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Abstract

People often learn from the outcomes of their actions, even when these outcomes do not involve material rewards or
punishments. How does our brain provide this flexibility? We combined behavior, computational modeling, and functional
neuroimaging to probe whether learning from abstract novel outcomes harnesses the same circuitry that supports learning
from familiar secondary reinforcers. Behavior and neuroimaging revealed that novel images can act as a substitute for
rewards during instrumental learning, producing reliable reward-like signals in dopaminergic circuits. Moreover, we found
evidence that prefrontal correlates of executive control may play a role in shaping flexible responses in reward circuits.
These results suggest that learning from novel outcomes is supported by an interplay between high-level representations in
prefrontal cortex and low-level responses in subcortical reward circuits. This interaction may allow for human
reinforcement learning over arbitrarily abstract reward functions.
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Introduction
Successful actions are often not signaled by immediate receipt
of primary or secondary reinforcers (e.g., food and money), but
through the realization of more abstract outcomes that do not
have intrinsic value. Consider the game of bridge—in bridge, the
most valuable cards (“trumps”) may be hearts in one game and
diamonds in the next. Thus, in each new game, players need to
use a flexible cognitive mapping to immediately reassign values
to various stimuli. This ability to rapidly imbue an abstract stim-
ulus or event with value is often taken for granted. Indeed, this
ability contrasts with even our closest primate cousins: Chim-
panzees can learn to treat novel tokens as substitutes for reward,
but they do so only after lengthy bouts of conditioning where
they incrementally learn to map those tokens to the future
receipt of food (Wolfe 1936; Cowles 1937). Rapid, single-shot
endowment of outcomes with value may be a unique faculty

of higher-level human cognition, allowing us to form flexible
mappings between actions and abstract signals of success.

Parallels between learning from abstract novel outcomes
versus traditional secondary reinforcers are, however, poorly
understood. Here we test whether attaining novel outcome feed-
back can reinforce choices in a similar manner to obtaining
common secondary reinforcers (numeric “points”). We pushed
this concept to a logical extreme, asking if fully novel outcomes
that indicate goal attainment, or goal-congruent outcomes, can
substitute for secondary reinforcers during instrumental learn-
ing. We further examined the role of executive function in this
process.

Our first hypothesis was that standard reinforcement
learning circuits would support learning from such abstract
novel outcomes. This prediction is motivated by the observation
that a diverse set of primary and secondary reinforcers drive
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instrumental learning. Primary rewards, including intrinsically
pleasant odors (Howard et al. 2015) and flavors (McClure
et al. 2003), act as reliable reinforcers that engage striatal
circuits. Secondary reinforcers, such as money or numeric
points (Daw et al. 2006), which acquire value from repeated
pairings with reward, also engage this system. More abstract
secondary reinforcers, such as improvements in perceived social
reputation (Izuma et al. 2008), words and symbols that explicitly
signal outcome valence (Hamann and Mao 2002; Daniel and
Pollmann 2010), and internally maintained representations
about performance accuracy (Han et al. 2010; Satterthwaite et al.
2012), all consistently engage striatal learning systems. Lastly,
information that resolves uncertainty engages mesolimbic
circuits in a similar manner to rewards (Charpentier et al.
2018; White et al. 2019). These findings suggest that striatal
populations operate according to a flexible definition of reward
that is context dependent and includes arbitrarily abstract goals
(Juechems and Summerfield 2019).

Recent evidence suggests that sensitivity to goal-congruent
outcomes can sometimes even supersede reward responses:
Frömer et al. (2019) observed that the brain’s value network
responds to goal-congruent choice outcomes even when current
goals are pitted against rewards (Frömer et al. 2019). It remains
to be established how this system endows values to fully novel
outcomes. Repeated experience with unfamiliar feedback may
engage incremental reward learning circuits to effectively trans-
form goal-congruent outcomes into secondary reinforcers, in
the same way that social cues or numerical points acquire sec-
ondary value over time. Alternatively, as we hypothesize here,
the executive system may rapidly (i.e., within a single expo-
sure) imbue novel outcomes with value via top-down input. In
order to adjudicate between these mechanisms, we designed a
study in which the features of novel outcome feedback changed
from trial-to-trial, requiring flexible mappings between those
outcomes and the reinforcement of preceding actions.

Our hypotheses are also inspired by recent research
demonstrating that top-down inputs directly influence value-
based learning computations in RL circuits (Rmus et al. 2021).
For instance, attention modulates RL by specifying reward-
predicting features of stimuli that RL processes should operate
on (Leong et al. 2017; Radulescu et al. 2019). Explicit memories
of familiar rewards can be flexibly combined to endow value
to novel combinations of those rewards and to drive activity
in the brain’s valuation network (Barron et al. 2013). Reward
prediction error responses in dopamine neurons are influenced
by latent task representations that are likely maintained in the
prefrontal cortex (Wilson et al. 2014; Schuck et al. 2016; Babayan
et al. 2018; Starkweather et al. 2018; Sharpe et al. 2019), as well as
information held in working memory (Collins et al. 2017; Collins
2018; Collins and Frank 2018). Finally, even in standard model-
free reinforcement learning, a cognitive map of action–outcome
contingencies appears to guide credit assignment computations
in the model-free system (Moran et al. 2021). This body of work
suggests that higher-level cognitive processes specify and shape
key inputs (e.g., states, rewards, and credit) to RL systems.

In this experiment, we used behavioral methods, compu-
tational modeling, and neuroimaging to investigate whether
canonical signals measured during learning from familiar
secondary reinforcers are observed, in overlapping neural
regions, during learning from novel outcomes. We then
examined whether prefrontal correlates of executive function,
defined via a secondary task, influence how reward-related
regions respond to these outcomes.

Methods
Participants

Thirty-two healthy volunteers (aged 18–40; mean age = 25.6 years;
18 females) participated in the experiment. All subjects were
right-handed, had no known neurological disorders, and had
normal or corrected-to-normal vision. Subjects provided writ-
ten, informed consent and received $30 for their participation
in the experiment. Functional neuroimaging data from three
subjects were not analyzed beyond preprocessing because of
excessive head motion (see below for details on these exclusion
criteria), and an additional subject was excluded from both
behavioral and neural analyses for showing overall below-
chance mean performance in the task (i.e., more often choosing
the less-rewarding stimulus). The three subjects excluded for
excessive head motion were included in the behavioral and
modeling analyses, yielding an effective sample size of 31
subjects for behavior analysis; the effective sample size for
imaging analysis was 28 subjects. Experimental protocols were
approved by the Institutional Review Board at the University of
California, Berkeley.

Probabilistic Selection Task

Subjects were tasked with learning which of two stimuli, across
four pairs of stimuli, was more likely to yield a favorable outcome
(Fig. 1A). For one run, the choice stimuli were black line drawings
of simple shapes (e.g., diamond, circle, and triangle), and for
the other run, they were differently colored squares (e.g., blue,
red, and green). The order of these two runs was counterbal-
anced across subjects. Stimuli were presented using MATLAB
software (MathWorks) and the Psychophysics Toolbox (Brainard
1997). The display was projected onto a translucent screen that
subjects viewed via a mirror mounted on the head coil.

Trials proceeded as follows (Fig. 1A). First, during the pre-
choice phase, the type of feedback associated with the current
trial was displayed (see below for details). This phase lasted
2 s. After a brief interstimulus interval (0.5–2.5 s, uniform jitter),
the choice phase began, and a single pair of choice stimuli was
presented (e.g., square vs. circle). The sides (left or right of the
central fixation cross) where each of the two stimuli appeared
were randomized across trials. Subjects had 1.2 s to render
their choice with an MR-compatible button box, using their
index finger to select the stimulus on the left and their middle
finger to select the stimulus on the right. Successfully registered
choices were signaled by the central fixation cross changing
from black to blue. The choice phase ended after 1.2–2 s (uniform
jitter) regardless of the reaction time, and choice stimuli stayed
on screen until a second interstimulus interval with only the
fixation cross displayed (0.5 s). Finally, in the feedback phase,
feedback was presented for 1 s, followed by an intertrial interval
of 1.5–3 s (uniform jitter). If reaction times were too fast (<0.2 s)
or too slow (>1.2 s), the trial was aborted and a “Too Fast!” or “Too
Slow!” message (red font) was displayed centrally for 1 s in lieu
of any reward feedback and the ITI was initiated. (4.12 ± 0.73% of
trials were aborted in this manner; mean ± 95% CI).

Two reward conditions were used (Familiar vs. Single-shot;
Fig. 1A) as well as two difficulty levels (Easy vs. Hard; Fig. 1B). In
the Familiar condition, feedback “point” stimuli were previewed
during the prechoice phase, with the “+1” presented toward the
top of the display and the “+0” presented toward the bottom,
accompanied by the text “POINTS trial” in black font. At feed-
back, rewarded choices were signaled by numeric points, where
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Figure 1. Task design. (A) Subjects (N = 32) performed a probabilistic selection
task, learning which of two choice stimuli (e.g., triangle vs. circle) was more likely

to yield positive feedback. Two feedback conditions were used: In the Familiar
reward condition, successful choices were rewarded with numeric points. In the
Single-shot condition, successful choices were signaled via prespecified “goal”
fractal images. The images used as goal and nongoal stimuli were unique for

each Single-shot trial. Pairs of choice stimuli were assigned to a single condition,
and trials from each condition were intermixed. (B) In both feedback conditions,
each choice pair was designated as either Hard or Easy, determined by the

difference in success probabilities between pairs of choice stimuli. (C) After the
learning phase of the probabilistic selection task, subjects experienced a testing
phase, where different pairings of the eight total choice stimuli were pitted
against one another and subjects rapidly chose their preference. No feedback

was given in this phase. (D) Subjects also performed an N-back task, in which
they responded when an image within a sequence repeated after “N” intervening
images. N’s used = [1, 2, 3].

a “+1” message was presented on successful trials (green font),
and a “+0” message was presented on unsuccessful trials (red
font). In the Single-shot condition prechoice phase, two distinct
colored fractal-like patterns were displayed, with one labeled as
the “Goal” (displayed toward the top of the screen) and the other
as the “Non-goal” (displayed toward the bottom of the screen),
accompanied by the text “GOAL trial” in black font. Here, the
subject’s task was to remember the identity of the fractal, so
that in the feedback phase, they can appropriately reinforce their
preceding stimulus choice. The set of colorful fractal stimuli
were created using the randomize function of ArtMatic Pro
(www.artmatic.com), and the final set of fractals was selected
to maximize discriminability between any two fractals.

Trials were also evenly divided into two levels of difficulty:
Easy or Hard. On Easy trials, the optimal choice stimulus yielded
a favorable outcome (i.e., +1 point or the goal fractal) on 90%
of trials (27 of 30 trials), and an unfavorable outcome (i.e., +0
points or the nongoal fractal) on 10% of trials. The other choice
stimulus on Easy trials was associated with the inverse suc-
cess probability (10%/90%). On Hard trials, the optimal choice
stimulus yielded a favorable outcome (i.e., one point or the goal
fractal) on ∼77% of trials (23 of 30 trials), and an unfavorable
outcome (i.e., 0 points or the nongoal fractal) on ∼23% of trials.
The other choice stimulus on Hard trials was associated with

the inverse success probability (23%/77%). Reward schedules
were deterministically prespecified so that the exact number of
successful/unsuccessful outcomes for each stimulus was iden-
tical across subjects, though each subject received a unique
pseudorandomized trial sequence. Crossing the two conditions
(Familiar and Single-shot) and two difficulty levels (Easy and
Hard) yielded four choice stimulus pairs for each run. Subjects
performed 120 trials in each of the two runs of the task, perform-
ing 30 choices per run for each condition (i.e., for each of the
four pairs of choice stimuli). To ensure that subjects understood
the task, the experiment began with a thorough explanation
of the conditions followed by a sequence of 16 practice trials
that included both Familiar and Single-shot trial types (with
deterministic reward/goal feedback), using fractal images and
choice stimuli (Klingon characters) that were not seen in either
subsequent learning run. These practice trials occurred during
the anatomical scan.

In each run, after learning trials were completed, a “sur-
prise” testing phase was administered (we note that the surprise
aspect only existed for the first run of the experiment). Here,
after a brief break cued by an instruction screen (12 s), a pseu-
dorandom sequence of choice stimulus pairs was presented (1 s
each, max RT 1 s, intertrial interval 1.5–3 s, uniform jitter). In this
phase, all possible pairings of the 8 choice stimuli seen during
learning were presented three times each, yielding 84 total
trials. Participants made choices in the testing phase, though no
feedback was given.

N-Back Task

After completing both learning runs, subjects also performed
an n-back task during the third and final functional scan. In
this task, subjects were shown a pseudorandomized sequence of
novel opaque black shapes (ten unique stimuli; stimuli source:
Vanderplas and Garvin 1959; task code modified from https://
github.com/JAQuent/nBack) and asked to respond with a button
press (forefinger press on the MR-compatible button box) when-
ever a shape repeated following N intervening different shapes.
The current N-rule was specified via an instruction screen at the
start of each sequence.

Four sequences (blocks) were performed at each N (Ns used:
1, 2, 3). Each sequence was 17 + N items long, had 7 target trials
(hits) per sequence, and had no triple repeats of any single shape
nor any repeats in the first three presented shapes. Each shape
appeared centrally for 0.5 s, with a 2-s interstimulus interval. A
black fixation cross was presented throughout the sequences.
The order of the 12 sequences was randomized, although the
first three sequences of the task were fixed to N = 1, 2, 3 in that
order.

Behavioral Analysis

Behavior during the learning phase of the probabilistic selec-
tion task was quantified by a simple performance metric that
reflected the percent of trials where subjects chose the optimal
stimulus in each pair (i.e., the stimulus most likely to yield a
reward; Fig. 1; Frank et al. 2007). In the testing phase, behavior
was quantified using a logistic regression model. In this model,
the response variable was a boolean based on whether the
subject chose the stimulus on the right side of the screen (1)
or the left side (0). Predictors included the cumulative reward
difference of the stimuli (right minus left) determined by the

www.artmatic.com
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sum of rewards (points or fractals) yielded by that stimulus dur-
ing the preceding learning phase; a boolean predictor for trials
that pitted two Familiar condition stimuli against one another; a
boolean predictor for trials that pitted two Single-shot condition
stimuli against one another; and a signed predictor capturing
a Familiar condition bias, with a value of 1 when a Familiar
condition stimulus appeared on the right and a Single-shot
condition stimulus appeared on the left, a value of −1 for when
a Single-shot condition stimulus appeared on the right and a
Familiar condition stimulus appeared on the left, and a value of
0 when both stimuli were associated with the same condition.
Interaction terms were included as well, and all predictors were
z-scored.

N-back performance was quantified using the d-prime met-
ric (Haatveit et al. 2010). Correlations between n-back perfor-
mance (d-prime over all trials/Ns) and performance in the proba-
bilistic selection task were computed using both Spearman and
Pearson correlations and were conducted on both the full set
of trials in the probabilistic selection task, or the subset that
showed similar cross-condition performance (i.e., Familiar–Hard
trials and Single-shot–Easy trials.

Computational Modeling Analysis

We tested several variants of standard trial-based reinforcement
learning (RL) models (Sutton and Barto 1998) to account for
subjects’ instrumental learning behavior and to build model-
derived regressors for fMRI analyses. All models tested were
built using the same basic architecture, where values of stimuli
were updated according to the delta rule:

Q(s)t+1 = Q(s)t + αδ (1)

δ = r − Q(s)t (2)

Here, Q(s)t reflects the learned value of stimulus s on trial t, α

reflects the learning rate, and δ reflects the reward prediction
error (RPE), or the difference between the observed reward (r)
and the expected reward given the choice of stimulus s. Action
selection between the two presented stimuli was modeled using
the softmax function,

p(s) = exp
(
βQ(s)

)
/�i exp (βQ (si)) (3)

where β is the inverse temperature parameter.
Two candidate models also included a decay parameter,

which captured trial-by-trial forgetting of all stimulus Q-values,

Qt+1 = Qt + ϕ (Q0 − Qt) (4)

where 0 < ϕ < 1 is a decay parameter that at each trial pulls
value estimates toward their initial value Q0 = 0. We note that
a preliminary analysis found that the best-fitting value of initial
Q-values, Q0, was 0. Moreover, additional model fitting and
comparison analyses found that a decay target of 0 was the most
appropriate value for the decay process.

After performing a preliminary model fitting and comparison
analysis across a wide range of candidate models (using maxi-
mum likelihood estimation), we narrowed our primary model
fitting and comparison analysis to six candidate model variants
that performed well in our first-pass analysis and represented
distinct behavioral interpretations (see Supplementary Table 1
for details of each tested model).

The first model we tested reflected our hypothesis that the
differences in performance we observed between the Famil-
iar and Single-shot feedback conditions were strictly a func-
tion of weaker learning in the Single-shot condition. We imple-
mented this by having an independent learning rate (α) for
each feedback condition (Familiar vs. Single-shot). This model
included a single decay parameter and a single temperature
parameter.

In a second variant, we assumed that performance differ-
ences were a function of both weaker learning and increased
forgetting of stimulus values in the Single-shot condition;
this model matched the first model but had unique decay
parameters for each feedback condition. In a third variant,
we excluded the decay parameter altogether but included
feedback condition-specific learning rates, and in a fourth
variant, we assumed asymmetric updates (i.e., unique learning
rates) for positive and negative outcomes (Frank et al. 2007;
Gershman 2015).

To capture a form of rapid learning that is qualitatively
distinct from incremental RL, we also tested a simple heuristic
“win-stay lose-shift” model, which can be captured by equation
(1) when α = 1. To allow for feedback condition differences in this
simple heuristic model, we included a unique β free parameter
for each feedback condition.

Finally, in our sixth model, we tried to capture the hypothesis
that the learning processes (equations (1) and (2)) in both the
Familiar and Single-shot conditions were identical (via equal
learning rates), but that the choice process (equation (3)) was
different, perhaps being noisier in the Single-shot condition due
to the presence of a secondary task (i.e., having to maintain
the goal fractal during the choice phase). We approximated the
effect of putative choice-phase noise via an undirected noise
parameter,

π′ = (1 − ε) π + εU (5)

Here, given the action selection policy π = p(s) (equation (3)),
equation (5) introduces noise by implementing a mixed policy
where U is the uniform random policy (i.e., a coin flip between
stimuli) and the parameter 0 < ε < 1 controls the amount of
decision noise introduced during choice (Collins et al. 2014).
We included separate ε free parameters for each feedback
condition.

For model fitting and model comparisons, we used a recently
developed technique, Hierarchical Bayesian Inference (HBI)
(Piray et al. 2019). In this method, models are compared and
free parameters are estimated simultaneously. Recent work
using this method has shown that fits estimated by HBI are
more precise and recoverable than competing methods, and
model comparison is robust and less biased toward simplicity
(Piray et al. 2019). We note briefly that similar behavioral
and fMRI results were obtained when we used traditional
maximum likelihood estimation methods; however, clearer
model comparison results and more interpretable parameter
estimates were obtained in our HBI analysis. For our HBI
procedure, we implemented a prior variance parameter of
v = 6.00. Finally, to compare learning rate parameters across
feedback conditions, we could not perform standard frequentist
tests due to the hierarchical procedure; thus, in a follow-up HBI
analysis, we implemented the Single-shot condition learning
rate as a free parameter that was added or subtracted to the
Familiar condition learning rate and performed an “HBI t-test”
on the resulting parameter fit relative to zero. (Further details
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concerning the HBI analysis procedure, and its open-source
toolbox, are given in Piray et al. 2019.)

After model fitting and comparison, we validated the win-
ning model by simulating choice behavior using the best-fit
parameters. For each subject, we simulated 100 RL agents using
the schedule of rewards seen by that subject and the best-fit
individual-level parameters for that subject gleaned from the
HBI procedure. Results were averaged before plotting. For model-
derived fMRI analyses, we simulated the model for each subject
using his or her actual choice history and best-fit learning
rate and decay parameters. This procedure yielded model-based
predictions of trial-by-trial RPEs and trial-by-trial Q-values (of
the chosen stimulus). Both of these variables were convolved
with the canonical hemodynamic response function and used
to model BOLD responses during, respectively, the feedback and
choice phases. Lastly, in a control fMRI analysis, we instead used
the group-level parameters for each subject (as given by the
HBI-fitting procedure) to simulate RPEs.

Imaging Procedures

Whole-brain imaging was performed at the Henry H. Wheeler
Jr Brain Imaging Center at the University of California, Berkeley,
on a Siemens 3 T Trio MRI scanner using a 12-channel head
coil. Functional data were acquired with a gradient-echo echo-
planar pulse sequence (TR = 2.25 s, TE = 33 ms, flip angle = 74◦,
30 slices, voxel size = 2.4 mm × 2.4 mm × 3.0 mm). T1-weighted
MP-RAGE anatomical images were collected as well (TR = 2.30 s,
TE = 2.98 ms, flip angle = 9◦, 160 slices, voxel size = 1.0 mm
isotropic). Functional imaging was performed in three runs, with
the first two runs consisting of the probabilistic selection task
(584 volumes each) and the third run consisting of the n-back
task (275 volumes). A field map scan was performed between
the two probabilistic selection task runs to correct for magnetic
field inhomogeneities (see Image Preprocessing). Subjects’ head
movements were restricted using foam padding.

Image Preprocessing

Preprocessing was performed using fMRIPrep 1.4.0 (Esteban et al.
2019). First, the T1-weighted (T1w) image was corrected for
intensity nonuniformity with N4BiasFieldCorrection (Tustison
et al. 2010) and then used as the T1w reference image through-
out the workflow. The T1w reference image was skull-stripped
(using antsBrainExtraction.sh), and brain tissue segmentation
was performed on the brain-extracted T1w using the FSL tool
FAST. Brain surfaces were reconstructed using the FreeSurfer
tool Recon-all (FreeSurfer 6.0.1; Dale et al. 1999). Volume-based
spatial normalization to standard (MNI) space was performed
through nonlinear registration with ANTs, using brain-extracted
versions of both the T1w reference image and the T1w template.

The functional data were resampled into standard space
(MNI), generating a preprocessed BOLD time series for each
run. A reference volume (average) and its skull-stripped ver-
sion (using ANTs for stripping) were generated. A B0 field map
was co-registered to the BOLD reference image. Head-motion
parameters were estimated with respect to the BOLD reference
image (transformation matrices and six corresponding rotation
and translation parameters) before spatiotemporal filtering was
applied with MCFLIRT (FSL 5.0.9; Jenkinson et al. 2002). Slice-
time correction was applied using 3dTshift from AFNI (Cox
and Hyde 1997). The BOLD time-series (including slice-timing
correction) were resampled into their original, native space by

applying a single transform to correct for head-motion and
susceptibility distortions (Glasser et al. 2013). The unwarped
BOLD reference volume for each run was co-registered to the
T1w reference image using bbregister (FreeSurfer), with nine
degrees of freedom to account for any distortions remaining in
the BOLD reference image.

Framewise displacement was calculated for each functional
run (following Power et al. 2014). Confound regressors for
component-based noise correction were created using CompCor
(Behzadi et al. 2007). Gridded (volumetric) resamplings were
performed using antsApplyTransforms (ANTs), with Lanczos
interpolation. Lastly, data were high-pass filtered (100 s) and
spatially smoothed with a Gaussian kernel (4.0 mm FWHM)
prior to all GLM analyses.

Imaging Analyses

Analyses involved four separate GLMs fit to learning phase BOLD
data, and one GLM fit to the n-back task BOLD data. All GLM
analyses were performed using FSL (version 6.0.3). Regressors
of no interest were entered into the model; these included
subject reaction time (a parametric regressor yoked to choice
onset, convolved with the HRF), button press events (convolved
with the HRF), six standard motion regressors, the framewise
displacement time course, linear drift terms, and the first 6
aCompCor components. In addition, we added stick regressors
corresponding to volumes with large motion artifacts (>1.0 mm
framewise displacement, or >5 scaled variance as determined by
SPM’s tsdiffana protocol), with additional confound stick regres-
sors for the neighboring (subsequent) volume. This procedure
was also used to determine movement-related subject exclu-
sions: If more than 10% of volumes in either of the two learning
runs were flagged as outliers, the subject was excluded (three
subjects were excluded based on these criteria). Unthresholded
group statistical maps (t-maps), and an average group normal-
ized structural scan have been deposited on Neurovault (https://
identifiers.org/neurovault.collection:9839).

In the first GLM (GLM 1), regressors of interest included
condition-specific spike regressors for the onset of each of
the following trial phases: prechoice, choice, feedback, and the
choice phase in the testing trials. A feedback-locked valence
regressor also was included, which effectively coded successful
(+1) and unsuccessful (−1) trials within the learning phase. A
model-derived parametric regressor was also included at feed-
back onset, which captured condition-specific RPEs (equation
(2)). Including both valence and RPE regressors is important
because brain responses distinguishing the feedback valence (in
visual, affective, or cognitive properties) could be misidentified
as parametric reward prediction errors. Each subject’s RPE
time course was determined using his or her individually-fit
parameters. Orthogonalization was not used, and each regressor
was convolved with the canonical hemodynamic response
function (double-gamma). Secondary GLMs were also run for
two control analyses (Supplementary Fig. 3): In one variant of
GLM 1, the RPE regressor in the model was created using group-
level learning rate and decay parameter values rather than
individually-fit parameters for each subject’s RPE time-course;
in a second variant of GLM 1, we included separate positive
and negative RPE regressors for each condition. The second
GLM (GLM 2) was identical to the first, except that instead of
including RPE regressors it included the model-derived Q-value
for the chosen stimulus as a parametric modulation of choice
onset (modeled separately for the two feedback conditions).

https://identifiers.org/neurovault.collection:9839
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The third and fourth GLMs were designed to facilitate decod-
ing and connectivity analyses: GLM 3 included identical task
and confound regressors as those in GLM 1; however, feed-
back onset was modeled on a trial-by-trial basis, with unique
stick regressors at each instance of feedback (and no regressors
for valence/RPEs). This method produced individual feedback
phase beta-maps for each trial of the learning task (Mumford
et al. 2014). GLM 4 was also similar to GLM 1, except a sin-
gle feedback onset regressor for all trials was used, and we
instead modeled the prechoice phase on a trial-by-trial basis,
producing individual prechoice phase beta-maps for each trial of
the task.

The n-back task GLM (GLM 5) included the same confound
regressors as the learning task GLMs. Regressors of interest
included a block-level regressor spanning the beginning to end
of each stimulus sequence, and a parametric modulation of
that regressor that reflected the particular N assigned to each
sequence. This latter regressor thus captured the linear effect of
increasing cognitive load in the n-back task and was used as an
executive function ROI localizer for later analyses.

Individual subject runs were combined in a fixed effects
analysis and then brought to the group level for mixed-effect
analyses. For whole-brain analyses, we imposed a family-wise
error cluster-corrected threshold of P < 0.05 (FSL FLAME 1) with
a cluster-forming threshold of P < 0.001.

Our region-of-interest (ROI) creation procedure was designed
to both avoid double-dipping at the subject level (Kriegeskorte
et al. 2009; Boorman et al. 2013) and to conservatively test
our predictions about RL processes specifically in the Single-
shot feedback condition. First, for each subject, we performed
a leave-one-out group-level mixed-effects analysis of the main
effect of interest (e.g., valence) in the Familiar condition tri-
als only, excluding that subject’s data. Prethreshold masking
was performed in this analysis to constrain results within an
anatomical region using a cluster-corrected threshold of P < 0.05
(FSL FLAME 1) and cluster-forming threshold P < 0.01 (note that
this threshold was relaxed relative to the whole-brain threshold
for ROI creation purposes only). For striatal analyses, we used
a three-partition striatal mask for anatomical masking (Choi
et al. 2012). For cortical ROI masking, we used the Harvard-
Oxford probabilistic atlas, thresholding all masks at 0.50. (We
note that for the inferior parietal lobule mask we combined
the bilateral angular and supramarginal gyri.) Because of this
method, resulting Familiar and Single-shot condition ROI results
were statistically valid at the subject level, and all Single-shot
condition results were additionally validated out-of-set at the
condition level. All neural effect sizes (betas) were extracted
using featquery (FSL).

Our cross-validated encoding analysis of RPE processing was
performed as follows: Beta series data for feedback onset (GLM
3) were extracted from each subject’s dorsomedial striatum ROI.
Then, for each individual run, a linear regression was performed
independently for each voxel, relating its activation to model-
derived RPEs on rewarded Familiar condition trials only. We
constrained this analysis to rewarded trials to model parametric
prediction error effects independent of valence. The resulting
n × 1 vector of parameter estimates, for n voxels, was then mul-
tiplied by one of three different trial × n matrices of independent
beta series data: the beta series of rewarded Familiar trials in
the held-out run, the beta series of rewarded Single-shot trials
within-run, and the beta series of rewarded Single-shot trials
in the held-out run. This produced a vector of “predicted” RPEs
for each of these analyses. Predicted RPEs were then correlated

(Spearman) with the model-derived RPEs for the associated
run/condition and Fisher-transformed for statistical analysis
(two-tailed t-tests relative to zero, with alpha set to 0.05).

Functional correlation analyses were performed as follows:
First, we aimed to identify prefrontal cortex (PFC) voxels that
were related to the encoding of the fractal stimuli. Thus, we
created a PFC ROI using a group-level mixed-effects analysis on
the Single-shot > Familiar prechoice phase contrast (using the
aforementioned leave-one-out procedure to maintain statistical
independence), masking those results (prethreshold) with the
group main effect map from the n-back GLM (parametric
N regressor; see above). Then, for each ROI (e.g., PFC and
hippocampus) and phase (e.g., prechoice and feedback), we
extracted trial-by-trial betas from either GLM 3 (for feedback)
or GLM 4 (for prechoice) and averaged within each ROI. We
performed beta series correlations (Rissman et al. 2004) by
computing the spearman correlation coefficients between each
ROI pair and then Fisher-transformed those values to derive a
“Connectivity Index.” We measured both within-subject effects
for this Connectivity Index (i.e., Single-shot vs. Familiar) and
between-subject correlations between the condition differences
in connectivity and the condition differences in learning and
n-back performance. Connectivity analyses in control ROIs
(thalamus and posterior cingulate cortex) were performed
using beta-series data extracted from anatomically derived ROIs
(Harvard-Oxford atlas; thresholded at 0.50). Finally, a post-hoc
connectivity analysis on PFC-VTA functional correlations was
performed using the probabilistic VTA atlas given by Murty et al.
2014 (thresholded at 0.50).

Results
Subjects (N = 32) performed a probabilistic selection learning
task (Frank et al. 2007) adapted for fMRI, and an executive
function task (n-back; Kirchner 1958). Each trial of the selection
task required a binary choice between two stimuli (Fig. 1A).
Subjects were required to learn which stimulus in each pair
more often produced favorable outcomes. The task involved
two feedback conditions: Familiar and Single-shot. The Familiar
condition used numeric points (i.e., “+1” or “+0”) as secondary
reinforcers. Points, like money, are secondary reinforcers due
to their common association with positive outcomes in various
real-world games and activities; indeed, a multitude of RL stud-
ies have used points as proxies for reward, which lead to reliable
learning behaviors and robust responses in the reward system
(e.g., Daw et al. 2006). Therefore, we refer to the Familiar feedback
condition as generating “reward outcomes.”

The Single-shot feedback condition used randomly gener-
ated fractal stimuli as outcomes. Both the target (“goal”) and
nontarget (“non-goal”) fractals were novel on each Single-shot
condition trial. Thus, the Single-shot condition required subjects
to use their knowledge of the current target fractal to determine
whether their choices were successful. Each trial of both condi-
tions included three phases: a prechoice phase, a choice phase,
and a feedback phase (Fig. 1A). In the Single-shot condition, the
two novel fractal stimuli were displayed during the prechoice
phase with one designated as the “goal” and the other as the
“non-goal,” explicitly mirroring, respectively, the “+1” and “+0”
of the Familiar condition. To match motivational aspects of
the two conditions, no performance-based monetary incentives
were provided in the experiment.

To investigate differential effects of task difficulty and
feedback condition, we also implemented two difficulty levels
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Figure 2. Behavioral results. (A) Average performance in the probabilistic selection task for each condition. Subjects performed well above chance (50%) in the task.
We observed main effects of feedback condition (Familiar vs. Single-shot) and difficulty (Easy vs. Hard) but no interaction. Model simulation results (triangles) are
depicted for each condition and difficulty level. (B) Learning curves for each condition and difficulty level, with six trials per bin. Model simulations are depicted as

dashed lines. (C) Mean reaction times during learning. We observed a main effect of difficulty, but no effect of feedback condition nor any interaction. (D) Correlation of
performance in the N-back task with learning performance in the probabilistic selection task (collapsed across difficulty levels). Fam = Familiar condition; SS = Single-
shot condition. (E) Regression weights resulting from a logistic regression analysis on testing phase choices. Subjects’ choice of stimuli increased as a function of how
often the stimulus was rewarded during learning (�R, left) and showed a bias toward stimuli associated with Familiar reward feedback when they were paired with

stimuli associated with Single-shot feedback (right). (F) Learning rate parameters from the best-fit RL model. Learning rates were significantly higher in the Familiar
condition. ∗P < 0.05; Error shading = 95% CI; Error bars = 1 SEM.

(Hard and Easy), where each pair of choice stimuli was
associated with different probabilities of yielding successful
outcomes (Fig. 1B). To test subjects’ retention of learned values,
a subsequent testing phase was administered where subjects
made choices between each possible pairing of the eight
learning stimuli and no feedback was given (Fig. 1C). Finally, to
capture an independent measure of executive function, subjects
also performed a standard visual n-back task (Fig. 1D; Ns used:
1, 2, 3). We predicted that performance on this task would
be specifically related to subjects’ ability to learn from novel
outcomes.

Executive Function Supports Single-Shot
Reward Learning

Subjects performed well in the learning task, selecting the bet-
ter stimulus of each pair in both the Familiar (mean: 82%;
chance = 50%; t(30) = 19.39, P < 1e−17) and Single-shot (mean:
75%; t(30) = 10.70, P < 1e−11) conditions (Fig. 2A,B). A repeated-
measures ANOVA revealed a main effect of feedback condition
(i.e., Single-shot vs. Familiar; F1,30 = 11.67, P = 0.002), with better
learning phase performance in the Familiar versus the Single-
shot condition (Bonferroni-corrected; t(30) = 3.41, P = 0.002). We

also observed a main effect of difficulty (F1,30 = 22.74, P < 1e−4),
with better performance on Easy versus Hard trials (t(30) = 4.77,
P < 1e−4). There was no significant interaction between feed-
back condition and difficulty (F1,30 = 0.34, P = 0.57). These results
show that subjects could leverage Single-shot outcome stimuli
to successfully learn to select actions that lead to favorable
outcomes, but that this was less successful than learning via
familiar rewards.

One explanation for performance differences between the
Familiar and Single-shot feedback conditions is the dual-task
demands in the latter (i.e., holding the novel fractal in memory
while also having to select a preferred stimulus). A common
signature of dual-tasks is slowed reaction times (RTs) for
individual subtasks (Pashler 1994). Thus, one prediction of a
dual-task effect is slower RTs during choice in the Single-shot
condition relative to the Familiar condition. An ANOVA on the
RT data (Fig. 2C), however, revealed no main effect of feedback
condition (F1,30 = 0.57, P = 0.47), a main effect of difficulty
(F1,30 = 14.07, P = 0.001), and no significant interaction (F1,30 = 1.83,
P = 0.19). These results show that the dual-task design of the
Single-shot condition did not manifest by slowing RTs, which
suggests that maintaining a novel outcome image did not
necessarily interfere with choice. These results also argue
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against a qualitatively different process (such as planning) driv-
ing behavior in the Single-shot condition: In general, planning
should incur an RT cost relative to simple instrumental learning
(Keramati et al. 2011).

We hypothesized that one factor differentiating performance
between the conditions was the fidelity of working memory.
That is, if a fractal stimulus is sufficiently encoded and main-
tained in memory during a Single-shot trial, it should effec-
tively stand in as a reinforcer at feedback. If this is true, we
expect working memory performance to correlate with Single-
shot condition performance above and beyond performance in
the Familiar condition (Fig. 2D). Indeed, Single-shot condition
performance was significantly correlated with n-back d-prime
values (ρ = 0.68, P < 1e−4), but Familiar condition performance
was not (ρ = 0.23, P = 0.221). A permutation test revealed that
these correlations were significantly different (P = 0.038; 5000
iterations of shuffled correlation differences). We also found
a significant correlation between n-back performance and the
learning difference between feedback conditions (i.e., Single-
shot minus Familiar; ρ = 0.52, P = 0.003). Nonparametric (Spear-
man) correlations were used for the above correlations given
the one clear n-back task outlier (Fig. 2D); results were replicated
with parametric (Pearson) correlation metrics.

In an exploratory follow-up analysis, we asked if working
memory performance may be linked to early learning in the
Familiar condition, when executive function may be useful for
formation of value representations (Collins 2018; McDougle and
Collins 2021; Rmus et al. 2021). Interestingly, we found signifi-
cant correlations between n-back performance and early learn-
ing (first six trials) in both the Familiar (ρ = 0.39, P = 0.03) and
Single-shot conditions (ρ = 0.53, P = 0.002), consistent with a role
for executive function in the earliest phases of typical RL tasks.

We next asked if executive function covaried with learning
in the Single-shot condition simply because it was a harder
(i.e., dual) task, or if the particular memory demands of the
Single-shot condition recruited executive function. That is, the
correlation results (Fig. 2D) could arise due to simple differences
in the difficulty of the learning task between conditions as
measured by choice performance. We controlled for difficulty
by selecting difficulty-matched subsets of data—specifically, we
examined Hard trials of the Familiar condition and Easy trials of
the Single-shot condition, where performance was statistically
indistinguishable (Bayes factor = 6.84 in favor of the null). If n-
back performance covaries with Single-shot condition perfor-
mance for reasons beyond simple task difficulty, the correlation
results in Figure 2D should hold in these data. Indeed, Single-
shot-Easy performance was significantly correlated with n-back
performance (ρ = 0.74, P = 0.004) but Familiar-Hard performance
was not (ρ = 0.06, P = 0.504), and these correlations were signif-
icantly different (permutation test: P = 0.046). Taken together,
these results suggest that executive function played a selective
role in maintaining Single-shot outcomes and helping subjects
learn from them.

Learning from Single-Shot Outcome Feedback versus
Familiar Rewards Is Similar, but Slower

How well were learned stimulus values retained after training
was complete? One potential consequence of learning purely
via top-down executive function—a plausible hypothesis for the
Single-shot condition—is relatively brittle value representations
that are forgotten quickly (Collins 2018). On the other hand, if
learning proceeds similarly between the conditions, the amount

of forgetting should be roughly the same. We addressed this
question in the testing phase (Fig. 1C). When looking at pairs of
testing phase stimuli that were learned under the same feed-
back condition, we found that subjects selected the more valu-
able stimulus more often for both the Familiar and Single-shot
stimuli (mean: 68%; t(30) = 8.49, P < 1e−8; mean: 64%; t(30) = 5.04,
P < 1e−3; respectively), with no significant difference between
the feedback conditions (t(30) = 1.11, P = 0.28). In a further anal-
ysis, we looked at performance in these same testing phase
trials as a function of asymptotic learning—that is, as a proxy
for forgetting. We computed forgetting by taking the difference
between performance on the last six trials of the learning phase
for each condition and performance on the within-condition
testing phase trials. The Familiar condition showed an average
19.37% forgetting effect, and the Single-shot condition showed
an average 17.08% forgetting effect; forgetting was not signifi-
cantly different between the conditions (t(30) = 0.62, P = 0.54).

To characterize choice behavior across the full range of test-
ing phase trial types, we further analyzed subjects’ choices
using multiple logistic regression (see Methods). The choice of
stimulus in the testing phase was influenced by the difference
in the cumulative number of successful outcomes associated
with each stimulus (“�R” in Fig. 2E; t-test on Betas relative
to zero: t(30) = 11.17, P < 1e−11), but we did not observe a sig-
nificant interaction between cumulative value and the effect
of the feedback condition in which the stimuli were learned
(t(30) = 0.21, P = 0.839). This suggests that subjects similarly inte-
grated both types of outcomes (rewards and goal-congruent
outcomes) into longer-term memories of stimulus value. Lastly,
when the two stimuli in the testing phase had originally been
learned via different feedback conditions, subjects did show
a bias toward stimuli from the Familiar condition, even when
controlling for cumulative reward differences within the same
regression (Fig. 2E; t(30) = 2.16, P = 0.039). This suggests that val-
ues learned via familiar rewards may have been subtly more
salient during recall when directly pitted against those learned
via novel outcomes.

Next, we asked if performance differences between feedback
conditions of the learning task resulted from choice- or learning-
related effects. In order to better understand the differences
between the feedback conditions, and to produce RL model
regressors for fMRI analysis, we modeled subjects’ choices in
this task with several variants of standard RL models (Sutton
and Barto 1998). We implemented a Bayesian model selection
technique (Piray et al. 2019) that simultaneously fits and com-
pares multiple candidate models (see Methods). This analysis
strongly favored a simple RL model that differentiated the Famil-
iar and Single-shot conditions via separate learning rate param-
eters (Exceedance probability for this model vs. competing vari-
ants = 1.0; Supplementary Fig. 1; Supplementary Table 1). Criti-
cally, this model outperformed a competing model that used dif-
ferent levels of decision noise in each feedback condition—this
suggests that the condition differences we observed (Fig. 2A,B)
were related to learning rather than choice processes, the latter
being a natural prediction of dual-task interference.

To validate our model, we simulated choices using the
fit model parameters: As shown in Figure 2A,B, the model
successfully reproduced subjects’ performance across feedback
conditions and difficulty levels. Performance differences
were successfully captured by the learning rate parameter—
learning rates were significantly lower in the Single-shot
condition versus the Familiar condition (P < 1e−4 via an
“HBI t-test,” see Methods; Fig. 2F and Supplementary Fig. 1).
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Moreover, consistent with the results depicted in Fig. 2D, n-
back performance was positively correlated with the difference
between the Single-shot and Familiar condition reinforcement
learning rates (i.e., Single-shot minus Familiar; ρ = 0.44, P = 0.019).

We note that the observed difference in learning rates could
represent (at least) two non–mutually-exclusive phenomena:
First, it could be that there are weaker appetitive signals for
novel outcome stimuli versus familiar rewards. Second, occa-
sional “lapses” in working memory could lead to forgetting of
the fractals. The fact that n-back performance was selectively
predictive of the Single-shot condition performance appears to
support the lapsing interpretation, though executive function
could also act to boost the appetitive strength of novel outcomes.
Either way, choice and RT analyses suggest qualitatively similar,
though slower, learning from Single-shot novel outcomes versus
Familiar reinforcers. Next, we asked if these similarities carried
over to the neural signatures of learning.

Similar Neural Regions Support Familiar Reward
and Single-Shot Outcome Learning

We reasoned that Single-shot valuation of novel outcomes
leveraged the same RL circuits that drive learning from Familiar
rewards, and that activity in executive function-related regions
of the prefrontal cortex (PFC) could support this process
through an interaction with reward-sensitive regions. These
results would be consistent with our behavioral results, where
executive function performance covaried with Single-shot
learning (Fig. 2D).

We first used whole-brain contrasts to measure univariate
effects of feedback condition. In the prechoice phase, we
observed significantly more activity in the Single-shot versus
Familiar condition in areas across the ventral visual stream,
hippocampus, and both medial and lateral regions of PFC
(Supplementary Fig. 2; see also for results of Familiar > Single-
shot contrasts). These results are broadly consistent with the
greater visual complexity in the Single-shot condition during the
prechoice phase, where text-based instructions and a complex
fractal stimulus are viewed rather than simply text alone
(Fig. 1A). Additionally, there were increased cognitive demands
during this phase in the Single-shot condition—subjects needed
to attend to and encode the novel fractals. In the choice phase,
we observed more activity in the medial striatum and visual
cortex in the Single-shot versus Familiar condition. The lack
of any significant differences in PFC activation during the
choice phase in this contrast is consistent with the relatively
modest working memory demand in the Single-shot condition
(Supplementary Fig. 2). However, we note that the continued
activation in primary visual areas in the Single-shot condition
during the choice phase could potentially reflect ongoing
working memory maintenance (Emrich et al. 2013). Finally, in
the feedback phase, we observed greater activation in the visual
cortex and dorsolateral prefrontal cortex in the Single-shot
versus Familiar condition. These increased activations could
reflect, respectively, the complex visual features of the fractal
stimulus and recall of its valence (Manoach et al. 2003).

We used ROI analyses to test the hypothesis that overlapping
neural populations encode value signals related to traditional
secondary reinforcers and novel outcomes. We used the Famil-
iar feedback condition as a reward processing “localizer” task,
generating the ROIs we used to characterize novel outcome
processing in the Single-shot feedback condition. Thus, our

analysis of the Single-shot condition was fully validated out-of-
set (see Methods). This approach provided a stringent test of our
hypothesis that overlapping neural populations would encode
reward and value signals related to both traditional secondary
reinforcers and novel, Single-shot outcomes. Moreover, ROIs
for individual subjects were determined using a leave-one-out
procedure where the group functional map used to create a
particular subject’s functional ROI excluded that subject’s own
data (Boorman et al. 2013; Kriegeskorte et al. 2009; see Methods
for further details). Figure 3A shows example ROIs derived from
the Familiar condition for one representative subject.

We first sought to test whether subcortical valence responses
were comparable across feedback conditions. In the Familiar
condition, we observed predicted effects of feedback valence
in the anterior hippocampus (HC; t-test on neural beta
values: t(27) = 5.78, P < 1e−5) and the ventral striatum (VS;
t(27) = 4.20, P < 1e−3), in addition to various cortical activations
(Supplementary Fig. 2). Both of these subcortical results are
consistent with previous findings of reward processing in
RL-related circuits (Delgado et al. 2000; McClure et al. 2004;
Foerde and Shohamy 2011; Li et al. 2011; Davidow et al.
2016; Palombo et al. 2019). Crucially, in the held-out Single-
shot condition, valence responses were observed in both the
hippocampal (t(27) = 3.16, P = 0.004) and VS (t(27) = 4.51, P < 1e−3)
ROIs defined from the Familiar condition valence response
(Fig. 3B). Moreover, whole-brain contrasts revealed no clusters
(cortical or subcortical) with significant differences in valence
responses between conditions (Supplementary Fig. 2). These
results suggest that rapid endowment of value to a novel, Single-
shot feedback stimulus leads to valenced responses in the
same regions of the brain that show sensitivity to conventional
reinforcers.

We hypothesized that if the brain’s reinforcement system
is harnessed to learn from novel outcomes, the same compu-
tational latent variables should be present in both feedback
conditions. The value of the selected choice stimulus (termed
“Q-values” in standard RL models) typically correlates with acti-
vation in the medial frontal cortex (Bartra et al. 2013). In the
Familiar condition, we observed the predicted Q-value coding
in a ventral–rostral region of medial prefrontal cortex (mPFC;
t(27) = 4.26, P < 1e−3; Fig. 3A). Consistent with our predictions, we
observed significant Q-value coding in this same mPFC ROI in
the held-out Single-shot condition (Fig. 3B; t(27) = 2.90, P = 0.007).
This result implies that comparable computational processes
are involved in modifying value representations through both
familiar rewards and novel outcomes, and using those values to
guide decisions.

Reward prediction errors (RPEs) drive reinforcement learning
and have robust neural correlates in multiple brain regions.
In the Familiar condition, we observed significant RPE-linked
activity in various regions (Fig. 3A and Supplementary Fig. 2),
notably in a frontal ROI that included regions of bilateral
orbitofrontal cortex (OFC, with some overlap in the insula;
t(27) = 5.49, P < 1e−5), a second cortical ROI spanning bilateral
portions of the inferior parietal lobe (IPL; t(27) = 4.98, P < 1e−4),
and a bilateral ROI in dorsomedial striatum (DMS; t(27) = 3.99,
P < 1e−3). These ROIs are consistent with findings from previous
studies modeling the neural correlates of prediction errors (Daw
et al. 2011; Garrison et al. 2013).

We observed significant effects in the two cortical RPE ROIs
localized in the Familiar condition when analyzing the held-
out Single-shot condition (Fig. 3B; SPL: t(30) = 3.33, P = 0.003;
OFC: t(30) = 4.06, P < 1e−3), further supporting the idea that
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Figure 3. fMRI results: valence, value, and prediction errors. (A) Example ROIs for the three main effects of interest are shown for an individual subject (subject s020).
ROIs were created using a leave-one-out procedure, where each subject’s data were excluded from the statistical maps used to define their ROIs. Critically, only trials

from the Familiar condition were used to generate these ROIs. Held-out Single-shot condition results were then computed in these ROIs, for effects of (B) valence,
(C) model-derived Q-values at choice, and (D) model-derived reward prediction errors (RPEs). All parameter estimates were significantly greater than zero at P < 0.01,
except where noted. Error bars = 1 SEM. mPFC = medial prefrontal cortex; OFC = orbitofrontal cortex; IPL = inferior parietal lobule.

comparable computational mechanisms drove learning in
both feedback conditions. Moreover, whole-brain contrasts
revealed no significant differences in RPE processing between
the conditions (Supplementary Fig. 2). However, contrary to our
prediction, the RPE response in the dorsomedial striatum ROI,
while numerically positive on average, was not significantly
greater than zero in the Single-shot condition (Fig. 3B; t(30) = 1.17,
P = 0.253). Control analyses using slightly different striatal ROIs
also failed to reach significance (Supplementary Fig. 3). We
note that this analysis of RPE-related activity is particularly
conservative because the RPE regressor is included in the same
model as—and thus competes for variance with—the outcome
valence regressor. Consequently, significant activity in this
analysis must reflect parametric RPE encoding beyond the effect
of outcome valence.

To further probe if striatal RPEs were detectable in the Single-
shot condition, we opted to take a cross-validated encoding-
focused approach (see Methods for details). If the computations
underlying RPEs in response to familiar rewards are mirrored
during learning from novel outcomes, we should be able to
decode goal RPEs in the striatum using a model trained on
the Familiar condition data. We extracted feedback-locked betas
for each individual trial of the learning task (from voxels in
the striatal RPE ROI) and restricted our analysis to rewarded
trials only. For each Familiar condition run, we trained lin-
ear models separately for each voxel, computing the ability of
the feedback response amplitude to explain variance in the
model-derived RPEs. RPEs were then decoded from the held-out
BOLD data for both Single-shot and Familiar condition runs and

compared with the associated held-out model-derived RPEs for
those same runs.

Cross-validated RPE encoding (Fig. 4) was observed within-
condition across-runs (t(27) = 3.31, P = 0.003), between-condition
within-run (t(27) = 6.39, P < 1e−5), and between-condition
across-runs (t(27) = 2.34, P = 0.027). We emphasize that the
regression models used for the encoding analyses were trained
on Familiar runs only, providing a stringent test for RPE encoding
in the Single-shot condition. These results suggest that novel
outcome prediction errors are represented in the same format
as typical reward prediction errors in the dorsomedial striatum.
However, we caution that these results were not mirrored
in the conventional GLM analysis (Fig. 3B). This discrepancy
suggests that novel outcome RPE signals in the DMS may be
relatively weaker (or noisier) than familiar reinforcer RPE signals,
consistent with our observation of slower learning in the Single-
shot condition. However, we do note that Single-shot condition
RPE signals in the frontal and parietal ROIs were statistically
robust (Fig. 3B).

Novel Outcome Learning Drives Increased
Frontal–Striatal and Frontal–Hippocampal Functional
Correlations

Our second key hypothesis was that executive prefrontal cortex
(PFC) regions encode and maintain informative novel outcomes
and interact with reward circuits so that those outcomes can
act as reinforcers at feedback. Specifically, we predicted greater
functional correlations between these networks during novel
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Figure 4. Cross-validated reward prediction error analysis. Regression analyses
were run to decode model-derived RPEs from activation in dorsal striatal voxels

in the Familiar condition. We used the resulting regression weights at each
voxel to generate predicted trial-by-trial RPEs for the held-out runs both within
and between conditions. Plots depict the distribution of correlation coefficients
between predicted RPEs (derived from BOLD data) with model-derived RPEs.
∗P < 0.05.

outcome versus reward-driven learning, with PFC activity during
the encoding of novel outcomes covarying with reward sys-
tem activity at feedback. To test this, we needed to specify an
executive function prefrontal ROI. We first computed a whole-
brain group-level map of neural regions that were parametri-
cally modulated by load (“N”) in the independent n-back task
(Supplementary Fig. 4). We extracted the significant PFC cluster
from that analysis, which spanned regions of the precentral
gyrus, middle frontal gyrus, and inferior frontal gyrus (Yeo et al.
2015). Then, for each subject, we computed a leave-one-out func-
tional ROI using the Single-shot > Familiar contrast from the
prechoice phase (Supplementary Fig. 2), masking those results
with the aforementioned n-back PFC map (see Fig. 5A for an
example PFC ROI). For subcortical areas, we used the three ROIs
gleaned from GLM 1 (Fig. 3A; VS and hippocampal valence-based
ROIs, and the DMS RPE-based ROI).

As predicted, we found stronger functional correlations in
the Single-shot condition between PFC activity during encoding
and both reward (hippocampus) and RPE-related (DMS) areas at
feedback (Fig. 5B; PFC-hippocampus, t(27) = 3.01, P = 0.006; PFC-
DMS, t(27) = 2.36, P = 0.026). We observed no significant condition
difference in PFC-VS functional correlations (t(27) = 0.25, P = 0.81).
These results suggest that encoding of desirable outcomes in

the PFC may drive downstream reward signals in subcortical
structures when those outcomes are attained.

One alternative explanation for this result is that elevated
attention or vigilance in the Single-shot condition’s prechoice
phase could drive higher global activity across multiple brain
regions that persists into the feedback phase. First, we note
that the null PFC-VS result (Fig. 5B) speaks against this global
confound. Nonetheless, we controlled for this possibility by
performing the above connectivity analysis in two additional
regions that have been shown to respond to rewards, the pos-
terior cingulate cortex (PCC; McDougle et al. 2019; Pearson et al.
2011) and thalamus (Knutson et al. 2001). We did not expect
these ROIs to contribute significantly to the hypothesized novel
outcome learning processes. Indeed, there were no significant
effects of feedback condition for PFC functional correlations
with either the PCC (Supplementary Fig. 5; t(27) = 0.71, P = 0.48) or
the thalamus (Supplementary Fig. 5; t(27) = 0.97, P = 0.34), render-
ing a global attentional account of our results unlikely.

The observed connectivity results also appeared to be
uniquely related to PFC processing during the encoding of goal
stimuli (the prechoice phase), rather than PFC activity during the
feedback phase: We observed no significant differences between
Single-shot versus Familiar functional correlations between
feedback-locked PFC activity and feedback-locked hippocampal,
DMS, or VS activity (all Ps > 0.47). Thus, our results did not
appear to be driven by heightened PFC activity that persisted
throughout Single-shot trials, but specifically related to the
initial encoding of desirable outcomes (presumably in PFC) and
subsequent outcome-related responses (in subcortical reward
regions).

We reasoned that connectivity between executive and reward
regions would also be related both to executive functioning
itself (n-back performance) and, critically, to learning. Indeed,
differences between PFC and hippocampus connectivity
strength in the Single-shot versus Familiar condition were
significantly correlated with n-back performance (ρ = 0.56,
P = 0.002) and marginally correlated with Single-shot versus
Familiar condition learning differences (ρ = 0.37, P = 0.052;
Fig. 5C, top row). Moreover, the degree of difference between
PFC and DMS connectivity strength in the Single-shot versus
Familiar condition was marginally correlated with both n-
back performance (ρ = 0.33, P = 0.090) and condition learning
differences (ρ = 0.33, P = 0.088; Fig. 5C, middle row). We also
observed a significant correlation between the difference
between PFC and VS connectivity in the Single-shot versus
Familiar condition and n-back performance (ρ = 0.38, P = 0.046;
Fig. 5C, bottom row), but not learning differences (ρ = 0.10,
P = 0.62). We note that although the connectivity results were
robust in our within-subject contrasts (Fig. 5B), the mostly trend-
level between-subject correlation effects (Fig. 5C) should be
interpreted with caution. However, taken as a whole, these
results suggest that top-down cortical processes may rapidly
shape downstream reward responses to flexibly map outcomes
to successful actions and promote adaptive decision-making.

PFC Interactions with Dopaminergic Regions
for Learning from Novel Outcomes

In addition to the planned analyses, we also performed an addi-
tional exploratory, a posteriori analysis to examine interactions
between PFC and the ascending dopaminergic system. To test
this, we examined functional correlations between our PFC ROI
and an anatomically defined ventral tegmental area (VTA) ROI
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Figure 5. Functional correlations across brain regions and trial phases. (A) Functional correlations were computed between PFC activity during the prechoice phase

and feedback-locked hippocampal and striatal activity (dorsal and ventral) on rewarded trials. (B) Within-subject functional correlation results. (C) Between-subject
correlations relating differences in connectivity between conditions, and both n-back performance (left column) and learning task performance (right columns) as
a function of condition. CI = connectivity index; SS = Single-shot feedback condition; Fam = Familiar feedback condition; PFC = prefrontal cortex; DMS = dorsomedial

striatum; VS = ventral striatum. Shaded regions connote 95% confidence intervals. #P < 0.10; ∗P < 0.05.

(Murty et al. 2014), the main source of the brain’s mesolimbic
and mesocortical dopamine (Fig. 6).

Functional correlations between PFC (during prechoice)
and VTA (during feedback) were significantly higher in the
Single-shot condition relative to the Familiar condition (Fig. 6;
t(27) = 2.31, P = 0.029). These effects were unique to PFC activity
during the prechoice phase: Correlations between feedback-

locked PFC activity and feedback-locked VTA activity were
not significantly different between conditions (t(27) = 0.25,
P = 0.80). However, we did not observe significant brain–behavior
correlations—PFC-VTA connectivity differences between condi-
tions did not correlate with n-back performance nor learning
differences (P’s > 0.60). Taken together, these results offer
preliminary evidence that single-trial learning from novel
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Figure 6. Functional correlations between PFC and the VTA. Functional corre-
lations between PFC activity during the prechoice phase and feedback-locked

ventral tegmental area (VTA) activity on successful trials. Inset: anatomical VTA
ROI used in the analysis (shown in black). ∗P < 0.05.

outcomes might involve PFC interactions with dopaminergic
neurons (Ballard et al. 2011; Sharpe et al. 2019).

Discussion
Here, we presented evidence that learning via novel choice
outcomes is behaviorally similar to learning via familiar sec-
ondary reinforcers. This type of learning appears to rely on
highly similar activation of reward circuitry: We found over-
lapping neural responses to Single-shot novel outcome attain-
ment and Familiar reward attainment with respect to outcome
valence, suggesting that novel stimuli can substitute as rewards
during instrumental learning. During choice, value represen-
tations were similar between conditions, supporting the idea
that learning mechanisms were shared. Similarly, reward pre-
diction errors, the key teaching signal of reinforcement learning,
appeared to be similar between the Single-shot and Familiar
reward conditions, especially in cortical regions. Lastly, success-
ful performance in the Single-shot condition was associated
with increased connectivity between prefrontal cortical regions
implicated in executive control and subcortical reward circuits.
Together, these findings are consistent with executive function
enabling an arbitrarily flexible reward function for corticostri-
atal reinforcement learning (Daniel and Pollmann 2014).

The crucial feature of our experimental design was the fact
that the nonfamiliar outcomes (i.e., fractal stimuli) were novel
on every Single-shot condition trial. Thus, for subjects to learn
in this condition, they had to rapidly endow value to these
transient stimuli (Cole et al. 2013). How does a never-before-seen
stimulus get rapidly imbued with value? We propose that a novel
stimulus can be internally defined as a desirable outcome (e.g.,
through verbal/symbolic instruction) and thus be endowed with
value while held in working memory. With these ingredients,
attaining this outcome should then express the key features
of a typical reinforcer. Testing this proposal is difficult, though

our results provide some evidence in its favor: Performance
on an independent executive function task predicted subjects’
ability to learn from Single-shot novel outcomes, even when
controlling for task difficulty (Fig. 2D). Moreover, BOLD activity
in prefrontal executive regions during encoding of the novel
outcomes positively correlated with subsequent responses in
the brain’s reward system (Figs 5 and 6).

We note that there is an alternative (and not mutually exclu-
sive) interpretation of behavior in the Single-shot condition:
It is possible that instead of prospectively imbuing the novel
outcomes with value during encoding, people could retrospec-
tively assign value at feedback via credit assignment. Specifi-
cally, subjects could determine if the outcome they receive had
been previously mapped onto the desirable “goal” template and
then assign credit to the action that produced that outcome.
This interpretation echoes recent work suggesting that high-
level representations (e.g., cognitive maps) are not only used
prospectively for planning but can also be used retrospectively
by the model-free RL system for credit assignment of familiar
reward stimuli (Moran et al. 2021). Future studies, perhaps using
methods with higher temporal resolution (e.g., EEG), may help
dissociate these mechanisms by revealing the temporal dynam-
ics of neural activity at feedback. That is, while a prospective
valuation model would predict indistinguishable, rapid feedback
responses between our conditions, a retrospective credit assign-
ment model would predict more drawn-out processing of novel
outcomes.

Important questions remain about the factors that can ren-
der a novel outcome stimulus valuable within the brain’s reward
system. Good performance in the Single-shot task might require
intrinsic motivation (Barto 2013), where actions are reinforced
essentially “for their own sake.” Although the novel outcome
stimuli were extrinsic visual cues, the motivation to learn from
them in the first place—even though they lacked any prior
value—could simply reflect a desire to follow the experimenter’s
instructions (Doll et al. 2009), a social learning process that
is reinforced over development. Interestingly, a previous study
found that dopaminergic medication can boost a learner’s ability
to adhere to new instructions about previously learned neutral
stimulus–outcome associations that were only endowed with
value after learning (Smittenaar et al. 2012). Our findings are
consistent with this result, supporting a role for the dopaminer-
gic system in treating abstract outcomes as rewards via explicit
(verbal or symbolic) instructions. Further research could investi-
gate if other independent correlates of intrinsic motivation (Deci
1971) predict one’s ability to learn from novel outcomes and
engender flexibility in the subcortical reward system.

Our fMRI results also may speak to the common dichotomy
between goal-directed and instrumental components of
decision-making (Collins and Cockburn 2020; Dickinson and
Balleine 1994; Doll et al. 2012). In our study, we observed
essentially overlapping neural signatures for Single-shot novel
outcomes and secondary reinforcers, the latter reflecting a
conventional form of reward feedback (Fig. 3). Other studies
have revealed distinct networks corresponding to two forms
of feedback-based learning: For instance, Gläscher et al. (2010)
showed that neural signatures of model-based “state prediction
errors” (in lateral PFC and the intraparietal sulcus) were
physiologically distinct from neural signatures of typical reward
prediction errors (in ventral striatum). These signals reflected
violations of state transition expectations during a sequence
of choices. Gläscher and colleagues’ findings suggest that
behavior in our Single-shot condition could, in theory, have
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been driven by this form of state transition learning. Much like
learning a complex trajectory toward a goal, subjects could
learn a transition structure between the choice stimuli and
the “goal fractal” category of objects without ever needing to
rely on “bottom-up” rewards. Our results do not support this
interpretation, as we observed engagement of typical reward
learning circuits during learning from the Single-shot outcomes.
We propose that when outcome states are congruent with the
task’s primary goal (as in our study, e.g., choose the correct
stimulus), the line between a state prediction error and a reward
prediction error might be blurred. Indeed, other studies have
revealed similar overlaps between state and reward prediction
errors in canonical reinforcement learning circuits (Guo et al.
2016; Langdon et al. 2017).

In contrast to the current study, previous research has
highlighted important differences between attaining so-
called subgoals versus attaining rewards during hierarchically
organized decision-making. For example, Ribas-Fernandes et al.
(2011) used a hierarchical task that included a subgoal (pick up
a package in a mail delivery simulation) that had to be attained
before earning a terminal reward (delivery of the package).
The authors observed neural correlates of a “pseudoreward
prediction error”, driven by surprising jumps in the location
of the subgoal, in regions including the anterior cingulate,
insula, lingual gyrus, and right nucleus accumbens. In a separate
behavioral experiment, they argued that subgoal attainment
was not a reliable proxy for reinforcement. It is possible that
a lack of need for protracted learning from subgoals in such
studies of hierarchical decision-making (Ribas-Fernandes et al.
2011) may lead to qualitatively different neural responses versus
studies like ours, where attaining novel fractals (subgoals) is a
requirement for learning.

Our study has several important limitations. First, our
task design, where novel stimuli had to be encoded and
briefly maintained in short-term memory, may have artificially
introduced a dependence on executive function. That is, our
task made it somewhat difficult to fully separate effects of
learning from novel outcomes from effects of engaging working
memory, as both were clearly required. It should be mentioned
that even for tasks like the n-back, the striatum shows positive
responses on correct detection trials (Satterthwaite et al.
2012), suggesting that performing such tasks correctly provides
intrinsic reward. Indeed, we replicated this finding in the current
data set (Supplementary Fig. 6). There are, however, cases where
a novel outcome could be acted on without requiring working
memory: For instance, an outcome could instead be retrieved
from episodic memory, such as recalling and acting on an
instruction you received hours (or days) in the past. In that case,
the medial temporal lobe and medial prefrontal cortex may
be involved in maintaining and communicating the features
of valuable outcomes to striatal and midbrain circuits (Han
et al. 2010). Either way, it is difficult to conceive of a setting
where learning from novel outcomes would not carry memory
demands, whether short- or long-term.

Second, the precise cause of the poorer performance we
observed in the Single-shot feedback condition (Fig. 2A) was not
clear. Our modeling analysis appeared to rule out the interpreta-
tion that the effect was driven by noise during choice. Although
it was apparent that executive function—operationalized by
performance in the independent n-back task—was selectively
related to learning in the Single-shot condition (Fig. 2D), multiple
psychological phenomena could have attenuated performance
in that condition. These include a weaker appetitive signal for

Single-shot outcomes, or an increased frequency of lapses of
attention, where the fractal is either not encoded initially or
forgotten by the time of feedback. Future behavioral studies
could attempt to fill this gap, for example by testing subjects’
memory of the novel images themselves on intermittent probe
trials or in a subsequent long-term memory test. We speculate
that understanding the source of this learning difference could
reveal important computational constraints on learning from
unfamiliar action outcomes.

Third, we found mixed results with respect to striatal
RPE encoding in the Single-shot condition (Figs 3 and 4).
Surprisingly, our cross-validated encoding analysis (Fig. 4)
supported the presence of striatal RPEs in the Single-shot
condition, while our more liberal beta calculation showed
nonsignificant RPE encoding in the Single-shot condition (Fig. 3B
and Supplementary Fig. 3). These inconsistent results could
suggest a lack of power or sensitivity, or a true attenuation
of prediction errors when they are signaled by stimuli held in
working memory. The latter interpretation would be consistent
with findings showing a weakening of striatal prediction error
signals when working memory is actively contributing to choice
behavior (Collins et al. 2017). One approach to address this
question could be to induce a wider dynamic range of RPEs,
or to better match working memory demands.

Learning from novel outcomes in addition to familiar
reinforcers is a key aspect of intelligent behavior and is an
especially important cognitive tool for humans. Here, we asked
if novel outcomes could stand in for rewards during learning,
even when those outcomes are abstract stimuli with no prior
meaning or value to the learner and are only observed a single
time. We demonstrated that human subjects can easily perform
this kind of Single-shot instrumental learning and that it shares
many behavioral and physiological features with conventional
instrumental learning from secondary reinforcers. The ability
to rapidly direct behavior toward the achievement of abstract
outcomes has been linked to executive control processes in
the human prefrontal cortex (Duncan et al. 1996), an idea
that our data further supports. Taken together, our findings
suggest that humans can rapidly and flexibly define what
constitutes a reinforcer in a single instance, harnessing the
brain’s executive functions and reward circuitry to optimize
decision-making.
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Supplementary material can be found at Cerebral Cortex online.

Notes
We would like to thank the CCN Lab (UC Berkeley) and ACT
Lab (Yale) for helpful discussions. Conflict of Interest: The authors
declare no conflicts of interest.

Funding
National Institute of Mental Health fellowship (F32 MH119797 to
S.D.M.); National Institute of Mental Health (grant R01MH119383
to A.G.E.C. and B.B.); National Institute of Mental Health (grant
R01MH124108 to S.B.); National Institute of Mental Health fel-
lowship (F32MH119796 to I.B.); Hellman Fellows Fund Award.

https://academic.oup.com/cercor/article-lookup/doi/10.1093/cercor/bhab205#supplementary-data


Executive Function Assigns Value to Novel Goal-Congruent Outcomes McDougle et al. 245

References
Babayan BM, Uchida N, Gershman SJ. 2018. Belief state represen-

tation in the dopamine system. Nat Commun. 9(1):1891.
Ballard IC, Murty VP, Carter RM, MacInnes JJ, Huettel SA, Adcock

RA. 2011. Dorsolateral prefrontal cortex drives mesolimbic
dopaminergic regions to initiate motivated behavior. J Neu-
rosci. 31(28):10340–10346.

Barron HC, Dolan RJ, Behrens TEJ. 2013. Online evaluation of
novel choices by simultaneous representation of multiple
memories. Nat Neurosci. 16(10):1492–1498.

Barto AG. 2013. Intrinsic motivation and reinforcement learning.
In: Baldassarre G, Mirolli M, editors. Intrinsically motivated
learning in natural and artificial systems. Berlin, Heidelberg:
Springer, pp. 17–47.

Bartra O, McGuire JT, Kable JW. 2013. The valuation system: a
coordinate-based meta-analysis of BOLD fMRI experiments
examining neural correlates of subjective value. Neuroimage.
76:412–427.

Behzadi Y, Restom K, Liau J, Liu TT. 2007. A component based
noise correction method (CompCor) for BOLD and perfusion
based fMRI. Neuroimage. 37(1):90–101.

Boorman ED, Rushworth MF, Behrens TE. 2013. Ventromedial
prefrontal and anterior cingulate cortex adopt choice and
default reference frames during sequential multi-alternative
choice. J Neurosci. 33(6):2242–2253.

Brainard DH. 1997. The psychophysics toolbox. Spat Vis.
10:433–436.

Charpentier CJ, Bromberg-Martin ES, Sharot T. 2018. Valuation
of knowledge and ignorance in mesolimbic reward circuitry.
Proc Natl Acad Sci. 115(31):E7255–E7264.

Choi EY, Yeo BTT, Buckner RL. 2012. The organization of the
human striatum estimated by intrinsic functional connectiv-
ity. J Neurophysiol. 108(8):2242–2263.

Cole MW, Laurent P, Stocco A. 2013. Rapid instructed task learn-
ing: a new window into the human brain’s unique capac-
ity for flexible cognitive control. Cogn Affect Behav Neurosci.
13(1):1–22.

Collins AGE, Brown JK, Gold JM, Waltz JA, Frank MJ. 2014. Work-
ing memory contributions to reinforcement learning impair-
ments in schizophrenia. J Neurosci. 34(41):13747–13756.

Collins AGE. 2018. The tortoise and the hare: interactions
between reinforcement learning and working memory. J Cogn
Neurosci. 30(10):1422–1432.

Collins AGE, Ciullo B, Frank MJ, Badre D. 2017. Working mem-
ory load strengthens reward prediction errors. J Neurosci.
37(16):4332–4342.

Collins AGE, Cockburn J. 2020. Beyond dichotomies in reinforce-
ment learning. Nat Rev Neurosci. 21(10):576–586.

Collins AGE, Frank MJ. 2018. Within- and across-trial dynamics
of human EEG reveal cooperative interplay between rein-
forcement learning and working memory. Proc Natl Acad Sci.
115(10):2502–2507.

Cowles JT. 1937. Food-tokens as incentives for learning by chim-
panzees. Comp Psychol Monogr. 14(5):1–96.

Cox RW, Hyde JS. 1997. Software tools for analysis and visualiza-
tion of fMRI data. NMR Biomed. 10(4–5):171–178.

Dale AM, Fischl B, Sereno MI. 1999. Cortical surface-based anal-
ysis: I. segmentation and surface reconstruction. Neuroimage.
9(2):179–194.

Daniel R, Pollmann S. 2010. Comparing the neural basis of mon-
etary reward and cognitive feedback during information-
integration category learning. J Neurosci. 30(1):47–55.

Daniel R, Pollmann S. 2014. A universal role of the ventral stria-
tum in reward-based learning: evidence from human studies.
Neurobiol Learn Mem. 114:90–100.

Davidow JY, Foerde K, Galván A, Shohamy D. 2016. An upside
to reward sensitivity: the hippocampus supports enhanced
reinforcement learning in adolescence. Neuron. 92(1):93–99.

Daw ND, Gershman SJ, Seymour B, Dayan P, Dolan RJ. 2011.
Model-based influences on humans’ choices and striatal
prediction errors. Neuron. 69(6):1204–1215.

Daw ND, O’Doherty JP, Dayan P, Seymour B, Dolan RJ. 2006. Cor-
tical substrates for exploratory decisions in humans. Nature.
441(7095):876–879.

Deci EL. 1971. Effects of externally mediated rewards on intrinsic
motivation. J Pers Soc Psychol. 18(1):105–115.

Delgado MR, Nystrom LE, Fissell C, Noll DC, Fiez JA. 2000. Tracking
the hemodynamic responses to reward and punishment in
the striatum. J Neurophysiol. 84(6):3072–3077.

Dickinson A, Balleine B. 1994. Motivational control of goal-
directed action. Anim Learn Behav. 22(1):1–18.

Doll BB, Jacobs WJ, Sanfey AG, Frank MJ. 2009. Instructional
control of reinforcement learning: a behavioral and neuro-
computational investigation. Brain Res. 1299:74–94.

Doll BB, Simon DA, Daw ND. 2012. The ubiquity of model-based
reinforcement learning. Curr Opin Neurobiol. 22(6):1075–1081.

Duncan J, Emslie H, Williams P, Johnson R, Freer C. 1996. Intelli-
gence and the frontal lobe: the Organization of Goal-Directed
Behavior. Cogn Psychol. 30(3):257–303.

Emrich SM, Riggall AC, LaRocque JJ, Postle BR. 2013. Distributed
patterns of activity in sensory cortex reflect the precision of
multiple items maintained in visual short-term memory. J
Neurosci. 33(15):6516–6523.

Esteban O, Markiewicz CJ, Blair RW, Moodie CA, Isik AI, Erra-
muzpe A, Kent JD, Goncalves M, DuPre E, Snyder M, et al. 2019.
fMRIPrep: a robust preprocessing pipeline for functional MRI.
Nat Methods. 16(1):111–116.

Foerde K, Shohamy D. 2011. Feedback timing modulates
brain systems for learning in humans. J Neurosci.
31(37):13157–13167.

Frank MJ, Moustafa AA, Haughey HM, Curran T, Hutchison
KE. 2007. Genetic triple dissociation reveals multiple roles
for dopamine in reinforcement learning. Proc Natl Acad Sci.
104(41):16311–16316.

Frömer R, Dean Wolf CK, Shenhav A. 2019. Goal congruency dom-
inates reward value in accounting for behavioral and neu-
ral correlates of value-based decision-making. Nat Commun.
10(1):4926.

Garrison J, Erdeniz B, Done J. 2013. Prediction error in reinforce-
ment learning: a meta-analysis of neuroimaging studies.
Neurosci Biobehav Rev. 37(7):1297–1310.

Gershman SJ. 2015. Do learning rates adapt to the distribution of
rewards? Psychon Bull Rev. 22(5):1320–1327.

Glasser MF, Sotiropoulos SN, Wilson JA, Coalson TS, Fischl B,
Andersson JL, Xu J, Jbabdi S, Webster M, Polimeni JR, et al.
2013. The minimal preprocessing pipelines for the human
connectome project. Neuroimage. 80:105–124.

Gläscher J, Daw N, Dayan P, O’Doherty JP. 2010. States versus
rewards: dissociable neural prediction error signals under-
lying model-based and model-free reinforcement learning.
Neuron. 66(4):585–595.

Guo R, Böhmer W, Hebart M, Chien S, Sommer T, Obermayer
K, Gläscher J. 2016. Interaction of instrumental and goal-
directed learning modulates prediction error representations
in the ventral striatum. J Neurosci. 36(50):12650–12660.



246 Cerebral Cortex, 2022, Vol. 32, No. 1

Haatveit BC, Sundet K, Hugdahl K, Ueland T, Melle I, Andreassen
OA. 2010. The validity of d prime as a working memory index:
results from the “Bergen n-back task”. J Clin Exp Neuropsychol.
32(8):871–880.

Hamann S, Mao H. 2002. Positive and negative emotional ver-
bal stimuli elicit activity in the left amygdala. Neuroreport.
13(1):15–19.

Han S, Huettel SA, Raposo A, Adcock RA, Dobbins IG. 2010.
Functional significance of striatal responses during
episodic decisions: recovery or goal attainment? J Neurosci.
30(13):4767–4775.

Howard JD, Gottfried JA, Tobler PN, Kahnt T. 2015. Identity-
specific coding of future rewards in the human orbitofrontal
cortex. Proc Natl Acad Sci. 112(16):5195–5200.

Izuma K, Saito DN, Sadato N. 2008. Processing of social and
monetary rewards in the human striatum. Neuron. 58(2):
284–294.

Jenkinson M, Bannister P, Brady M, Smith S. 2002. Improved opti-
mization for the robust and accurate linear registration and
motion correction of brain images. Neuroimage. 17(2):825–841.

Juechems K, Summerfield C. 2019. Where does value come from?
Trends Cogn Sci. 23(10):836–850.

Keramati M, Dezfouli A, Piray P. 2011. Speed/accuracy trade-off
between the habitual and the goal-directed processes. PLoS
Comput Biol. 7(5):e1002055.

Kirchner WK. 1958. Age differences in short-term retention of
rapidly changing information. J Exp Psychol. 55(4):352–358.

Knutson B, Fong GW, Adams CM, Varner JL, Hommer D. 2001.
Dissociation of reward anticipation and outcome with event-
related fMRI. Neuroreport. 12(17):3683–3687.

Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI. 2009.
Circular analysis in systems neuroscience—the dangers of
double dipping. Nat Neurosci. 12(5):535–540.

Langdon AJ, Sharpe MJ, Schoenbaum G, Niv Y. 2017. Model-based
predictions for dopamine. Curr Opin Neurobiol. 49:1–7.

Leong YC, Radulescu A, Daniel R, DeWoskin V, Niv Y.
2017. Dynamic interaction between reinforcement learning
and attention in multidimensional environments. Neuron.
93(2):451–463.

Li J, Delgado MR, Phelps EA. 2011. How instructed knowledge
modulates the neural systems of reward learning. Proc Natl
Acad Sci. 108(1):55–60.

Manoach DS, Greve DN, Lindgren KA, Dale AM. 2003. Identifying
regional activity associated with temporally separated com-
ponents of working memory using event-related functional
MRI. Neuroimage. 20(3):1670–1684.

McClure SM, Berns GS, Montague PR. 2003. Temporal prediction
errors in a passive learning task activate human striatum.
Neuron. 38(2):339–346.

McClure SM, York MK, Montague PR. 2004. The neural substrates
of reward processing in humans: the modern role of FMRI.
Neuroscientist. 10(3):260–268.

McDougle SD, Collins AGE. 2021. Modeling the influence of work-
ing memory, reinforcement, and action uncertainty on reac-
tion time and choice during instrumental learning. Psychon
Bull Rev. 28:20–39.

McDougle SD, Butcher PA, Parvin DE, Mushtaq F, Niv Y, Ivry
RB, Taylor JA. 2019. Neural signatures of prediction errors in
a decision-making task are modulated by action execution
failures. Curr Biol. 29(10):1606–1613.e5.

Moran R, Dayan P, Dolan RJ. 2021. Human subjects exploit
a cognitive map for credit assignment. Proc Natl Acad Sci.
118(4):e2016884118.

Mumford JA, Davis T, Poldrack RA. 2014. The impact of study
design on pattern estimation for single-trial multivariate
pattern analysis. Neuroimage. 103:130–138.

Murty VP, Shermohammed M, Smith DV, Carter RM, Huettel SA,
Adcock RA. 2014. Resting state networks distinguish human
ventral tegmental area from substantia nigra. Neuroimage.
100:580–589.

Palombo DJ, Hayes SM, Reid AG, Verfaellie M. 2019. Hippocam-
pal contributions to value-based learning: converging evi-
dence from fMRI and amnesia. Cogn Affect Behav Neurosci.
19(3):523–536.

Pashler H. 1994. Dual-task interference in simple tasks: data and
theory. Psychol Bull. 116(2):220–244.

Pearson JM, Heilbronner SR, Barack DL, Hayden BY, Platt ML.
2011. Posterior cingulate cortex: adapting behavior to a
changing world. Trends Cogn Sci. 15(4):143–151.

Piray P, Dezfouli A, Heskes T, Frank MJ, Daw ND. 2019. Hier-
archical Bayesian inference for concurrent model fitting
and comparison for group studies. PLoS Comput Biol. 15(6):
e1007043.

Power JD, Mitra A, Laumann TO, Snyder AZ, Schlaggar BL,
Petersen SE. 2014. Methods to detect, characterize, and
remove motion artifact in resting state fMRI. Neuroimage.
84:320–341.

Radulescu A, Niv Y, Ballard I. 2019. Holistic reinforcement learn-
ing: the role of structure and attention. Trends Cogn Sci.
23(4):278–292.

Ribas-Fernandes JJF, Solway A, Diuk C, McGuire JT, Barto AG,
Niv Y, Botvinick MM. 2011. A neural signature of hierarchical
reinforcement learning. Neuron. 71(2):370–379.

Rissman J, Gazzaley A, D’Esposito M. 2004. Measuring func-
tional connectivity during distinct stages of a cognitive task.
Neuroimage. 23(2):752–763.

Rmus M, McDougle SD, Collins AG. 2021. The role of executive
function in shaping reinforcement learning. Curr Opin Behav
Sci. 38:66–73.

Satterthwaite TD, Ruparel K, Loughead J, Elliott MA, Gerraty
RT, Calkins ME, Hakonarson H, Gur RC, Gur RE, Wolf DH.
2012. Being right is its own reward: load and performance
related ventral striatum activation to correct responses dur-
ing a working memory task in youth. Neuroimage. 61(3):
723–729.

Schuck NW, Cai MB, Wilson RC, Niv Y. 2016. Human orbitofrontal
cortex represents a cognitive map of state space. Neuron.
91(6):1402–1412.

Sharpe MJ, Stalnaker T, Schuck NW, Killcross S, Schoenbaum G,
Niv Y. 2019. An integrated model of action selection: distinct
modes of cortical control of striatal decision making. Annu
Rev Psychol. 70(1):53–76.

Smittenaar P, Chase HW, Aarts E, Nusselein B, Bloem BR, Cools
R. 2012. Decomposing effects of dopaminergic medication
in Parkinson’s disease on probabilistic action selection—
learning or performance? Eur J Neurosci. 35(7):1144–1151.

Starkweather CK, Gershman SJ, Uchida N. 2018. The medial
prefrontal cortex shapes dopamine reward prediction errors
under state uncertainty. Neuron. 98(3):616–629.e6.

Sutton RS, Barto AG. 1998. Reinforcement learning: an introduction.
Vol 1. Cambridge: MIT Press.

Tustison NJ, Avants BB, Cook PA, Zheng Y, Egan A, Yushkevich PA,
Gee JC. 2010. N4ITK: improved N3 bias correction. IEEE Trans
Med Imaging. 29(6):1310–1320.

Vanderplas JM, Garvin EA. 1959. The association value of random
shapes. J Exp Psychol. 57(3):147–154.



Executive Function Assigns Value to Novel Goal-Congruent Outcomes McDougle et al. 247

White JK, Bromberg-Martin ES, Heilbronner SR, Zhang K, Pai J,
Haber SN, Monosov IE. 2019. A neural network for informa-
tion seeking. Nat Commun. 10(1):5168.

Wilson RC, Takahashi YK, Schoenbaum G, Niv Y. 2014.
Orbitofrontal cortex as a cognitive map of task space. Neuron.
81(2):267–279.

Wolfe JB. 1936. Effectiveness of token rewards for chimpanzees.
Comp Psychol Monographs. 12:72–72.

Yeo BTT, Krienen FM, Eickhoff SB, Yaakub SN, Fox PT, Buckner
RL, Asplund CL, Chee MWL. 2015. Functional specialization
and flexibility in human association cortex. Cereb Cortex.
25(10):3654–3672.


	Executive Function Assigns Value to Novel Goal-Congruent Outcomes
	Introduction
	Methods
	Results
	Discussion
	Supplementary Material
	Notes
	Funding




