comparison, genes with differential tandem 

ATS or APA were separated into two groups for both 5’ and 3’ ends: UTR lengthening and 

UTR shortening. The union of all genes that were significantly longer or shorter in each of 

the main five tissues of interest (whole blood, testis, skeletal muscle, cerebellum, and 

cerebellar hemisphere) compared to each of the other 35 other tissues were combined for 

GO analyses. The union of all tested genes in 3’ and 5’ ends were used as background, 1,122 

and 546 total genes respectively.

DATA AND CODE AVAILABILITY

mountainClimber is available at github.com/gxiaolab/mountainClimber. We also provided 

the scripts used for downstream detection of differential ATS and APA usage.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

• mountainClimber identifies both ATS and APA sites de novo in RNA-seq

• The largest study of 5’ and 3’ transcript ends across human tissues to date

• 75% and 65% of genes exhibited differential APA and ATS in human tissues 

respectively

• Testis displayed longer 5’ UTRs and shorter 3’ UTRs, often in testis-specific 

genes
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Figure 1. mountainClimber pipeline schematic and performance evaluation.
(A-E) The mountainClimber approach for identifying change points in each transcription 

unit (TU) in each sample. Example simulated RNA-seq is shown for CDO1 (NM_033037), 

for which two change points are simulated. Simulated transcript isoform models are shown 

in yellow below each figure panel. (A) Identify de novo TUs. Poly(A)-selected RNA-seq is 

shown with the TU predicted shown in a blue line below. (B) Calculate cumulative read sum 

(CRS) as a function of position (black). The null distribution (diagonal line) is shown in 

grey. (C) Identify elbows in the CRS distribution by calculating the distance from the CRS 

(black) and weighted CRS (wCRS, green) to the diagonal line y = x. Note that wCRS is 

needed to observe elbows corresponding to both exon-intron junctions for each exon (black 

vs. green). (D) Filter putative change points by fold change and t-test. Dashed grey lines 

indicate zooming in to the last exon of the gene. Red lines indicate change points identified 

after filtering. (E) Calculate relative usage (RU) based on the average reads per bp in each 

segment at each end such that RUs sum to 1 at each transcript end. (F) The different types of 
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ATS and APA identified by mountainClimber. ATS and APA cases are colored green and 

blue respectively. (G-H) Performance on simulated RNA-seq and 3’ ends. Fold change was 

calculated as the average reads/bp of proximal vs. distal segments. (G) Precision stratified 

by the fold change at predicted change points (CPs) (non-overlapping stratifications). (H) 

Recall stratified by fold change at true simulated CPs. (I-N) Performance on MAQC RNA-

seq. (I) Precision for each window size w, where precision is calculated as the fraction of 

predicted change points that fell within w bp of any PolyA-seq site. (J) mountainClimber 3’ 

predictions relative to PolyA-seq sites. Predicted 3’ ends that are within 300bp of any 

PolyA-seq site (n = 30,134) were stratified by fold change into 5 bins. The x-axis indicates 

the position of the closest PolyA-seq site relative to each predicted poly(A) site, where 

positive (negative) values indicate the PolyA-seq site is downstream (upstream) of the 

prediction. The y-axis indicates the number of predictions at the corresponding position (x-

axis) that have PolyA-seq support within +/−20bp. (K) Similar to (J), but for IsoSCM (n = 

21,400). (L) Similar to (I), but for FANTOM CAT TSS. (M) Similar to (J), for the 5’ end, 

comparing mountainClimber and FANTOM CAT sites (n = 28,350). (N) Similar to (M), but 

for IsoSCM (n = 31,961). For more details, see STAR Methods and Figures S1-S4.
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Figure 2. Landscape of alternative transcription start and polyadenylation sites in human 
tissues.
(A) Percentage of genes with APA (blue) or ATS (green) detected in x randomly chosen 

tissues (x = 1 to 36) across 500 iterations (STAR Methods). Mean and standard deviation are 

shown. (B) Variations in weighted mean extension length (WMEL) at the 5’ end attributed to 

individuals or tissues (STAR Methods). Numbers of genes below and above the dashed line 

y = x are shown. (C) Similar to (B), but for the 3’ end. (D) Number of significantly 

differential change points identified in each pairwise comparison in the 5’ end (BH-

corrected p-value <= 0.05 and absolute RU difference >= 0.05). (E) Similar to (D), but for 

the 3’ end. (F-I) Examples of alternative 5’ and 3’ ends. The range shown contains the 

upstream and downstream segment of the differential change point(s) (i.e. the entire 5’ or 3’ 

end is not necessarily shown). Each line indicates the read counts for one individual at each 

nucleotide, and change points are indicated by black dashed lines. Genomic position is 

shown in grey (mb = megabase). Ensembl annotations are shown in yellow. (F) APA in 
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APH1B in testis vs. small intestine (p = 2.86e-251, RU difference = −0.524). (G) ATS in 

CPNE5 in cortex vs. atrial appendage (p = 3.36e-256, RU difference = 0.60). (H) Intronic 

APA in ABCF2 in testis vs. uterus (p = 2.47e-54, RU difference = 0.23). (I) Three APA 

change points in UBE2J1 in breast vs. testis. See also Figures S5-S11.
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited Data

PolyA-seq data Derti et al., 2012 UCSC Genome Browser hg19 tables:
polyASeqSitesMaqcBrain1Fwd,
polyASeqSitesMaqcBrain1Rev,
polyASeqSitesMaqcBrain2Fwd,
polyASeqSitesMaqcBrain2Rev,
polyASeqSitesMaqcUhr1Fwd,
polyASeqSitesMaqcUhr1Rev,
polyASeqSitesMaqcUhr2Fwd,
polyASeqSitesMaqcUhr2Rev

MAQC RNA-seq Rapaport et al., 2013 GEO: GSE49712

MISO TandemUTRs Katz et al., 2010 http://genes.mit.edu/burgelab/miso/annotations/
miso_annotations_mm10_v1.zip

GTEx GTEx Consortium, 2015 https://www.ncbi.nlm.nih.gov/gap/; RNA-seq phs000424.v6.p1; subject 
phenotypes and sample attributes phs000424.v7; gene-level RNA-seq read 
counts phe000020.v1

Software and Algorithms

mountainClimber Cass et al., 2019 https://github.com/gxiaolab/mountainClimber

IsoSCM Shenker et al., 2015 https://github.com/shenkers/isoscm

DaPars Xia et al., 2014 https://github.com/ZhengXia/dapars

RSEM Li and Dewey, 2011 https://deweylab.github.io/RSEM/

HISAT2 v2.0.5 Kim et al., 2015a https://ccb.jhu.edu/software/hisat2/index.shtml

STAR v2.5.2a Dobin et al., 2013 https://github.com/alexdobin/STAR

Flux Simulator Griebel et al., 2012 http://confluence.sammeth.net/display/SIM/Home

Python 2.7.2 Python Software Foundation https://www.python.org/

R 3.4.3 The R Foundation https://www.r-project.org/
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