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Rapid and stain-free quantification  
of viral plaque via lens-free holography  
and deep learning

Tairan Liu1,2,3,9, Yuzhu Li1,2,3,9, Hatice Ceylan Koydemir    1,4,5, Yijie Zhang1,2,3, 
Ethan Yang1,6, Merve Eryilmaz    1,2, Hongda Wang    1,2,3, Jingxi Li    1,2,3, 
Bijie Bai1,2,3, Guangdong Ma1,7 & Aydogan Ozcan    1,2,3,8 

A plaque assay—the gold-standard method for measuring the concentration 
of replication-competent lytic virions—requires staining and usually more 
than 48 h of runtime. Here we show that lens-free holographic imaging 
and deep learning can be combined to expedite and automate the assay. 
The compact imaging device captures phase information label-free 
at a rate of approximately 0.32 gigapixels per hour per well, covers an 
area of about 30 × 30 mm2 and a 10-fold larger dynamic range of virus 
concentration than standard assays, and quantifies the infected area and 
the number of plaque-forming units. For the vesicular stomatitis virus, 
the automated plaque assay detected the first cell-lysing events caused 
by viral replication as early as 5 h after incubation, and in less than 20 h it 
detected plaque-forming units at rates higher than 90% at 100% specificity. 
Furthermore, it reduced the incubation time of the herpes simplex virus 
type 1 by about 48 h and that of the encephalomyocarditis virus by about 
20 h. The stain-free assay should be amenable for use in virology research, 
vaccine development and clinical diagnosis.

Viral infections can affect millions of people worldwide through infectious 
diseases such as influenza, human immunodeficiency virus and human 
papillomavirus1. The US Centers for Disease Control and Prevention esti-
mated that, since 2010, the influenza virus has resulted in 16–53 million 
illnesses, 0.2–1 million hospitalizations and 16,700–66,000 deaths in 
the United States alone2,3. Furthermore, the COVID-19 pandemic, which 
has caused more than 500 million infections and more than 6 million 
deaths worldwide, has brought a huge burden on the public health and 
socioeconomic development of many countries4. To help in coping with 
such global-health challenges, accurate and low-cost virus-quantification 
techniques need to be developed for clinical diagnosis5, vaccine develop-
ment6 and the production of recombinant proteins7 or antiviral agents8,9.

Developed in 1952, the plaque assay was the first method for quan-
tifying virus concentrations. Advanced by Renato Dulbecco, the assay 
allows for the number of plaque-forming units (PFUs) to be manually 
determined in a given sample containing replication-competent lytic 
virions10,11. These samples are serially diluted, and aliquots of each dilu-
tion are added to a dish of cultured cells10. As the virus infects adjacent 
cells and spreads, a plaque will gradually form, which can be visually 
inspected by an expert. Owing to its unique capability of providing the 
infectivity of the viral samples in a cost-effective manner, the plaque 
assay remains the gold-standard method for quantifying virus concen-
trations, despite the existence of other methods12–19, such as the immu-
nofluorescence focal forming assays14, the polymerase chain reaction16 
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reconstructed phase images of the sample are used for PFU detection 
based on the spatiotemporal changes observed within the wells. We 
then trained a neural-network-based classifier and used it to convert 
the reconstructed phase images to PFU probability maps, which were 
then used to reveal the locations and sizes of the PFUs within the well 
plate. To prove the efficacy of our system, we tested it for the early 
detection of vesicular stomatitis virus (VSV), herpes simplex virus 
type 1 (HSV-1) and encephalomyocarditis virus (EMCV) on Vero E6 
cell plates. Our stain-free device could automatically detect the first 
cell-lysing events due to the VSV replication as early as 5 h after the 
incubation and achieve >90% PFU detection rate in <20 h, providing 
major time savings compared with the traditional plaque assays, which 
take ≥48 h. Furthermore, we show an average incubation time saving 
of ~48 h and ~20 h for HSV-1 and EMCV, respectively, achieving a PFU 
detection rate >90% with 100% specificity. A quantitative relation-
ship was also developed between the incubated virus concentration 
and the virus-infected area on the cell monolayer. Without any extra 
sample-preparation steps, this deep-learning-enabled label-free PFU 
imaging and quantification device can be used with various plaque 
assays in virology and might help to expedite research in vaccine and 
drug development.

Results
To demonstrate the efficacy of the device, we prepared 14 plaque 
assays using the Vero E6 cells and VSV. The sample-preparation steps 
followed standard plaque assays and are summarized in Fig. 2a (see 
Methods for details). For each six-well plate, ~6.5 × 105 cells were seeded 
to each well, which was then incubated inside an incubator (Heracell 
VIOS 160i CO2 Incubator, Thermo Scientific) for 24 h to achieve a cell 
monolayer with >95% coverage. During the virus infection, five wells 
were infected by 100 µl of the diluted VSV suspension (obtained by 
diluting a 6.6 × 108 PFU ml−1 VSV stock with a dilution factor of 2−1 × 10−6), 

and enzyme-linked immunoassay-based assays19,20. However, plaque 
assays usually need an incubation period of 2–14 days (depending on 
the type of virus and culture conditions)21 to let the plaques expand 
to visible sizes and are subject to human errors during the manual 
plaque-counting process22. To improve the traditional plaque assays, 
numerous methods have been developed23. Although many systems 
have unique capabilities to image cell cultures in well plates, they 
require either fluorescence markers22 or special culture plates with gold 
microelectrodes24. In addition, human counting errors still remain as 
a problem for these methods. An accurate, quantitative, automated, 
rapid and cost-effective plaque assay would thus be advantageous for 
virology research and related clinical applications.

Some of the recent developments in quantitative phase imaging 
(QPI), holography and deep learning provide an opportunity to address 
this need. QPI is a preeminent imaging technique that enables the visu-
alization and quantification of transparent biological specimens in a 
non-invasive and label-free manner25,26. Furthermore, the image quality 
of QPI systems can be enhanced using neural networks by improving, 
in particular, phase retrieval27, noise reduction28, auto-focusing29,30 
and spatial resolution31. In addition, numerous deep-learning-based 
microorganism detection and identification methods have been shown 
using QPI32–42.

Here we report a cost-effective and compact label-free live plaque 
assay that can automatically provide substantially faster quantitative 
PFU readout than traditional viral-plaque assays without the need for 
staining. We built a compact lens-free holographic imaging proto-
type (Fig. 1 and Supplementary Video 1) to image the spatiotemporal 
features of the target PFUs during their incubation; the total cost of 
the parts of this entire imaging system is less than US$880, exclud-
ing a standard laptop computer. This lens-free holographic imag-
ing system rapidly scans the entire area of a six-well plate every hour 
(at a throughput of ~0.32 gigapixels per scan of a test well), and the 
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Fig. 1 | Stain-free, rapid and quantitative viral plaque assay using deep 
learning and lensless holography. a, Photograph of the stain-free PFU imaging 
system that captures the phase images of the plaque assay at a throughput of 
~0.32 gigapixels per scan of each test well. The processing of each test well using 
the PFU classifier network takes ~7.5 min per well, automatically converting 

the holographic phase images of the well into a PFU probability map (Fig. 2). 
b, Detailed illustration of the system components. c, A six-well plate sample 
with ventilation holes on the cover and parafilm sealed from the side. Also, see 
Supplementary Video 1.
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and one well was left for negative control. Then, 2.5 ml of the overlay 
solution containing the total medium with 4% agarose was added to 
each well (see Methods for details, ‘Preparation of agarose overlay solu-
tion’). After the solidification of the overlay at room temperature, each 
sample was first placed into our imaging set-up for 20 h of incubation, 
performing time-lapse imaging to capture the spatiotemporal infor-
mation of the sample. Then, the same sample was left in the incubator 
for an additional 28 h to let the PFUs grow to their optimal size for the 
traditional plaque assay (this is only used for comparison purposes). 
Finally, each sample was stained using crystal violet solution to serve 
as the ground truth to compare against our label-free method.

To train and test the network-based VSV PFU classifier, 54 wells 
(that is, 45 positive wells and 9 negative wells) were used for train-
ing, and 30 wells (that is, 25 positive wells and 5 negative wells) were 
used for testing. During the training phase, a machine-learning-based 
coarse PFU localization algorithm was developed to both accelerate 
the training dataset generation and delineate the potential false posi-
tives (see Methods for details). After this PFU localization algorithm 
screened each sample, the resulting PFU candidates were further exam-
ined manually for confirmation using a custom-developed graphical 
user interface (Supplementary Fig. 1); this manual examination was 
only used during the training phase to prepare the training data cor-
rectly and efficiently. The negative training dataset was populated 
purely from the negative control well of each well plate. In total, 357 
true-positive PFU holographic videos and 1,169 negative holographic 
videos were collected for training the PFU decision neural network. 
This dataset was further augmented to create a total of 2,594 positive 
and 3,028 negative holographic videos (Methods), where each frame 
had 480 × 480 pixels, and the time interval between two consecutive 
holographic frames was 1 h.

After the neural network-based VSV PFU classifier was trained, 
it was blindly tested on all 30 test wells in a scanning manner  

(Fig. 2b) without the need for the PFU localization algorithm, which 
was only used for the training data generation. For each test well, we 
have ~18,000 × 18,000 effective pixels (representing a 30 × 30 mm2 
active area after discarding the edges); the digital processing of each 
test well using the PFU classifier (Fig. 2c) network takes ~7.5 min, which 
automatically converts the holographic phase images of the well into 
a PFU probability map (Fig. 2d). Each pixel of the well on this map 
indicates the statistical probability of the local area (0.8 × 0.8 mm2) 
centred at this pixel having a PFU. Using a probability threshold of 
0.5, the final PFU detection and quantification result was obtained 
across the entire test well area (for example, Fig. 2e,f). The impact of 
this probability threshold is analysed and discussed in Supplemen-
tary Fig. 2 and Supplementary Note 1, which illustrates the trade-off 
between the specificity and the sensitivity by selecting different 
threshold values.

Figure 3a shows examples of the device’s performance in detect-
ing VSV PFUs after 17 h of incubation, representing a critical time that 
the detection rate exceeds 90% (Supplementary Fig. 3 also shows 
our detection results after 15 h and 20 h of incubation, reported for 
comparison). Three representative PFUs are also selected and shown 
in Fig. 3b. When a PFU is in its early stage of growth, with its size much 
smaller than our 0.8 × 0.8 mm2 virtual scanning window, it appears 
as a square (shown by PFU1 in Fig. 3b) in the final detection result, 
which effectively is the two-dimensional (2D) spatial convolution of 
the small-scale PFU with our scanning window. As another example, 
PFU3 shows a cluster-forming event where two neighbouring PFUs can 
be easily differentiated using our method as opposed to the traditional 
plaque assay where they physically merged into one. Figure 3c further 
shows the PFU quantification achieved by our device compared with 
the 48 h traditional plaque assay results. We achieved a detection rate 
of >90% at 20 h of incubation without having any false positives at any 
time point despite using no staining.
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Fig. 2 | Schematics of the workflow of the label-free viral plaque assay and its 
comparison with the standard PFU assay. a, Plaque assay sample-preparation 
workflow. The traditional plaque assay at the last step is only performed for 
comparison purposes and is not needed for the operation of the presented PFU 
detection device. b–f, Detailed image and data-processing steps for the live viral 
plaque assay. b, An image-pre-processing step that reconstructs and registers the 

consecutive whole-well holograms. A neural network-based PFU classifier is used 
in a scanning fashion to convert the holograms into a PFU probability map. c, An 
example of the network processing at a local region. d, An example of a single-
well PFU probability map. e, After using a threshold of 0.5, the PFU probability 
map in d is converted into the PFU detection result. f, An example of a whole 
six-well plate PFU detection result.
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We also compared our results against a widely adopted automatic 
PFU counting system that is commercially available. After the 48 h 
incubation, followed by the standard staining protocol, we imaged the 
same five six-well test plates (VSV, Fig. 3c) using this time the Agilent 
BioTek Cytation 5 device (Agilent Technologies). After the automated 
image acquisition with this system, the PFU detection was performed 
by Gen 5 software (Agilent Technologies) using the optimized settings 
of its automated PFU counting algorithm (Methods). A detection rate 

of 94.3% was achieved with a 1.2% false discovery rate. In comparison, 
the presented stain-free holographic method achieved a PFU detec-
tion rate of 93.7% with 0% false discovery rate at 20 h of incubation 
for the same samples (that is, 28 h earlier compared with the standard 
incubation time). In addition to missing some of the late-growing PFUs 
and introducing some false positives, this commercially available 
automated PFU counting system also showed over-segmentation on 
large PFUs and under-detection of PFUs for samples with high virus 
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Fig. 3 | Performance of the stain-free plaque assay for samples with low virus 
concentration. a, Whole well comparison of the stain-free viral plaque assay 
after 17 h incubation against the traditional plaque assay after 48 h incubation 
and staining. b, The growth of three featured PFUs in the positive well from a.  

The reconstructed phase channel is overlaid with the mask generated using 
the PFU localization algorithm to reveal their locations better. c, Average PFU 
detection rate using the label-free viral plaque assay. The error bars show the 
standard deviation across the five testing plates.
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concentrations. A detailed report of the over-counted, false-negative 
and false-positive PFUs and a visualized PFU detection performance 
summary of this standard detection method compared with our device 
are shown in Supplementary Fig. 4.

In addition to saving incubation time and being stain-free, our 
presented framework also shows strong generalization capability. For 
example, after its training with six-well plates, it can be directly used on 
12-well plates without the need for any modifications or retraining steps 
(see ‘Well plate preparation’). Without any transfer learning steps, we 
achieved a PFU detection rate of 89% at 20 h of incubation (VSV) when 
blindly tested on a 12-well plate (Supplementary Fig. 5). Furthermore, 
our computational PFU detection device can generalize to detect other 
types of virus (for example, HSV-1 and EMCV) through transfer learning 
while using the VSV PFU detection network as the base model. For HSV-
1, two six-well plates were prepared for transfer learning (Methods), 
imaged for 72 h with a 2 h imaging interval and period, and further 
incubated for a total of 120 h to obtain the stained ground-truth PFU 
samples. The collected data were used to populate the training dataset 
for transfer learning. The resulting HSV-1 neural network was blindly 
tested on 12 additional HSV-1 test wells (containing, in total, 214 HSV-1 
PFUs and two negative control wells); as shown in Supplementary Fig. 6,  
without introducing false positives, our framework achieved 90.4% 
detection rate at 72 h, reducing 48 h of incubation time compared with 
the 120 h required by the traditional HSV-1 plaque assay43. Similarly, for 
EMCV three six-well plates were used for transfer learning (‘Well plate 
preparation’), which were imaged for 60 h with an imaging interval 
of 1 h and stained at 72 h of total incubation, following the standard 
protocols. When tested on 12 additional EMCV test wells (containing, 
in total, 249 EMCV PFUs and two negative control wells), a detection 
rate of 90.8% with 0% false positives was obtained at 52 h of incuba-
tion, as shown in Supplementary Fig. 7, achieving 20 h of incubation 
time saving compared with the ground truth of 72 h for the traditional 
EMCV plaque assay44. Notably, the EMCV plates contain much more 
late-growing PFUs compared with VSV or HSV-1, which is also in line 
with earlier observations45. The presented framework achieved a reli-
able EMCV plaque-counting performance even for the PFU merging 
regions of a test well, as illustrated in Supplementary Fig. 7c. Because 
of the spatiotemporal feature analysis-based early detection capability 
of the stain-free system, it could identify each individual PFU within 
these merging PFU regions at the early phases of the plaque growth, 
eliminating false negatives or misses that might have arisen in stand-
ard PFU counting methods because of the expansion of earlier PFUs, 
spatially covering (and obscuring) the late-growing plaques.

The presented device is cost effective, compact and automated 
and can also handle a larger virus concentration range with a more 
reliable PFU readout. To demonstrate this, we prepared another set 
of five-titre test plates, where for each plate, all six wells were infected 
by VSV but with a two-times dilution difference between each well, 
covering a large dynamic range in virus concentration from one test 
well to another. As shown in Fig. 4, our method is effective even for 
the higher virus concentration cases; see, for example, the dilution 
cases of 2−2 × 10−4 and 2−3 × 10−4. In the traditional 48 h plaque assay, 
only the lowest virus concentration is suitable for the PFU quantifica-
tion because of severe spatial overlapping, whereas for our label-free 
device, we can automatically and accurately count the individual PFUs 
at an early stage, even for the highest virus concentration (Fig. 4c).

Furthermore, our method provides a more reliable readout; for 
example, in the circled region in Fig. 4a,b, the absence of cells was caused 
by some random cell viability problems that occurred during the plaque 
assay. In our device, these artefacts can be easily differentiated from the 
cell lysing events caused by the viral replication, as the spatiotemporal 
patterns for these two events are vastly different (assessed by the trained 
PFU probability network). This makes the deep-learning-enabled device 
resilient to potential artefacts or cell viability issues randomly intro-
duced during the sample-preparation steps.

Because of the high virus concentration used in these five-titre test 
samples, PFUs quickly clustered and were no longer suitable for manual 
counting, as shown in Fig. 5a. However, the quantitative readout and the 
PFU probability map of the device allowed us to obtain the area of the 
virus-infected regions across all the time points during the incubation 
period, as shown in Fig. 5b. To better illustrate this, we plot in Fig. 5c  
the virus dilution factor versus the ratio of the infected cell area per 
test well (in %) for all the samples at 6 h, 8 h and 10 h of incubation time. 
Despite the existence of some serial dilution errors, late virus wakeups 
and PFU clustering events, the infected area percentage that the device 
measured is monotonically decreasing with the increasing dilution 
factor for all the incubation times. This suggests that, by calibrating 
the system, the virus concentration (PFU ml−1) can also be estimated 
from the percentage of the infected cell area per well.

Furthermore, using the area percentage of the virus-infected 
region as a label-free quantification metric, the presented framework 
can provide earlier PFU readouts. To show this, we computed the 
infected area percentage for all the 25 positive or infected wells of 
the blind testing plates used to generate Fig. 3c. As shown in Fig. 6, 
when the infected area percentage is sufficiently large (>1%), a faster 
PFU concentration readout can be provided at 12 h or 15 h. As the size 
of an average PFU on the well is physically larger at 15 h of incubation 
compared with 12 h, the slope of the red calibration curve in Fig. 6b is 
smaller than in Fig. 6a, as expected. For samples with even higher virus 
concentrations, the infected cell area percentage could reach >1% in 
≤10 h of incubation (shown in Fig. 5c), providing the PFU concentration 
readout even earlier.

Discussion
We have shown a cost-effective and automated early PFU detection 
system using a lens-free holographic imaging system and deep learning. 
This deep-learning-based stain-free device captures time-lapse phase 
images of a test well at a throughput of ~0.32 gigapixels per scan, which 
is then processed by a PFU-quantification neural network in ~7.5 min 
to yield the PFU distribution of each test well. The high detection rate 
of this label-free device with 100% specificity shown in Fig. 3c is a con-
servative estimate, because the ground-truth data were obtained after 
48 h of incubation. In the early stages of the incubation period, many 
VSV PFUs did not even exist physically, which led to under-detection 
(a detection rate of 80.1% and 90.3% at 15 h and 17 h of incubation, 
respectively). This means that if we were to use the existing PFUs as 
the ground truth for quantification at each time point, the detection 
rate would be even higher.

The core of the stain-free PFU detection system lies in the effective 
combination of digital holography and deep learning. The adoption 
of the lens-free holographic imaging system is essential for imaging 
unstained cells within a compact incubator, providing the spatiotem-
poral phase information of the samples using a compact, cost-effective 
and high-throughput imaging system. For a given time stamp of the 
imaging system, the PFU regions would in general express a wider 
phase distribution compared with the non-PFU regions; furthermore, 
a given PFU region would typically show larger phase changes across 
different time points (see Supplementary Fig. 8 for some examples). 
These unique spatiotemporal signatures that are present in the phase 
channel of the holographic label-free time-lapse images are crucial for 
the deep neural network to statistically identify the target PFU regions 
from non-PFU regions at earlier time points, without introducing false 
positives or undercounting due to spatial overlaps. In addition, the 
large field of view (FOV) of the lens-free holographic on-chip imaging 
configuration with unit fringe magnification, along with its capabil-
ity for digital focusing without any autofocusing hardware or objec-
tive lens, helped us achieve a large phase information throughput of 
~0.32 gigapixels in <30 s per test well (covering a FOV of ~30 × 30 mm2) 
using a compact and cost-effective device that can fit into any standard 
incubator without major modifications. This enabled us to rapidly 
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scan an entire six-well plate within 3 min, and as a result, the device can 
potentially scan the PFU samples even more frequently than every hour, 
which might enable further time savings in PFU detection using finer 
spatiotemporal changes that might be learned with a shorter imaging 

period. Such an approach would come with the trade-off of requiring 
substantially more training data and computation time.

Furthermore, owing to the axial defocusing tolerance of the 
deep-learning-based PFU detection method, the image-reconstruction 
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Fig. 4 | Performance of the stain-free viral plaque assay as a function of the virus concentration. a,b, Whole plate comparison of the stain-free viral plaque  
assay after 15 h incubation (a) against the traditional plaque assay after 48 h incubation and staining (b). c, The growth of PFUs in their early stage for the same plate 
shown in a and b.
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steps (spanning several hours of automated time-lapse imaging within 
an incubator) can be further simplified by propagating the acquired 
lens-free holograms to a fixed sample-to-sensor axial distance for 
the entire well without affecting the PFU detection results, while also 
ensuring high throughput (Supplementary Note 3 and Supplementary  
Fig. 9 show the defocusing-distance tolerance of our system).

Moreover, the computational holographic PFU detection device 
requires negligible changes to the standard sample-preparation steps 
used in traditional plaque assays, while skipping the staining process 
entirely. The temperature, refractive index and optical-field changes 
within the incubator, caused by, for example, evaporation or bubble 
formation, have negligible influence on the PFU detection performance 
of this system, because such artefacts and statistical variations are 
learned during the training experiments, helping the trained neural 

networks to differentiate the spatiotemporal features of the true PFUs 
corresponding to viral replication from such fluctuations and physi-
cal perturbations within the incubator environment that naturally 
occur over several hours. Furthermore, the holographic time-lapse 
imaging system does not negatively influence or introduce a bias on 
the plaque-formation process within the test wells, which is validated 
against control experiments, as shown in Supplementary Fig. 10.

The modular design used by the PFU detection system has poten-
tial for further system improvements. For example, parallel imaging 
can be achieved by installing several image sensors on the same system 
without substantially increasing the cost of the device, which will fur-
ther improve its 30 cm2 min−1 effective imaging throughput46. More 
accurate scanning stages can also help reduce the image-registration 
steps needed during image pre-processing. Multi-wavelength phase 

0
30
60
90

120
150

5 6 7 8 9 10 11 12 13 14 15

N
um

be
r o

f P
FU

s

Incubation time (h)

5 6 7 8 9 10 11 12 13 14 15

Incubation time (h)

5 6 7 8 9 10 11 12 13 14 15

Incubation time (h)

5 6 7 8 9 10 11 12 13 14 15

Incubation time (h)

5 6 7 8 9 10 11 12 13 14 15

Incubation time (h)

5 6 7 8 9 10 11 12 13 14 15

Incubation time (h)

5 6 7 8 9 10 11 12 13 14 15

Incubation time (h)

5 6 7 8 9 10 11 12 13 14 15

Incubation time (h)

5 6 7 8 9 10 11 12 13 14 15

Incubation time (h)

5 6 7 8 9 10 11 12 13 14 15

Incubation time (h)

5 6 7 8 9 10 11 12 13 14 15

Incubation time (h)

5 6 7 8 9 10 11 12 13 14 15

Incubation time (h)

0
30
60
90

120
150

N
um

be
r o

f P
FU

s

0
20
40
60
80

100

In
fe

ct
ed

 a
re

a
pe

rc
en

ta
ge

 (%
)

0
20
40
60
80

100

In
fe

ct
ed

 a
re

a
pe

rc
en

ta
ge

 (%
)

0
30
60
90

120
150

N
um

be
r o

f P
FU

s

0
30
60
90

120
150

N
um

be
r o

f P
FU

s

0
20
40
60
80

100

In
fe

ct
ed

 a
re

a
pe

rc
en

ta
ge

 (%
)

0
20
40
60
80

100

In
fe

ct
ed

 a
re

a
pe

rc
en

ta
ge

 (%
)

0
30
60
90

120
150

N
um

be
r o

f P
FU

s

0
30
60
90

120
150

N
um

be
r o

f P
FU

s

0
20
40
60
80

100

In
fe

ct
ed

 a
re

a
pe

rc
en

ta
ge

 (%
)

0
20
40
60
80

100

In
fe

ct
ed

 a
re

a
pe

rc
en

ta
ge

 (%
)

a

b

c Titre test 1 Titre test 2 Titre test 3 Titre test 4 Titre test 5
100

50

0

In
fe

ct
ed

 a
re

a
pe

rc
en

ta
ge

 (%
)

100

50

0

In
fe

ct
ed

 a
re

a
pe

rc
en

ta
ge

 (%
)

100

50

0

In
fe

ct
ed

 a
re

a
pe

rc
en

ta
ge

 (%
)

100

50

0

In
fe

ct
ed

 a
re

a
pe

rc
en

ta
ge

 (%
)

In
fe

ct
ed

 a
re

a
pe

rc
en

ta
ge

 (%
)

Dilution factor (×10−4)
2–7 2–6 2–5 2–4 2–3 2–2

Dilution factor (×10−4)
2–7 2–6 2–5 2–4 2–3 2–2

Dilution factor (×10−4)
2–7 2–6 2–5 2–4 2–3 2–2

Dilution factor (×10−4)
2–7 2–6 2–5 2–4 2–3 2–2

Dilution factor (×10−4)
2–7 2–6 2–5 2–4 2–3 2–2

50

25

0

2–7 × 10–4 dilution 2–6 × 10–4 dilution 2–5 × 10–4 dilution

2–4 × 10–4 dilution 2–3 × 10–4 dilution 2–2 × 10–4 dilution

2–7 × 10–4 dilution 2–6 × 10–4 dilution 2–5 × 10–4 dilution

2–4 × 10–4 dilution 2–3 × 10–4 dilution 2–2 × 10–4 dilution

6 h
8 h
10 h

6 h
8 h
10 h

6 h
8 h
10 h

6 h
8 h
10 h

6 h
8 h
10 h

Fig. 5 | Quantitative performance analyses of the label-free viral plaque assay 
for high virus concentration samples. a, PFU counting results for different 
high-concentration virus samples at different time points. The light red region 
indicates the time when the PFUs were heavily clustered and no longer suitable 
for counting. b, Area of the virus-infected regions for different high virus 

concentration samples at different time points. The data points in a and b show 
the mean values across five-titre test plates. The error bars in a and b show the 
standard error across five-titre testing plates. c, Plots of virus dilution factor 
versus the ratio of the infected cell area per test well (in %) for all five-titre test 
samples at 6 h, 8 h and 10 h of incubation time.
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recovery47 can also be implemented to improve the overall image qual-
ity of the label-free plaques. The deep-learning-enabled PFU detection 
framework can be potentially adapted to other imaging modalities 
that can be used to measure spatiotemporal differences in the PFU 
regions for various types of virus; similarly, the trained PFU-classifier 
network also has the adaptability to these system changes (Supple-
mentary Note 2).

In summary, we have shown the performance of a stain-free, rapid 
and quantitative viral-plaque assay that leverages deep learning and 
holography. The compact and cost-effective device preserves all the 
advantages of the traditional plaque assays while substantially reduc-
ing the required sample incubation time in a label-free manner, saving 
time and eliminating the need for staining. It is also resilient to potential 
artefacts during sample preparation and can automatically quantify a 
larger dynamic range of virus concentrations per well. We expect this 
technique to be widely used in virology research, vaccine development 
and related clinical applications.

Methods
Safety practices
We handled all the cell cultures and viruses during our experiments at 
our biosafety level 2 laboratory according to the environmental, health 
and safety rules and regulations of the University of California, Los 
Angeles. All operations were carried out under strict aseptic conditions.

Studied organisms
We used Vero C1008 (Vero 76, clone E6, Vero E6) (ATCC CRL-1586) 
(American Type Culture Collection (ATCC)), VSV (ATCC VR-1238), HSV-1 
(ATCC VR-260) and EMCV (ATCC VR-129B). Vero E6 cells are African 
green monkey kidney cells and are epithelial cells.

Cell propagation
We placed the frozen stock culture immediately in the liquid nitrogen 
vapour, until ready for use, just after the delivery of the frozen stock cul-
ture from ATCC. ATCC formulated Eagle’s Minimum Essential Medium 
(EMEM) (product number 30-2003, ATCC) was used as a base medium 
for the cell line. For the complete growth medium, the base medium 
was mixed with foetal bovine serum (FBS) (product number 30-2021, 
ATCC) with a final concentration of 10%. The FBS stock was aliquoted 
into 4 ml microcentrifuge tubes and stored at −20 °C until use.

We used tissue culture flasks (75 cm2 area, vented cap, tissue cul-
ture treated, T-75) (product number FB012937, Fisher Scientific) for 
cell culturing. The base medium in a T-75 flask and FBS were brought 
to 37 °C in the incubator (product number 51030400, ThermoFisher 

Scientific) and fed with 5% CO2 before handling it for cell-culturing 
steps. The complete growth medium was prepared. The frozen cell 
culture was removed from liquid nitrogen and thawed under running 
water. After thawing the cells, the cell suspension was added to a T-75 
flask containing 8 ml of complete growth medium (that is, EMEM + 10% 
FBS). The flask was incubated at 37 °C and 5% CO2 in the incubator. The 
adherence of the cells to the flask surface was analysed daily under a 
phase-contrast microscope. The medium in the flask was renewed two 
to three times a week. The cells were sub-cultivated in a ratio of 1:4 when 
95% confluency of the cells as a monolayer was reached.

Subculturing of cells
After the removal of the medium from the cell culture flask, the cells 
were exposed to 2–3 ml of 0.25% trypsin/0.53 mM EDTA (ATCC 30-2101, 
ATCC) per flask for dissociation of cell monolayers. The flasks were kept 
in the incubator for 5–6 min for rapid dissociation of cells. About 8 ml 
of complete medium was added to each flask, and 2–3 ml of the mixture 
containing suspended cells was transferred into a new T-75 flask. About 
8 ml of complete medium was added to the new flask, and after gentle 
mixing, it was incubated at 37 °C and 5% CO2 for the growth of new cells.

Virus propagation
After the delivery of the virus stock samples from ATCC, they were 
stored in liquid nitrogen tanks until further use. Virus propagation 
requires to have Vero cells to be cultured and reach 90–95% confluency 
on the day of infection. Therefore, Vero cells were cultured for 1–2 days 
before the virus propagation using a seed cell suspension of Vero cells 
that were subcultured more than three times.

On the day of the virus infection, the growth medium in the Vero 
cell culture flask was removed and discarded. Then, it was rinsed using 
5 ml Dulbecco’s phosphate-buffered saline (D-PBS), 1× (ATCC 30-2200) 
(product number 30-2200, ATCC). After keeping the D-PBS containing 
flask for 3 min in the cabinet, the buffer solution was removed and 
discarded. For the virus propagation, the Vero cells in each flask were 
infected with 14 µl of VSV stock virus, 17 µl of HSV-1 stock virus or 20 µl 
of EMCV stock virus with a multiplicity of infection of 0.003, 0.07 and 
0.05 for the VSV, HSV-1 and EMCV, respectively. Following this, 6 ml of 
EMEM (without FBS) was added to each flask. The flasks were incubated 
at 37 °C for 1 h and rocked at 15 min intervals to have a uniform spread of 
virus inoculum. After 1 h, 10 ml of complete medium was added to each 
flask, and the flasks were incubated at 37 °C and 5% CO2 for 48 h to 72 h.

After the incubation, the flasks were analysed under a 
phase-contrast microscope. The cells should dissociate from the sur-
face, and round cells should be observed in the mixture if the virus 
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propagation process is successful. The mixture was collected into a 
50 ml tube (product number 06-443-20, Fisher Scientific), and the 
tubes were sealed using a parafilm layer. The suspension in the tube 
was centrifuged at ~2,600 g for 10 min using a centrifuge with swing-out 
rotors (product number 22500126, Fisher Scientific). The supernatant 
containing the virus was collected from the tube and pooled in a new 
tube. After gentle mixing of the tube to have a uniform suspension, the 
suspension was aliquoted into 1 ml cryogenic vials with O-ring (product 
number 5000-1012, Fisher Scientific). The tubes were labelled and 
stored in liquid nitrogen tanks.

Preparation of agarose solution
About 4% agarose (product number MP11AGR0050, Fisher Scientific) 
in reagent grade water (product number 23-249-581, Fisher Scientific) 
was prepared and mixed well48. The suspension was then aliquoted into 
the glass bottles. The solution was sterilized at 121 °C for 15 min in an 
autoclave, and 50 ml aliquots were stored at 4 °C until use.

Preparation of agarose overlay solution
One of the tubes containing 50 ml of sterile agarose solution was heated 
up in a microwave oven for ~30 s. The solution was cooled down to 65 °C 
in a water bath. About 23.9 ml EMEM medium was mixed with 0.6 ml 
FBS and warmed to 50 °C. About 3.5 ml of agarose solution was added 
into the warmed medium mixture using a 10 ml serological pipette and 
kept at 50 °C until use.

Well plate preparation
First, the adhered cells in the flask were resuspended using trypsin. The 
solution was gently mixed to have uniform cell suspension, and 10 µl 
of the suspension was taken for cell counting using a haemacytometer 
chamber. The cells were counted using a phase-contrast microscope. 
According to the cell count, the concentration of cells was adjusted to 
~6.5 × 105 cells per ml by diluting the suspension using the complete 
medium. Approximately 6.5 × 105 cells were added to each well of a 
new six-well plate (product number CLS5316, Corning). Then, 2 ml of 
complete medium was added to each well, and the plate was stored 
at 37 °C and 5% CO2 for 24 h. Next, the cell coverage on each well was 
checked under the microscope. The cell coverage should reach ~95% 
to perform the PFU assay.

For a given six-well plate, the cells of each well were infected with 
100 µl of diluted virus suspension (the dilution factors for VSV, HSV-1 and 
EMCV are 2−1 × 10−6, 2−2 × 10−5 and 2−3 × 10−3, respectively), and ~2.5–3 ml of 
the overlay solution was added to the cells. After the solidification of the 
overlay at room temperature, the plate was incubated in an incubator 
(Heracell VIOS 160i CO2 Incubator, Thermo Scientific) for 48 h, 120 h 
and 72 h corresponding to VSV, HSV-1 and EMCV, respectively. A photo 
comparison of the HSV-1 samples at 72 h, 96 h and 120 h of incubation 
is shown in Supplementary Fig. 11, which confirms the need for 120 h of 
incubation for HSV-1 PFUs. Similarly, a photo comparison of the EMCV 
samples at 48 h and 72 h of incubation is shown in Supplementary Fig. 12,  
confirming the need for 72 h of incubation for EMCV. These observations 
are also in line with previous studies43,44.

The preparation of the 12-well plates used for VSV PFU testing 
followed the same workflow of the six-well plate VSV preparation. The 
only difference in preparing 12-well VSV plates is that the seeded cells in 
each well, the virus suspension volume per well and the agarose overlay 
solution used for each well were reduced to half compared with the 
six-well plates. We summarized the different experimental settings that 
were used for VSV, HSV-1 and EMCV in the process of virus propagation 
and well plate preparation in Supplementary Table 2.

Preparation of crystal violet solution
About 0.1 g of crystal violet powder (product number C581-25, Fisher 
Scientific) was mixed with 40 ml reagent grade water in a 50 ml centri-
fuge tube. The mixture was gently mixed to dissolve the powder. About 

10 ml methanol (product number A452-4, Fisher Scientific) was added 
to the mixture, which was then stored at room temperature.

Fixation and staining of cells
These steps were only performed for comparison against our device’s 
PFU readings. After 48 h of VSV incubation, 120 h of HSV-1 incubation 
or 72 h of EMCV incubation, the plate was removed from the incubator, 
and the cells were fixed using 0.5 ml methanol–acetic acid solution 
for 30 min. After 30 min, the wells were washed with water gently to 
remove the agarose layer. The excess water was removed, and 1 ml of 
crystal violet solution was added to each well. The plate with crystal 
violet was placed into the shaker incubator and mixed at 100 rpm for 
30 min. After 30 min of incubation, tap water was used to remove excess 
stain from the plate, and the waste was collected into a large beaker. The 
plate was left to dry in a fume hood and stored at room temperature, 
covered with an aluminium foil.

Lens-free imaging set-up
An automatic lens-free PFU imaging set-up was built to capture the 
in-line holograms of the samples. This set-up includes: (1) a holo-
graphic imaging system, (2) a 2D mechanical scanning platform, (3) a 
cooling system, (4) a controlling circuit and (5) an automatic control-
ling program. Three green laser diodes (at 515 nm, 2 nm bandwidth, 
0.17 mm emission diameter, Osram PLT5510) were used for coherent 
illumination, where each laser diode illuminates two wells on the same 
column of the six-well sample plate (Supplementary Video 1). The laser 
diodes were controlled by a driver (TLC5916, Texas Instruments) and 
mounted ~16 cm away from the sample. A complementary metal oxide 
semiconductor (CMOS) image sensor (acA3800-14 µm, Basler AG, 
1.67 μm pixel size, 6.4 mm × 4.6 mm FOV) was placed ~5 mm beneath 
the sample forming a lens-free holographic imaging system. The phase 
changes in the PFU regions were encoded in the acquired holograms.

There are several factors that affect the spatial resolution of the 
lens-free holographic imaging system, including (1) the spatial coher-
ence of the illumination, (2) the temporal coherence of the illumination, 
(3) the axial distance between the source aperture and the sample plane 
(referred to as z1) and the sample-to-sensor plane distance (z2) and (4) the 
pixel size of the image sensor. As for the illumination source per well, we 
used a single-mode laser diode with a core size of 9 µm, with z1 ≈ 16 cm 
between the source plane and the sample plane, which provided suf-
ficient spatial coherence covering the entire sample plane per well. As 
for the temporal coherence length of our illumination source, we have:

△Lc ≈√
2ln2
πn × λ2

Δλ
= 88.09μm (1)

where n is the refractive index and equals to 1 in air, λ = 515 nm and 
Δλ = 2 nm, which is the bandwidth of the laser diode. We can accord-
ingly calculate the effective numerical aperture due to the temporal 
coherence limit of the illumination light as (NAtemporal):

NAtemporal = nsinθtemporal

= n√1 − cos2θtemporal = n√1 − ( z2
z2+ΔLc

)
2
≈ 0.1853

(2)

where z2 ≈ 5 mm. This temporal coherence-based NA is lower than the 
effective numerical aperture that is dictated by the sample-to-sensor 
distance and the extent of the detector plane, and therefore, the tem-
poral coherence-dictated holographic resolution limit of our system 
can be approximated as:

dcoherence ∝
λ

NAtemporal
= 2.7793μm (3)
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As our holographic on-chip imaging system has z1 ≫ z2, it operates 
under a unit fringe magnification49, and the native pixel size (1.67 µm) 
at the sensor plane also casts its own resolution limit because of the 
pixelation of the acquired holograms, unless pixel super-resolution50,51 
(PSR) approaches are utilized to digitally reduce the effective pixel size 
of each holographic frame. In this work, PSR was not utilized as our 
device acts as a PFU detector by sensing the spatiotemporal changes 
induced by viral replication events, and therefore a high spatial resolu-
tion (for example, <1–2 µm) reconstruction of holograms was not 
necessary. In fact, these design choices also helped us substantially 
simplify and speed up the image processing pipeline and eliminate 
unnecessary data acquisition. Furthermore, the numerical spatiotem-
poral variations that might be introduced as a result of PSR algorithms 
as a function of the incubation time might have introduced technical 
challenges for the learning of the PFU classifier neural networks, which 
is another design consideration that we had in addition to the simpli-
fication of the holographic data acquisition, processing and storage.

The FOV of the CMOS image sensor is ~0.3 cm2, and hence mechani-
cal scanning is needed for imaging the whole area of a six-well plate. A 
scanning platform was built using a pair of linear translation rails, a pair 
of linear bearing rods, and linear bearings. Three-dimensional printed 
parts were also used to aid with housing and joints. Two stepper motors 
(product number 1124090, Kysan Electronics), driven by two driver 
chips (DRV8834, Pololu), were exploited to enable the CMOS sensor 
to perform 2D horizontal movement. This low-cost system carries 
the CMOS sensor moving in a raster pattern and images a total of 420 
holograms (21 horizontal and 20 vertical, with 15% overlap) in ~3 min 
to complete the whole sample scanning (Supplementary Video 1).

The selected CMOS sensor could heat up to >70 °C during its 
operation, which could disturb the growth of the sample and vaporize 
the agarose layer, especially for regions that are near the sensor parking 
location between successive holographic scans. Hence, a cooling sys-
tem was built using fans (QYN1225BMG-A2, Qirssyn). We also sealed the 
sides of the sample using parafilm (product number 13-374-16, Fisher 
Scientific) and opened four holes on the top cover to form a gentle 
ventilation system, which is an inexpensive and easy-to-implement 
solution to avoid sample drying.

A microcontroller (Arduino Micro, Arduino LLC) was used to con-
trol the two stepper motor driver chips, the illumination driver chip and 
a field-effect transistor-based digital switch (used to turn the CMOS 
sensor on and off). All these chips, along with the digital switch, wires 
and capacitors, were integrated on one printed circuit board, powered 
by a 6 V, 1 A power adaptor connected to the wall plug.

An automatic controlling program with a graphical user interface 
(Supplementary Fig. 13) was developed using the C++ programming 
language. It can be used to adjust the image capture parameters (for 
example, exposure time and so on) of the CMOS image sensor and 
communicate with the microcontroller to further switch the laser 
diodes or CMOS sensor on and off and control the movement of the 
mechanical scanning system.

All the components along with their unit prices are also sum-
marized in Supplementary Table 1. The cost of the parts of this entire 
imaging system is less than US$880, excluding the laptop computer. 
At higher volumes of manufacturing, this cost can be further reduced.

Image pre-processing
After the image acquisition for each time interval, the raw holograms 
were first reconstructed using the angular spectrum approach based 
on back-propagation49,52–55. The accurate sample-to-sensor distance 
was estimated at the central region of each well using an auto-focusing 
algorithm based on the Tamura-of-gradient metric56. The same 
sample-to-sensor distance was used for the entire well as the neural 
network-based method can tolerate de-focusing. Then, the phase 
channel of the reconstructed holograms was stitched into the whole 
FOV image using a correlation-based method and linear blending32.

Starting from the second time interval, a two-step image reg-
istration was performed to compensate for the low accuracy of the 
mechanical scanning stage. A coarse whole FOV correlation-based 
image registration was first performed; then a local fine elastic image 
registration was followed57. The impact of this two-step image registra-
tion is shown in Supplementary Video 2.

Coarse PFU localization algorithm
First, each current frame was stacked with the previous three frames 
(shown in Supplementary Fig. 14a), and a background image (shown in 
Supplementary Fig. 14b) was estimated through singular value decom-
position58. By subtracting this background image, signals from the 
static regions were suppressed (shown in Supplementary Fig. 14c). 
Then, by applying bilateral filtering, the PFU regions with high spatial 
frequency features were further enhanced (shown in Supplementary 
Fig. 14d).

A total of 93 image patches (256 × 256 pixels) in PFU regions 
and 93 image patches from non-PFU regions were cropped manu-
ally from three experiments. Each pixel of these image patches was 
labelled as 1 for the PFU region and 0 for the non-PFU region. A naive 
Bayes pixel-wise classifier was trained using this dataset, where the 
Tamura-of-gradient metric56 was computed at 2×, 4×, 8×, 16× and 32× 
down-sampling scales to serve as the manually selected features. The 
effect of this classifier is shown in Supplementary Fig. 14e. Finally, 
by applying several morphological operations (such as image close, 
image fill and so on), the PFU regions are coarsely located (shown in 
Supplementary Fig. 14f).

Although this coarse PFU localization algorithm was still subject 
to detecting false positives (shown in Supplementary Fig. 14g), it could 
substantially simplify the effort needed for populating the network 
training dataset. In addition, applying this algorithm to a negative well 
would help delineate the potential false positives during network train-
ing (shown in Supplementary Fig. 14h). It is important to note that this 
PFU localization algorithm was only used for the training data genera-
tion and was not used in the blind testing phase as its function was to 
streamline the training data generation process to be more efficient.

Network training dataset
The network training datasets used in our work were generated by 
combining the coarse PFU localization algorithm with human label-
ling. To obtain the training datasets for VSV, 54 training wells from 
nine six-well plates containing nine negative control wells and 45 
positive (virus-infected) wells were imaged and processed. For the 
positive training dataset, after the image pre-processing, the coarse 
PFU localization algorithm was applied to the images obtained at 12 h 
of incubation. From the 45 positive wells, this process automatically 
generated 6,930 VSV PFU candidates. Then, each of these candidates 
was examined by four experts using the customized graphical user 
interface shown in Supplementary Fig. 2. Only those PFU candidates 
confirmed by all four experts were kept in the positive training data-
set; potentially missed PFUs are not a concern here as this is just the 
training dataset. Ultimately, 357 positive videos of the confirmed PFUs 
were kept and were further populated to 2,594 videos by performing 
augmentation over time. For the negative training dataset, all the 
negative videos were populated from the nine negative control wells. 
To enhance the specificity of the network, the coarse PFU localiza-
tion algorithm was also applied to the holographic images obtained 
at 12 h of incubation. Any detected PFU regions were false positives 
in this case as these were from the negative control wells. However, 
such regions might contain unique spatial-temporal features that 
would potentially confuse the PFU network and thus were kept in the 
negative training dataset to provide valuable training examples for 
our deep neural network. In total, 1,169 such videos were found by 
this process, and the negative training dataset is further augmented 
to 3,028 videos by random selection from the negative control wells. 
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Following the same dataset generation method, the training datasets 
of HSV-1 and EMCV that were used for transfer learning were prepared 
accordingly. The above-mentioned coarse PFU localization algorithm 
was first applied to 72 h holographic phase images for HSV-1 and 60 h 
holographic phase images for EMCV. For the HSV-1 training dataset, 
1,058 positive videos of 122 confirmed HSV-1 PFUs from ten wells, and 
1,453 negative videos from two negative control wells were generated. 
Similarly, 776 positive videos of 152 EMCV PFUs from 15 wells and 1,875 
negative videos from three negative control wells formed the training 
dataset for EMCV. Based on the plaque-forming speed for each type of 
virus, the time intervals between two consecutive holographic frames 
for the VSV videos, HSV-1 videos and EMCV videos were set to 1 h, 2 h 
and 1 h, respectively.

Network architecture and training schedule
Our PFU classifier network was built based on the DenseNet59 struc-
ture, with 2D convolution layers replaced by the pseudo-3D building 
blocks60. The detailed architecture is shown in Supplementary Fig. 15 
and described in Supplementary Note 3. We used rectified linear unit 
as the activation function. Batch normalization and dropout with a 
rate of 0.5 were used in the training. The loss function we used was the 
weighted cross-entropy loss:

l (p, g) = ∑
K
k=1∑

2
l=1 −wl × gk,l × log (

exp(pk,l)
exp (pk,1) + exp(pk,2)

) (4)

where p is the network output, which is the probability of each 
class (that is, PFU or non-PFU) before the SoftMax layer, g is the 
ground-truth label (which is equal to 0 or 1 for binary classification), 
K is the total number of training samples in one batch and w is the 
weight assigned to each class, defined as w = 1 − d, where d is the 
percentage of the samples in one class (d = 46.1% for positive class, 
d = 53.9% for negative class).

The input four-frame videos were formatted as a ten-
sor with the dimension of 1 × 4 × 480 × 480 (channel × time 
frame × height × width). Data augmentation, such as flipping, and 
rotation were applied when loading the training dataset. The network 
model was optimized using the Adam optimizer with a momentum 
coefficient of (0.9, 0.999). The learning rate started as 1 × 10−4, and a 
scheduler was used to decrease the learning rate with a coefficient of 
0.7 at every 30 epochs. Our model was trained for 264 epochs using 
Nvidia GeForce RTX3090 GPU with a batch size of 30. The loss curve, 
training sensitivity and specificity curves of our training process are 
provided in Supplementary Fig. 16. In these curves, 10% of the training 
dataset was randomly selected as the validation dataset. Note that 
the training and validation datasets (containing holographic videos 
of the wells) were formed from various wells at different time points 
of each PFU assay as detailed earlier; therefore, these training and 
validation sensitivity and specificity curves do not reflect the evalu-
ation of an individual test well that is periodically monitored from 
the beginning of the incubation. Our blind testing results reported in 
‘Results’, however, were acquired by using the trained VSV PFU detec-
tion neural network on individual test wells that were continuously 
monitored from the beginning of the incubation with a sampling 
period of 1 h, achieving >90% detection rate for VSV PFUs with 100% 
specificity in <20 h.

Similarly, we built the PFU detection neural networks for HSV-1 
and EMCV through transfer learning, where the same neural network 
architecture was used but initialized with the parameters obtained by 
the previously trained VSV model. Other training settings for HSV-1 
and EMCV models, such as the loss function, initial learning rate and 
optimizer, were all kept the same as the VSV model, but the learning 
rate was decreased with a coefficient of 0.8 every ten epochs. Finally, 
the HSV-1 and EMCV models were obtained after 135 epochs and 88 
epochs of training, respectively, based on the validation loss.

Image post-processing
After getting the PFU probability map and applying the 0.5 threshold, 
two image post-processing steps were followed to obtain the final 
PFU detection result: (1) maximum probability projection along time 
and (2) PFU size thresholding. The maximum projection was used to 
compensate for the lower PFU probability values generated from the 
PFU centre when it enters the late stage of its growth. The effect of this 
maximum projection is illustrated in Supplementary Fig. 17. The size 
threshold on the PFU probability map was set to 0.5 × 0.5 mm2.

Automated PFU counting algorithm
After getting the binary PFU detection mask for each test well, an auto-
mated PFU counting algorithm that is compatible with both sparse and 
dense viral samples was developed. First, the connected components in 
the detection mask at the mth hour (denoted as Dm) were found. Then, 
the PFU counts for each connected component in Dm were calculated by 
taking the maximum number of connected components that emerged 
in this region over time:

ncc = max
t=[1,m]

(H (Dt ∗ C)) (5)

where * denotes the element-wise multiplication operation, ncc denotes the 
PFU count for the examined connected component in Dm, Dt denotes the 
PFU detection mask at tth hour, C represents a binary map (with the same 
dimensions as Dt), which only maintains the current examined connected 
component in Dm as 1, and H(·) refers to the operation of taking the number 
of the connected components. Finally, the sum of the ncc for all the con-
nected components in Dm was taken as the final PFU count for each well.

Automated PFU counting settings for BioTek Cytation 5
For comparison against our device, some of the VSV six-well plates were 
analysed using the BioTek Cytation 5 (Agilent Technologies) under the 
bright-field mode with an objective lens of 4×, 0.13 NA. These captured 
images were processed and analysed using its self-contained Gen5 
Image Prime software (Agilent Technologies). The captured local images 
were first stitched into a whole FOV image of each test well, which was 
then processed by the ‘digital phase contrast’ function using a 50 μm 
structuring element size. Next, the ‘cellular analysis’ tool was used to 
perform the automated PFU counting. In its basic settings, an intensity 
threshold of 2,500 and an object size threshold of 1,500–5,000 µm were 
used. In its advanced detection settings, the rolling ball diameter of the 
background flattening, image-smoothing strength and the evaluated 
background level were set to 1,000 µm, 20 cycles of 3 × 3 average filter 
and 30% of the lowest pixels, respectively. All the parameters used for 
pre-processing and automated PFU counting were optimized in con-
sultation with the technical support team from Agilent Technologies.

PFU detection rate and the false discovery rate
To evaluate the PFU detection performance of our device, the detection 
rate and the false discovery rate were defined as follows:

Detection rate = TP
GT (6)

where TP (true positives) represents the number of the detected PFUs 
by our device at a given time point within the incubator and GT (ground 
truth) is the total PFU number counted by an expert for the same sample 
after 48 h of VSV incubation (120 h for HSV-1 and 72 h for EMCV) fol-
lowed by the standard staining as part of the traditional plaque assay 
protocol. We also used:

False discovery rate = FP
TP + FP (7)

where FP stands for false positives.
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Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
The authors declare that the main data supporting the results of this 
study are available within the paper and its Supplementary Informa-
tion. Example testing images are available at https://doi.org/10.5281/
zenodo.7931999. The complete raw-image dataset collected by the 
sensor (>11 TB) is available from the corresponding author on reason-
able request.

Code availability
The PFU classifier-related PyTorch codes are available at https://github.
com/liyuzhu1998/PFU_Detection_Codes. The CAD files of the device 
and its detailed assembling instructions can be found at https://github.
com/liyuzhu1998/PFU_Detection_Hardware.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size To train and test the network-based method that we used, we prepared a total of 29 plaque-assay plates containing (1) 19 6-well plates using 
Vero C1008 [Vero 76, clone E6, Vero E6] (ATCC CRL-1586TM) (ATCC, USA) and vesicular stomatitis virus (VSV) (ATCC VR-1238TM) on standard 
6-well plates (Corning Costar TC-Treated Multiple Well Plates, product no. CLS3516-50EA); (2) 4 6-well plates using Vero C1008 [Vero 76, 
clone E6, Vero E6] and herpes simplex virus type 1 (HSV-1) (ATCC VR-260TM) on standard 6-well plates; (3) 5 6-well plates using Vero C1008 
[Vero 76, clone E6, Vero E6] and encephalomyocarditis virus (EMCV) (ATCC VR-129BTM) on standard 6-well plates; and (4) 1 12-well plate 
using using Vero C1008 [Vero 76, clone E6, Vero E6] and VSV on a standard 12-well plate (Corning Costar TC-Treated Multiple Well Plates, 
product no. CLS3513-50EA). Each plate was imaged 20 times with a 1-hour time interval, 72 times with a 2-hour time interval ,and 60 times 
with a 1-hour time interval during the incubation of VSV, HSV-1, and EMCV, respectively. For each well within one 6-well plate, 70 unique 
image fields of view (3,840 × 2,748 pixels per image) were captured, which were later stitched to a whole-field-of-view image containing 
18,000 × 18,000 pixels/well (covering a 30 × 30 mm2 area per well). For each well within one 12-well plate, 35 unique image fields of view 
(3,840 × 2,748 pixels per image) were captured, which were later stitched to a whole-field-of-view image containing 11,500 × 11,500 pixels/
well (covering a 19 × 19 mm2 area per well).  

Data exclusions The 6-well plate had a 34 × 34 mm2 area for each well, where only the center 30 × 30 mm2 area was kept per well, owing to the reflections 
from the edges of the well. The 12-well plate had a 22 × 22 mm2 area for each well, where only the center 19 × 19 mm2 area was kept per 
well, owing to the reflections from the edges of the well.

Replication In total, 357 true positive PFU holographic videos and 1169 negative holographic videos were collected for training the VSV PFU decision 
neural network. This dataset was further augmented to create a total of 2594 positive and 3028 negative holographic videos (see the Method 
sections), where each frame had 480×480 pixels, and the time interval between two consecutive holographic frames was 1 hour. Similarly, a 
total of 1058 positive holographic videos of 122 confirmed HSV-1 PFUs from 10 wells, and 1453 negative holographic videos from 2 negative 
control wells were generated for training the HSV-1 PFU detection network, where each frame had 480×480 pixels, and the time interval 
between two consecutive holographic frames was 2 hours. Moreover, a total of 776 positive videos of 152 EMCV PFUs from 15 wells and 1875 
negative videos from 3 negative control wells formed the training dataset for EMCV, where each frame had 480×480 pixels, and the time 
interval of two consecutive holographic frames was 1 hour. 

Randomization All training, validation and test samples were prepared following the sample-preparation protocol described in this paper. The specific 
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Randomization number and distribution of the plaque forming units (PFUs) were random for each well. 

Blinding All the performance testing of the stain-free plaque assay using the trained VSV deep neural network was blindly performed on new 10 VSV 
plaque-assay plates (60 wells in total) that were not included in the training or validation phases of the trained network. Similarly, two 
additional HSV-1 plaque-assay plates (12 wells in total) and 2 additional EMCV plaque-assay plates (12 wells in total) were used for the blind 
testing of the HSV-1 PFU detection network and the EMCV PFU detection network, respectively.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 
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Cell line source(s) Vero C1008 [Vero 76, clone E6, Vero E6] cells were obtained from ATCC (ATCC CRL-1586TM).

Authentication An already authenticated cell line was purchased from ATCC. Further authentication was not performed. 

Mycoplasma contamination Not observed.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.
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