
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Beyond Almost-Sure Termination

Permalink
https://escholarship.org/uc/item/5tp978xp

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 39(0)

Author
Icard, Thomas F.

Publication Date
2017

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5tp978xp
https://escholarship.org
http://www.cdlib.org/

Beyond Almost-Sure Termination
Thomas F. Icard (icard@stanford.edu)

Department of Philosophy, Stanford University

Abstract

The aim of this paper is to argue that models in cognitive
science based on probabilistic computation should not be re-
stricted to those procedures that almost surely (with probabil-
ity 1) terminate. There are several reasons to consider non-
terminating procedures as candidate components of cognitive
models. One theoretical reason is that there is a perfect cor-
respondence between the enumerable semi-measures and all
probabilistic programs, as we demonstrate here (generalizing
a better-known fact about computable measures and almost-
surely halting programs). One practical reason is that the line
between almost sure termination and non-termination is elu-
sive, as well as arbitrary. We argue that this matters not only
for theorists, but also potentially for a learner faced with the
task of inducing programs from experience.

Introduction
The metaphor of cognition as computation provides a fruitful
and flexible foundation for cognitive science. While compu-
tation can be understood broadly to encompass many differ-
ent paradigms and formats (Rescorla, 2015), it is generally
presumed that an upper bound on what can be computed by
the human mind is that which can be computed by a Turing
machine, or a program in any other universal model of com-
putation, such as lambda calculus, recurrent neural networks
with rational weights, combinators, Java programs, and so on.

Some early proponents of the computational theory of
mind (e.g., Putnam 1967) focused attention on probabilistic
computation, allowing randomization in state transitions; and
random mechanisms have been central in psychological mod-
els going back at least to stimulus-response theory, which
had formal connections to probabilistic automata (Suppes,
1969). In recent work, computation with random elements
has taken on new significance, where mental representations
themselves are characterized in terms of probabilistic proce-
dures or programs (Goodman et al., 2014), and noise is seen
not just as a nuisance, but as deeply tied to an agent’s ca-
pacity for prediction and induction. Although probabilistic
machines cannot compute any more functions than determin-
istic machines, this shift in emphasis raises new and distinct
questions. For instance, how expressive is a given class of
probabilistic machines for representing useful distributions?

Much of the recent theory of probabilistic computation—
particularly that motivated by application to cognition—has
focused on computable probability distributions, specifically
restricting to procedures that terminate almost surely (a.s.),
that is, with probability 1. This has given rise to a rich body
of work. For instance, it can be shown that the computable
distributions correspond to the a.s.-terminating probabilistic
Turing machines (see, e.g., Freer et al. 2012), as well as to
the a.s.-terminating stochastic lambda terms (Dal Lago and
Zorzi, 2012). The limits of computability in the context of

conditioning continuous distributions have also been thor-
oughly investigated (Ackerman et al., 2011).

These important advances notwithstanding, the aim of the
present paper is to argue that in cognitive science the focus
on a.s.-termination is overly restrictive. As a foundation for
theorizing about cognitive processes we should consider the
class of all probabilistic computations, not just those that a.s.
halt. To use terminology introduced more formally below,
cognition should be modeled on the more general class of
enumerable semi-measures, rather than the smaller class of
computable probability measures. We offer two arguments
for this claim, one practical and one theoretical.

The practical argument is that the line between a.s. ter-
mination and non-termination is elusive and arbitrary. This
point is illustrated with a simple example, where the bound-
ary can be studied concretely. The theoretical argument is
that the correspondence between the semi-measures definable
by probabilistic machines and enumerable semi-measures is
more basic and canonical than that between measures defin-
able by a.s.-terminating machines and computable measures.
We give a simple, self-contained proof of this first correspon-
dence (Theorem 1), which subsumes the second as a special
case (Corollary 1). This proof is elementary, and is arguably
simpler than direct proofs of the corollary. We also discuss
some connections to program induction, and possible reper-
cussions for probabilistic inference.

Background on Probabilistic Computation
Consider any universal language for describing computations.
Allowing programs in one of these languages access to an
unlimited source of iid samples from a Bernoulli(0.5) distri-
bution brings us to the setting of universal probabilistic lan-
guages. For instance, a Turing machine might have an ad-
ditional read tape with an infinite sequence of random bits,
while a lambda term might make use of a choice operator ⊕,
where M⊕N reduces to M or N, each with probability 0.5.
Just as the Church-Turing Thesis states that any two reason-
able deterministic models of computation will be equivalent,
one might hypothesize that any reasonable way of adding fair
coin flips to these models will give rise to an equivalent model
of probabilistic computation. For the rest of this paper we will
remain neutral about which of these versions we adopt.

Non-termination, even for very simple, e.g., monitoring
processes, is of course a desirable feature of many mecha-
nisms involved in control, where inputs are continually pro-
cessed (Botvinick and Cohen, 2014). However, our interest
here is non-termination even for stand-alone programs with-
out input, so we restrict attention to this setting.

A probabilistic program π, in any machine language, gen-
erates an output w—let us suppose outputs are (or at least

2255

encode) binary sequences, so that w ∈ {0,1}∗—with some
probability, which we will write µπ(w). That is, µπ(w) is the
sum of the probabilities of all the execution sequences that
halt with output w. The program π implicitly represents a
distribution on binary strings; however, this distribution may
not be a proper probability distribution on {0,1}∗, as it may
be that ∑w µπ(w)< 1. This will happen if the program fails to
halt with some probability 1−∑w µπ(w)> 0. A function µ for
which ∑w µ(w)≤ 1 is called a (discrete) semi-measure, and it
is called a probability measure if this holds with equality.

A semi-measure µ is (computably) enumerable if it is ap-
proximable from below; that is, if for each w ∈ {0,1}∗ there
is a computably enumerable weakly increasing sequence
q0,q1,q2, . . . of rational numbers, such that lim

i→∞
qi = µ(w).

Most semi-measures are not enumerable, but for any prob-
abilistic program π, the semi-measure µπ will be enumer-
able. To approximate µπ(w) from below, consider the set Wi
of strings v with length l(v) ≤ i, such that π accesses (ex-
actly) the bits of v before terminating with output w. Letting
qi

∆
= ∑v∈Wi 2−l(v), it is then evident that lim

i→∞
qi = µ(w). The-

orem 1 below states the converse of this observation, that in
fact every enumerable semi-measure µ is µπ for some π.

A semi-measure µ is called computable if it is enumerable
and for each w there is also a computably enumerable weakly
decreasing approximating sequence q0,q1,q2, · · · → µ(w).
There are computable semi-measures that are not probability
measures, but every enumerable probability measure is com-
putable: we can enumerate the sum ∑w′ 6=w µ(w′) by dovetail-
ing to obtain q∗0,q

∗
1,q
∗
2, . . . , and then 1−q∗0,1−q∗1,1−q∗2, . . .

converges from above to 1−∑w′ 6=w µ(w′) = µ(w). Corollary
1 below states that the computable probabilities measures are
exactly those of the form µπ for some a.s.-terminating pro-
gram π (see, e.g., Freer et al. 2012; Dal Lago and Zorzi 2012).

In addition to encompassing the space of randomized algo-
rithms, probabilistic programs are of special interest in cog-
nitive science because of their ability to provide compact rep-
resentations of quite complex distributions, e.g., over com-
binatorially rich spaces (Goodman et al., 2014; Piantadosi
et al., 2016). By encoding these distributions only implicitly
through the program’s objective probability of returning dif-
ferent outputs, they make an attractive candidate for plausible
representations of subjective probability (see Icard 2016 for
discussion). Moreover, it is often possible to define programs
for automatically representing conditional distributions, and
thus to apply and adapt the tools of Bayesian statistics to this
setting (Tenenbaum et al., 2011; Freer et al., 2012).

Why Non-Terminating Programs?
The enumerable semi-measures form a larger, and arguably
more natural, class than the computable measures, but what
is the reason to include them in our study of cognitive agents?

The claim of this section is that there is a tension between
allowing rich, interesting programs and ensuring those pro-
grams a.s. terminate. It is well known that testing whether a
deterministic program halts is an undecidable (Σ0

1) problem,

and verifying a.s. termination of a probabilistic program is of
even higher complexity (Π0

2, see Kaminski and Katoen 2015).
It follows that the only way to ensure a.s. termination is to re-
strict to smaller, controlled fragments. This is confining both
for the cognitive scientist proposing psychological models,
and for the learning agent who may need to construct and in-
duce programs on the fly.

Between Termination and Non-Termination
The boundary between a.s.-terminating programs and non-
terminating programs often looks quite arbitrary. To illus-
trate, we use a very simple example close to recent work on
intuitive physics (e.g., Sanborn et al. 2013; Battaglia et al.
2013). This work models people’s ability to understand and
predict physical events using probabilistic programs for con-
structing internal “simulations” that operate in rough accor-
dance with physical laws. The example here is far less so-
phisticated, merely concerning speed along a single spatial
dimension. Consider a proverbial tortoise-and-hare scenario,
where the tortoise is moving ahead at a constant rate follow-
ing a slight head start, and the erratic rabbit is nonchalantly
racing to catch up. We might suppose that the hare leaps for-
ward some random distance about every fourth step that the
tortoise takes. The question is when, if ever, the hare will
catch up. Imagine this prediction arising from mental simu-
lations of something like the following program π↓:

t = 5; h = 0

while (h < t):
t = t + 1

if (flip(0.25)): h = h + Uniform(1,7)

return t

For instance, a person observing a rabbit chasing a tortoise
might extract a program like π↓ in order to make predictions
about what will happen some number of steps later.

Where Hk is the distance traveled by the hare at stage k,
consider the random variable Xk = (5+ k)−Hk, measuring
the extent of the tortoise’s current lead. It is easy to show
that the sequence {Xk} forms a random walk martingale, and
specifically that E[Xk+1 | X1, . . . ,Xk] = Xk, and so E[Xk] = 5
for all k. By the recurrence property for symmetric random
walks, we reach Xk ≤ 0 at some stage k almost surely. Thus
this program π↓ halts with probability 1. (Cf. Chakarov and
Sankaranarayanan 2013 for powerful a.s.-termination proof
techniques that cover examples like this.)

While π↓ as written terminates, small changes in the pa-
rameters of the program lead to positive probability of non-
termination. For instance, if t is instead incremented by 1+ε

at each step, or if the increase in h is drawn uniformly from
an interval (1,7− ε), for ε > 0, then the resulting program
π↑ may not halt because the expected distance between the
tortoise and hare constantly increases. In particular, there
will be a constant C > 0, such that for any fixed xk, we have
E(Xk+1|xk)− xk = C. Hence E(Xk+1) = E(E(Xk+1 | Xk)) =
E(Xk)+C, from which it follows E(Xk) = 5+ kC for each k.

2256

This means that the long run expected value of Xk is infinite,
and the program fails to halt with some positive probability.

One might suspect that this theoretical distinction could
have practical repercussions. Would we not want some guar-
antee that our program would eventually halt? The problem
with this line of thought is that, from a practical perspective,
non-termination is not any worse than eventual termination
but only after an inordinate amount of time. Simulating the
program π↓ above—and terminating computation whenever
the number of steps reaches an upper bound of, say, 107—we
see that the program reaches this upper bound about .01% of
the time. Though a large majority (∼75%) of runs end within
100 steps, the empirical average runtime is in the tens of thou-
sands.1 Thus, in some small number of cases we would pre-
sumably have to terminate computation anyway. From this
simulation perspective, the behavior of π↑, taking ε > 0 to be
very small, is empirically nearly indistinguishable. The fact
that some of these runs might never terminate is immaterial,
practically speaking.

This argument is about possible non-termination, and it
does not distinguish between computable and merely com-
putably enumerable distributions. If we increment t by a
computable real number 1+ ε, then, though π↑ might never
halt, µ

π↑ is actually a computable semi-measure, with a com-
putable probability of not halting. However, this situation
again may be practically no different from a situation in
which 1+ ε can only be approximated from below. This pa-
per is a plea mainly for non-terminating programs, and one
could in principle accept non-termination but still insist on
computability. There may be contexts where insistence on
computability may be appropriate (see the section below on
conditioning); the claim of this paper, however, is that we
ought not make this restriction in general.

A Remark on Levels of Analysis
The argument that π↓ and π↑ are practically indistinguishable
assumes that we may have to terminate computation beyond a
certain point no matter which one we run, and that the result-
ing behavior will look nearly indistinguishable. A possible
objection at this stage is that by enforcing an upper bound on
computation time, we are effectively only considering pro-
grams that a.s. (in fact, always) halt anyway. That is, the
larger program encompassing both the simulation model it-
self and whatever controls the simulations always terminates
after a bounded amount of time.

This objection is fine as far as it goes, but it undercuts the
motivation for considering rich, e.g., recursive, probabilistic
programs to begin with. When we write the program π↓ above
in Java, for example, we understand it as encoding an ab-
stract procedure that could in principle run for any amount of
time, even though we know no concrete implementation of π↓

has this property. Indeed, π↓ abstracts away from many de-

1It is even possible for an a.s.-terminating program to have in-
finite expected run time. Consider a program defining a geometric
distribution that repeatedly flips a fair coin until first flipping a heads
after n steps, then continutes for 2n more steps thereafter.

tails about how the program might be implemented. The idea
that we can construe some psychological models in a sim-
ilar manner is very familiar in cognitive science (Marr and
Poggio, 1976). Characterizations of mental phenomena us-
ing grammars, recursive constructions, and other devices that
license unbounded computations are legitimized by potential
gain in conceptual clarity and modularity. We understand
while-loops, models of Newtonian mechanics, and so on, in
a very general way: we have a good sense of what they can
do, what problems they can be used to solve, and how they
can be combined with other tools to form even more power-
ful devices. From this perspective it is unsurprising that such
devices would make their way into our cognitive models.

Such issues about levels of analysis are beyond the scope
of this paper. The present suggestion is simply that the best
arguments favoring liberal use of a.s.-terminating probabilis-
tic machines as cognitive models should extend to the class
of all probabilistic machines. Just as there may be practical
reasons to avoid computable, but algorithmically intractable,
procedures in practice, so it may make sense in many cases to
avoid use of procedures that might not terminate. That does
not delegitimize their use in cognitive modeling.

Program Induction
The argument up to this point has been largely negative, that
there is no reason to exclude effective semi-measures as pos-
sible components of a cognitive model. But there also may
be good positive reasons to include them when we consider
the learning problem of inducing programs from observations
(see, e.g., Lake et al. 2017 for application of this idea to hu-
man cognition). Given the high complexity of verifying a.s.-
termination, the learner seems to be faced with a dilemma:
either restrict search to a small fragment of possible programs
or risk hypothesizing programs that may not halt.

For example, it is difficult to imagine a sufficiently flexible
class of programs—say, a class built out of a few primitive
constructions such as while-loops and simple arithmetical
operations like addition—from which one could easily ob-
tain the program π↓ above, but not one of the variants π↑ that
might have some probability of not halting. It is not that one
would prefer to construct π↑ over π↓, but that they are equally
preferable and that separating them in a principled way might
be difficult, no matter what method is used to perform the in-
duction. That is, even if the goal is to construct an a.s.-halting
program, flexibility in program construction might require the
possible construction of non-halting programs.

In light of this possibility, a natural suggestion is to con-
sider enriching program induction frameworks with more ex-
pansive classes of programs. Consider Bayesian approaches
to program induction. Where C is some class of (semi-)mea-
sures on a space X , e.g., on {0,1}∗—so that we can ask about
P(X) for any P ∈ C and X ∈ X —we could have a prior mea-
sure ν over C that induces a mixture distribution Pν on X :

Pν(X)
∆
= ∑

P∈C
ν(P)P(X).

2257

Thanks to Theorem 1, we can always think of each element
of C as a semi-measure µπ defined by a probabilistic program
π from some class Π, so ν defines a prior on programs in Π.

Hierarchical Bayesian models fit this description, where C
is typically a parametrized family of distributions and ν is a
hyperprior over those parameters (though hierarchical mod-
els may include more levels), and they are often explicitly
encoded as probabilistic programs. Provided one can define
appropriate likelihood functions ν(Y |P) and P(Y |X), it makes
sense to condition such a mixture distribution on data Y using
Bayesian inference:

Pν(X |Y) = ∑
P∈C

ν(P|Y)P(X |Y). (1)

By updating ν alongside candidate ground-level distributions
P, such methods capture effects of learning at multiple levels
of abstraction, such as the ability to transfer general principles
inferred in one domain to novel but related domains.

Probabilistic programs generalize hierarchical Bayesian
models to allow wider classes C of measures. For instance,
work by Piantadosi et al. (2016) considers learning in a con-
text where C is defined by logical expressions of the sort typ-
ically used in natural language semantics. Evidently, there is
no reason we could not consider classes that include enumer-
able semi-measures as well. An alluring possibility is to take
C to be the class of all enumerable semi-measures—i.e., all
programs—with ν assigning a weight to each. Because C is
then computably enumerable, there are many effective semi-
measures ν assigning positive weight to all probabilistic pro-
grams, and even here Pν is guaranteed to be an enumerable
semi-measure, and thus definable by a program. Learning in
this setting is somewhat fraught (see below), but at least such
a semi-measure can be represented. By contrast, when C is
the class of computable measures there is no computable ν

with support exactly C , since that set is undecidable.

Simplicity Bias
In this broader setting of program induction, as in hierarchi-
cal models, it is presumed that a good prior on C is one that
favors simpler hypotheses. This might be achieved, for in-
stance, by defining ν with a probabilistic grammar so that
shorter programs are automatically given higher probability.
A very general proposal for biasing simpler functions, known
as Solomonoff induction, is based on ideas from Kolmogorov
complexity. In brief, the proposal is to assign probability to a
string w in proportion to the shortest (deterministic) program
that, when run on a universal Turing machine U , produces w
as output. The intuition is, data that could be produced by
simpler mechanisms should be a priori more likely.

As an aside, there are other applications of simplicity-
based constructions inspired by Kolmogorov complexity that
make use of enumerable semi-measures. As an example, in
their generalization of Shepard’s Universal Law of General-
ization, Chater and Vitányi (2003) assume enumerable “con-
fusability” probabilities, P(Ra|Sb)—specifying how likely it
is that a subject will give a response appropriate to a when

presented with b—to develop a notion of similarity between
arbitrary representations. The basic idea is that similarity is
roughly proportional to the length of the shortest (determin-
istic) program that would be required to transform one rep-
resentation into the other. Enumerability is exactly what is
needed to derive (a generalized version of) the Universal Law.

But what about simplicity-based Solomonoff induction?
There are several issues with Solomonoff induction (includ-
ing the variant here for semi-measures, due to Zvonkin and
Levin 1970). One well known problem is that the resulting
prior is very sensitive to the choice of universal Turing ma-
chine U . In fact, it has been shown that there is a perfect
correspondence between weightings ν on the class of enu-
merable semi-measures and choices of universal Turing ma-
chines U for the Solomonoff prior (Wood et al., 2011). In
other words, the class of Solomonoff priors just is the class of
mixture semi-measures Pν in which ν assigns positive weight
to all the enumerable semi-measures. It is therefore question-
able whether this framework really does provide a foundation
for understanding simplicity, since it is not clear what an “un-
biased” choice of U or ν would be (see Sterkenburg 2016).

A larger problem with Solomonoff induction, however,
concerns the complexity of conditional inference. Whereas
each Solomonoff prior is itself computably enumerable, con-
ditioning on data leads to a function that is not even enumer-
able (specifically, we go from Σ0

1 to ∆0
2, see Leike and Hut-

ter 2015, cf. also the next section). Since the whole point
of Solomonoff induction is to learn, this is a disappointing
result. In particular, it means that no probabilistic program
can represent a conditioned Solomonoff prior. Given the cen-
trality of induction, we would like to understand better what
we can do with conditioning, and whether Bayesian program
induction is even possible when some of the candidate pro-
grams have positive probability of not halting. This leads us
to the next section.

Conditioning Enumerable Semi-Measures
The fact previously mentioned—that effective semi-measures
are not closed under conditioning—appears problematic, at
least for Bayesian applications of probabilistic programs. It
is especially noteworthy given that the computable measures
are closed under conditioning in the discrete setting. While
a full discussion of conditionalization is beyond the scope of
this paper, it is worth briefly clarifying the issue. (Of course,
for non-Bayesian approaches to learning programs, e.g., Nee-
lakantan et al. 2016, this may not even be problematic.)

Conditioning an effective semi-measure may produce a
function that is only “limit computable” (Leike and Hutter,
2015), meaning the conditional probability of each string can
be approximated, but the sequence of rationals need not ap-
proach its limit (even weakly) monotonically. The intuition
behind this is clear. To determine µ(X |Y) we must compute
µ(X ,Y)/µ(Y). If all we can do is approximate each of µ(X ,Y)
and µ(Y) from below, and we know nothing about how fast we
are converging to the correct values, then we know absolutely

2258

nothing about the ratio µ(X ,Y)/µ(Y) at any finite stage.
In the computable setting, as Freer et al. (2012) explain, it

is straightforward to define a single Turing machine QUERY
that takes a program π and a Boolean condition κ (also repre-
sented as a probabilistic program), and produces a representa-
tion of the posterior distribution QUERY(π,κ). The idea is to
divide the infinite random bit stream into infinitely many ran-
dom bit streams, and find the first one that satisfies κ. Then
run π using this bit stream to generate an output w. As long as
κ a.s. terminates and returns ‘true’ with positive probability,
µQUERY(π,κ) correctly defines the posterior distribution.

By the aforementioned result, we know there can be no
machine that conditions an arbitrary semi-measure µπ on an
arbitrary condition κ. Nonetheless, provided κ stipulates a
computable condition, even when µπ is merely computably
enumerable, QUERY(π,κ) will correctly represent the condi-
tioned semi-measure, which shows that the conditional distri-
bution is also enumerable. Thus, enumerable semi-measures
are closed under conditioning with computable queries.

In this sense the situation for enumerable semi-measures
is no worse than that for computable measures: both can be
conditioned with computable observations in a uniform way.
For many settings this does not seem at all limitative. As a
simple example, we could imagine conditioning the program
π↑ on the statement that the tortoise reached at least 15 steps.
This is an easily, indeed finitely, verifiable proposition.

The main limitative result is rather the one we already
mentioned: though we can represent complex semi-measures
such as Solomonoff priors, the probabilities of even basic ob-
servations like “the first object is a 0” are not computable.
Nonetheless, we can hope for something in this direction.
Sufficient conditions for a conditional mixture semi-measure
Pν to be semi-computable are not terribly stringent. First, the
prior ν over semi-measures µ∈ C should be computable (e.g.,
this holds if the semi-measures/programs are generated by a
probabilistic grammar). Second, as above, the specific data
Y must be computably verifiable for each µ ∈ C . If both of
these are satisfied, then the adapted version of (1)

Pν(X |Y) = ∑
µ

(
ν(µ)µ(Y)

∑µ′ ν(µ′)µ′(Y)
µ(X ,Y)

µ(Y)

)
=

∑µ ν(µ)µ(X ,Y)

∑µ ν(µ)µ(Y)

is enumerable, and thus representable by a single program,
e.g., using an operation like QUERY. Though this falls short
of full Solomonoff-style induction, it does generalize what is
usually done with Bayesian program induction. It also re-
veals a distinctive positive reason to entertain specific effec-
tive semi-measures as candidate cognitive models. Granted
our previous suggestion that it might be beneficial for learn-
ing to consider wide classes of programs, putting a com-
putable prior on such a class will result in a enumerable mix-
ture semi-measure Pν that can be conditioned.

Questions about conditioning in this more general setting
clearly merit further attention, especially in relation to more

realistic inference methods such as MCMC (see, e.g., Good-
man et al. 2008). Algorithmic tractability is an obvious worry,
but this is already a worry when everything is computable,
and it is not obvious that including effective semi-measures
exacerbates the problem. Moreover, even in the computable
case, for the continuous setting conditionalization is not in
general a computable operation (Ackerman et al., 2011).
Consequently, as computational-level models of learning and
inference, it appears that the effective semi-measures fare no
worse than the computable measures.

Universality

In this final section we offer a proof of the correspon-
dence between probabilistic machines and enumerable semi-
measures. Specifically, we show that every enumerable semi-
measure can be represented by a probabilistic machine. The
proof is similar to proofs for the computable case (e.g., Freer
et al. 2012), but we can only use enumerability and must al-
low for probability of non-halting executions. The exposition
is intended to be accessible and intuitive.

Let µ be an enumerable semi-measure on {0,1}∗. That is,
for each word w ∈ {0,1}∗, there is a computably enumerable
weakly increasing sequence q0,q1,q2, . . . of rational numbers
such that lim

i→∞
qi = µ(w). Assume without loss that q0 = 0.

Note then that µ(w) = ∑
∞
i=0(qi+1− qi). Our aim is to show

that µ = µπ for some machine π.
Let 〈 , 〉 : N×N→ N be a fixed (computable) bijective

pairing function with first projection ρ1(n) = k when n =
〈k, i〉. Let w0,w1,w2, . . . be a fixed enumeration of {0,1}∗,
each with a fixed enumeration of approximating rationals
qk

0,q
k
1, . . . converging from below to µ(wk). We define a se-

quence of rational (thus computable) numbers as follows:

r0
∆
= q0

0 = 0

rn+1
∆
= rn +

(
qk

i+1−qk
i
)

where we assume 0 = 〈0,0〉 and n+1 = 〈k, i〉.
Our machine π works in stages, observing a random se-

quence of bits a0, . . . ,a j−1 while producing an enumeration
r0, . . . ,r j−1. At each stage j, we observe a bit a j and add a
rational r j, then check whether, for any n with 0≤ n < j, the
following condition (2) is satisfied:

rn <
j

∑
i=0

ai2−i−2− j and rn+1 >
j

∑
i=0

ai2−i +2− j (2)

That is, where p̃ = ∑
j
i=0 ai2−i is the rational generated so far,

we know our randomly generated real number will lie some-
where in the interval (p̃− ε, p̃+ ε), and (2) tells us that this
interval sits inside the interval (rn,rn+1). If this holds, output
wρ1(n+1). Otherwise, move on to stage j+1.

Each word w has its probability mass µ(w) distributed

2259

across different intervals in [0,1]. Specifically:

µ(wk) = ∑
n:ρ1(n+1)=k

rn+1− rn

=
∞

∑
i=0

(qk
i+1−qk

i).

The procedure generates approximations p̃ = ∑
j
i=0 ai2−i to a

random real number, and as soon as we are guaranteed that
this random number is in one of our intervals between rn and
rn+1 = rn +(qk

i+1− qk
i), i.e., that no further bits will take us

out of that interval (condition (2) above), we halt and output
the string wk corresponding to the interval, with k= ρ1(n+1).
Clearly, the probability of outputting w is exactly µ(w), and
the probability of not halting at all is 1−∑w µ(w).
Theorem 1. Probabilistic machines correspond exactly with
the enumerable semi-measures.

As every enumerable probability measure is computable,
we have the following well-known corollary.
Corollary 1. A.s.-terminating probabilistic machines corre-
spond exactly with the computable measures.

Conclusion
Defining distributions by means of programs in a universal
probabilistic language yields exactly the computably enumer-
able semi-measures. Our claim has been that this wider class,
going beyond a.s.-terminating programs, provides a sensible
foundation for theorizing about representation, inference, and
learning in cognitive science. Assuming we want to make a
clean separation between computational and algorithmic lev-
els of analysis—which is evidently necessary to justify use
of anything beyond (probabilistic) finite-state automata in the
first place—we see no reason to restrict attention to programs
that a.s. terminate, neither for the theorist nor for the learner.

References
Ackerman, N. L., Freer, C. E., and Roy, D. M. (2011). Non-

computable conditional distributions. In Proceedings of
Logic in Computer Science (LICS).

Battaglia, P. W., Hamrick, J. B., and Tenenbaum, J. B. (2013).
Simulation as an engine of physical scene understand-
ing. Proceedings of the National Academy of Sciences,
110(45):18327–18332.

Botvinick, M. M. and Cohen, J. D. (2014). The computational
and neural basis of cognitive control: Charted territory and
new frontiers. Cognitive Science, 38:1249–1285.

Chakarov, A. and Sankaranarayanan, S. (2013). Probabilistic
program analysis with martingales. In International Con-
ference on Computer Aided Verification (CAV).

Chater, N. and Vitányi, P. (2003). The generalized universal
law of generalization. Journal of Mathematical Psychol-
ogy, 47:346–369.

Dal Lago, H. and Zorzi, M. (2012). Probabilistic operational
semantics for the lambda calculus. RAIRO - Theoretical
Informatics and Applications, 46(3):413–450.

Freer, C., Roy, D., and Tenenbaum, J. B. (2012). To-
wards common-sense reasoning via conditional simula-
tion: Legacies of Turing in artificial intelligence. In
Downey, R., editor, Turing’s Legacy. ASL Lecture Notes.

Goodman, N. D., Mansinghka, V. K., Roy, D., Bonawitz, K.,
and Tenenbaum, J. B. (2008). Church: A language for
generative models. In Uncertainty in Artificial Intelligence.

Goodman, N. D., Tenenbaum, J. B., and Gerstenberg, T.
(2014). Concepts in a probabilistic language of thought.
In Margolis, E. and Laurence, S., editors, The Conceptual
Mind: New Directions in the Study of Concepts. MIT Press.

Icard, T. F. (2016). Subjective probability as sampling
propensity. Review of Philosophy and Psychology,
7(4):863–903.

Kaminski, B. L. and Katoen, J.-P. (2015). On the hardness of
almost-sure termination. In Mathematical Foundations of
Computer Science, pages 307–318.

Lake, B. M., Ullman, T. D., Tenenbaum, J. B., and Gershman,
S. J. (2017). Building machines that learn and think like
people. Behavioral and Brain Sciences. forthcoming.

Leike, J. and Hutter, M. (2015). On the computability of
Solomonoff induction and knowledge-seeking. In 26th In-
ternational Conference on Algorithmic Learning Theory.

Marr, D. and Poggio, T. (1976). From understanding compu-
tation to understanding neural circuitry. MIT Memo 357.

Neelakantan, A., Le, Q. V., and Sutskever, I. (2016). Neu-
ral programmer: Inducing latent programs with gradient
descent. In International Conference on Learning Repre-
sentations (ICLR).

Piantadosi, S. T., Tenenbaum, J. B., and Goodman, N. D.
(2016). The logical primitives of thought. Psychological
Review, 123(4):392–424.

Putnam, H. (1967). Psychophysical predicates. In Capitan,
W. H. and Merrill, D. D., editors, Art, Mind, and Religion.
Pittsburgh University Press.

Rescorla, M. (2015). The computational theory of mind. In
Zalta, E. N., editor, Stanford Encyclopedia of Philosophy.

Sanborn, A. N., Mansinghka, V. K., and Griffiths, T. L.
(2013). Reconciling intuitive physics and Newtonian me-
chanics for colliding objects. Psych. Rev., 120(2):411–437.

Sterkenburg, T. F. (2016). Solomonoff prediction and Oc-
cam’s razor. Philosophy of Science, 83:459–479.

Suppes, P. (1969). Stimulus-response theory of finite au-
tomata. Journal of Math. Psych., 6(3):327–355.

Tenenbaum, J. B., Kemp, C., Griffiths, T. L., and Goodman,
N. D. (2011). How to grow a mind: Statistics, structure,
and abstraction. Science, 331:1279–1285.

Wood, I., Sunehag, P., and Hutter, M. (2011). (Non-) Equiva-
lence of Universal Priors. In Dowe, D., editor, Solomonoff
85th Memorial Conference, pages 417–425. LNCS.

Zvonkin, A. K. and Levin, L. A. (1970). The complexity of
finite objects and the development of the concepts of in-
formation and randomness by means of the theory of algo-
rithms. Uspekhi Matematicheskikh Nauk, 25(6):85–127.

2260

