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ABSTRACT OF THE DISSERTATION

Energy-Based Model and its Applications

by

Yaxuan Zhu

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2024

Professor Yingnian Wu, Chair

The Energy-Based Model (EBM) represents a class of probabilistic generative models that offers a

robust and versatile framework for modeling arbitrary data distributions. In recent years, EBMs

have increasingly captured the interest of both the academic and industrial sectors. Despite their

potential, the training and practical application of EBMs pose significant challenges. This thesis

conducts a systematic study of EBMs, beginning with a case study on 3D modeling. This example

not only showcases the strengths of EBMs but also highlights the difficulties encountered during

their training process. The discussion then progresses to the intricacies of EBM training, particularly

emphasizing the challenge of the time-consuming sampling process, which may not always yield

beneficial samples for updating EBMs. To address this issue, we introduce a strategy to amortize

the sampling process using specially designed initializer models. We developed algorithms to

facilitate cooperative training between the EBM and the initializer models. The resulting algorithms,

CoopFlow and CDRL, demonstrate competitive performance across a variety of tasks, showcasing

their efficacy in overcoming traditional EBM training hurdles.
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CHAPTER 1

Introduction

1.1 Background

The exploration of Energy-Based Models (EBMs) harks back to seminal contributions by (ZWM98a;

LCH06; Hin12). EBMs represent a class of probabilistic generative models. An EBM define an

unnormalized probability density function for its data, articulated as the exponential of an energy

function. This function allocates a scalar energy value to each input configuration, where higher

energy values signify configurations of greater likelihood.

In recent developments, EBMs have demonstrated their versatility and utility across a wide

spectrum of application areas, including realistic image synthesis (XLZ16a; XLG18; NHZ19;

DM19; AZG21; HNM22; XKK21; LJP23; GKH21a; CH23), graph generation (LYO21), composi-

tional generation (DLM20; DDS23), video generation (XZW21), 3D generation (XXZ21; XZG18),

physics simulation (CC24), simulation-based inference (GAD22), stochastic optimization (KCZ22),

out-of-distribution detection (GWJ20; LWO20), and latent space modeling (PHN20; ZXL23;

ZXB23; YZX23).

Despite the success and broad applicability of EBMs, the challenges associated with their

training and sampling processes, primarily due to the intractability of the partition function, remain

significant. Efforts to scale up EBM training have been made, but a perceivable gap persists between

EBMs and other generative models, such as Generative Adversarial Networks (GANs) (CWD18)

and diffusion models (SWM15; HJA20; SE19). This gap poses a barrier to the wider application of

EBMs.
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1.2 Research Objective

This thesis aims to advance the development of EBM. We seek to address a crucial question:

How can we construct a robust EBM capable of modeling complex distributions and generating

high-quality samples? Answering this requires a thorough analysis of the existing EBM training

algorithms, pinpointing the primary obstacles, and devising an algorithm to overcome them. Beyond

the foundational training mechanisms, this work explores the application of EBMs to real-world

challenges. With a specific focus on the task of 3D space modeling, we examine the integration of

an EBM prior within the latent space of a specialized 3D-aware generator. The findings underscore

the efficacy and potential of EBMs.

1.3 Dissertation Outline

The rest of this dissertation is arranged as follows:

• Chapter2 introduces the basic formulation of EBMs. This chapter discusses the central

algorithm for training EBMs, focusing on maximum likelihood estimation (MLE), and

examines the sampling algorithms crucial for EBMs’ practical application. It also briefly

introduces the development of EBMs, from classic models with predefined filters to recent

models using deep convolutional neural networks. Additionally, the chapter covers conditional

EBMs and EBMs applied to the latent space of generator models. Through this discussion, the

chapter aims to provide readers with a solid understanding of the fundamental concepts and

methodologies behind EBMs, setting the groundwork for further exploration in the following

chapters.

• Chapter3 pivots to the application of EBM in 3D shape modeling, proposing the innovative

NeRF-LEBM. This model, a likelihood-based, top-down, 3D-aware 2D image generative

framework, seamlessly integrates 3D representation through Neural Radiance Fields (NeRF)

and the 2D imaging process via differentiable volume rendering. It conceptualizes image
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generation as a rendering process from a 3D object to a 2D image, conditioned on latent

variables that encapsulate object characteristics within informative, trainable energy-based

prior models. To train the NeRF-LEBM, we introduce two likelihood-based frameworks: (i)

maximum likelihood estimation with inference via Markov chain Monte Carlo and (ii) varia-

tional inference employing the reparameterization trick. Our investigations span scenarios

with both known and unknown camera positions, and empirical results on benchmark datasets

underscore NeRF-LEBM’s prowess in inferring 3D structures from 2D images, generating

novel views and objects, and learning from partial images and those with varying camera

perspectives. This exploration not only showcases the practical applications of EBM but also

highlights the model’s challenges and advantages in training.

• Following the insights from Chapter3, Chapter4 explores the development of enhanced

training algorithms for EBM. It scrutinizes the cooperative learning of two generative models

- a normalizing flow model and a Langevin flow model, which are iteratively updated with

jointly synthesized samples. The chapter outlines a generative framework that employs

a normalizing flow to initialize MCMC chains for an energy-based model, followed by a

short-run Langevin flow adjustment. Then we treat the synthesized examples as fair samples

from the energy-based model and update the model parameters with the maximum likelihood

learning gradient, while the normalizing flow directly learns from the synthesized examples

by maximizing the tractable likelihood. Under the short-run non-mixing MCMC scenario, the

estimation of the energy-based model is shown to follow the perturbation of maximum likeli-

hood, and the short-run Langevin flow and the normalizing flow form a two-flow generator

that we call CoopFlow. The effectiveness of CoopFlow, demonstrated through realistic image

synthesis, reconstruction, and interpolation, underscores the strategic advantage of selecting

an appropriate initializer model to enhance EBM’s generative capabilities.

• Building on the achievements of Chapter4, Chapter5 endeavors to further narrow the perfor-

mance divide between EBM and other generative models. Motivated by recent advancements

in learning EBMs through maximizing diffusion recovery likelihood (DRL) (GSP21a), we
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introduce the Cooperative Diffusion Recovery Likelihood (CDRL) framework. This novel

approach facilitates the learning and sampling from a sequence of EBMs across progressively

noisier dataset versions, each paired with a designated initializer model. Within a cooperative

training paradigm, samples from the initializer model serve as preliminary points, refined

by a few MCMC steps from the EBM, which is then optimized via recovery likelihood

maximization. Meanwhile, the initializer model enhances based on the refinement difference.

Incorporating practical EBM training enhancements, CDRL markedly improves generation

quality over existing methods on CIFAR-10 and ImageNet datasets. Additionally, we validate

CDRL’s various scenarios and tasks, such as classifier-free guided generation, compositional

generation, image inpainting, and out-of-distribution detection.
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CHAPTER 2

Preliminaries of Energy-Based Model

2.1 Basic Formulation

Consider sample x drawn from an underlying data distribution denoted as pdata(x). An energy-based

model (EBM) models the density of x through the following equation:

pθ(x) =
1

Zθ

exp(fθ(x)), (2.1)

where fθ represents the unnormalized log density, or the negative energy, parameterized by a neural

network yielding a scalar output. The term Zθ =
∫
exp[fθ(x)]dx refers to the normalizing constant

or partition function. It is noteworthy that Zθ is generally analytically intractable.

2.1.1 Maximum Likelihood Learning

Given a set of unlabeled training examples {xi, i = 1, ..., n} from an unknown data distribution

pdata(x), the EBM described in Equation (2.1) can be trained utilizing the examples {xi} via Markov

chain Monte Carlo (MCMC)-based maximum likelihood estimation. In this process, MCMC

samples are generated from the model pθ(x) to approximate the gradient of the log-likelihood

function, facilitating the update of model parameters θ. Specifically, the log-likelihood function

is defined as L(θ) = 1
n

∑n
i=1 log pθ(xi). For sufficiently large n, maximizing L(θ) effectively

minimizes the Kullback-Leibler (KL) divergence DKL(pdata||pθ). The gradient of the learning
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process is given by

L′(θ) = Epdata [∇θfθ(x)]− Epθ [∇θfθ(x)] ≈
1

n

n∑
i=1

∇θfθ(xi)−
1

n

n∑
i=1

∇θfθ(x̃i), (2.2)

where the expectations are approximated by averaging over both the observed examples {xi} and

the synthesized examples {x̃i}, the latter being generated from the current model pθ(x). Thus,

gradient-based optimization for an EBM typically involves an inner loop of MCMC sampling,

which can be computationally intensive for high-dimensional datasets.

2.1.2 Sampling for EBM

To sample from the currently estimated distribution pθ(x), gradient-based Markov Chain Monte

Carlo (MCMC) methods such as Langevin Dynamics are frequently employed. These methods

iteratively update the current sample according to the formula:

xt = xt−1 +
δ2

2
∇xfθ(xt−1) + δϵt; x0 ∼ p0(x), ϵt ∼ N (0, ID), t = 1, · · · , T, (2.3)

where ∼ p0(x) denotes the initial distribution for the sampling process. For intricate data distri-

butions, starting directly from Gaussian or Uniform noise often necessitates an extensive MCMC

updating process to yield meaningful samples. Consequently, techniques such as contrastive di-

vergence (Hin02a; DLT21a), persistent chains (XLZ16a), replay buffers (DM19), or short-run

MCMC sampling (NHZ19) are utilized to approximate the analytically intractable learning gra-

dient. To enhance the scalability and stability of EBM training for generating high-fidelity

data, approaches such as multi-grid sampling (GLZ18), progressive training (ZXL21), and dif-

fusion (GSP21a) have been implemented. Amortizing MCMC sampling with learned networks

(KB16; XLG18; KOG19; XKK21; HNF19a; GKH21a) is also a widely used strategy. Among these,

cooperative networks (CoopNets) (XLG18) conduct joint training of a top-down generator and an

EBM via MCMC teaching, leveraging the generator as a rapid initializer for Langevin sampling.
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Our work adopts a cooperative learning strategy. By carefully designing the EBM and the generator

model, we introduce the algorithms CoopFlow and CDRL in subsequent chapters. We demonstrate

that these designs significantly enhance the performance of Energy-Based Models.

2.2 Different Energy-Based Models

2.2.1 From FRAME Model to Deep Energy-Based Models

In the initial phases, Energy-Based Models (EBMs) utilized predefined filters. For instance, with

image data x, the FRAME (Filter, Random Field, And Maximum Entropy) model (ZWM98b)

articulated the energy function as follows:

pθ(x) =
1

Zθ

exp

(∑
u,s,a

θu,s,a|⟨x, Hu,s,a⟩|

)
p0(x), (2.4)

where p0 denotes the reference distribution, such as the Normal or Uniform Distribution, and

H = Hu,s,a signifies a collection of linear heuristic filters characterized by position u, scale s, and

orientation a. Common examples of such filters include isotropic Difference of Gaussian (DoG)

filters and elongated, oriented Gabor wavelet filters. The notation ⟨., .⟩ represents the convolution

operation between the image and the filters. Model training encompasses iterative processes of filter

selection and parameter adjustment.

With the advent of neural networks, more recent endeavors (LZW16; XLZ16b) have expanded

upon the concept of predefined linear filters to encompass features extracted by deep convolutional

neural networks. Consequently, the training paradigm has evolved from selecting specific filters to

updating the features across the entire neural network architecture.
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2.2.2 Conditional Energy-Based Model

Energy-Based Models (EBMs) can be extended to model conditional distributions. For example,

consider modeling the distribution of x given a condition c. This approach involves the represen-

tation of both the joint probability of x and c, and the conditional probability of x given c, as

follows:

pθ(x, c) =
1

Z(θ)
exp(fθ(x, c))

pθ(x|c) =
pθ(x, c)

pθ(c)
=

1

Z(θ, c)
exp(fθ(x, c)), (2.5)

where Z(θ, c) = Z(θ) · pθ(c). This framework closely resembles that of the standard EBM, except

that both x and c are inputs to the neural network. Sampling from pθ(x|c) remains feasible using

2.3, given that the logarithm of the conditional probability, log pθ(x|c) = fθ(x, c) + const, can be

directly computed.

2.2.3 Energy-Based Model in the latent space

In certain applications, the observed sample x may be associated with latent factors z. Then we can

model the joint probability of x and z as follows:

pθ(x, z) = pα(z)pβ(x|z)

pθ(x) =

∫
pθ(x, z)dz (2.6)

From this, the gradient of the log-likelihood function is derived as:

∇θ log pθ(x) = Epθ(z|x)[∇θ log pθ(x, z)]

= Epθ(z|x)[∇θ log pα(z) + log pβ(x|z)]

= Epθ(z|x)[∇α log pα(z)] + Epθ(z|x)[log pβ(x|z)] (2.7)
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where the conditional distribution pβ(x|z) can be instantiated by a specifically designed generator

gβ. For instance, pβ(x|z) might be modeled as N (gβ(z), σ
2I). The optimization of the generator

model is guided by the reconstruction loss Epθ(z|x)[log pβ(x|z)].

Regarding the prior model, studies such as (PHN20; XH22) have investigated using an Energy-

Based Model (EBM) to represent the prior distribution:

pα(x) =
1

Z(α)
exp(fα(x))p0(z) (2.8)

Subsequently, the loss function for the EBM is articulated as:

∇α log pθ(x) = Epθ(z|x)[∇α log pα(z)]

= Epθ(z|x)[∇αfα(z)]− Epα(z)[∇αfα(z)], (2.9)

Optimizing Equation 2.9 necessitates sampling from both the posterior distribution pθ(z|x) and the

prior distribution pα(z). Both sampling processes can be efficiently conducted through Langevin

Dynamics.
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CHAPTER 3

A Case Study First: Likelihood-Based Generative Radiance

Field with Latent Space Energy-Based Model for 3D-Aware

Disentangled Image Representation

3.1 Motivation and Introduction

Before talking about improving the training algorithms of EBMs, it is essential to first understand

the advantages and challenges of EBMs. Let’s first take a look at a case study of 3D-aware

image synthesis. In 3D-aware image synthesis, traditional methods generate 3D representations

of objects either in a voxel-based format (ZZZ18) or via intermediate 3D features (AMG18), then

use differentiable rendering to convert the 3D object into 2D views. However, voxel-based 3D

representation is discrete and memory-inefficient, limiting these methods to generating low-quality

and low-resolution images. Recently, the Neural Radiance Field (NeRF)(MST22) has emerged

as a new type of 3D representation, achieving impressive results in new view synthesis. NeRF

represents a continuous 3D scene or object through a mapping function parameterized by a neural

network, which takes a 3D location and a viewing direction as input and outputs color and density

values. Visualization of the 3D object is achieved by querying the mapping function at each specific

3D location and viewing direction, followed by volume rendering(KH84) to produce image pixel

intensities.

Typically, each NeRF function can only represent a single object and must be trained from

multiple views of that object. By generalizing the original NeRF function to a conditional version
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with latent variables that account for the object’s appearance and shape, GRAF (SLN20) builds a

2D image generator based on conditional NeRF and trains the generator for 3D-aware controllable

image synthesis via adversarial learning. The NeRF-VAE (KSZ21) proposes training the NeRF-

based generator through variational inference, where a bottom-up inference network allows the

inference of 3D structures of objects in unseen test images. Both GRAF and NeRF-VAE assume

the object-specific latent variables follow simple, non-informative Gaussian distributions. As a

likelihood-based model, NeRF-VAE can only handle training images with known camera poses

due to the difficulty of inferring the unknown camera pose for each observed image. In contrast,

GRAF, can easily learn from images with unknown camera poses because its adversarial learning

scheme does not require inference. Therefore, recently, adversarial NeRF-based generative models

have advanced rapidly, while progress in developing likelihood-based NeRF-based generative

models has lagged. Likelihood-based generative models offer many advantages, such as a stable

learning process without mode collapse, the ability to infer latent variables from training and testing

examples, and the capability to learn from incomplete data via unsupervised learning. Our study

aims to advance the development of likelihood-based generative radiance fields.

Specifically, by leveraging the NeRF-based image generator and latent space energy-based

models (LEBMs)(PHN20), we propose NeRF-LEBM, a novel likelihood-based 3D-aware generative

model for 2D images. We build energy-based models (EBMs) in the latent space of the NeRF-based

generator(SLN20). The latent space EBMs are treated as informative prior distributions. We follow

empirical Bayes and train the EBM priors and the NeRF-based generator simultaneously from

observed data. The trainable EBM priors over latent variables (appearance and shape of the object)

allow sampling novel objects from the model and rendering images from arbitrary viewpoints,

improving the latent spaces’ capacity and the NeRF-based generator’s expressivity. Given a set of

2D training images presenting multiple objects with various appearances, shapes, and viewpoints,

we first study the scenario in (KSZ21), where each image’s viewpoint is known. We propose training

the models using maximum likelihood estimation (MLE) with Markov chain Monte Carlo (MCMC)-

based inference (BZ20), which does not require an additional assisting network. At each iteration,
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the learning algorithm runs MCMC sampling of the latent variables from the EBM priors and the

posteriors. The EBM priors are updated based on samples from the prior and posterior distributions,

while the generator is updated based on samples from the posteriors and the observed data. For

efficient training and inference, we also propose using amortized inference to train the NeRF-LEBM

as an alternative. Lastly, we assume that the camera pose of each image is unknown and treat it as a

latent variable following a uniform prior distribution. We use the von Mises-Fisher (vMF) (DFC18)

distribution to approximate the camera pose’s posterior in our amortized inference framework. Our

experiments show that the proposed likelihood-based generative model can synthesize images with

new objects and arbitrary viewpoints and learn meaningful disentangled representations of images in

scenarios with both known and unknown camera poses. The model can even learn from incomplete

2D training images for controlled generation and 3D-aware inference. In summary, in this chapter:

1. We demonstrate the power of EBMs through the task of 3D-aware image synthesis.

2. To address this task, we propose a novel NeRF-based 2D generative model with a trainable

energy-based latent space for 3D-aware image synthesis and disentangled representation.

3. The model can be trained by MLE, which requires inference at each iteration. We use

two different inference methods: MCMC-based inference and amortized inference with an

inference network.

4. Through our analysis and experiments, we test the efficiency, effectiveness, and performance

of the proposed NeRF-LFBM model and learning algorithms, highlighting the advantages

of employing EBMs. We also identify the key challenge of EBM training: the difficulty of

generating good negative samples during training.

3.2 Related work

3D-aware image synthesis Prior works study controllable image generation by adopting 3D

data as supervision (WG16; ZZZ18) or 3D information as input (AMG18; OMN19). Several
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works (KUH18; HMR19; NMJ19; LCL19) build discriminative mapping functions from 2D im-

ages to 3D shapes, followed by differentiable rendering to project the 3D generated objects back

to images for computing reconstruction errors on image domain. Unlike the aforementioned

reconstruction-based frameworks, several recent works, such as GRAF (SLN20), GIRAFFE (NG21),

pi-GAN (CMK21), and NeRF-VAE (KSZ21), build 2D generative models with NeRF function

and differentiable rendering and assume unobserved object-specific variables to follow known

Gaussian prior distributions. They are trained by adversarial learning (GPM14) or variational infer-

ence (KW14a). Our model is also a NeRF-based generative model, but assumes latent object-specific

variables to follow informative prior distributions parameterized by energy-based models (XLZ16b).

We propose to train NeRF-based generator and EBM priors simultaneously by likelihood-based

learning with either MCMC or amortized inference.

3.3 Background

3.3.1 Neural Radiance Field

A continuous scene can be represented by a Neural Radiance Field (NeRF) (MST22), which is a

mapping function fθ whose input is a 3D location x ∈ R3 and a 3D unit vector as viewing direction

d ∈ R3, and whose output is an RGB color value c ∈ R3 and a volume density σ. Formally,

fθ : (x,d)→ (c, σ), where fθ is a neural network with parameters θ. Given a fixed camera pose, to

render a 2D image from the NeRF representation fθ, we can follow the classical volume rendering

method (KH84) to calculate the color of each pixel v ∈ R2 in the 2D image. The color of the pixel

is determined by the color and volume density values of all points along the camera ray r that goes

through that pixel v. In practice, we can follow (MST22) and sample M points {xr
i}Mi=1from the

near to far bounds along the camera ray r and obtain a set of corresponding colors and densities
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{(cri , σr
i )}Mi=1 by fθ, and then we compute the color C(r) for the camera ray r by

C(r) =
M∑
i=1

T r
i (1− exp(−σr

i δ
r
i ))c

r
i , (3.1)

where δri = ||xr
i+1−xr

i ||2 is the distance between adjacent sample points, and T r
i = exp(−

∑i−1
j=1 σ

r
j δ

r
j )

is the accumulated transmittance along the ray from the 1st point to the i-th point, i.e., the probability

that the ray travels from xr
1 to xr

i without being blocked. To render the whole image I, we need to

compute the color for the ray that corresponds to each pixel v in the image. Let r(v) be the camera

ray corresponding to the pixel v, and the rendered image is given by I(v) = C(r(v)), v ∈ D, where

D is the image domain.

3.3.2 Conditional Neural Radiance Field

The original NeRF function fθ is a 3D representation of a single scene or object. To generalize the

NeRF to represent different scenes or objects, (SLN20) proposes the conditional NeRF function

gθ : (x,d, zs, za)→ (c, σ), (3.2)

which is conditioned on object-specific variables, za and zs, corresponding to object appearance and

shape respectively. It can be further decomposed into (i) g1θ1 : (x, zs)→ h, (ii) g2θ2 : (h,d, za)→ c,

and (iii) g3θ3 : h→ σ to show the dependency among the input variables in the design of g(θ).

3.4 Proposed framework

3.4.1 NeRF-based 2D generator with EBM priors

We are interested in learning a 3D-aware generative model of 2D images, with the purposes of

controllable image synthesis and disentangled image representation. We build a top-down 2D image

generator based on a conditional NeRF structure for the intrinsic 3D representation of the object in

14



an image. Let za and zs be the latent variables that define the shape and the appearance of an object,

respectively. za and zs are assumed to be independent. They together specify an object. Let ξ be the

camera pose. The generator Gθ consists of an object-conditioned NeRF function gθ as shown in

Eq. (3.2) and a differentiable rendering function as shown in Eq. (3.1). θ are trainable parameters of

the generator. Given an object specified by (za, zs), the generator takes the camera pose ξ as input

and outputs an image by using the NeRF gθ to render an image from the pose ξ with the render

operation in Eq. (3.1). Given a dataset of 2D images of different objects captured from different

viewing angles (i.e., different camera pose), in which the camera pose of each image is provided.

We assume each image is generated by following the generative process defined by Gθ and each of

the latent variables (za, zs) is assumed to follow an informative prior distribution that is defined by a

trainable energy-based model (EBM). Specifically, the proposed 3D-aware image-based generative

model is given by the following deep latent variable model

I = Gθ(za, zs, ξ) + ϵ,

ϵ ∼ N (0, σ2
ϵ I),

za ∼ pαa(za),

zs ∼ pαs(zs),

(3.3)

where ϵ is the observation residual following a Gaussian distribution N (0, σ2
ϵ I) with a known

standard deviation σϵ, and I denotes the identity matrix. Both pαa(za) and pαs(zs) are modeled by

EBMs

pαa(za) =
1

Z(αa)
exp[fαa(za)]q0(za), (3.4)

pαs(zs) =
1

Z(αs)
exp[fαs(zs)]q0(zs), (3.5)

which are in the form of exponential tilting of a Gaussian reference distribution q0 ∼ N (0, σ2I).

(Note that q0 could be a uniform reference distribution.) fαa(za) and fαs(zs) are called energy

functions, both of which are parameterized by multilayer perceptrons (MLPs) with trainable
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parameters αa and αs, respectively. The energy function takes the corresponding latent variables

as input and outputs a scalar as energy. Besides, Z(αa) =
∫
exp[fαa(za)]q0(za)dza and Z(αs) =∫

exp[fαs(zs)]q0(zs)dzs are intractable normalizing constants. Although q0(za) and q0(zs) are

Gaussian distributions, pαa(za) and pαz(xs) are non-Gaussian priors, where αa and αs are learned

from the data together with the parameters θ of the generator Gθ.

3.4.2 Learning with MCMC-based inference

For convenience of notation, let β = (θ, αa, αs) and α = (αa, αs). Given a set of 2D images with

known camera poses, i.e., {(Ii, ξi), i = 1, ..., n}, we can train β by maximizing the observed-data

log-likelihood function defined as

L(β) =
1

n

n∑
i=1

log pβ(Ii|ξi)

=
1

n

n∑
i=1

log

[∫
pα(zai , zsi )pθ(Ii|zai , zsi , ξi)dzai dzsi

]
=

1

n

n∑
i=1

log

[∫
pαa(zai )pαs(zsi )pθ(Ii|zai , zsi , ξi)dzai dzsi

]
,

where pα(za, zs) = pαa(za)pαs(zs) because za and zs are statistically independent, and the latent

variables are integrated out in the complete-data log-likelihood. According to the Law of Large

Number, maximizing the likelihood L(β) is approximately equivalent to minimizing the Kullback-

Leibler (KL) divergence between model pβ(I|ξ) and data distribution pdata(I|ξ) if the number n of

training examples is very large. The gradient of L(β) is calculated based on

∇β log pβ(I|ξ) = Epβ(za,zs|I,ξ) [∇β log pβ(I, za, zs|ξ)]

=Epβ(za,zs|I,ξ)[∇β log pαa(za) +∇β log pαs(zs)

+∇β log pθ(I|za, zs, ξ)], (3.6)
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which can be further decomposed into three parts, i.e., the gradients for the EBM prior of object

appearance αa

Epβ(za,zs|I,ξ) [∇β log pαa(za)] (3.7)

=− Epαa (za) [∇αafαa(za)] + Epβ(za|I,ξ) [∇αafαa(za)] ,

the gradients for the EBM prior of object shape αs

Epβ(za,zs|I,ξ) [∇β log pαs(zs)] (3.8)

=− Epαs (zs) [∇αsfαs(zs)] + Epβ(zs|I,ξ) [∇αsfαs(zs)] ,

as well as the gradients for the NeRF-based generator θ

Epβ(za,zs|I,ξ) [∇β log pθ(I|za, zs, ξ)] (3.9)

=Epβ(za,zs|I,ξ)
[
∇θGθ(za, zs, ξ)(I−Gθ(za, zs, ξ))/σ2

ϵ

]
.

Since the expectations in Eq. (3.7), Eq. (3.8), and Eq. (3.9) are analytically intractable, Langevin

dynamics (Nea11), which is a gradient-based MCMC sampling method, is employed to draw

samples from the prior distributions (i.e., pαa(za) and pαs(zs)) and the posterior distribution (i.e.,

pβ(za, zs|I, ξ)), and then Monte Carlo averages are computed to estimate the expectation terms. As

shown in Eq. (3.7) and Eq. (3.8), the update of the EBM prior model αa (or αs) is based on the

difference between za (or zs) sampled from the prior distribution pαs(za) (or pαs(zs)) and za (or

zs) inferred from the posterior distribution pβ(za|I, ξ) (or pβ(zs|I, ξ)). According to Eq.(3.9), the

update of the generator θ relies on za and zs inferred from the posterior distribution pβ(za, zs|I, ξ).

To sample from the prior distributions pαa(za) and pαs(zs) by Langevin dynamics, we update za
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and zs by

zat+1 = zat + δ∇za log pαa(zat ) +
√
2δeat , (3.10)

zst+1 = zst + δ∇zs log pαs(zst) +
√
2δest , (3.11)

where t indexes the time step, δ is the Langevin step size, and eat and est are independent Gaussian

noises that help the MCMC chains to escape from local modes during sampling. The gradients in

Eq. (3.10) and Eq. (3.11) are given by

∇za log pαa(za) = ∇zafαa(za)− za/σ2, (3.12)

∇zs log pαs(zs) = ∇zsfαs(zs)− zs/σ2, (3.13)

where∇zafαa(za) and ∇zsfαs(zs) are efficiently computed by back-propagation.

For each observed (I, ξ), we can sample from the posterior pβ(za, zs|I, ξ) by alternately running

Langevin dynamics: we fix zs and sample za from pβ(za|zs, I, ξ) ∝ pβ(I, za|zs, ξ), and then fix za

and sample zs from pβ(zs|za, I, ξ) ∝ pβ(I, zs|za, ξ). The Langevin sampling step follows

zat+1 = zat + δ∇za log pβ(I, zat |zst , ξ) +
√
2δeat , (3.14)

zst+1 = zst + δ∇zs log pβ(I, zst |zat , ξ) +
√
2δest . (3.15)

The key steps in Eq. (3.14) and Eq. (3.15) are to compute the gradients of

logpβ(I, za|zs, ξ) = log[pαa(za)pθ(I|za, zs, ξ)] = Ca

− ||I−Gθ(za, zs, ξ)||2/2σ2
ϵ + fαa(za)− ||za||2/2σ2,

logpβ(I, zs|za, ξ) = log[pαs(zs)pθ(I|zs, za, ξ)] = Cs

− ||I−Gθ(za, zs, ξ)||2/2σ2
ϵ + fαs(zs)− ||zs||2/2σ2,

where Ca and Cs are constants independent of za, zs and θ. After sufficient alternating Langevin
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Algorithm 1 Learning NeRF-LEBM with MCMC inference
Input: (1) Images and viewpoints {(Ii, ξi)}ni=1; (2) Numbers of Langevin steps for priors and
posterior {K−, K+}; (3) Langevin step sizes for priors and posterior{δ−, δ+}; (4) Learning rates
for priors and generator {ηα, ηθ}.
Output: (1) θ for generator; (2) (αa, αs) for EBM priors; (3) Latent variables {(zai , zsi )}ni=1.

1: Randomly initialize θ, αa, αs, and {(zai , zsi )}ni=1.
2: repeat
3: For each (Ii, ξi), sample the prior of object appearance za−i ∼ pαa(za) and the prior of

object shape zs−i ∼ pαs(zs) using K− steps of Langevin dynamics with a step size δ−, which
follows Eq. (3.10) and Eq. (3.11), respectively.

4: For each (Ii, ξi), run K+ Langevin steps with a step size δ+, to alternatively sample zai from
pβ(zai |zsi , Ii, ξi), while fixing zsi ; and sample zsi from pβ(zsi |zai , Ii, ξi), while fixing zai .

5: αa ← αa + ηα∇αaL.
6: αs ← αs + ηα∇αsL.
7: θ ← θ + ηθ∇θL.
8: until converge

steps, the updated za and zs follow the joint posterior pβ(za, zs|I, ξ), and za and zs follow pβ(za|I, ξ)

and pβ(zs|I, ξ), respectively.

Let za−i and zs−i be the samples drawn from the EBM priors by Langevin dynamics in Eqs. (3.10)

and (3.11). Let za+i and zs+i be the inferred latent variables of the observation (Ii, ξi) by Langevin

dynamics in Eqs. (3.14) and (3.15). The gradients of the log-likelihood L over αa, αs, and θ are

estimated by

∇αaL = − 1

n

n∑
i=1

[
∇αafαa(za−i )

]
+

1

n

n∑
i=1

[
∇αafαa(za+i )

]
,

∇αsL = − 1

n

n∑
i=1

[
∇αsfαs(zs−i )

]
+

1

n

n∑
i=1

[
∇αsfαs(zs+i )

]
,

∇θL =
1

n

n∑
i=1

[
∇θGθ(za+i , zs+i , ξi)

Ii −Gθ(za+i , zs+i , ξi)

σ2
ϵ

]
.

The learning algorithm of the NeRF-LEBM with MCMC inference can be summarized in Algo-

rithm 1.
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Algorithm 2 Variational Learning for NeRF-LEBM
Input: (1) Images and viewpoints {(Ii, ξi)}ni=1; (2) Number of Langevin steps K− for priors; (3)
Langevin step size for priors δ−; (4) Learning rates {ηα, ηω}.
Output: (1) θ for generator; (2) (αa, αs) for EBM priors; (3) ϕ for inference net.

1: Randomly initialize θ, ϕ, αa, and αs.
2: repeat
3: For each (Ii, ξi), sample the priors za−i ∼ pαa(za) and zs−i ∼ pαs(zs) using K− Langevin

steps with a step size δ−, which follow Eq. (3.10) and Eq. (3.11) respectively.
4: For each (Ii, ξi), sample za ∼ qϕa(za|Ii, ξi) and zsi ∼ qϕs(zs|Ii, ξi) using the inference

network.
5: αa ← αa + ηα∇αaELBO (∇αaELBO is in Eq. (3.18)).
6: αs ← αs + ηα∇αsELBO (∇αsELBO is in Eq. (3.19)).
7: ω ← ω + ηω∇ωELBO (∇ωELBO is in Eq. (3.20), where ω = (ϕa, θ)).
8: until converge

3.4.3 Learning with amortized inference

Even though both prior and posterior sampling require Langevin dynamics. Prior sampling is

more affordable than posterior sampling because the network structure of fαa or fαs is much

smaller than that of the NeRF-based generator Gθ and the posterior sampling need to perform

back-propagation on Gθ, which is time-consuming. In this section, we propose to train the NeRF-

LEBM by adopting amortized inference, in which the posterior distributions, pβ(za|I, ξ) and

pβ(zs|I, ξ), are approximated by separate bottom-up inference networks with reparameterization

trick, qϕa(za|I, ξ) = N (za|uϕa(I|ξ), σϕa(I|ξ)) and qϕs(zs|I, ξ) = N (zs|uϕs(I|ξ), σϕs(I|ξ)), respec-

tively. We denote ϕ = (ϕa, ϕs) for notation simplicity. The log-likelihood log pβ(I|ξ) is lower
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bounded by the evidence lower bound (ELBO), which is given by

ELBO(I|ξ; β, ϕ)

= log pβ(I|ξ)− DKL(qϕa(za|I, ξ)||pβ(za|I, ξ))

− DKL(qϕs(zs|I, ξ)||pβ(zs|I, ξ)) (3.16)

=− DKL(qϕs(zs|I, ξ)||pαs(zs))

− DKL(qϕa(za|I, ξ)||pαa(za))

+ Eqϕa (za|I,ξ)qϕs (zs|I,ξ)[log pθ(I|z
a, zs, ξ)], (3.17)

where DKL denotes the Kullback-Leibler divergence. We assume pαs(zs) = pαs(zs|ξ) and pαa(za) =

pαa(za|ξ). For the EBM prior models, the learning gradients to update αa and αs are given by

∇αaELBO(I|ξ; β, ϕ) (3.18)

=− Epαa (za) [∇αafαa(za)] + Eqϕa (za|I,ξ) [∇αafαa(za)] ,

∇αsELBO(I|ξ; β, ϕ) (3.19)

=− Epαs (zs) [∇αsfαs(zs)] + Eqϕs (zs|I,ξ) [∇αsfαs(zs)] .

Let ω = (ϕ, θ) be the parameters of the inference networks and generator. The learning gradients of

these models are

∇ωELBO(I|ξ; β, ϕ) (3.20)

=∇ωEqϕa (za|I,ξ)qϕs (zs|I,ξ)[log pθ(I|z
a, zs, ξ)]

−∇ωDKL(qϕa(za|I, ξ)||p0(za)) +∇ωEqϕa (za|I,ξ)[fαa(za)]

−∇ωDKL(qϕs(zs|I, ξ)||p0(zs)) +∇ωEqϕs (zs|I,ξ)[fαs(zs)]

The first term on the right hand size of Eq.(3.20) is the reconstruction by the bottom-up inference

encoders and the top-down generator. The second and the fourth terms are KL divergences between
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the inference model and the Gaussian distribution. These three terms form the learning objective of

the original VAE. The variational learning of the NeRF-LEBM is given in Algorithm 2.

3.4.4 Learning without ground truth camera pose

Many real world datasets do not contain camera pose information, therefore fitting the models from

those datasets by using Algorithms 1 or 2 is not appropriate. In this section, we study learning the

NeRF-LFBM model from images without knowing the ground truth camera poses, and generalizing

Algorithm 2 to this scenario. We treat the unknown camera pose as latent variables and seek to infer

it together with the shape and appearance variables in the amortized learning framework. In our

experiments, we assume the camera is located on a sphere and the object is put in the center of the

sphere. Therefore, the camera pose ξ can be interpreted as the altitude angle ξ1 and azimuth angle

ξ2. However, different from the shape and the appearance, the camera pose is directional and can be

better explained through a spherical representation (Mar75). For implementation, instead of directly

representing each individual angle, we represent its Sine and Cosine values that directly construct

the corresponding rotation matrix that is useful for subsequent computation. Thus, each rotation

angle ξi is a two-dimensional unit norm vector located on a unit sphere.

Following the hyperspherical VAE in (DFC18), we use the von Mises-Fisher (vMF) distribution

to model the posterior distribution of ξ. vMF can be seen as the Gaussian distribution on a hypershere.

To model a hypershpere of dimension m, it is parameterized by a mean direction µ ∈ Rm and a

concentration parameter κ ∈ R≥0. The probability density of the vMF is defined as pvMF(ξ|µ, κ) =

Cm(κ) exp(κµTξ), where Cm(κ) = κm/2−1

(2π)m/2Im/2−1(κ)
, with Il denoting modified Bessel function

of the first kind at order l. For each angel ξ in ξ, we design an inference model as qϕξ
(ξ|I) =

pvMF(ξ|µϕξ
(I), κϕξ

(I)), where µϕξ
(I) and κϕξ

(I) are bottom-up networks with parameters ϕξ that

maps I to µ and κ. We assume the prior of ξ to be a uniform distribution on the unit sphere (denoted

as U(Sm−1)), which is the special case of vMF with κ = 0. The key to use the amortized inference
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is to compute the KL divergence between the posterior and the prior, which can follow

DKL(pvMF(µ, κ)||U(Sm−1))

=κ
Im/2(κ)

Im/2−1(κ)
+ log Cm(κ)− log

(
2(πm/2)

Γ(m/2)

)−1

. (3.21)

Besides, to compute the ELBO, we need to draw samples from the inference model qϕξ
(ξ|I), which

amounts to sampling from the vMF distribution. We follow the sampling procedure in (DFC18) for

this purpose in our implementation.

3.5 Experiments

3.5.1 Datasets

To evaluate the proposed NeRF-LEBM framework and the learning algorithms, we conduct ex-

periments on three datasets. The Carla dataset is rendered by (SLN20) using the Carla Driving

Simulator (DRC17). It contains 10k cars of different shapes, colors and textures. Each car has one

2D image rendered from one random camera pose. Another dataset is the ShapeNet (CFG15) Car

dataset, which contains 2.1k different cars for training and 700 cars for testing. We use the images

rendered by (SZW19) and follow its split to separate the training and testing sets. Each car in the

training set has 250 views and we only use 50 views of them for training. Each car in the testing set

has 251 views. each image is associated with its camera pose information.

3.5.2 Training details

In this section, we describe the network structure designs and hyper-parameter settings in our

experiments.
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3.5.2.1 Network structure for conditional NeRF-based generator

For the experiments where camera poses of objects are given, the structure of the NeRF-based

generator is shown in Figure 3.1. For this structure, we mainly follow the design in (SLN20).

However, for each of the latent vectors zs and za, we add a mapping network to transform it before

concatenating it with the positional embedding. This mapping network is composed of a normalizing

layer and 4 linear layers, each of which is followed by a Leaky ReLU activation function. The

concatenated features then enter the NeRF encoding module, which is an 8-layer MLP. The number

of dimensions of each hidden layer or the output layer is 256. The output of the NeRF encoding

module is then used to predict the color c and density σ information. For the experiments about

learning without camera pose information on the CelebA dataset, inspired by (CMK21), we design

a network structure with the FiLM-conditioned layers (PSV18; DPS18). To be more specific, we

input the transformed zs to the first 4 layers of the generator and input the transformed za to the

color head using the FiLM layer. The detailed architecture is shown in Figure 3.2.

3.5.2.2 Network Structure for latent space EBM

We use two EBM structures. One (small version) contains 2 layers of linear transformations, each

of which followed by a swish activation, while the other (large version) contains 4 layers of linear

transformations with swish activation layers. The network structure is shown in Table 3.1. The

choice of the EBM prior model for each experiment is shown in Table 3.2.

(a) Mapping network (b) Conditional NeRF-based generator.

Figure 3.1: Model structure for the NeRF-LEBM generator with known camera pose.
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(a) The FiLM layer. (b) Mapping network.

(c) Conditional NeRF-based generator structure.

Figure 3.2: Model structure for the NeRF-LEBM generator with unknown camera pose.

3.5.2.3 Network structure for inference model

In the experiments using amortized inference, we need an inference model to infer the latent vectors

(i.e., appearance, shape, and camera pose). Inspired by (BGK18), we use the ResNet34 (HZR16)

structure as the feature extractor and build separate inference heads on the top of it for different

latent vectors. Each inference head is composed of a couple of MLP layers. We let the inference

models for za, zs and camera pose to share the same feature extractor and only differ in their

inference heads. When we update the parameters of the inference model, we use a learning rate

3× 10−5 for the feature extractor and the pose head while using a smaller learning rate 5× 10−6

for the inference heads of za and zs.

3.5.3 Training hyperparameters

During our training, we use the Adam(KB15a) optimizer and we set βAdam = (0.9, 0.999). We

set the standard deviation of the residual in Eq. (3.3) σϵ = 0.05. We disable the noise term in
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the Langevin inference for a better performance in the MCMC inference case. For the persistent

chain MCMC inference setting, we use the Adam instead of a noise-disable Langevin dynamics

to infer the latent vectors. As to the MCMC sampling for the EBM priors, we assign a weight as

a hyperparameter to the noise term in the Langevin dynamics for adjusting its magnitude in our

practise. Please check Table 3.3 for hyperparameter settings, including learning rate, batch size, etc,

used in other experiments.

Table 3.1: Model structures of the latent EBMs with hidden dimension C.

(a) EBM (small)

Linear C, swish
Linear C, swish

Linear 1

(b) EBM (large)

Linear C, swish
Linear C, swish
Linear C, swish
Linear C, swish

Linear 1

Table 3.2: Choice of the EBM prior in each experiment.

Experiment
EBM prior for shape EBM prior for appearance

type
vector

dimension
hidden

dimension type
vector

dimension
hidden

dimension

Carla / MCMC inference / with poses large 128 256 large 128 256
Carla / amortized inference / with poses small 128 256 small 128 128

ShapeNet Car / MCMC inference / with poses large 128 256 large 128 256
Carla / amortized inference / without poses small 128 128 small 128 64

Table 3.3: Hyperparameter settings in different experiments.

Experiments
batch
size

Number
of views ηα ηθ ηϕ q0 δ+ K+ δ− K− MCMC noise

weight (EBM)

Carla / MCMC
inference / with poses 8 1 2e-5 1e-4 - Uniform 0.1 60 0.5 60 0.02

Carla / amortized
inference / with poses 8 1 7e-6 1e-4 1e-4 Normal - - 0.5 60 1.0

ShapeNet Car / persistent
MCMC inference / with poses 12 2 2e-5 1e-4 - Normal 1e-4 1 0.5 40 0.0

Carla / amortized
inference / without poses 16 1 7e-6 3e-5 3e-5 Normal - - 0.5 60 0.0
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(a) NeRF-LEBM with MCMC
inference

(b) NeRF-LEBM with amortized
inference

(c) NeRF-Gaussian with MCMC
inference

Figure 3.3: Images generated by the NeRF-LEBM models trained on the Carla dataset, where the
camera poses are given. (a) MCMC inference (b) amortized inference. (c) Baseline NeRF-Gaussian
model with MCMC inference.

3.5.4 Random image synthesis

We first evaluate the capability of image generation of the NeRF-LEBM on the Carla dataset, where

the camera pose information is available. We try to answer whether the latent space EBMs can

capture the underlying factors of objects in images and whether it is better than the Gaussian prior.

We train our models on images of resolution 64 × 64 through both MCMC-based inference in

Algorithm 1 and amortized inference in Algorithm 2. Once a model is trained, we can generate new

images by first randomly sampling (za, zs) from the learned EBM priors and a camera pose ξ from a

uniform distribution, and then using the NeRF-based generator to map the sampled latent variables

to the image space. The synthesized images by NeRF-LEBM using MCMC inference and amortized

inference are displayed in Figures 3.3a and 3.3b, respectively. We can see the learned models can

generate meaningful and highly diversified cars with different shapes, appearances and camera

poses. To quantitatively evaluate the generative performance, we compare our NeRF-LEBMs

with some baselines in terms of Fréchet inception distance (FID) (HRU17a) in Table 3.4. The

baselines include the NeRF-VAE (KSZ21), which is a NeRF-based generator using Gaussian prior

and trained with variational learning, and the NeRF-Gaussian-MCMC, which is a NeRF-based

generator using MCMC inference and Gaussian prior. To make a fair comparison, we implement
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the NeRF-VAE using the same NeRF-based generator and inference network as those in our NeRF-

LEBM using amortized inference, except that the NeRF-VAE and the NeRF-Gaussian-MCMC only

adopt Gaussian priors for latent variables. We compute FID using 10k samples. Table 3.4 shows that

NeRF-LEBMs perform very well in the sense that the learned models can generate realistic images.

Especially, the NeRF-EBM trained with amortized inference obtains the best performance. The

comparison between the NeRF-VAE and our NeRF-LEBM using amortized inference demonstrates

the effectiveness of the EBM priors. The efficacy of the EBM priors is also validated by the

comparison between the NeRF-Gaussian-MCMC and our NeRF-LEBM using MCMC inference.

We show the generated examples from the NeRF-Gaussian-MCMC in Figure 3.3c. Comparing

the results in Figure 3.3c with those in Figure 3.3, we can see that examples obtained from the

simple Gaussian prior have less diversity than those from the EBM prior. This is consistent with

the numerical evaluation shown Table 3.4 and demonstrates the advantage of using latent EBMs as

informative prior distributions for modeling latent variables.

3.5.5 Disentangled representation

We investigate the ability of disentanglement of the NeRF-LEBM. We test the model using amortized

inference trained in Section 3.5.4. We generate images by varying one of the three latent vectors,

i.e., za, zs and ξ, while fixing the other two, and observe how the manipulated vector influences

the generated images. The generated images are shown in Figure 3.4. In Figure 3.4a, the objects

Table 3.4: Comparing the NeRF-LEBMs with likelihood-based baselines on the 64 × 64 Carla
dataset for random image synthesis. The image qualities are evaluated via FID.

Likelihood-based Model FID ↓

NeRF-Gaussian-MCMC 54.13
NeRF-VAE (KSZ21) 38.15
NeRF-LEBM (MCMC inference) 37.19
NeRF-LEBM (Amortized inference) 20.84
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in each row share the same appearance vector and camera pose but have different shape vectors,

while the objects in each column share the same shape vector and camera pose but have different

appearance vectors. From Figure 3.4a, we can see that the shape latent vectors do not encode

any appearance information, such as color. The colors in the generated images only depend on

the appearance latent vectors, and are not influenced by the shape latent vectors. Figure 3.4b

displays the synthesized images sharing the same appearance and shape vectors but having different

camera poses. Figures 3.4a and 3.4b show that the learned model can successfully disentangle

the appearance, shape and camera pose of an object because za, zs and ξ can, respectively, control

the appearance, shape, and viewpoint of the generated images. We can also perform novel view

synthesis of a seen 2D object by first inferring its appearance and shape vectors and then using

different camera poses to generate different views of the object. Figure 3.4c shows one example.

We show the results obtained by a model trained with MCMC inference Figure 3.5.

(a) (b) (c)

Figure 3.4: Disentangled representation. The generated images are obtained by the learned NeRF-
LEBM using amortized inference on the Carla dataset. (a) shows the influences of the shape
vector zs and the appearance vector za in image synthesis. The objects in each row share the same
appearance vector za and camera pose ξ but have different shape vectors zs, while the objects
in each column share the same shape vector zs and camera pose ξ but have different appearance
vectors za. (b) demonstrates the effect of the camera pose variable ξ by varying it while fixing the
shape and appearance vectors for a randomly sampled object. (c) shows an example of novel view
synthesis for an observed 2D image.
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(a) (b) (c)

Figure 3.5: Disentangled representation. The generated images are obtained by the learned NeRF-
LEBM using MCMC inference on the Carla dataset. (a) shows the influences of the shape vector zs
and the appearance vector za in image synthesis. The objects in each row share the same appearance
vector za and camera pose ξ but have different shape vectors zs, while the objects in each column
share the same shape vector zs and camera pose ξ but have different appearance vectors za. (b)
demonstrates the effect of the camera pose variable ξ by varying it while fixing the shape and
appearance vectors for a randomly sampled object. (c) shows an example of novel view synthesis
for an observed 2D image.

3.5.6 Inferring 3D structures of unseen 2D objects

Once a NeRF-LEBM model is trained, it is capable of inferring the 3D structure of a previously

unseen object from only a few observations. Following (SZW19), we first train our model on the

128× 128 resolution ShapeNet Car training set and then apply the trained model to a two-shot novel

view synthesis task, in which only two views of an unseen car in the holdout testing set are given to

synthesize novel views of the same car. We use the NeRF-LEBM with MCMC inference in this

task. To reduce the computational cost, we follow (XGZ19) to adopt a persistent MCMC chain

setting for the Langevin inference. Given a unseen object, we first infer its latent appearance and

shape vectors via 600 steps of MCMC guided by the posterior distribution, and then we generate

novel views of the same object with randomly sampled camera poses. The qualitative results of

novel view synthesis are shown in Figure 3.6. In Table 3.5, we compare our NeRF-LEBM with

baselines, such as GQN (EJB18) and the NeRF-VAE, in terms of PSNR. Our model has the best

performance. We also demonstrate the generative ability of our model by showing the generated

images in Figure 3.9. For a quantitative comparison, the FID for our NeRF-LEBM is 94.486 while
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Figure 3.6: Two-shot novel view synthesis results on (128× 128) the ShapeNet Car testing set. The
left two columns displays two views of unseen cars in testing set. The middle two columns show
the reconstruction results obtained by a model trained on training set. The right four columns shows
novel view synthesis for the unseen cars. For each reconstructed or synthesized image, we show an
RGB image at the first row and the inverse depth map at the second row.

the one obtained by the NeRF-VAE is 112.465.

Table 3.5: Comparing the NeRF-LEBM with other baselines on two-shot novel view synthesis of
unseen objects in terms of PSNR. Models are tested on the ShapeNet Car dataset.

Generative Models PSNR ↑

GQN (EJB18) 18.79
NeRF-VAE (KSZ21) 18.37
NeRF-LEBM (MCMC inference) 20.28

3.5.7 Learning from incomplete 2D observations

To show the advantage of the MCMC-based inference, we test our model on a task where obser-

vations are incomplete or masked. To create a dataset for this task, we firstly randomly select

500 cars from the original ShapeNet Car dataset, and then for each of them, we use 50 views

31



Figure 3.7: Learning from incomplete 2D observations. The left two columns show some examples
of the incomplete observations in the training set. The middle two columns show the corresponding
recovery results obtained by the learning algorithm. The right four columns are synthesis results for
unobserved views of the same objects. For each recovery or synthesized result, we show an RGB
2D image at the first row and an inverse depth map at the second row.

for training and 200 views for testing. For each training image, we randomly mask an area with

Gaussian noise (see Figure 3.7). To enable our model to learn from incomplete data, we only

maximize the data likelihood computed on the unmasked areas of the training data. This only leads

to a minor modification in Algorithm 1 involving the computation of ||I − Gθ(za, zs, ξ)||2 in the

likelihood term. For a partially observed image, we compute it by summing over only the visible

pixels. The latent variables can still be inferred by explaining the visible parts of the incomplete

observations, and the model can still be updated as before. In each iteration, we feed our model with

two randomly selected observations of each object. Qualitative results in Figure 3.7 demonstrate

that our algorithm can learn from incomplete images while recovering the missing pixels, and the

learned model can still perform novel view synthesis. We quantitatively compare our NeRF-LEBM

with the NeRF-VAE in Table 3.6. Our model beats the baseline using the same generator in the

tasks of novel view synthesis and image generation.
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(a) (b) (c)

Figure 3.8: Synthesis results on 64 × 64 Carla dataset without camera poses. (a) The objects in
each row share the same appearance vector za but have different shape vectors zs while the objects
in each column share the same zs but have different za. They all share the same camera pose ξ.
(b) The Effect of changing the camera pose while fixing the shape and appearance vectors for a
sampled object. (c) Generated samples by randomly sampling za, zs and camera pose ξ.

Table 3.6: Comparison on tasks of novel view synthesis and image generation after learning the
models from incomplete 128× 128 2D observations on a masked ShapeNet Car dataset. PSNRs
and FIDs are reported to measure the model performance on the two tasks, respectively.

Model PSNR ↑ FID ↓

NeRF-VAE 21.26 128.27
NeRF-LEBM 24.95 105.82

3.5.8 Learning with unknown camera poses

We study the scenario of training the NeRF-LEBM from 2D images without known camera poses.

We assume the camera to locate on a sphere and the object is in the center of this sphere. Thus, we

need to infer the altitude and azimuth angles for each observed image. As discussed in Section 3.4.4,

we introduce a camera pose inference network to approximate the posterior of the latent camera

pose of each observation, and train EBM priors, NeRF-based generator and inference networks

simultaneously via amortized inference. In practice, we let the inference networks for camera pose

ξ, appearance za and shape zs to share the lower layers and only differ in their prediction heads. We

carried out an experiment on the Carla dataset with a resolution of 64× 64. Unlike in Section 3.5.4,
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Figure 3.9: Synthesis by the NeRF-LEBM trained on the ShapeNet Car data, with persistent chain
MCMC inference.

here we only use the rendered images and do not use the ground truth camera pose associated with

each image. The results on are shown in Figure 3.8. From Figure 3.8a, we can see the learned model

can disentangle shape and appearance factors. Figure 3.8b shows that the learned model can factor

out the camera pose from the data in an unsupervised manner. Figure 3.8c shows some random

synthesized examples generated from the model by randomly sampling za, zs and ξ. Although the

camera pose can take a valid value from [0, 2π), the altitude and azimuth angles of the training

examples in the Carla dataset might only lie in limited ranges. Thus, after training, we estimate a

camera pose distribution using 10,000 training examples and when we generate images, we sample

camera poses according to this distribution. Please refer to Figure 3.10 for more results on the

CelebA dataset. These results verify that our model can learn meaningful 3D-aware 2D image

generator without known camera poses.

3.6 Complexity analysis

We show a comparison of different models in terms of model size in Table 3.7a. By comparing our

NeRF-LEBM using amortized inference with the NeRF-VAE which uses a Gaussian prior, we can

find that introducing a latent EBM as a prior only slightly increase the number of parameters. If we

rely on the MCMC of inference, then we can save a lot of parameters. In Table 3.7b, we compare
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(a) (b) (c)

Figure 3.10: Synthesis results on 64× 64 CelebA dataset without knowing camera poses. (a) The
objects in each row share the same appearance vector za but have different shape vectors zs while
the objects in each column share the same zs but have different za. They all share the same camera
pose ξ. (b) The Effect of changing the camera pose while fixing the shape and appearance vectors
for a sampled object. (c) Generated samples by randomly sampling za, zs and camera pose ξ.

the computational time of randomly sampling 100 images with a resolution of 128× 128. The time

is computed when the algorithm is run on a single NVIDIA RTX A6000 GPU. Comparing with

the Gaussian prior, the EBM prior (with a 40-step MCMC sampling) barely affects the sampling

time. That is because the latent EBM is much less computationally-intensive than the NeRF-based

generator and we can sample 100 random variables in a batch altogether. We also compare the

computational time of the amortized inference and MCMC inference in the few-shot inference of an

unseen object in Table 3.7c, from which we can see that using an inference model can do a much

quicker inference but the reconstruction results may be worse. On the other hand, MCMC inference

may take some time but the results can be better.

Table 3.7: Complexity analysis

(a) Model size

Model # parameters

NeRF-VAE 24.06 M
NeRF-LEBM (amortized) 24.52 M
NeRF-LEBM (MCMC) 2.21 M

(b) Synthesis time

Model Time

EBM prior 40.97s
Gaussian prior 40.73s

(c) Inference time

Model Time

Amortized inference 0.1s
MCMC inference 168s
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CHAPTER 4

Improving EBM Training: Cooperative Learning of Langevin

Flow and Normalizing Flow Toward Energy-Based Model

4.1 Motivation and Introduction

In the previous chapter, we demonstrated the power of Energy-Based Models (EBMs) through the

task of 3D-aware image synthesis. When training with maximum likelihood estimation (MLE),

evaluating the gradient of the log-likelihood typically requires Markov chain Monte Carlo (MCMC)

sampling (BZ20), such as Langevin dynamics (Nea11), to generate samples from the current model.

This is due to the intractable integral needed to compute the normalizing constant. However,

Langevin sampling on a highly multi-modal energy function, often parameterized by deep networks,

is generally challenging and may require many steps for the samples to reach the target distribution.

Additionally, when sampling from a density with a multi-modal landscape, Langevin dynamics,

which follows the gradient information, is prone to getting trapped in local modes of the density,

making it unlikely to jump out and explore other isolated modes. As a result, the estimated gradient

of the likelihood may be biased due to non-mixing MCMC samples, leading to a learned EBM that

cannot accurately approximate the data distribution. This naturally raises the question of whether

we can improve the training of EBMs.

Recently, (NHZ19) proposed training an EBM with short-run, non-convergent Langevin dynam-

ics. They demonstrated that even though the energy function is technically invalid, the short-run

MCMC can be treated as a valid flow-like model that generates realistic examples. This provides an

explanation for why an EBM with non-convergent MCMC can still synthesize realistic examples and
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suggests a more practical, computationally affordable way to learn useful generative models within

existing energy-based frameworks. Although EBMs have been widely applied across different

domains, learning short-run MCMC in the context of EBMs remains underexplored.

In this chapter, we focus on improving the sampling quality of EBMs. We acknowledge that

MCMC sampling may not mix well in practice, and therefore, we temporarily abandon the goal

of training a valid EBM for the data. Instead, we treat the short-run non-convergent Langevin

dynamics, which shares parameters with the energy function, as a flow-like transformation that we

call the Langevin flow. This can be considered a noise-injected residual network. Implementing a

short-run Langevin flow is surprisingly simple, involving the design of a bottom-up ConvNet for the

energy function. However, it may still require a sufficiently large number of Langevin steps (each

consisting of one gradient descent step and one diffusion step) to construct an effective Langevin

flow that is expressive enough to represent the data distribution. To reduce the number of Langevin

steps for computational efficiency, we propose the CoopFlow model, which trains a Langevin flow

jointly with a normalizing flow model in a cooperative learning scheme (XLG20).

Normalizing flows (DKB15; DSB17; KD18) represent a class of generative models that build

complex distributions by applying a series of invertible and differentiable mappings to a simple

probability density, such as a Gaussian distribution. These models are increasingly favored for

density estimation (KD18; HCS19; YHH19; PVC19; KBE20) and variational inference (RM15;

KSJ16) due to their ability to precisely calculate exact log-likelihoods and their efficient inference

and synthesis processes. Nevertheless, to maintain the capability for closed-form density evaluations,

normalizing flows often employ specially designed transformation sequences that may limit their

expressive capabilities.

In our CoopFlow model, the normalizing flow acts as a rapid sampler to initialize the Langevin

flow, allowing the Langevin flow to be shorter. Meanwhile, the Langevin flow teaches the nor-

malizing flow through short-run MCMC transitions towards the EBM, enabling the normalizing

flow to accumulate the temporal differences in the transition and provide better initial samples.

Compared to the original cooperative learning framework (XLG20), which combines the MLE
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algorithm of an EBM and a generator, CoopFlow benefits from using a normalizing flow instead of

a generic generator because the MLE of a normalizing flow generator is much more tractable. Other

generic generators might need MCMC-based inference to evaluate the posterior distribution or

another encoder network for variational inference. Additionally, the Langevin flow in CoopFlow can

overcome the expressivity limitations of the normalizing flow caused by the invertibility constraint,

which further motivates the study of the CoopFlow model. In summary, in this chapter:

• We propose improving the sampling quality of EBMs by pairing an EBM with a normalizing

flow model as a rapid sampler. We refer to our model as CoopFlow.

• We design the algorithm that cooperatively trains the normalizing flow and EBM through

MCMC teaching.

• During sampling, the normalizing flow makes the initial proposal, and the EBM acts as a

short-run Langevin flow sampler.

• Through various experiments, we demonstrate that the normalizing flow, together with the

Langevin flow towards the EBM, can perform as a valid generator with strong generative

abilities.

4.2 Two Flow Models

4.2.1 Langevin Flow

Energy-based model. Let x ∈ RD be the observed signal such as an image. An energy-based

model defines an unnormalized probability distribution of x as follows:

pθ(x) =
1

Z(θ)
exp[fθ(x)], (4.1)

where fθ : RD → R is the negative energy function and defined by a bottom-up neural network

whose parameters are denoted by θ. The normalizing constant or partition function Z(θ) =
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∫
exp[fθ(x)]dx is analytically intractable and difficult to compute due to high dimensionality of x.

Langevin dynamics as MCMC. Generating synthesized examples from pθ(x) can be accom-

plished with a gradient-based MCMC such as Langevin dynamics, which is applied as follows

xt = xt−1 +
δ2

2
∇xfθ(xt−1) + δϵt; x0 ∼ p0(x), ϵt ∼ N (0, ID), t = 1, · · · , T, (4.2)

where t indexes the Langevin time step, δ denotes the Langevin step size, ϵt is a Brownian motion

that explores different modes, and p0(x) is a uniform distribution that initializes MCMC chains.

Langevin flow. As T →∞ and δ → 0, xT becomes an exact sample from pθ(x) under some

regularity conditions. However, it is impractical to run infinite steps with infinitesimal step size to

generate fair examples from the target distribution. Additionally, convergence of MCMC chains

in many cases is hopeless because pθ(x) can be very complex and highly multi-modal, then the

gradient-based Langevin dynamics has no way to escape from local modes, so that different MCMC

chains with different starting points are unable to mix. Let p̃θ(x) be the distribution of xT , which is

the resulting distribution of x after T steps of Langevin updates starting from x0 ∼ p0(x). Due to the

fixed p0(x), T and δ, the distribution p̃θ(x) is well defined, which can be implicitly expressed by

p̃θ(x) = (Kθp0)(x) =

∫
p0(z)Kθ(x|z)dz, (4.3)

where Kθ denotes the transition kernel of T steps of Langevin dynamics that samples pθ. Generally,

p̃θ(x) is not necessarily equal to pθ(x). p̃θ(x) is dependent on T and δ, which are omitted in the

notation for simplicity. The KL-divergence DKL(p̃θ(x)||pθ(x)) = −entropy(p̃θ(x))−Ep̃θ(x)[f(x)]+

logZ. The gradient ascent part of Langevin dynamics, xt = xt−1 + δ2/2∇xfθ(xt−1), increases the

negative energy fθ(x) by moving x to the local modes of fθ(x), and the diffusion part δϵt increases

the entropy of p̃θ(x) by jumping out of the local modes. According to the law of thermodynamics

(CT06), DKL(p̃θ(x)||pθ(x)) decreases to zero monotonically as T →∞.
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4.2.2 Normalizing Flow

Let z ∈ RD be the latent vector of the same dimensionality as x. A normalizing flow is of the form

x = gα(z); z ∼ q0(z), (4.4)

where q0(z) is a known prior distribution such as Gaussian white noise distribution N (0, ID),

and gα : RD → RD is a mapping that consists of a sequence of L invertible transformations,

i.e., g(z) = gL ◦ · · · ◦ g2 ◦ g1(z), whose inversion z = g−1
α (x) and log-determinants of the

Jacobians can be computed in closed form. α are the parameters of gα. The mapping is used

to transform a random vector z that follows a simple distribution q0 into a flexible distribution.

Under the change-of-variables law, the resulting random vector x = gα(z) has a probability density

qα(x) = q0(g
−1
α (x))| det(∂g−1

α (x)/∂x)|.

Let hl = gl(hl−1). The successive transformations between x and z can be expressed as a flow

z
g1←→ h1

g2←→ h2 · · ·
gL←→ x, where we define z := h0 and x := hL for succinctness. Then

the determinant becomes | det(∂g−1
α (x)/∂x)| =

∏L
l=1 | det(∂hl−1/∂hl)|. The log-likelihood of a

datapoint x can be easily computed by

log qα(x) = log q0(z) +
L∑
l=1

log

∣∣∣∣det(∂hl−1

∂hl

)∣∣∣∣ . (4.5)

With some smart designs of the sequence of transformations gα = {gl, l = 1, ..., L}, the log-

determinant in Eq. (4.5) can be easily computed, then the normalizing flow qα(x) can be trained by

maximizing the exact data log-likelihood L(α) = 1
n

∑n
i=1 log qα(xi) via gradient ascent algorithm.
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4.3 CoopFlow: Cooperative Training of Two Flows

4.3.1 CoopFlow Algorithm

We have moved from trying to use a convergent Langevin dynamics to train a valid EBM. Instead,

we accept the fact that the short-run non-convergent MCMC is inevitable and more affordable in

practice, and we treat a non-convergent short-run Langevin flow as a generator and propose to jointly

train it with a normalizing flow as a rapid initializer for more efficient generation. The resulting

generator is called CoopFlow, which consists of both the Langevin flow and the normalizing flow.

Specifically, at each iteration, for i = 1, ...,m, we first generate zi ∼ N (0, ID), and then

transform zi by a normalizing flow to obtain x̂i = gα(zi). Next, starting from each x̂i, we run a

Langevin flow (i.e., a finite number of Langevin steps toward an EBM pθ(x)) to obtain x̃i. x̃i are

considered synthesized examples that are generated by the CoopFlow model. We then update α of

the normalizing flow by treating x̃i as training data, and update θ of the Langevin flow according to

the learning gradient of the EBM, which is computed with the synthesized examples {x̃i} and the

observed examples {xi}. Algorithm 3 presents a description of the proposed CoopFlow algorithm.

The advantage of this training scheme is that we only need to minimally modify the existing codes

for the MLE training of the EBM pθ and the normalizing flow qα. The probability density of the

CoopFlow π(θ,α)(x) is well defined, which can be implicitly expressed by

π(θ,α)(x) = (Kθqα)(x) =

∫
qα(x

′)Kθ(x|x′)dx′. (4.6)

Kθ is the transition kernel of the Langevin flow. If we increase the length T of the Langevin flow,

π(θ,α) will converge to the EBM pθ(x). The network fθ(x) in the Langevin flow is scalar valued and

is of free form, whereas the network gα(x) in the normalizing flow has high-dimensional output

and is of a severely constrained form. Thus the Langevin flow can potentially provide a tighter

fit to pdata(x) than the normalizing flow. The Langevin flow may also be potentially more data

efficient as it tends to have a smaller network than the normalizing flow. On the flip side, sampling
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from the Langevin flow requires multiple iterations, whereas the normalizing flow can synthesize

examples via a direct mapping. It is thus desirable to train these two flows simultaneously, where

the normalizing flow serves as an approximate sampler to amortize the iterative sampling of the

Langevin flow. Meanwhile, the normalizing flow is updated by a temporal difference MCMC

teaching provided by the Langevin flow, to further amortize the short-run Langevin flow.

Algorithm 3 CoopFlow Algorithm
Input: (1) Observed images {xi}ni ; (2) Number of Langevin steps T ; (3) Langevin step size δ; (4)
Learning rate ηθ for Langevin flow; (5) Learning rate ηα for normalizing flow; (6) batch size m.
Output: Parameters {θ, α}

1: Randomly initialize θ and α.
2: repeat
3: Sample observed examples {xi}mi ∼ pdata(x).
4: Sample noise examples {zi}mi=1 ∼ q0(z),
5: Starting from zi, generate x̂i = gα(zi) via normalizing flow.
6: Starting from x̂i, run a T -step Langevin flow to obtain x̃i by following Eq. (4.2).
7: Given {x̃i}, update α by maximizing 1

m

∑m
i=1 log qα(x̃i) with Eq. (4.5).

8: Given {xi} and {x̃i}, update EBM parameter θ.
9: until converged

4.3.2 Understanding the Learned Two Flows

Convergence equations. In the traditional contrastive divergence (CD) (Hin02b) algorithm,

MCMC chains are initialized with observed data so that the CD learning seeks to minimize

DKL(pdata(x)||pθ(x))−DKL((Kθpdata)(x)||pθ(x)), where (Kθpdata)(x) denotes the marginal distribu-

tion obtained by running the Markov transition Kθ, which is specified by the Langevin flow, from

the data distribution pdata. In the CoopFlow algorithm, the learning of the EBM (or the Langevin

flow model) follows a modified contrastive divergence, where the initial distribution of the Langevin

flow is modified to be a normalizing flow qα. Thus, at iteration t, the update of θ follows the gradient

of DKL(pdata||pθ)− DKL(Kθ(t)qα(t)||pθ) with respect to θ. Compared to the traditional CD loss, the

modified one replaces pdata by qα in the second KL divergence term. At iteration t, the update of the

normalizing flow qα follows the gradient of DKL(Kθ(t)qα(t)||qα) with respect to α. Let (θ∗, α∗) be a
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fixed point the learning algorithm converges to, then we have the following convergence equations

θ∗ = argmin
θ

DKL(pdata||pθ)− DKL(Kθ∗qα∗||pθ), (4.7)

α∗ = argmin
α

DKL(Kθ∗qα∗||qα). (4.8)

Ideal case analysis. In the idealized scenario where the normalizing flow qα has infinite capacity and

the Langevin sampling can mix and converge to the sampled EBM, Eq. (4.8) means that qα∗ attempts

to be the stationary distribution of Kθ∗ , which is pθ∗ because Kθ∗ is the Markov transition kernel of

a convergent MCMC sampled from pθ∗ . That is, minαDKL(Kθ∗qα∗ ||qα) = 0, thus qα∗ = pθ∗ . With

the second term becoming 0 and vanishing, Eq. (4.7) degrades to minθ DKL(pdata||pθ) and thus θ∗ is

the maximum likelihood estimate. On the other hand, the normalizing flow qα chases the EBM pθ

toward pdata, thus α∗ is also a maximum likelihood estimate.

Moment matching estimator. In the practical scenario where the Langevin sampling is not

mixing, the CoopFlow model πt = Kθ(t)qα(t) is an interpolation between the learned qα(t) and

pθ(t) , and it converges to π∗ = Kθ∗qα∗ , which is an interpolation between qα∗ and pθ∗ . π∗ is the

short-run Langevin flow starting from qα∗ towards EBM pθ∗. π∗ is a legitimate generator because

Epdata [∇θfθ∗(x)] = Eπ∗ [∇θfθ∗(x)] at convergence. That is, π∗ leads to moment matching in the

feature statistics∇θfθ∗(x). In other words, π∗ satisfies the above estimating equation.

Understanding via information geometry. Consider a simple EBM with fθ(x) = ⟨θ, h(x)⟩,

where h(x) is the feature statistics. Since∇θfθ(x) = h(x), the MLE of the EBM pθMLE is a moment

matching estimator due to Epdata [h(x)] = EpθMLE
[h(x)]. The CoopFlow π∗ also converges to a

moment matching estimator, i.e., Epdata [h(x)] = Eπ∗ [h(x)]. Figure 4.1 is an illustration of model

distributions that correspond to different parameters at convergence. We first introduce three families

of distributions: Ω = {p : Ep[h(x)] = Epdata [h(x)]}, Θ = {pθ(x) = exp(⟨θ, h(x)⟩)/Z(θ),∀θ}, and

A = {qα, ∀α}, which are shown by the red, blue and green curves respectively in Figure 4.1. Ω is

the set of distributions that reproduce statistical property h(x) of the data distribution. Obviously,

pθMLE , pdata, and π∗ = Kθ∗qα∗ are included in Ω. Θ is the set of EBMs with different values of θ,
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Figure 4.1: An illustration of convergence of the CoopFlow algorithm.

thus pθMLE and pθ∗ belong to Θ. Because of the short-run Langevin flow, pθ∗ is not a valid model that

matches the data distribution in terms of h(x), and thus pθ∗ is not in Ω. A is the set of normalizing

flow models with different values of α, thus qα∗ and qαMLE belong to A. The yellow line shows the

MCMC trajectory. The solid segment of the yellow line, starting from qα∗ to Kθ∗qα∗ , illustrates

the short-run non-mixing MCMC that is initialized by the normalizing flow qα∗ in A and arrives at

π∗ = Kθ∗qα∗ in Ω. The dotted segment of the yellow line, starting from π∗ = Kθ∗qα∗ in Ω to pθ∗

in Θ, shows the potential long-run MCMC trajectory, which is not really realized because we stop

short in MCMC. If we increase the number of steps of short-run Langevin flow, DKL(π
∗||pθ∗) will

be monotonically decreasing to 0. Though π∗ stops midway in the path toward pθ∗, π∗ is still a valid

generator because it is in Ω.

Perturbation of MLE. pθMLE is the intersection between Θ and Ω. It is the projection of

pdata onto Θ because θMLE = argminθ DKL(pdata||pθ). qαMLE is also a projection of pdata onto A

because αMLE = argminαDKL(pdata||qα). Generally, qαMLE is far from pdata due to its restricted form

network, whereas pθMLE is very close to pdata due to its scalar-valued free form network. Because

the short-run MCMC is not mixing, θ∗ ̸= θMLE and α∗ ̸= αMLE. θ∗ and α∗ are perturbations of
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θMLE and αMLE, respectively. pθMLE shown by an empty dot is not attainable unfortunately. We

want to point out that, as T goes to infinity, pθ∗ = pθMLE , and qα∗ = qαMLE . Note that Ω, Θ and A

are high-dimensional manifolds instead of 1D curves as depicted in Figure 4.1, and π∗ may be

farther away from pdata than pθMLE is. During learning, qα(t+1) is the projection of Kθ(t)qα(t) on A.

At convergence, qα∗ is the projection of π∗ = Kθ∗qα∗ on A. There is an infinite looping between

qα∗ and π∗ = Kθ∗qα∗ at convergence of the CoopFlow algorithm, i.e., π∗ lifts qα∗ off the ground

A, and the projection drops π∗ back to qα∗ . Although pθ∗ and qα∗ are biased, they are not wrong.

Many useful models and algorithms, e.g., variational autoencoder and contrastive divergence are

also biased to MLE. Their learning objectives also follow perturbation of MLE.

4.3.3 Comparison Between CoopFlow and Short-Run EBM via Information Geometry

Figure 4.2 illustrates the convergences of both the CoopFlow and the EBM with a short-run MCMC

starting from an initial noise distribution q0. We define the short-run EBM in a more generic form

(XLZ16a) as follows

pθ(x) =
1

Z(θ)
exp[fθ(x)]q0(x), (4.9)

which is an exponential tilting of a known reference distribution q0(x). In general, the reference

distribution can be either the Gaussian distribution or the uniform distribution. When the reference

distribution is the uniform distribution, q0 can be removed in Eq. (4.9). Since the initial distribution

of the CoopFlow is the Gaussian distribution q0, which is actually the prior distribution of the

normalizing flow. For a convenient and fair comparison, we will use the Gaussian distribution as

the reference distribution of the EBM in Eq. (4.9). And the CoopFlow and the baseline short-run

EBM will use the same EBM defined in Eq. (4.9) in their frameworks. We will use p̄θ̄ to denote the

baseline short-run EBM and keep using pθ to denote the EBM component in the CoopFlow.

There are three families of distributions: Ω = {p : Ep[h(x)] = Epdata [h(x)]}, Θ = {pθ(x) =

exp(⟨θ, h(x)⟩)q0(x)/Z(θ),∀θ}, and A = {qα,∀α}, which are shown by the red, blue and green

45



curves respectively in Figure 4.2, which is an extension of Figure 4.1 by adding the following

elements:

• q0, which is the initial distribution for both the CoopFlow and the short-run EBM. It belongs to

Θ because it corresponds to θ = 0. q0 is just a noise distribution thus it is far under the green

curve. That is, it is very far from qα∗ because qα∗ has been already a good approximation of

pθ∗ .

• gα∗ , which is the learned transformation of the normalizing flow qα, and is visualized as a

mapping from q0 to qα∗ by a directed brown line segment.

• The MCMC trajectory of the baseline short-run EBM p̄θ̄, which is shown by the yellow line

on the right hand side of the blue curve. The solid part of the yellow line, starting from q0

to π̄∗ = Kθ̄∗q0, shows the short-run non-mixing MCMC starting from the initial Gaussian

distribution q0 in Θ and arriving at π̄∗ in Ω. The dotted part of the yellow line is the potential

long-run MCMC trajectory that is unrealized.

By comparing the MCMC trajectories of the CoopFlow and the short-run EBM in Figure 4.2, we

can find that the CoopFlow has a much shorter MCMC trajectory than that of the short-run EBM,

since the normalizing flow gα∗ in the CoopFlow amortizes the sampling workload for the Langevin

flow in the CoopFlow model.

4.3.4 Convergence Analysis

The CoopFlow algorithm simply involves two MLE learning algorithms: (i) the MLE learning

of the EBM pθ and (ii) the MLE learning of the normalizing flow qα. The convergence of each

of the two learning algorithms has been well studied and verified in the existing literature, e.g.,

(You99; XLZ16a; KD18). That is, each of them has a fixed point. The only interaction between these

two MLE algorithms in the proposed CoopFlow algorithm is that, in each learning iteration, they

feed each other with their synthesized examples and use the cooperatively synthesized examples
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Figure 4.2: A comparison between the CoopFlow and the short-run EBM.

in their parameter update formulas. To be specific, the normalizing flow uses its synthesized

examples to initialize the MCMC of the EBM, while the EBM feeds the normalizing flow with its

synthesized examples as training examples. The synthesized examples from the Langevin flow are

considered the cooperatively synthesized examples by the two models, and are used to compute

their learning gradients. Unlike other amortized sampling methods (e.g., (HNF19b; GKH21b)) that

uses variational learning, the EBM and normalizing flow in our framework do not back-propagate

each other through the cooperatively synthesized examples. They just feed each other with some

input data for their own training algorithms. That is, each learning algorithm will still converge to a

fixed point.

Now let us analyze the convergence of the whole CoopFlow algorithm that alternates two

maximum likelihood learning algorithms. We first analyze the convergence of the objective function

at each learning step, and then we conclude the convergence of the whole algorithm.
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The convergence of CD learning of EBM. The learning objective of the EBM is to minimize

the KL divergence between the EBM pθ and the data distribution pdata. Since the MCMC of the EBM

in our model is initialized by the normalizing flow qα, it follows a modified contrastive divergence

algorithm. That is, at iteration t, it has the following objective,

θ(t+1) = argmin
θ

DKL(pdata||pθ)− DKL(Kθ(t)qα(t)||pθ). (4.10)

No matter what kind of distribution is used to initialize the MCMC, it will has a fixed point when

the learning gradient of θ equals to 0, i.e., L′(θ) = 1
n

∑n
i=1∇θfθ(xi)− 1

n

∑n
i=1∇θfθ(x̃i) = 0. The

initialization of the MCMC only affects the location of the fixed point of the learning algorithm.

The convergence and the analysis of the fixed point of the contrastive divergence algorithm has been

studied by (Hin02b; CH05).

The convergence of MLE learning of normalizing flow. The objective of the normalizing

flow is to learn to minimize the KL divergence between the normalizing flow and the Langevin

flow (or the EBM) because, in each learning iteration, the normalizing flow uses the synthesized

examples generated from the Langevin dynamics as training data. At iteration t, it has the following

objective

α(t+1) = argmin
α

DKL(Kθ(t)qα(t)||qα), (4.11)

which is a convergent algorithm at each t. The convergence has been studied by (You99).

The convergence of CoopFlow. The CoopFlow alternates the above two learning algorithms.

The EBM learning seeks to reduce the KL divergence between the EBM and the data, i.e., pθ →

pdata; while the MLE learning of normalizing flow seeks to reduce the KL divergence between the

normalizing flow and the EBM, i.e., qα → pθ. Therefore, the normalizing flow will chase the EBM

toward the data distribution gradually. Because the process pθ → pdata will stop at a fixed point,

therefore qα → pθ will also stop at a fixed point obviously. Such a chasing game is a contraction

algorithm, therefore the fixed point of the CoopFlow exists. Empirical evidence also support our
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claim. If we use (θ∗, α∗) to denote the fixed point of the CoopFlow, according to the definition of a

fixed point, (θ∗, α∗) will satisfy

θ∗ = argmin
θ

DKL(pdata||pθ)− DKL(Kθ∗qα∗||pθ), (4.12)

α∗ = argmin
α

DKL(Kθ∗qα∗||qα). (4.13)

The convergence of the cooperative learning framework (CoopNets) that integrates the MLE

algorithm of an EBM and the MLE algorithm of a generic generator has been verified and discussed

in (XLG20). The CoopFlow that uses a normalizing flow instead of a generic generator has the

same convergence property as that of the original CoopNets. The major contribution in our paper is

to start from the above fixed point equation to analyze where the fixed point will be in our learning

algorithm, especially when the MCMC is non-mixing and non-convergent. This goes beyond all the

prior works about cooperative learning.

4.4 Experiments

We showcase experiment results on various tasks. We start from a toy example to illustrate the

basic idea of the CoopFlow in Section 4.4.1. We show image generation results in Section 4.4.2.

Section 4.4.3 demonstrates the learned CoopFlow is useful for image reconstruction and inpainting,

while Section 4.4.4 shows that the learned latent space is meaningful so that it can be used for

interpolation.

4.4.1 Toy Example Study

We first demonstrate our idea using a two-dimensional toy example where data lie on a spiral. We

train three CoopFlow models with different lengths of Langevin flows. As shown in Figure 4.3, the

rightmost box shows the results obtained with 10,000 Langevin steps. We can see that both the

normalizing flow qα and the EBM pθ can fit the ground truth density, which is displayed in the red
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Figure 4.3: Learning CoopFlows on two-dimensional data. The ground truth data distribution
is shown in the red box and the models trained with different Langevin steps are in the green boxes.
In each green box, the first row shows the learned distributions of the normalizing flow and the EBM,
and the second row shows the samples from the learned normalizing flow and the learned CoopFlow.

box, perfectly. This validates that, with a sufficiently long Langevin flow, the CoopFlow algorithm

can learn both a valid qα and a valid pθ. The leftmost green box represents the model trained with

100 Langevin steps. This is a typical non-convergent short-run MCMC setting. In this case, neither

qα nor pθ is valid, but their cooperation is. The short-run Langevin dynamics toward the EBM

actually works as a flow-like generator that modifies the initial proposal by the normalizing flow. We

can see that the samples from qα are not perfect, but after the modification, the samples from π(θ,α) fit

the ground truth distribution very well. The third box shows the results obtained with 500 Langevin

steps. This is still a short-run setting, even though it uses more Langevin steps. pθ becomes better

than that with 100 steps, but it is still invalid. With an increased number of Langevin steps, samples

from both qα and π(θ,α) are improved and comparable to those in the long-run setting with 10,000

steps. The results verify that the CoopFlow might learn a biased BEM and a biased normalizing

flow if the Langevin flow is non-convergent. However, the non-convergent Langevin flow together

with the biased normalizing flow can still form a valid generator that synthesizes valid examples.

4.4.2 Image Generation

We test our model on three image datasets for image synthesis. (i) CIFAR-10 (KH09) is a dataset

containing 50k training images and 10k testing images in 10 classes; (ii) SVHN (NWC11) is a
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dataset containing over 70k training images and over 20k testing images of house numbers; (iii)

CelebA (LLW15) is a celebrity facial dataset containing over 200k images. We downsample all the

images to the resolution of 32× 32.

Table 4.1: FID scores on the CIFAR-10, SVHN and CelebA datasets (32× 32 pixels).

Models FID ↓

VAE VAE (KW14b) 78.41

Autoregressive
PixelCNN (SKC17) 65.93
PixelIQN (ODM18) 49.46

GAN
WGAN-GP(GAA17) 36.40
SN-GAN (MKK18) 21.70
StyleGAN2-ADA (KAH20) 2.92

Score-Based
NCSN (SE19) 25.32
NCSN-v2 (SE20) 31.75
NCSN++ (SSK21) 2.20

Flow
Glow (KD18) 45.99
Residual Flow (CBD19) 46.37

EBM

LP-EBM (PHN20) 70.15
EBM-SR (NHZ19) 44.50
EBM-IG (DM19) 38.20
CoopVAEBM (XZL21) 36.20
CoopNets (XLG20) 33.61
Divergence Triangle (HNZ20) 30.10
VARA (GKH21b) 27.50
EBM-CD (DLT21b) 25.10
GEBM (AZG21) 19.31
CF-EBM (ZXL21) 16.71
VAEBM (XKK21) 12.16
EBM-Diffusion (GSP21b) 9.58

Flow+EBM
NT-EBM (NGS22) 78.12
EBM-FCE (GNK20) 37.30

Ours
CoopFlow(T=30) 21.16
CoopFlow(T=200) 18.89
CoopFlow(Pre) 15.80

(a) CIFAR-10

Models FID ↓

ABP (HLZ17) 49.71
ABP-SRI (NPH20) 35.23
ABP-OT (AXL21) 19.48
VAE (KW14b) 46.78
2sVAE (DW19) 42.81
RAE (GSV20) 40.02
Glow (KD18) 41.70
DCGAN (RMC15) 21.40
NT-EBM (NGS22) 48.01
LP-EBM (PHN20) 29.44
EBM-FCE (GNK20) 20.19

CoopFlow(T=30) 18.11
CoopFlow(T=200) 16.97
CoopFlow(Pre) 15.32

(b) SVHN

Models FID ↓

ABP (HLZ17) 51.50
ABP-SRI (NPH20) 36.84
VAE (KW14b) 38.76
Glow (KD18) 23.32
DCGAN (RMC15) 12.50
EBM-FCE (GNK20) 12.21
GEBM (AZG21) 5.21

CoopFlow(T=30) 6.44
CoopFlow(T=200) 4.90
CoopFlow(Pre) 4.15

(c) CelebA

For our model, we show results of three different settings. CoopFlow(T=30) denotes the setting

where we train a normalizing flow and a Langevin flow together from scratch and use 30 Langevin

steps. CoopFlow(T=200) denotes the setting where we increase the number of Langevin steps to

200. In the CoopFlow(Pre) setting, we first pretrain a normalizing flow from observed data, and then

train the CoopFlow with the parameters of the normalizing flow being initialized by the pretrained
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one. We use a 30-step Langevin flow in this setting. For all the three settings, we slightly increase

the Langevin step size at the testing stage for better performance. We show both qualitative results

in Figure 4.4 and quantitative results in Table 4.1. To calculate FID (HRU17a) scores, we generate

50,000 samples on each dataset. Our models outperform most of the baseline algorithms. We get

lower FID scores comparing to the individual normalizing flows and the prior works that jointly

train a normalizing flow with an EBM, e.g., (GNK20) and (NGS22). We also achieve comparable

results with the state-of-the-art EBMs. We can see using more Langevin steps or a pretrained

normalizing flow can help improve the performance of the CoopFlow. The former enhances the

expressive power, while the latter stabilizes the training.

(a) CIFAR-10 (b) SVHN (c) CelebA

Figure 4.4: Generated examples (32× 32 pixels) by the CoopFlow models trained on the CIFAR-10,
SVHN and CelebA datasets respectively. Samples are obtained from the setting of CoopFlow(pre).

Figure 4.5 shows the FID trends during the training of the CoopFlow models on the CIFAR-10

dataset. Each curve represents the FID scores over training epochs. We train the CoopFlow models

using the settings of CoopFlow(T=30) and CoopFlow(pre). For each of them, we can observe that,

as the cooperative learning proceeds, the FID keeps decreasing and converges to a low value. This

is an empirical evidence to show that the proposed CoopFlow algorithm is a convergent algorithm.

4.4.3 Image Reconstruction and Inpainting
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(a) FID curve for CoopFlow(T=30).
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(b) FID curve for CoopFlow(Pre).

Figure 4.5: FID curves on the CIFAR-10 dataset. The FID score is reported every 5 epochs.

We show that the learned CoopFlow model is able to reconstruct observed images. We may consider

the CoopFlow model π(θ,α)(x) a latent variable generative model: z ∼ q0(z); x̂ = gα(z);x =

Fθ(x̂, e), where z denotes the latent variables, e denotes all the injected noises in the Langevin

flow, and Fθ denotes the mapping realized by a T -step Langevin flow that is actually a T -layer

noise-injected residual network. Since the Langevin flow is not mixing, x is dependent on x̂ in

the Langevin flow, thus also dependent on z. The CoopFlow is a generator x = Fθ(gα(z), e), so

we can reconstruct any x by inferring the corresponding latent variables z using gradient descent

on L(z) = ||x − Fθ(gα(z), e)||2, with z being initialized by q0. However, g is an invertible

transformation, so we can infer z by an efficient way, i.e., we first find x̂ by gradient descent on

L(x̂) = ||x−Fθ(x̂, e)||2, with x̂ being initialized by x̂0 = gα(z) where z ∼ q0(z) and e being set to

be 0, and then use z = g−1
α (x̂) to get the latent variables. These two methods are equivalent, but the

latter one is computationally efficient, since computing the gradient on the whole two-flow generator

Fθ(gα(z), e) is difficult and time-consuming. Let x̂∗ = argminx̂ L(x̂). The reconstruction is given

by Fθ(x̂
∗). The optimization is done using 200 steps of gradient descent over x̂. The reconstruction

results are shown in Figure 4.6. We use the CIFAR-10 testing set. The right column displays the

original images x that need to be reconstructed. The left and the middle columns display x̂∗ and

Fθ(x̂
∗), respectively.
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Figure 4.6: Image reconstruction
on the CIFAR-10.

We also provide quantitative results for the image recon-

struction experiment. Following (NHZ19), we calculate the

per-pixel mean squared error (MSE) on 1,000 examples in the

testing set of the CIFAR-10 dataset. We use a 200-step gradi-

ent descent to minimize the reconstruction loss. We plot the

reconstruction error curve showing the MSEs over iterations

in Figure 4.7 and report the final per-pixel MSE in Table 4.2.

For a baseline, we train an EBM using a 100-step short-run

MCMC and the resulting model is the short-run Langevin flow.

We then apply it to the reconstruction task of the same 1,000

images by following (NHZ19). The baseline EBM has the

same network architecture as that of the EBM component in

our CoopFlow model for fair comparison. The experiment re-

sults show that the CoopFlow works better than the individual

short-run Langevin flow in this image reconstruction task.

Model MSE

Langevin Flow / EBM with short-run MCMC 0.1083
CoopFlow (ours) 0.0254

Table 4.2: Reconstruction error (MSE per pixel).

The aforementioned results demonstrate that our model can successfully reconstruct the observed

images, verifying that the CoopFlow with a non-mixing MCMC is indeed a valid latent variable

model.

We further show that our model is also capable of doing image inpainting. Similar to image

reconstruction, given a masked observation xmask along with a binary matrix M indicating the

positions of the unmasked pixels, we optimize x̂ to minimize the reconstruction error between Fθ(x̂)

and xmask in the unmasked area, i.e., L(x̂) = ||M ⊙ (xmask−Fθ(x̂))||2, where ⊙ is the element-wise

multiplication operator. x̂ is still initialized by the normalizing flow. We do experiments on the
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Figure 4.7: Reconstruction errors (MSE per pixel) over iterations.

CelebA training set. In Figure 4.8, the two subfigures correspond to two target images to be

inpainted. Each row in the same subfigure shows one example of inpainting to the same target

image with a different initialization of x̂ provided by the normalizing flow. The first 17 columns

display the inpainting results at different optimization iterations. The last two columns show the

masked images and the original images respectively. We can see that our model can reconstruct

the unmasked areas faithfully and simultaneously fill in the blank areas of the input images. With

different initializations, our model can inpaint diversified and meaningful patterns.

4.4.4 Interpolation in the Latent Space

The CoopFlow model is capable of doing interpolation in the latent space z. Given an image x, we

first find its corresponding x̂∗ using the reconstruction method described in Section 4.4.3. We then

infer z by the inversion of the normalizing flow z∗ = g−1
α (x̂∗).

Figure 4.9 shows two examples of interpolation between two latent vectors inferred from

observed images. For each row, the images at the two ends are observed. Each image in the middle

is obtained by first interpolating the latent vectors of the two end images, and then generating the

image using the CoopFlow generator. This experiment shows that the CoopFlow can learn a smooth

latent space that traces the data manifold.
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4.5 Implementation Details

4.5.1 Network Architecture of the CoopFlow

We use the same network architecture for all the experiments. For the normalizing flow gα(z) in

our CoopFlow framework, we use the Flow++ (HCS19) network architecture that was originally

designed for the CIFAR-10 (32× 32 pixels) dataset in (HCS19). As to the EBM in our CoopFlow,

we use the architecture shown in Table 4.3 to design the negative energy function fθ(x).

3× 3 Conv2d, str=1, pad=1, ch=128; Swish

Residual Block, ch=256

Residual Block, ch=512

Residual Block, ch=1,024

3× 3 Conv2d, str=4, pad=0, ch=100; Swish

Sum over channel dimension

(a) EBM architecture

3× 3 Conv2d, str=1, pad=1; Swish

3× 3 Conv2d, str=1, pad=1; Swish

+ 3× 3 Conv2d, str=1, pad=1; Swish (input)

2× 2 Average pooling

(b) Residual Block architecture

Table 4.3: Network architecture of the EBM in the CoopFlow (str: stride, pad: padding, ch:
channel).

4.5.2 Experimental Details

We have three different settings for the CoopFlow model. In the CoopFlow(T=30) setting and the

CoopFlow(T=200) setting, we train both the normalizing flow and the Langevin flow from scratch.

The difference between them are only the number of the Langevin steps. The CoopFlow(T=200) uses

a longer Langevin flow than the CoopFlow(T=30). We follow (HCS19) and use the data-dependent

parameter initialization method (SK16) for our normalizing flow in both settings CoopFlow(T=30)

and CoopFlow(T=200). On the other hand, as to the CoopFlow(Pre) setting, we first pretrain a

normalizing flow on training examples, and then train a 30-step Langevin flow, whose parameters

are initialized randomly, together with the pretrained normalizing flow by following Algorithm 3.

The cooperation between the pretrained normalizing flow and the untrained Langevin flow would be
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difficult and unstable because the Langevin flow is not knowledgeable at all to teach the normalizing

flow. To stabilize the cooperative training and make a smooth transition for the normalizing flow, we

include a warm-up phase in the CoopFlow algorithm. During this phase, instead of updating both

the normalizing flow and the Langevin flow, we fix the parameters of the pretrained normalizing

flow and only update the parameters of the Langevin flow. After a certain number of learning epochs,

the Langevin flow may get used to the normalizing flow initialization, and learn to cooperate with it.

Then we begin to update both two flows as described in Algorithm 3. This strategy is effective in

preventing the Langevin flow from generating bad synthesized examples at the beginning of the

CoopFlow algorithm to ruin the pretrained normalizing flow.

We use the Adam optimizer (KB15b) for training. We set learning rates ηα = 0.0001 and

ηθ = 0.0001 for the normalizing flow and the Langevin flow, respectively. We use β1 = 0.9 and

β2 = 0.999 for the normalizing flow and β1 = 0.5 and β2 = 0.5 for the Langevin flow. In the Adam

optimizer, β1 is the exponential decay rate for the first moment estimates, and β2 is the exponential

decay rate for the second-moment estimates. We adopt random horizontal flip as data augmentation

only for the CIFAR-10 dataset. We remove the noise term in each Langevin update by following

(ZXL21). We also propose an alternative strategy to gradually decay the effect of the noise term in

Section 4.9. The batch sizes for settings CoopFlow(T=30), CoopFlow(T=200), and CoopFlow(Pre)

are 28, 32 and 28. The values of other hyperparameters can be found in Table 4.4.

4.5.3 Analysis of Hyperparameters of Langevin Flow

We investigate the influence of the Langevin step size δ and the number of Langevin steps T on the

CIFAR-10 dataset using the CoopFlow(Pre) setting. We first fix the Langevin step size to be 0.03

and vary the number of Langevin steps from 10 to 50. The results are shown in Table 4.5. On the

other hand, we show the influence of the Langevin step size in Table 4.6, where we fix the number

of Langevin steps to be 30 and vary the Langevin step size used in training. When synthesizing

examples from the learned models in testing, we slightly increase the Langevin step size by a ratio

of 4/3 for better performance. We can see that our choices of 30 as the number of Langevin steps
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Model Dataset
# of epochs # of warm-up # of epochs # of Langevin Langevin
to pretrain epochs for for Langevin step size step size

Normal. Flow Lang. Flow CoopFlow steps (train) (test)

CoopFlow
(T=30)

CIFAR-10 0 0 100 30 0.03 0.04
SVHN 0 0 100 30 0.03 0.035
CelebA 0 0 100 30 0.03 0.035

CoopFlow
(T=200)

CIFAR-10 0 0 100 200 0.01 0.012
SVHN 0 0 100 200 0.011 0.0125
CelebA 0 0 100 200 0.011 0.013

CoopFlow
(Pre)

CIFAR-10 300 25 75 30 0.03 0.04
SVHN 200 10 90 30 0.03 0.035
CelebA 80 10 90 30 0.03 0.035

Table 4.4: Hyperparameter setting of the CoopFlow in our experiments.

and 0.03 as the Langevin step size are reasonable. Increasing the number of Langevin steps can

improve the performance in terms of FID, but also be computationally expensive. The choice of

T = 30 is a trade-off between the synthesis performance and the computation efficiency.

# of Langevin steps 10 20 30 40 50

FID ↓ 16.46 15.20 15.80 16.80 15.64

Table 4.5: FID scores over the numbers of Langevin steps of CoopFlow(Pre) on the CIFAR-10
dataset.

Langevin step size (train) 0.01 0.02 0.03 0.04 0.05 0.10

Langevin step size (test) 0.013 0.026 0.04 0.053 0.067 0.13

FID ↓ 15.99 16.32 15.80 16.52 18.17 19.82

Table 4.6: FID scores of CoopFlow(Pre) on the CIFAR-10 dataset under different Langevin step
sizes.
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4.6 Ablation Study

To show the effect of the cooperative training, we compare a CoopFlow model with an individual

normalizing flow and an individual Langevin flow. For fair comparison, the normalizing flow

component in the CoopFlow has the same network architecture as that in the individual normalizing

flow, while the Langevin flow component in the CoopFlow also uses the same network architecture

as that in the individual Langevin flow. We train the individual normalizing flow by following

(HCS19) and train the individual Langevin flow by following (NHZ19). All three models are

trained on the CIFAR-10 dataset. We present a comparison of these three models in terms of FID in

Table 4.7, and also show generated samples in Figure 4.10. From Table 4.7, we can see that the

CoopFlow model outperforms both the normalizing flow and the Langevin flow by a large margin,

which verifies the effectiveness of the proposed CoopFlow algorithm.

Model Normalizing flow Langevin flow CoopFlow

FID ↓ 92.10 49.51 21.16

Table 4.7: A FID comparison among the normalizing flow, the Langevin flow and the CoopFlow.

4.7 Model Complexity

In Table 4.8, we present a comparison of different models in terms of model size and FID score.

Here we mainly compare those models that have a normalizing flow component, e.g., EBM-FCE,

NT-EBM, GLOW, Flow++, as well as an EBM jointly trained with a VAE generator, e.g., VAEBM.

We can see the CoopFlow model has a good balance between model complexity and performance.

It is noteworthy that both the CoopFlow and the EBM-FCE consist of an EBM and a normalizing

flow, and their model sizes are also similar, but the CoopFlow achieves a much lower FID than the

EBM-FCE. Note that the Flow++ baseline uses the same structure as that in our CoopFlow. By

comparing the Flow++ and the CoopFlow, we can find that recruiting an extra Langevin flow can

help improve the performance of the normalizing flow in terms of FID. On the other hand, although
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the VAEBM model achieves a better FID than ours, but it relies on a much larger pretrained NVAE

model (VK20a) that significantly increases its model complexity.

Model # of Parameters FID ↓

NT-EBM (NGS22) 23.8M 78.12
GLOW (KD18) 44.2M 45.99
EBM-FCE (GNK20) 44.9M 37.30
Flow++ (HCS19) 28.8M 92.10
VAEBM (XKK21) 135.1M 12.16
CoopFlow(T=30) (ours) 45.9M 21.16
CoopFlow(T=200) (ours) 45.9M 18.89
CoopFlow(pre) (ours) 45.9M 15.80

Table 4.8: A comparison of model sizes and FID scores among different models. FID scores are
reported on the CIFAR-10 dataset.

4.8 Comparison with Models Using Short-Run MCMC

Our method is relevant to the short-run MCMC. In this section, we compare the CoopFlow model

with other models that use a short-run MCMC as a flow-like generator. The baselines include

(1) the single EBM with short-run MCMC starting from the noise distribution (NHZ19), and (ii)

cooperative training of an EBM and a generic generator (XLG20). In Table 4.9, we report the FID

scores of different methods over different numbers of MCMC steps. With the same number of

Langevin steps, the CoopFlow can generate much more realistic image patterns than the other two

baselines. Further, the results show that the CoopFlow can use less Langevin steps (i.e., a shorter

Langevin flow) to achieve better performance.

4.9 Noise Term in the Langevin Dynamics

While for the experiments shown in the main text, we completely disable the noise term δϵ of the

Langevin equation presented in Eq. (4.2) by following (ZXL21) to achieve better results, here we
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Model
# of MCMC steps

10 20 30 40 50 200

Short-run EBM 421.3 194.88 117.02 140.79 198.09 54.23
CoopNets 33.74 33.48 34.12 33.85 42.99 38.88
CoopFlow(Pre) (ours) 16.46 15.20 15.80 16.80 15.64 17.94

Table 4.9: A comparison of FID scores of the short-run EBM, the CoopNets and the CoopFlow
under different numbers of Langevin steps on the CIFAR-10 dataset.

try an alternative way where we gradually decay the effect of the noise term toward zero during the

training process. The decay ratio for the noise term can be computed by the following:

decay ratio = max((1.0− epoch
K

)
20

, 0.0) (4.14)

where K is a hyper-parameter controlling the decay speed of the noise term. Such a noise decay

strategy enables the model to do more exploration in the sampling space at the beginning of the

training and then gradually focus on the basins of the reachable local modes for better synthesis

quality when the model is about to converge. Note that we only decay the noise term during the

training stage and still remove the noise term during the testing stage, including image generation

and FID calculation. We carry out experiments on the CIFAR-10 and SVHN datasets using the

CoopFlow(Pre) setting. The results are shown in Table 4.10.

Dataset K FID (no noise) FID (decreasing noise)

CIFAR-10 30 15.80 14.55
SVHN 15 15.32 15.74

Table 4.10: FID scores for the CoopFlow models trained with gradually reducing noise term in the
Langevin dynamics.
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Figure 4.8: More results on image inpainting.
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Figure 4.9: Image interpolation results on the CelebA dataset (32× 32 pixels). The leftmost and
rightmost columns display the images we observed. The columns in the middle represent the
interploation results between the inferred latent vectors of the two end observed images.

(a) Normalizing flow (b) Langevin flow (c) CoopFlow(T=30)

Figure 4.10: Generated examples by (a) the individual normalizing flow, (b) the individual Langevin
flow, and (c) the CoopFlow, which are trained on the CIFAR-10 dataset.
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CHAPTER 5

Go One Step Further from CoopFlow: Learning Energy-Based

Models by Cooperative Diffusion Recovery Likelihood

5.1 Motivation and Introduction

The success of CoopFlow demonstrates the effectiveness of cooperatively learning an initializer and

an EBM. However, there is still a performance gap between CoopFlow with other STOA generative

frameworks. And the energy function learned by CoopFlow can be incorrect. Therefore, in this

chapter, we discuss how we can further resolve these problems.

Recently, Diffusion Recovery Likelihood (DRL) (GSP21a) has emerged as a powerful frame-

work for estimating EBMs. Drawing inspiration from diffusion models (SWM15; HJA20; SE19),

DRL employs a sequence of EBMs to model the marginal distributions of samples perturbed by

a Gaussian diffusion process. Each EBM is trained using recovery likelihood, which maximizes

the conditional probability of the data at the current noise level given their noisier versions at a

higher noise level. This method is more tractable than maximizing regular likelihood because

sampling from the conditional distribution is simpler than from the marginal distribution. Despite

DRL’s strong performance among EBM-based generative models, it still lags in sample quality

when compared to other generative frameworks like GANs or diffusion models. Moreover, DRL

requires about 30 MCMC sampling steps at each noise level to generate valid samples, which can

be time-consuming during both training and sampling.

To further narrow the performance gap and speed up EBM training and sampling with fewer

MCMC steps, we introduce Cooperative Diffusion Recovery Likelihood (CDRL). This method
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jointly estimates a sequence of EBMs and MCMC initializers on data perturbed by a diffusion

process. At each noise level, both the initializer and EBM are updated through a cooperative training

scheme (XLG18). The initializer model proposes initial samples by predicting the samples at the

current noise level based on their noisier versions from a higher noise level. These initial samples

are then refined using a few MCMC sampling steps from the conditional distribution defined by the

EBM. The EBM is updated by maximizing recovery likelihood with the refined samples, and the

initializer is updated to account for the differences between the initial and refined samples. The

initializer models learn to accumulate the MCMC transitions of the EBMs and reproduce them

through direct ancestral sampling. By incorporating a new noise schedule and a variance reduction

technique, we achieve significantly better performance than existing EBM estimation methods.

Additionally, we integrate classifier-free guidance (CFG) (HS22) to enhance conditional generation

performance, observing similar trade-offs between sample quality and diversity as seen in CFG for

diffusion models when adjusting the guidance strength. Furthermore, our approach is applicable

to several useful downstream tasks, including compositional generation, image inpainting, and

out-of-distribution detection.

In this chapter, our main achievements are as follows:

• We propose Cooperative Diffusion Recovery Likelihood (CDRL), which efficiently learns

and samples from a sequence of EBMs and initializers.

• We make several practical design choices related to noise scheduling, MCMC sampling, and

noise variance reduction for EBM training.

• Empirically, we demonstrate that CDRL significantly improves sample quality compared to

existing EBM approaches on CIFAR-10 and ImageNet 32× 32 datasets.

• We show that CDRL has great potential to enable more efficient sampling with sampling

adjustment techniques.

• We demonstrate CDRL’s capabilities in compositional generation, image inpainting, and
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out-of-distribution (OOD) detection, as well as its compatibility with classifier-free guidance

for conditional generation.

5.2 Related Works

5.2.1 Denoising Diffusion Models

Diffusion models, initially introduced by (SWM15) and further developed in subsequent works

such as (SE20; HJA20), generate samples by progressively denoising them from a high noise level

to clean data. These models have demonstrated significant success in generating high-quality

samples from complex distributions, owing to a range of architectural and algorithmic innovations

(HJA20; SME21; KSS21; SSK21; DN21; KAA22; HS22). Notably, (DN21) emphasizes that the

generative performance of diffusion models can be enhanced with the aid of a classifier, while

(HS22) further demonstrates that this guided scoring can be estimated by the differential scores of

a conditional model versus an unconditional model. Enhancements in sampling speed have been

realized through distillation techniques (SH22) and the development of fast SDE/ODE samplers

(SME21; KAA22; LZB22). Recent advancements (RBL22; SCS22; RDN22) have successfully

applied conditional diffusion models to the task of text-to-image generation, achieving significant

breakthroughs.

EBM shares a close relationship with diffusion models, as both frameworks can provide a score

to guide the generation process, whether through Langevin dynamics or SDE/ODE solvers. As

(SH21) discusses, the distinction between these two models lies in their implementation approaches:

EBMs model the log-likelihood directly, while diffusion models focus on the gradient of the log-

likelihood. This distinction brings advantages to EBMs, such as their compatibility with advanced

sampling techniques (DDS23), potential conversion into classifiers (GMJ23), and capability to

detect abnormal samples through estimated likelihood (GWJ20; LWO20).

The primary focus of this work is to advance the development of EBMs. Our approach

66



connects with diffusion models (HJA20; XKV22) by training a sequence of EBMs and MCMC

initializers to reverse the diffusion process. In contrast to (HJA20), our framework employs more

expressive conditional EBMs instead of normal distributions to represent the denoising distribution.

Additionally, (XKV22) also suggests multimodal distributions, trained by generative adversarial

networks (GPM20), for the reverse process.

5.3 Cooperative Diffusion Recovery Likelihood

5.3.1 Diffusion recovery likelihood

Given the difficulty of sampling from the marginal distribution p(x) defined by an EBM, we

could instead estimate a sequence of EBMs defined on increasingly noisy versions of the data and

jointly estimate them by maximizing recovery likelihood. Specifically, assume a sequence of noisy

training examples perturbed by a Gaussian diffusion process: x0,x1, ...,xT such that x0 ∼ pdata;

xt+1 = αt+1xt + σt+1ϵ. Denote yt = αt+1xt for notation simplicity. The marginal distributions

of {yt; t = 1, ..., T} are modeled by a sequence of EBMs: pθ(yt) =
1

Zθ,t
exp(fθ(yt; t)). Then the

conditional EBM of yt given the sample xt+1 at a higher noise level can be derived as

pθ(yt|xt+1) =
1

Z̃θ,t(xt+1)
exp

(
fθ(yt; t)−

1

2σ2
t+1

∥yt − xt+1∥2
)
, (5.1)

where Z̃θ,t(xt+1) is the partition function of the conditional EBM dependent on xt+1. Compared

with the marginal EBM pθ(yt), when σt+1 is small, the extra quadratic term in pθ(yt|xt+1) constrains

the conditional energy landscape to be localized around xt+1, making the latter less multi-modal and

easier to sample from with MCMC. In the extreme case when σt+1 is infinitesimal, pθ(yt|xt+1) is

approximately a Gaussian distribution that can be tractably sampled from and has a close connection

to diffusion models (GSP21a). In the other extreme case when σt+1 → ∞, the conditional

distribution falls back to the marginal distribution, and we lose the advantage of being more MCMC

friendly for the conditional distribution. Therefore, we need to maintain a small σt+1 between
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adjacent time steps, and to equip the model with the ability of generating new samples from white

noises, we end up with estimating a sequence of EBMs defined on the diffusion process. We use the

variance-preserving noise schedule (SSK21), under which case we have xt = ᾱtx0 + σ̄tϵ, where

ᾱt =
∏T

t=1 αt and σ̄t =
√

1− ᾱ2
t .

We estimate each EBM by maximizing the following recovery log-likelihood function at each

noise level (BYA13):

Jt(θ) =
1

n

n∑
i=1

log pθ(yt,i|xt+1,i), (5.2)

where {yt,i,xt+1,i} are pair of samples at time steps t and t+ 1. Sampling from pθ(yt|xt+1) can be

achieved by running K steps of Langevin dynamics from the initialization point ỹ0
t = xt+1,i and

iterating

ỹτ+1
t = ỹτ

t +
s2t
2

(
∇yfθ(ỹ

τ
t ; t)−

1

σ2
t+1

(ỹτ
t − xt+1)

)
+ stϵ

τ , (5.3)

where st is the step size and τ is the index of MCMC sampling step. With the samples, the

updating of EBMs then follows the same learning gradients as MLE, as the extra quadratic term

− 1
2σ2

t+1
∥yt − xt+1∥2 in pθ(yt|xt+1) does not involve learnable parameters. It is worth noting that

maximizing recovery likelihood still guarantees an unbiased estimator of the true parameters of the

marginal distribution of the data.

5.3.2 Amortizing MCMC sampling with initializer models

Although pθ(yt|xt+1) is easier to sample from than pθ(yt), when σt+1 is not infinitesimal, the

initialization of MCMC sampling, xt+1, may still be far from the data manifold of yt. This

necessitates a certain amount of MCMC sampling steps at each noise level (e.g., 30 steps of

Langevin dynamics in (GSP21a)). Naively reducing the number of sampling steps would lead to

training divergence or performance degradation.
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To address this issue, we propose to learn an initializer model jointly with the EBM at each noise

level, which maps xt+1 closer to the manifold of yt. Our work is inspired by the CoopNets work

(XLG18; XZL21; XZL22), which shows that jointly training a top-down generator via MCMC

teaching will help the training of a single EBM model. We take this idea and generalize it to the

recovery-likelihood model. Specifically, the initializer model at noise level t is defined as

qϕ(yt|xt+1) ∼ N (gϕ(xt+1; t), σ̃
2
t I). (5.4)

It serves as a coarse approximation to pθ(yt|xt+1), as the former is a single-mode Gaussian

distribution while the latter can be multi-modal. A more general formulation would be to in-

volve latent variables zt following a certain simple prior p(zt) into gϕ. Then qϕ(yt, t|xt+1) =

Ep(zt) [qϕ(yt, zt, t|xt+1)] can be non-Gaussian (XKV22). However, we empirically find that the

simple initializer in Equation 5.4 works well. Compared with the more general formulation, the

simple initializer avoids the inference of zt which may again require MCMC sampling, and leads

to more stable training. Different from (XKV22), samples from the initializer just serves as the

starting points and are refined by sampling from the EBM, instead of being treated as the final

samples. We follow (HJA20) to set σ̃t =
√

1−ᾱ2
t

1−ᾱ2
t+1

σt. If we treat the sequence of initializers as the

reverse process, such choice of σ̃t corresponds to the lower bound of the standard deviation given

by pdata being a delta function (SWM15).

5.3.3 Cooperative training

We jointly train the sequence of EBMs and intializers in a cooperative fashion. Specifically, at each

iteration, for a randomly sampled noise level t, we obtain an initial sample ŷt from the intializer

model. Then a synthesized sample ỹt from p(yt|xt+1) is generated by initializing from ŷt and

running a few steps of Langevin dynamics (Equation 5.3). The parameters of EBM are then updated

by maximizing the recovery log-likelihood function (Equation 5.2). The learning gradient of EBM
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(a) CDRL training process. In the training phase, we start by selecting a pair of images at noise levels t and
t− 1. The image at noise level t is then fed into the initializer to generate an initial proposal. Subsequently,
this initial proposal undergoes refinement through the MCMC process guided by the underlying energy
function. The refined sample obtained from this process is utilized to update both the energy function and the
initializer.

(b) CDRL Sampling process. The sampling phase starts from Gaussian noise. Starting from the highest noise
level, an initial proposal is generated by the initializer that corresponds to that noise level. Subsequently, the
samples undergo refinement through MCMC sampling. This denoising process is iteratively repeated to push
the noisy image towards lower noise levels until the lowest noise level is reached.

Figure 5.1: Illustration of the Cooperative Diffusion Recovery Likelihood (CDRL) framework

is

∇θJt(θ) = ∇θ

[
1

n

n∑
i=1

fθ(yt,i; t)−
1

n

n∑
i=1

fθ(ỹt,i; t)

]
. (5.5)

To train the intializer model that amortizes the MCMC sampling process, we treat the revised

sample ỹt by the EBM as the observed data of the initializer model, and estimate the parameters of
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the initializer by maximizing log-likelihood:

Lt(ϕ) =
1

n

n∑
i=1

[
− 1

2σ̃2
t

∥ỹt,i − gϕ(xt+1,i; t)∥2
]
. (5.6)

That is, the initializer model learns to absorb the difference between ŷt and ỹt at each iteration so

that ŷt is getting closer to the samples from pθ(yt|xt+1). In practice, we re-weight Lt(ϕ) across

different noise levels by removing the coefficient 1
2σ̃2

t
, similar to the “simple loss” in diffusion

models. The training algorithm is summarized in Algorithm 4 and illustrated in Figure 5.1a

After training, we generate new samples by starting from Gaussian white noise and progressively

samples pθ(yt|xt+1) at decreasingly lower noise levels. For each noise level, an initial proposal is

generated from the intializer model, followed by a few steps of Langevin dynamics from the EBM.

Algorithm 5 summarizes the sampling algorithm and Figure 5.1b illustrate the sampling process.

5.3.4 Noise variance reduction

We further propose a simple way to reduce the variance of training gradients. In principle, the

pair of xt (or yt) and xt+1 is generated by xt ∼ N (ᾱtx0, σ̄
2
t I) and xt+1 ∼ N (αt+1xt, σ

2
t+1I).

Alternatively, we can fix the Gaussian white noise e ∼ N (0, I), and sample pair (x′
t,x

′
t+1) by

x′
t = ᾱtx0 + σ̄te

x′
t+1 = ᾱt+1x

′
t + σ̄t+1e. (5.7)

In other words, both x′
t and x′

t+1 are linear interpolation between the clean sample x0 and a

sampled white noise image e. x′
t and x′

t+1 have the same marginal distributions as xt and xt+1.

But x′
t is deterministic given x0 and x′

t+1, while there’s still variance for xt given x0 and xt+1.

This schedule is related to the ODE forward process used in flow matching (LCB22) and rectified

flow (LGL22).
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Algorithm 4 CDRL Training
Input: (1) observed data x0 ∼ pdata(x); (2) Number of noise levels T ; (3) Number of Langevin sampling
steps K per noise level; (4) Langevin step size at each noise level st; (5) Learning rate ηθ for EBM fθ; (6)
Learning rate ηϕ for initializer gϕ;
Output: Parameters θ, ϕ

Randomly initialize θ and ϕ.
repeat

Sample noise level t from {0, 1, ..., T − 1}.
Sample ϵ ∼ N (0, I). Let xt+1 = ᾱt+1x0 + σ̄t+1ϵ, yt = αt+1(ᾱtx0 + σ̄tϵ).
Generate the initial sample ŷt following Equation 5.4.
Generate the refined sample yt by running K steps of Langevin dynamics starting from ŷt following

Equation 5.3.
Update EBM parameter θ following the gradients in Equation 5.5.
Update initializer parameter ϕ by maximizing Equation 5.6.

until converged

Algorithm 5 CDRL Sampling
Input: (1) Number of noise levels T ; (2) Number of Langevin sampling steps K at each noise level; (3)
Langevin step size at each noise level δt; (4) Trained EBM fθ; (5) Trained initializer gϕ;
Output: Samples x̃0

Randomly initialize xT ∼ N (0, I).
for t = T − 1 to 0 do

Generate initial proposal ŷt following Equation 5.4.
Update ŷt to ỹt by K iterations of Equation 5.3.
Let x̃t = ỹt/αt+1.

end for

5.3.5 Conditional generation and classifier-free guidance

(HS22) proposed classifier-free guidance that greatly improves the sample quality of conditional

diffusion models, and trades-off between sample quality and sample diversity by adjusting the

guidance strength. Given the close connection between EBMs and diffusion models, we show that it

is possible to apply classifier-free guidance in CDRL as well. Specifically, suppose c is the context

(e.g., a label or a text description). At each noise level we jointly estimate an unconditional EBM

pθ(yt) ∝ exp(fθ(yt; t)) and a conditional EBM pθ(yt|c) ∝ exp(fθ(yt; c, t)). By Bayes rule:

pθ(c|yt) =
pθ(c,yt)

pθ(yt)
=

pθ(yt|c)p(c)
pθ(yt)

. (5.8)
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With classifier-free guidance, we assume that the log-density of yt is scaled to

log p̃θ(yt|c) = log [pθ(yt|c)pθ(c|yt)
w] + const. = (w + 1)fθ(yt; c, t)− wfθ(yt; t) + const.,

(5.9)

where w controls the guidance strength. Similarly, for the initializer model, we jointly estimate an

unconditional model qϕ(yt|xt+1) ∼ N (gϕ(xt+1; t), σ̃
2
t I) and a conditional model qϕ(yt|c,xt+1) ∼

N (gϕ(xt+1; c, t), σ̃
2
t I). Since both models follow Gaussian distributions, the scaled conditional

distribution with classifier-free guidance is still a Gaussian (DN21):

q̃ϕ(yt|c,xt+1) ∝ qϕ(yt|c,xt+1)qϕ(c|yt,xt+1)
w ∼ N

(
(w + 1)gϕ(xt+1; c, t)− wgϕ(xt+1; t), σ̃

2
t I
)
.

(5.10)

5.3.6 Compositionality in energy-based model

One attractive property of EBMs is compositionality: one can combine multiple EBMs condi-

tioned on individual concepts, and re-normalize it to create a new distribution conditioned on

the intersection of those concepts. Specifically, given two EBMs pθ(x|c1) ∝ exp(fθ(x; c1)) and

pθ(x|c2) ∝ exp(fθ(x; c2)) that are conditional on two seperate concepts, (DLM20; LJP23) con-

structs a new EBM conditional on both concepts as pθ(x|c1, c2) ∝ exp(fθ(x; c1) + fθ(x; c2))

based on the production of expert (Hin02a). Specifically, suppose the two concepts c1 and c2 are

conditionally independent given the observed data x. Then we have

log pθ(x|c1, c2) = log pθ(c1, c2|x) + log pθ(x) + const.

= log pθ(c1|x) + log pθ(c2|x) + log pθ(x) + const.

= log pθ(x|c1) + log pθ(x|c2)− log pθ(x) + const.

The composition can be generalized to include arbitrary number of concepts. Suppose we have
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M conditionally independent concepts ci, i = 1, ...,M , then

log pθ(x|ci, i = 1, ...,M) =
M∑
i=1

log pθ(x|ci)− (M − 1) log pθ(x) + const. (5.11)

We can combine the compositional log-density (Equation 5.11) with classifier-free guidance (Equa-

tion 5.9) to further improve the alignment of generated samples with given concepts. The scaled

log-density function is given by

log [p(x|ci, i = 1, ...,M)p(ci, i = 1, ...,M |x)w]

= (w + 1)
M∑
i=1

log pθ(x|ci)− (Mw +M − 1) log p(x) + const. (5.12)

(a) CIFAR-10 (b) ImageNet (32× 32)

Figure 5.2: Unconditional generated examples on CIFAR-10 and ImageNet (32× 32) datasets.

5.4 Experiments

We evaluate the performance of our model across various scenarios. Specifically, Section 5.4.1

demonstrates the capacity of unconditional generation. Section 5.4.2 highlights the potential of

our model to further optimize sampling efficiency. The focus shifts to conditional generation

and classifier-free guidance in Section 5.4.3. Section 5.4.5 elucidates the power of our model

in performing likelihood estimation and OOD detection. Section 5.4.6 showcases compositional
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Figure 5.3: Conditional generation on ImageNet (32× 32) dataset with a classifier-free guidance.
(a) Random image samples generated with different guided weights w = 0.0, 0.5, 1.0 and 3.0; (b)
Samples generated with a fixed noise under different guided weights. The class label is set to be the
category of Siamese Cat. Sub-images presented at the same position depict samples with identical
random noise and class label, differing only in their guided weights; (c) A curve of FID scores
across different guided weights; (d) A curve of Inception scores across different guided weights.

generation. Section 5.4.7 showcases image inpainting results with our trained models. Section

5.4.8 discusses our implementation details. Section 5.4.9 compares the sampling time between our

approach and other EBM models. Section 5.4.10 provides experimental results for understanding

the role of EBM and initializer in the generation process. Section 5.4.11 contains the ablation study.

We designate our approach as “CDRL” in the following sections.

Our experiments primarily involve three datasets: (i) CIFAR-10 (KH09) comprises images from

10 categories, with 50k training samples and 10k test samples at a resolution of 32× 32 pixels. We

use its training set for evaluating our model in the task of unconditional generation. (ii) ImageNet

(DDS09) contains approximately 1.28M images from 1000 categories. We use its training set for

both conditional and unconditional generation, focusing on a downsampled version (32× 32) of the

dataset. (iii) CelebA (LLW15) consists of around 200k human face images, each annotated with

attributes. We downsample each image of the dataset to the size of 64× 64 pixels and utilize the
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resized dataset for compositionality and image inpainting tasks.

5.4.1 Unconditional image generation

We first showcase our model’s capabilities in unconditional image generation on CIFAR-10 and

ImageNet datasets. The resolution of each image is 32× 32 pixels. FID scores (HRU17b) on these

two datasets are reported in Tables 5.1 and 5.3, respectively, with generated examples displayed

in Figure 5.2. We adopt the EBM architecture proposed in (GSP21a). Additionally, we utilize a

larger version called “CDRL-large”, which incorporates twice as many channels in each layer. For

the initializer network, we follow the structure of (ND21), utilizing a U-Net (RFB15) but halving

the number of channels. Compared to (GSP21a), CDRL achieves significant improvements in FID

scores. Furthermore, CDRL uses the same number of noise levels (6 in total) as DRL but requires

only half the MCMC steps at each noise level, reducing it from 30 to 15. This substantial reduction

in computational costs is noteworthy. With the large architecture, CDRL achieves a FID score of

3.68 on CIFAR-10 and 9.35 on ImageNet (32× 32). These results, to the best of our knowledge,

are the state-of-the-art among existing EBM frameworks and are competitive with other strong

generative model classes such as GANs and diffusion models.

5.4.2 Sampling efficiency

Similar to the sampling acceleration techniques employed in the diffusion model (SME21; LRL22;

LZB22), we foresee the development of post-training techniques to further accelerate CDRL

sampling. Although designing an advanced MCMC sampling algorithm could be a standalone

project, we present a straightforward yet effective sampling adjustment technique to demonstrate

CDRL’s potential in further reducing sampling time. Specifically, we propose to decrease the

number of sampling steps while simultaneously adjusting the MCMC sampling step size to be

inversely proportional to the square root of the number of sampling steps. As shown in Table 5.2,

while we train CDRL with 15 MCMC steps at each noise level, we can reduce the number of
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Table 5.1: Comparison of FID scores for unconditional generation on CIFAR-10.

Models FID ↓

EBM based method

NT-EBM (NGS22) 78.12
LP-EBM (PHN20) 70.15
Adaptive CE (XH22) 65.01
EBM-SR (NHZ19) 44.50
JEM (GWJ20) 38.40
EBM-IG (DM19) 38.20
EBM-FCE (GNK20) 37.30
CoopVAEBM (XZL21) 36.20
CoopNets (XLG18) 33.61
Divergence Triangle (HNZ20) 30.10
VARA (GKH21a) 27.50
EBM-CD (DLT21a) 25.10
GEBM (AZG21) 19.31
HAT-EBM (HNM22) 19.30
CF-EBM (ZXL21) 16.71
CoopFlow (XZL22) 15.80
CLEL-base (LJP23) 15.27
VAEBM (XKK21) 12.16
DRL (GSP21a) 9.58
CLEL-large (LJP23) 8.61
EGC (Unsupervised) (GMJ23) 5.36

CDRL (Ours) 4.31
CDRL-large (Ours) 3.68

Models FID ↓

Other likelihood based method

VAE (KW14b) 78.41
PixelCNN (SKC17) 65.93
PixelIQN (ODM18) 49.46
Residual Flow (CBD19) 47.37
Glow (KD18) 45.99
DC-VAE (PLL21) 17.90

GAN based method

WGAN-GP(GAA17) 36.40
SN-GAN (MKK18) 21.70
BigGAN (BDS19) 14.80
StyleGAN2-DiffAugment (ZLL20) 5.79
Diffusion-GAN (XKV22) 3.75
StyleGAN2-ADA (KAH20) 2.92

Score based and Diffusion method

NCSN (SE19) 25.32
NCSN-v2 (SE20) 10.87
NCSN++ (SSK21) 2.20
DDPM Distillation (LL21) 9.36
DDPM++(VP, NLL) (KSS21) 3.45
DDPM (HJA20) 3.17
DDPM++(VP, FID) (KSS21) 2.47

MCMC steps to 8, 5, and 3 during the inference stage, without sacrificing much perceptual quality.

5.4.3 Conditional synthesis with classifier-free guidance

We evaluate our model for conditional generation on the ImageNet32 dataset, employing classifier-

free guidance as outlined in Section 5.3.5. Generation results for varying guided weights w are

displayed in Figure 5.3. As the value of w increases, the quality of samples improves, and the

conditioned class features become more prominent, although diversity may decrease. This trend is

also evident from the FID and Inception Score (SGZ16) curves shown in Figures 5.3(c) and 5.3(d).

While the Inception Score consistently increases (improving quality), the FID metric first drops
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(improving quality) and then increases (worsening quality), obtaining the optimal value of 6.18

(lowest value) at a guidance weight of 0.7.

Table 5.2: FID for CIFAR-10 with sampling adjustment.

Models
Number of noise
level × Number
of MCMC steps

FID ↓

DRL (GSP21a) 6× 30 = 180 9.58
CDRL 6× 15 = 90 4.31
CDRL (step 8) 6× 8 = 48 4.58
CDRL (step 5) 6× 5 = 30 5.37
CDRL (step 3) 6× 3 = 18 9.67

Table 5.3: FID for ImageNet (32× 32) unconditional generation.

Models FID ↓

EBM-IG (DM19) 60.23
PixelCNN (SKC17) 40.51
EBM-CD (DLT21a) 32.48
CF-EBM (ZXL21) 26.31
CLEL-base (LJP23) 22.16
DRL (GSP21a) - (not converge)
DDPM++(VP, NLL) (KSS21) 8.42

CDRL (Ours) 9.35

5.4.4 Generating High-Resolution Images

The recent trend in generative modeling of high-resolution images involves either utilizing the latent

space of a VAE, as demonstrated in latent diffusion (RBL22), or initially generating a low-resolution

image and then gradually expanding it, as exemplified by techniques like Imagen (SCS22). This

process often reduce the modeled space to dimensions such as 32× 32 or 64× 64, which aligns

with the resolutions that we used in our experiments in the main text. Here, we conduct additional

experiments by learning CDRL following (RBL22). We conduct experiments on the CelebA-HQ

dataset, and the generated samples are shown in Figure 5.4. Additionally, we report the FIDs in

Table 5.4.
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Table 5.4: Comparison of FIDs on the CelebA-HQ (256 x 256) dataset

Model FID score

GLOW (KD18) 68.93
VAEBM (XKK21) 20.38
ATEBM (YLR22) 17.31
VQGAN+Transformer (ERO21) 10.2
LDM (RBL22) 5.11
CDRL(ours) 10.74

5.4.5 Likelihood Estimation and Out-Of-Distribution Detection

A distinctive feature of the EBM is its ability to model the unnormalized log-likelihood directly

using the energy function. This capability enables it to perform tasks beyond generation. In this

section, we first showcase the capability of the CDRL in estimating the density of a 2D checkerboard

distribution. Experimental results are presented in Figure 5.5, where we illustrate observed samples,

the fitted density, and the generated samples at each noise level, respectively. These results confirm

CDRL’s ability to accurately estimate log-likelihood while simultaneously generating valid samples.

Moreover, we demonstrate CDRL’s utility in out-of-distribution (OOD) detection tasks. For this

endeavor, we employ the model trained on CIFAR-10 as a detector and use the energy at the lowest

noise level to serve as the OOD prediction score. The AUROC score of our CDRL model, with

CIFAR-10 interpolation, CIFAR-100, and CelebA data as OOD samples, is provided in Table 5.5.

CDRL achieves strong results in OOD detection comparing with the baseline approaches.

5.4.6 Compositionality

To evaluate the compositionality of EBMs, we conduct experiments on CelebA (64× 64) datasets

with Male, Smile, and Young as the three conditional concepts. We estimate EBMs conditional on

each single concept separately, and assume simple unconditional initializer models. Classifier-free

guidance is adopted when conducting compositional generation (Equation 5.12). Specifically, we

treat images with a certain attribute value as individual classes. We randomly assign each image
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Figure 5.4: Samples generated by CDRL model trained on the CelebAHQ (256× 256) dataset.

in a training batch to a class based on the controlled attribute value. For example, an image with

Male=True and Smile=True may be assigned to class 0 if the Male attribute is picked or class 2 if

the Smile attribute is picked. For the conditional network structure, we make EBM fθ conditional

on attributes ci and use an unconditional initializer model gϕ to propose the initial distribution. We

focus on showcasing the compositionality ability of EBM itself, although it is also possible to use

a conditional initializer model similar to Section 5.3.5. Our results are displayed in Figure 5.6,

with images generated at a guided weight of w = 3.0. Images generated with composed attributes

following Equation 5.12 contain features of both attributes, and increasing the guided weight makes

the corresponding attribute more prominent. This demonstrates CDRL’s ability and the effectiveness
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Table 5.5: AUROC scores in OOD detection using CDRL and other explicit density models on
CIFAR-10

Cifar-10
interpolation Cifar-100 CelebA

PixelCNN (SKC17) 0.71 0.63 -
GLOW (KD18) 0.51 0.55 0.57
NVAE (VK20b) 0.64 0.56 0.68
EBM-IG (DM19) 0.70 0.50 0.70
VAEBM (XKK21) 0.70 0.62 0.77
EBM-CD (DLT21a) 0.65 0.83 -
CLEL-Base (LJP23) 0.72 0.72 0.77

CDRL (ours) 0.75 0.78 0.84

of Equation 5.12.

5.4.7 Image Inpainting

We demonstrate the inpainting ability of our learned model on the 64× 64 CelebA dataset. Each

image is masked, and our model is tasked with filling in the masked area. We gradually add noise to

the masked image up to the final noise level, allowing the model to denoise the image progressively,

Figure 5.5: The results of density estimation using CDRL for a 2D checkerboard distribution. The
number of noise levels in the CDRL is set to be 5. Top: observed samples at each noise level.
Middle: density fitted by CDRL at each noise level. Bottom: generated samples at each noise level.
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Figure 5.6: Results of attribute-compositional generation on CelebA (64× 64) with guided weight
w = 3. Left: generated samples under different attribute compositions. Right: control attributes
(“
√

”, “×” and “-” indicate “True”, “False” and “No Control” respectively).

similar to the standard generation process. During inpainting, only the masked area is updated,

while the values in the unmasked area are retained. This is achieved by resetting the unmasked area

values to the current noisy version after each Langevin update step of the EBM or initializer proposal

step. Our results, depicted in Figure 5.7, include two types of masking: a regular square mask and

an irregularly shaped mask. In Figure 5.7, the first two columns respectively display the original

images and the masked images, while the other columns show the corresponding inpainting results.

CDRL successfully inpaints valid and diverse values in the masked area, producing inpainted results

that differ from the observations. This suggest that CDRL does not merely memorize data because

it fills novel and meaningful content into unobserved areas based on the statistical features of the

dataset.

5.4.8 Training Details

5.4.8.1 Network Architectures

We adopt the EBM architecture from (GSP21a), starting with a 3× 3 convolution layer with 128

channels (The number of channels is doubled to 256 in the CDRL-large configuration). We use

several downsample blocks for resolution adjustments, each containing multiple residual blocks.
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Figure 5.7: Results of Image inpainting on CelebA (64 × 64) dataset. The first two rows utilize
square masks, while the last two rows use irregular masks. The first column displays the original
images. The second column shows the masked images. Columns three to six display inpainted
images using different initialization noises.

All downsampling blocks, except the last one, include a 2 × 2 average pooling layer. Spectral

normalization is applied to all convolution layers for stability, while ReLU activation is applied

to the final feature map. The energy output is obtained by summing the values over spatial and

channel dimensions. The architectures of EBM building blocks are shown in Table 5.6, and the

hyperparameters of network architecture are displayed in Table 5.7.

For the initializer network, we follow (ND21) to utilize a U-Net (RFB15) while halving the

number of channels. This reduction effectively decreases the size of the initializer model. For an

image with a resolution of 32 × 32 pixels, we have feature map resolutions of 32 × 32, 16 × 16,

and 4× 4. When dealing with 64× 64 images, we include an additional feature map resolution of

64 × 64. All feature map channel numbers are set to 64, with attention applied to resolutions of

16× 16 and 8× 8. Our initializer directly predicts the noised image ỹt at each noise level t, while

the DDPM in (HJA20) predicts the total injected noise ϵ.

For the class-conditioned generation task, we map class labels to one-hot vectors and use a

fully-connected layer to map these vectors to class embedding vectors with the same dimensions as

time embedding vectors. The class embedding is then added to the time embedding. We set the

time embedding dimension to 512 for EBM and 256 for the initializer in the CDRL setting. In the

CDRL-large setting, the time embedding dimension increases to 1024 for EBM, while the one in
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the initializer remains unchanged.

Table 5.6: Building blocks of the EBM in CDRL.

(a) ResBlock

leakyReLU, 3 × 3 Conv2D

+ Dense(leakyReLU(temb))

leakyReLU, 3 × 3 Conv2D

+ Input

(b) Downsample Block

N ResBlocks

Downsample 2× 2

(c) Time Embedding

Sinusoidal Embedding

Dense, leakyReLU

Dense

Table 5.7: Hyperparameters for EBM architectures in different settings.

Model
# of Downsample

Blocks
N (# of Resblocks in
Downsample Block)

# of channels
in each resolution

CDRL (32× 32) 4 8 (128, 256, 256, 256)
CDRL-large (32× 32) 4 8 (256, 512, 512, 512)

Compositionality Experiment 5 2 (128, 256, 256, 256, 256)
Inpainting Experiment 5 8 (128, 256, 256, 256, 256)

5.4.8.2 Hyperparameters

We set the learning rate of EBM to be ηθ = 1e − 4 and the learning rate of initializer to be

ηϕ = 1e − 5. We use linear warm up for both EBM and initializer and let the initializer to start

earlier than EBM. More specifically, given training iteration iter, we have:

ηθ = min(1.0,
iter

10000
)× 1e− 4

ηϕ = min(1.0,
iter + 500

10000
)× 1e− 5

(5.13)

We use the Adam optimizer (KB15c; LH19) to train both the EBM and the initializer, with β =

(0.9, 0.999) and a weight decay equal to 0.0. We also apply exponential moving average with a

decay rate equal to 0.9999 to both the EBM and the initializer. Training is conducted across 8
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Nvidia A100 GPUs, typically requiring approximately 400k iterations, which spans approximately

6 days.

Following (GSP21a), we use a re-parameterization trick to calculate the energy term. Our

EBM is constructed across noise levels t = 0, 1, 2, 3, 4, 5 and we assume the distribution at noise

level t = 6 is a simple Normal distribution during sampling. Given yt under noise level t,

suppose we denote the output of the EBM network as f̂θ(yt, t), then the true energy term is given

by fθ(yt, t) = f̂θ(yt,t)

s2t
, where st is the Langevin step size at noise level t. In other words, we

parameterize the energy as the product of the EBM network output and a noise-level dependent

coefficient, setting this coefficient equal to the square of the Langevin step size. We use 15 steps of

Langevin updates at each noise level, with the Langevin step size at noise level t given by

s2t = 0.054× σ̄t × σ2
t+1, (5.14)

where σ2
t+1 is the variance of the added noise at noise level t+ 1 and σ̄t is the standard deviation

of the accumulative noise at noise level t. During the generation process, we begin by randomly

sampling x6 ∼ N (0, I) and perform denoising using both the initializer and the Langevin Dynamics

of the EBM, which follows Algorithm 5. After obtaining samples x0 at the lowest noise level t = 0,

we perform an additional denoising step, where we disable the noise term in the Langevin step,

to further enhance its quality. More specifically, we follow Tweedie’s formula (Efr11; Rob92),

which states that given x ∼ pdata(x) and a noisy version image x′ with conditional distribution

p(x′|x) = N (x, σ2I), the marginal distribution can be defined as p(x′) =
∫
pdata(x)p(x

′|x)dx.

Consequently, we have

E(x|x′) = x′ + σ2∇x′ log p(x′). (5.15)

In our case, we have p(xt|ᾱtx0) = N (ᾱtx0, σ̄
2
t I) and we use EBM to model the marginal distribu-
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tion of xt as pθ,t(xt), thus

E(ᾱtx0|xt) = xt + σ̄2
t∇xt log pθ,t(xt),

E(x0|xt) =
xt + σ̄2

t∇xt log pθ,t(xt)

ᾱt

. (5.16)

Suppose the samples we obtain at t = 0 are denoted as x0. These samples actually contains

a small amount of noise corresponding to ᾱ0, thus, we may use Equation 5.16 to further denoise

them. In practice, we find that enlarging the denoising step by multiplying the gradient term

∇xt log pθ,t(xt) by a coefficient larger than 1.0 yields better results. We set this coefficient to be 2.0

in our experiments.

5.4.8.3 Noise Schedule and Conditioning Input

We improve upon the noise schedule and the conditioning input of DRL (GSP21a). Let λt = log
ᾱ2
t

σ̄2
t

represent the logarithm of signal-to-noise ratio at noise level t. Inspired by (KSP21), we utilize λt

as the conditioning input of the noise level and feed it to the networks fθ and gϕ instead of directly

using t.

Figure 5.8: Noise schedule. The green line represents the noise schedule used by DRL (GSP21a)
while the red line depicts the noise schedule employed by our CDRL.

For the noise schedule, we keep the design of using 6 noise levels as in DRL. Inspired by

(ND21), we construct a cosine schedule such that λt is defined as λt = −2 log(tan(at+ b)), where
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a and b are calculated from the maximum log SNR (denoted as λmax) and the minimum log SNR

(denoted as λmin) using

b = arctan(exp(−0.5λmax)), (5.17)

a = arctan(exp(−0.5λmin))− b. (5.18)

We set λmax = 9.8 and λmin = −5.1 to correspond with the standard deviation ᾱt of the accumula-

tive noise in the original Recovery Likelihood model (T6 setting) at the highest and lowest noise

levels. Figure 5.8 illustrates the noise schedule of DRL alongside our proposed schedule. In contrast

to the DRL’s original schedule, our proposed schedule places more emphasis on regions with lower

signal-to-noise ratios, which are vital for generating low-frequency, high-level concepts in samples.

5.4.9 Sampling Time

In this section, we measure the sampling time of CDRL and compare it with the following models:

1) CoopFlow (XZL22), which composes a EBM and a Normalizing Flow model; 2) VAEBM

(XKK21), which composes a VAE with an EBM and achieves strong generation performance; 3)

The original DRL (GSP21a) model with 30 step MCMC steps at each noise level. We run the

sampling process of each model individually on a single A6000 GPU to generate a batch of 100

samples on the Cifar10 dataset. Our CDRL model generates samples with better quality with

relatively less time. And after applying the sampling adjustment techniques, the sampling time can

be further reduced without hurting much sampling quality.

5.4.10 Analyzing the Effects of the Initializer and the EBM

To gain deeper insights into the roles of the initializer and the EBM in the CDRL in image generation,

we conduct two additional experiments using a pretrained CDRL model on the ImageNet Dataset

(32 × 32). We evaluate two generation options: (a) images generated using only the initializer’s

proposal, without the EBM’s Langevin Dynamics at each noise level, and (b) images generated
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Table 5.8: Comparison of different EBMs in terms of sampling time and number of MCMC steps.
The sampling time are measured in second.

Method Number of MCMC steps Sampling Time FID ↓

CoopFlow (XZL22) 30 2.5 15.80
VAEBM (XKK21) 16 21.3 12.16
DRL (GSP21a) 6 × 30 = 180 23.9 9.58

CDRL 6 × 15 = 90 12.2 4.31
CDRL (8 steps) 6 × 8 = 48 6.5 4.58
CDRL (5 steps) 6 × 5 = 30 4.2 5.37
CDRL (3 steps) 6 × 3 = 18 2.6 9.67

with the full CDRL model, which includes the initializer’s proposal and 15-step Langevin updates

at each noise level. As shown in Figure 5.9a and 5.9b, the initializer captures the rough outline of

the object, while the Langevin updates by the EBM improve the details of the object. Furthermore,

in Figure 5.9c, we display samples generated by fixing the initial noise image and sample noise

of each initializer proposal step. The outcomes demonstrate that images generated with the same

initialization noises share basic elements but differ in details, highlighting the impact of both the

initializer and the Langevin sampling. The initializer provides a starting point, while the Langevin

sampling process enriches details.

5.4.11 Ablation Study

In this section, we conduct an ablation study to analyze the effectiveness of each component of

our CDRL model. We have previously described three main techniques in our main paper that

contribute significantly to our CDRL model: (1) the new noise schedule design, (2) the cooperative

training algorithm, and (3) noise variance reduction. We demonstrate the impact of each of these

techniques by comparing our CDRL model with the following models:

1. The original diffusion recovery likelihood (DRL) model (GSP21a) as a baseline.

2. A model trained without using the cooperative training. This corresponds to the DRL but
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(a) Initializer only (b) Full CDRL model (c) Fixing the initialization noise

Figure 5.9: Illustration of the effects of the initializer and the EBM on the image generation process
using a CDRL model pretrained on the ImageNet Dataset (32× 32). (a) Samples generated using
only the proposal of the initializer; (b) Samples generated by the full CDRL model; (c) Samples
generated by fixing the initial noise image and the sample noise of each initialization proposal step.
Each row of images shared the same initial noise image and the sample noise of each initialization
proposal step, but differed in the noises of Langevin sampling process at each noise level.

using the same noise schedule and conditioning input as CDRL.

3. CDRL without using noise reduction.

4. Similar to (XKV22), we use the initializer to predict the clean image x̂0 and then transform it

to ŷt. Note that our CDRL uses the initializer to directly predict ŷt.

5. Similar to (HJA20), we use initializer to directly output the prediction of total added noise ϵ̂

and then transform it to ŷt.

6. Compared with the noise schedule used in the original DRL(GSP21a) paper, the proposed

one used in our CDRL places more emphasis on the high-noise area where ᾱ is close to 0.

We train a CDRL model with the original DRL noise schedule but with 2 additional noise

levels in the high-noise region for comparison.

7. As depicted in Equation 5.6 in the main paper, our cooperative training algorithm involves the

initializer learning from the revised sample ỹt at each step. A natural question arises: should
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we instead regress it directly on the data yt? To answer this, we train a model, in which the

initializer directly learns from yt at each step.

We ensure that all models share the same network structure and training settings on the CIFAR-

10 dataset and differ only in the aforementioned ways. As shown in Table 5.9, our full model

performs the best among these settings, which justifies our design choices.

Table 5.9: Ablation study on the CIFAR-10 dataset.

Models FID ↓

DRL (GSP21a) 9.58
CDRL without cooperative training 6.47
CDRL without noise reduction 5.51
CDRL with an initializer that predicts x̂0 5.17
CDRL with an initializer that predicts ϵ̂ 4.95
CDRL using a noise schedule in DRL-T8 4.94
CDRL with an initializer that learns from yt 5.95

CDRL (full) 4.31

5.4.12 Effects of Number of Noise Levels and Number of Langevin Steps

We test whether the noise level can be further reduced. The results in Table 5.10a show that further

reducing noise level to 4 can make model more unstable, even if we increase the number of the

Langevin sample steps K. On the other hand, reducing T to 5 yields reasonable but slightly worse

results. In Table 5.10b, we show the effect of changing the number of Langevin steps K. The

results show that, on one hand, decreasing K to 10 yields comparable but slightly worse results. On

the other hand, increasing K to 30 doesn’t lead to better results. This observation aligns wit the

finding from (GSP21a). The observation of changing K implies that simply increasing the number

of Langevin steps doesn’t significantly enhance sample quality, thereby verifying the effectiveness

of the initializer in our model.
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Table 5.10: Comparison of CDRL models with varying numbers of noise levels T and varying
numbers of Langevin steps K. FIDs are reported on the Cifar-10 dataset.

(a) Results of CDRL models with varying T

Model FID ↓

T = 4 (K = 15, 20, 30) not converge
T = 5 (K = 15) 5.08
T = 6 (K = 15) 4.31

(b) Results of CDRL models with varying K

Model FID ↓

T = 6 (K = 10) 4.50
T = 6 (K = 15) 4.31
T = 6 (K = 30) 5.08
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CHAPTER 6

Conclusion and Future Work

6.1 Research Summary

In this dissertation, we delve into the exploration of Energy-Based Models (EBM), employing a

case study focused on 3D modeling to illustrate the application of EBM in addressing real-world

challenges. This investigation not only highlights the efficacy of EBM but also sheds light on the

complexities associated with its training processes. Drawing on these insights, we have developed

algorithms aimed at enhancing the training efficiency of EBM. Specifically, we introduce two

innovative algorithms: CoopFlow and CDRL. CoopFlow enhances the generative capabilities of

EBM, showcasing the benefits of a cooperative training approach. Meanwhile, CDRL bridges

the divide between EBM and other generative frameworks, demonstrating its versatility across a

variety of tasks. Below, we succinctly summarize the key findings and contributions of three pivotal

chapters:

6.1.1 Likelihood-Based Generative Radiance Field with Latent Space Energy

In this chapter, we explore the application of EBM within the realm of 3D modeling, advancing the

development of likelihood-based generative radiance field models for disentangled representation.

We introduce the NeRF-LEBM framework, which integrates informative and trainable energy-

based priors for the latent variables of object appearance and shape into a NeRF-based 2D image

generator. Additionally, we present two maximum likelihood learning algorithms: one leveraging

MCMC-based inference and the other utilizing amortized inference. The NeRF-LEBM framework is
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formulated under two scenarios: one with known camera poses and the other with unknown camera

poses. Through a series of tasks, we demonstrate NeRF-LEBM’s capability to generate meaningful

samples, infer 3D structures from 2D observations, accommodate incomplete 2D observations, and

even learn from images with unspecified camera positions.

6.1.2 Cooperative Learning of Langevin Flow and Normalizing Flow Toward Energy-Based

Model

This chapter advances the generative capabilities of EBM by exploring a novel paradigm that

involves learning two distinct types of deep flow models within an energy-based framework for

image representation and generation. The first model, the normalizing flow model, synthesizes

examples by applying a sequence of invertible transformations to Gaussian noise. The second

model, the Langevin flow, generates examples through a non-mixing, non-convergent short-run

Markov Chain Monte Carlo (MCMC) process aimed at an EBM. We introduce the CoopFlow

training algorithm, designed to concurrently train the short-run Langevin flow model and the

normalizing flow, with the latter acting as an efficient initializer in a cooperative learning setup. Our

experiments demonstrate that CoopFlow is an effective generative model, showcasing its utility

in image generation, reconstruction, and interpolation, thereby underscoring its contribution to

enhancing the generative performance of EBMs.

6.1.3 Learning Energy-Based Models by Cooperative Diffusion Recovery Likelihood

In this chapter, we propose CDRL, a groundbreaking energy-based generative learning framework

that employs cooperative diffusion recovery likelihood to significantly improve EBMs’ generative

quality. We illustrate CDRL’s prowess in compositional generation, out-of-distribution detection,

image inpainting, and its compatibility with classifier-free guidance for conditional generation,

highlighting its versatility and potential in advancing the field of generative modeling.
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6.2 Limitations and Future Work

Within this thesis, we advance the field of Energy-Based Models (EBMs) through the introduction

of the CoopFlow and CDRL algorithms. These innovations significantly enhance EBM’s ability to

model complex distributions, such as images, and reduce the time required for sampling. Despite

these advancements, tackling very high-dimensional data, such as high-resolution images or videos,

remains a formidable challenge. This necessitates the development of more computationally

efficient methods. Employing pre-defined encoder-decoder models (RBL22) or devising MCMC-

free algorithms (HNF19a; GNK20) might be promising directions for future research. Additionally,

the diverse applications of EBMs warrant further exploration. As illustrated by our case study

with NeRF-LEBM, venturing into varied applications demands specific domain knowledge, often

requiring collaboration among individuals from different disciplines. Moreover, as a powerful

generative model, EBM might also pose potential negative societal impacts, such as the creation

of deepfakes, spread of misinformation, privacy infringements, and undermining of public trust.

This underscores the imperative for implementing effective preventive measures in both academic

research and the industry to mitigate these risks.
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