Title
Exposing the role of electron correlation in strong-field double ionization: X-ray transient absorption of orbital alignment in Xe+ and Xe2+.

Permalink
https://escholarship.org/uc/item/5tr604hn

Journal
The journal of physical chemistry. A, 118(37)

ISSN
1089-5639

Authors
Sayres, Scott G
Hosler, Erik R
Leone, Stephen R

Publication Date
2014-09-01

DOI
10.1021/jp503468u

Peer reviewed
Exposing the Role of Electron Correlation in Strong-Field Double Ionization: X-ray Transient Absorption of Orbital Alignment in Xe$^+$ and Xe$^{2+}$

Scott G. Sayres, Erik R. Hosler, and Stephen R. Leone*

Departments of Chemistry and Physics, University of California at Berkeley, Berkeley, California 94720, United States

Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States

ABSTRACT: Orbital alignment measurements and theory are used to examine the role of electron correlation during atomic strong-field double ionization (795 nm, (1−5) \times 10^{14} \text{ W cm}^{-2}). High-order harmonic, transient absorption spectroscopy is used to measure the angular distributions of singly and doubly tunnel-ionized xenon atomic states via 4d core to 5p valence shell transitions between 55 and 60 eV. The experimental M_f alignment distributions are compared to results of a rate-equation model based on sequential ionization, previously developed for coherent electron motion, and now applied to account for the alignment prepared by tunneling ionization. The hole generated in the $^3P_3/2$ state of Xe$^+$ is measured to be entirely composed of $|M_f| = 1/2$, in agreement with theory. The result is a higher degree of alignment than previously reported. Because the model neglects effects of electron–ion recollision, the theory predicts a high degree of alignment in both spin-parallel (triplet) and antiparallel (singlet) terms of Xe$^{2+}$. However, the alignment generated with linearly polarized light is observed to be spin-state dependent. The measured alignments for triplet spin states (3P_2, has $|M_f| = [0 : 1 : 2]$ of $[27 \pm 6 : 45 \pm 11 : 29 \pm 0]$ and 3P_1 has $|M_f| = [0 : 1]$ of $[56 \pm 2 : 44 \pm 2]$) are in good agreement with the expectations of theory, which are $[33 : 53 : 14]$ and $[66 : 33]$, respectively. The results validate the rate equation model for sequential tunnel ionization. However, the alignment extracted for a singlet state is greatly diminished: 1D_2 is measured to be $[18 \pm 1 : 39 \pm 2 : 43 \pm 2]$ compared to theoretical expectation of $[60 : 39 : 1]$ for $|M_f| = [0 : 1 : 2]$. The poor agreement with the sequential ionization model suggests that the alignment of 1D_2 is strongly influenced by the high propensity for the liberated first electron to return to and recollide with its parent atomic orbital. Therefore, although the influence of electron recollision appears minor in the triplet states and suggests sequential ionization, electron correlation between the ionic core and the first ionized electron cannot be ignored in the singlet state. Singlet states are likely to be generated through nonsequential double ionization over the intensity range where the experiments are performed.

I. INTRODUCTION

Strong-field ionization (SFI) is the birthing process for electrons involved in many important physical phenomena including high-harmonic-generation (HHG),5 attosecond pulse generation,5,4 orbital tomography,3,4 and novel forms of lithography.5 It is also considered to be a promising route for launching and observing nonstationary electron dynamics in polyatomic systems such as clusters.10,11 However, multiple or even double ionization presents a significant challenge due to electron correlation (interaction) effects. Electron correlation has become one of the most important frontiers in strong-field light–matter interactions,12 where many experimental observations cannot be understood by assuming independent electrons. The influence of electron correlation is commonly observed in the angular distribution of photoelectrons,13 in HHG,14,15 most prominently in nonsequential double ionization (NSDI),16 and even in sequential ionization.17,18 The influence of electron correlation on alignment, defined as a nonuniform M_f distribution of the final ion states, remains unexplored.

Conventional experimental approaches, such as the measurement of ion yields versus laser intensity,19,20 have been seminal in understanding how the ionization potential (IP) and angular momentum affects the ionization rate; however, they do not provide information on the ion states and alignment following ionization. Only recently have techniques emerged that directly provide information on the ion states and alignment following ionization. Only recently have techniques emerged that directly
explore the quantum state distribution of the hole in the resulting ion. X-ray core-level absorption spectroscopy gives a unique perspective to directly observe the final ion states, and the method using laser-produced high harmonics in the extreme ultraviolet (XUV) has become a powerful technique for measuring the states and alignment produced in the SFI of noble gas atoms. Pioneering works examining the SFI dynamics of noble gas atoms by core-level transitions to the vacancy in the valence state have demonstrated that ion alignment occurs because of vastly different ionization rates of the valence electrons. In the absence of spin–orbit coupling, the electrons aligned with the laser field (orbital angular momentum quantum number, \(m_J = 0 \)) have much higher ionization rates compared to the states that are not aligned with the field (\(m_J = 1 \)). Multiple experiments have demonstrated that the degree of alignment during ion formation resulting from the SFI of noble gases, and specifically xenon, is less than predicted by theoretical models. Even similar laser pulses can generate different values, demonstrating that the generated alignment is highly sensitive to laser parameters, such as pulse width, intensity, and temporal profile. Generally, longer pulses seem to provide better agreement, but further work is needed to account for the diminished alignment that may be due to electron–ion recollision or other multielectron effects during ionization. Electronic wave packets have also been prepared and examined in atoms with attosecond temporal resolution, demonstrating that the single active electron approximation is generally accurate in describing single ionization.

NSDI is important in linearly polarized laser experiments, where doubly charged ions are generated through enhanced ionization by recollision at or below the threshold for sequential tunneling ionization. NSDI is described by the semiclassical three-step model. First, the valence electron aligned with the laser polarization tunnels according to a static field ionization rate and the remaining electrons are treated using a frozen core approximation. Second, the liberated electron is assigned zero kinetic energy and is treated classically as it interacts with the laser field. Upon reversal of the electric field of the laser, the liberated electron returns to its parent orbital. In the third step, the ion-electron impact occurs with sufficient kinetic energy to remove a second electron or generate a harmonic photon. Many-electron effects are generally ignored in this simple model. The first two steps are quite well understood to be entirely spin independent; however, it has recently been shown that additional information can be extracted about two-electron dynamics from the HHG spectrum if spin were accounted for in the third step.

Upon double ionization, the two holes in the valence shell interact and influence each other’s motion. The two holes are generated with spins aligned either parallel (triplet states) or antiparallel (singlet states) and having very different spatial distributions. The interaction of the electrons in the \(\text{Xe}^{2+} \) states influences the electron–ion recollision probability. Here, we address whether the measurements of orbital alignment prepared in each spin state of \(\text{Xe}^{2+} \) through SFI can reveal the role of spin state on electron–ion recollision. It is to this end that core-level absorption spectroscopy is used to determine the alignment of the valence shell holes prepared through the strong-field double ionization of xenon. Direct comparison between the experimental alignments for the triplet and singlet states and the sequential ionization model allows us to address fundamental questions regarding the influence of electron–ion recollision on ion alignment prepared through SFI.

II. EXPERIMENTAL METHODS

The extreme ultraviolet (XUV) transient absorption spectroscopy instrument has been described previously. A commercial 800 nm femtosecond laser system with center wavelength of 795 nm, producing 2.8 mJ, 40 fs pulses at 1 kHz repetition rate, is split into two beams and then recombined on a sample with defined time delay. One pulse is used to ionize the sample of Xe atoms by SFI \([(1−5) \times 10^{14} \text{ W/cm}^2]\) and the other pulse generates high harmonics for absorption measurements. The XUV probe pulse is produced via even/odd high harmonic generation utilizing a semi-infinite gas cell configuration and a two color laser field of 1.6 mJ/25 \(\mu \text{J} \) of 800:400 nm light, respectively. Two 600 nm thick Al foils between the Ne-containing high harmonic semi-infinite gas cell and the refocusing toroidal mirror remove the residual NIR and visible pulses. This configuration provides a quasi-continuous XUV spectrum from \(\sim 40 \) to 72.5 eV (Al filter N\(_2\) edge), with bright 0.2 eV bandwidth harmonics spaced by 1.5 eV and \(<10:1 \) peak-to-valley harmonic:continuum ratio. The 795 nm strong-field pump beam is focused into the target Xe cell by a 45 cm focal length lens yielding a focal beam waist radius (\(w_0 \)) of 32 \(\mu \text{m} \). A half-wave plate and thin-film plate polarizer pair control the laser intensity while preserving spatial parameters. The pump volume sampled by the smaller XUV probe (\(w_0 = 22 \pm 2 \mu \text{m} \)) means that the ionized Xe density varies less than 5% from its peak value due to the spatial profile of the pump beam. The strong-field pump (40 fs, 125−450 \(\mu \text{J} \)) is overlapped with the XUV probe at a 1° crossing angle in the target gas cell (200 \(\mu \text{m} \) entrance and exit apertures and 4 mm path length). A 200 nm thick Al foil positioned at the entrance of the XUV spectrometer prevents the 795 nm pump beam from reaching the detector.

Following the single or double ionization of atomic xenon by the pump pulse, the probe laser pulse interrogates the produced state distribution by monitoring the transition probability along the laser polarization angle between the pump and probe laser pulses. The probe pulse was scanned in 10° increments between 0° and 180°. From the anisotropy of the core-level absorption, the alignment parameters are extracted. Each absorption spectrum is referenced to an individual "pump-off" spectrum. The transient absorbance (optical density) is defined as, \(\Delta \text{OD}(E,t) = -\log[I(E,t)/I(E, "\text{pump-off}"')] \), where \(I(E,t) \) is the spectral intensity of the XUV light at a photon energy, \(E \), and time delay, \(t \), and \(I(E, "\text{pump-off}"') \) is measured in the absence of the pump beam. Transient
absorption spectra represent an average of 128 spectra, with a CCD integration time of 0.2 s for each spectrum, and give a total of 25,6 thousand laser pulses accumulated per spectra. The absorption spectrum for perpendicular laser pulses at high intensity (5 × 10^{14} W/cm^2) is presented in Figure 2, where absorption peaks are attributed to both Xe^+ and Xe^{2+}. Spin–orbit splitting in both the valence (p) and core (d) shells of Xe^+ allows for four possible d^{10}p^5 → d^{10}p^6 transitions. Selection rules limit the absorption spectra to three peaks (2P_{1/2,3/2} → 2D_{3/2} is forbidden). The Xe^{2+} d^{10}p^5 → d^{10}p^6 has a rich absorption spectrum, where 5 terms exist in the valence shell (p^5) and 12 terms exist in d^9p^6. Within this electronic transition, theory predicts 34 allowed transitions having varying oscillator strength, and spanning a range of ~10 eV that overlaps the Xe^{2+} d^{10}p^5 → d^{10}p^6 transitions. The observed spectrum is in agreement with photoelectron spectra, and therefore, peaks are assigned according to previous literature sources. We observe four XUV core to valence state dication absorption resonances, which allow for the full characterization of alignment in all Xe^{2+} terms. Two transitions originate from ^3P_2, one from ^3P_1, and one peak involves an overlap of both ^3P_1 and ^3D_2.

The instrumental XUV spectral resolution is 214 ± 15 meV, as determined by a least-squares fit of Voigt profiles to the 4d to 6p and 7p Rydberg states of Xe. The instrumental response, defined by the rise time of the Xe^{2+} 2P_{3/2} → 2D_{5/2,3/2} transition at 55.4 eV, is 33 ± 6 fs. Zero time-delay (t = 0 fs) is defined as the center of the rise. Positive time delay corresponds to a pulse sequence where the XUV pulse train arrives after the strong-field pump pulse. Here, the SFI pulse is much longer than the time scale determined by the valence shell splitting; this means only diagonal elements of the density matrix remain populated after the pulse and simplifies the measurement and interpretation by eliminating any time-dependent coherent oscillations. Indeed, we observe no modulation in the angular distributions as a function of time delay, and a time delay of 500 fs is arbitrarily used for measuring the anisotropy.

Removal of both electrons is accomplished within the same linearly polarized pulse, imposing cylindrical symmetry (there is no orientation, meaning ±M_z substates are equally populated), which restricts the multipoles that can be measured. Because the laser beams copropagate, absorption is sensitive to only the diagonal even elements of the density matrix. The absorption cross section of the probe pulse simplifies to a function of θ, the angle between the quantization axis (defined by the polarization direction of the pump laser), and the polarization vector of the sampling XUV pulse. The absorption anisotropy is fit with the well-known multipole expansion:

$$I(\theta) = \frac{\sigma}{4\pi} [1 + \beta_2 P_2(\cos \theta) + \beta_4 P_4(\cos \theta) + ...]$$

where σ is the integral cross section, P_2 and P_4 are Legendre polynomials, and β_2 and β_4 are the second-order (k = 2) and fourth-order (k = 4) anisotropy parameters, respectively. The expansion must be performed out to the number of terms equal to the maximum J value to accurately determine alignment. In Xe^+, where J < 2, the system is limited to β_2, and alignment can be determined using the absorption at only two angles. Alignment is commonly reported as R = (I^0 − I^\perp)/ (I^\parallel + 2I^\perp), where I^0 and I^\perp represent the absorptions at 0° and 90°, respectively. As term symbols for Xe^{2+} range up to J = 2, β_4 terms can exist and a minimum of three absorption measurements taken at different angles are required for the reconstruction. It is therefore appropriate to describe the anisotropy with eq 1. This method of reporting alignment fully represents the angular distribution and is directly comparable to previous anisotropy measurements (conversion to the commonly reported alignment parameter is β_2 = 2R).

Extracting the β values from the raw data allows for the reconstruction of the resultant magnetic substate distribution or alignment.

III. THEORETICAL METHODS

III.A. Tunneling Ionization. SFI is often described by the single active electron approximation, where the ionization rate,
The Journal of Physical Chemistry A

Article

and thus angular response, is proportional to the density of the active electron in the direction of the laser polarization. The static-field tunneling rate, \(W_{T}(F) \) equation \(^{34} \) used herein is a modified version of the standard ADK model, accounting for the barrier suppression region:

\[
W_{T}(F) = \frac{C_{J}^{2}}{2\pi^{3}|m_{J}|!} \left(\frac{2f + 1}{2f - |m_{J}|!} \right) \left(\frac{2f + 1}{2f - |m_{J}|!} \right) e^{-2k_{c}^{2}F} e^{-\alpha(Z_{c}/1e)(F/k_{c}^{2})}
\]

where \(k_{c} = (2IP)^{1/2} \), \(F \) is the electric field amplitude, \(Z_{c} \) is the effective nuclear charge, and \(f \) and \(|m_{J}| \) are the angular momentum quantum numbers. The rate is dependent upon the parameters used and are specific for each atom (here, \(a = 1.5, C_{J} = 2.27 \)); however, as these parameters are maintained for all states of equal charge, they do not significantly influence the population distribution (atomic units: \(h = m_{e} = e = 1 \) are utilized within this manuscript unless otherwise noted). Numerical integration over the ionizing laser pulse is needed, where the static ionization rates from eq 2 vary in time with the oscilating electric field of the laser.

Application of the tunneling rate expressed in eq 2 requires the IP and single electron angular momentum quantum numbers to be well-defined. Due to spin–orbit coupling, there is no basis set that describes these values simultaneously. In the coupled basis \((|M_{J}⟩)\), energy is well-defined but the angular momentum of individual electrons is not. In contrast, individual electron orbitals are well-defined in the uncoupled basis \((|S⟩\) and \(|F⟩\), but their binding energy is not. Recently, we developed a model \(^{39} \) for describing the sequential tunnel ionization of noble gas atoms and obtained satisfactory agreement with \(N_{l} \) calculations \(^{31} \) for both the ion \(M_{l} \) states and the coherences between states in the singly charged ion. Within this model, ionization rates are determined in the conversion matrix, where each element is assigned well-defined \(f \) and \(|m_{J}| \) angular momentum numbers as well as binding energies, thereby allowing application of eq 2. Once the conversion matrix is populated, transformation to either \((|S⟩\) or \(|F⟩\) basis notation reveals their respective populations. In the \(|S⟩\) basis, the single electron wave functions \(ψ_{m_{l}m_{s}} \) are described by standard spherical harmonics \((Y_{m_{l}})\). The conversion between \((|M_{J}⟩\) and \(|S⟩\) basis for a singly charged ion for constructing the conversion matrix is

\[
ψ_{M_{J}} = \sum_{m_{s}} C(lm_{s}m_{l}jm_{s})ψ_{lm_{s}m_{l}m_{s}}
\]

where \(a \) and \(b \) represent the spatial coordinates of the first and second electron. Within \(LS \) coupling, where \(L \) and \(S \) are total angular momentum vector \(J \), the capital letters \((L, S, J \) and their projections \(M_{L}, M_{S}, M_{J} \) represent the total angular momentum quantum numbers of the atom. The central field approximation, where each electron experiences an effectively spherical potential, assumes the wave function to be a product of independent one-electron orbitals thereby ignoring electron correlation. Applying the Hartree–Fock method (expressing the wave function as a single Slater determinant) generates an antisymmetric wave function, as required by the Pauli principle. Antisymmetrizing by means of coordinate exchange gives the \(LS \)-coupled wave functions:

\[
ψ_{M_{J}} = 2^{1/2}(ψ_{M_{J},a}^{ab} − ψ_{M_{J},b}^{ba})
\]

SFI prepares off diagonal density matrix elements in both \(|S⟩\) and \(|M_{J}⟩\) representations, indicating the formation of a coherent superposition between different electronic states. The spatial arrangement of the hole exhibits periodic movement according to the difference in energy between populated states, which is evaluated with the von Neumann equation. In \(Xe \), the energy splitting of the valence shell \((1.3 eV) \) gives a period of \(3.2 \) fs, which is nearly resonant with the period of the fundamental driving laser frequency \((2.7 \) fs). Consequently, this rapid motion redistributes the hole population among the \(|S⟩\) states. The \(Xe \) ensemble’s hole distributions oscillate between peanut and donut geometries as constructed from the diagonal elements of the \(|S⟩\) basis. \(\psi_{2} \) This coherent electron motion of the ensemble, represented by the off diagonal density matrix elements, influences the sequential ionization rate and is accounted for in the model. \(^{39} \)

The onset of sequential ionization (defined as having 1% of the ions as \(Xe^{2+} \) is \(1.2 \times 10^{14} \) W/cm\(^2\) and the saturation intensity (where all ions are doubly ionized) is \(2 \times 10^{15} \) W/cm\(^2\). After double ionization, the \(Xe^{2+} \) resides in either the ground term \((3P) \) or excited singlet states \((1D_{2} \) or \(1S_{0} \) are higher in energy by 2.1 and 4.5 eV, respectively). \(^{35} \) It is reasonable to assume that because of the large difference in ionization rates, the second electron would also arise from \(m_{l} = 0 \) and therefore empty the \(p_{z} \) orbital. However, laser intensity plays an important role in the resultant term distribution. Due to the exponential dependence of the tunneling rate on IP, triplet states are accessed at lower fields than singlets, and this indicates that electrons are removed from different atomic orbitals. The laser field can overcome the difference in IP for obtaining singlet states, and at an intensity of \(\sim 3 \times 10^{14} \) W/cm\(^2\) the ionization rate for producing a \(1D_{2} \) state is dominant where both electrons are \(m_{l} = 0 \) and thus ionization empties the \(p_{z} \) orbital. The \(1S_{0} \) population is negligible due to its larger IP. As laser intensity increases, the difference in energy between the states becomes less important, and population approaches the statistical distribution \((3P:1D:1S = 9:5:1)\) assuming sequential ionization. Triplet ionization is not included in the theoretical model, as this does not occur until even higher intensities \((\sim 1 \times 10^{15} \) W/cm\(^2\)) for this pulse width.
Though the ratio between the populations of terms shows strong dependence on laser intensity, the energy degeneracy of the magnetic substates makes alignment nearly stable with respect to laser intensity. Large differences in ionization rates for the different pathways, obtained from the conversion matrix, are responsible for orbital alignment. The \(3\)P\(_{2}\) state arises from the removal of spin-parallel \(m_l = 1\) and \(0\) electrons. Though the \(m_l = 0\) electron is quickly removed, the \(m_l = 1\) electron has a low ionization rate. For \(3\)P\(_{0}\), the channels for \(M_l = 0\) have approximately double the rate of \(M_l = 1\) channels. Alignment is predicted to be most extreme in the \(1\)D\(_{2}\), state, where the \(1\)D\(_{2,0}\) substate is comprised in large part by an empty p orbital and both electrons in p have a large ionization rate. In contrast, the \(1\)D\(_{2,1}\) and \(1\)D\(_{2,2}\) substates contain \(m_l = 1\) electrons, thus limiting their production because of lower ionization rates.

III.B. Angular Cross Sections for XUV Photon Absorption. According to Fermi’s golden rule, the absorption cross section of the XUV probe light is dependent on the angular momentum of the initial and final states as well as the angle between pump and probe polarization vectors as shown in eq 5. The Wigner rotation matrix, \(d_{nm}(\theta)\), describes the rotation of the photon’s polarization.

\[
I_{\text{XUV}}(\theta) = |\langle \psi_f | d_{nm}(\theta) | \psi_i \rangle|^2
\]

The final and initial states are represented by \(\psi_f\) and \(\psi_i\). The dipole operator is related to spherical harmonics \((\mu \sim Y_{1,0} = r \times \cos(\theta))\), resulting in the integration over three spherical harmonic functions. Although the calculation for single photon absorption is obtained in the uncoupled basis through harmonic functions. Although the calculation for single photon absorption is obtained in the uncoupled basis through numerical integration, it is greatly simplified in the coupled basis using standard angular momentum algebra. The angular and radial components of the wave function are separated according to the Wigner–Eckart theorem.

\[
|\langle M_f | \mu | M_i \rangle| = C(f,1M_f,q;j,M_i)|\langle f||\mu||j \rangle|
\]

where \(j\) and \(m\) are the quantum numbers of the orbitals that denote symmetry of the hole. The Clebsch–Gordan coefficient contains all of the angular information from a single photon transition and describes the alignment. Within the Clebsch–Gordan coefficient, \(q\) represents the polarization vector of light with respect to the transition dipole moment or quantization axis, whereas \(q = 0\) is for parallel polarized light and \(q = \pm 1\) is for perpendicular polarized light. The reduced matrix element, expressed by \(|\langle f||\mu||j \rangle|\), is not relevant to the discussion of alignment as it is independent of \(M_p\) but these elements are useful for peak assignments. Reduced dipole matrix elements are obtained through the Flexible Atomic Code (FAC), a relativistic multiconfigurational interaction method that yields Dirac–Fock energy levels and oscillator strengths.

The treatment of alignment from multiphoton absorption and fluorescence is well-developed within perturbation theory. The spatial distribution of an electronic state can be expressed in terms of multipole expansion tensors of rank \(k\) and projections \(q\), where ranks \(k \leq 2j\) are allowed. The expectation of a rank \(k\) tensor depends only on the state multipole of the same rank. The quadrupolar (double-headed arrow with \(k = 2\)) nature of linearly polarized light limits single-photon absorption or fluorescence to only rank \(k = 0\) (population), \(k = 1\) (orientation), and \(k = 2\) (alignment) observation, independent of the rank multipole describing the spatial distribution of the state. Detecting higher moments requires multiple photons. Typically, multipole expansion requires a number of terms equal to the number of photons absorbed, but a more general description is the number of electronic transitions (these statements are equivalent in perturbation theory). From the atom’s perspective, each individual electronic transition imparts rank \(k \leq 2\) spatial anisotropy according to the angular-dependent transition probability, but through transformation into the laboratory frame observation, the absorption represents the multipole moments of all spectroscopic transitions combined (multiplied together prior to squaring). The higher order alignment components in the observed spectra versus angle, shown in Figure 3, indicates that the single-photon core-level XUV absorption carries a signature of SFI.
I_{\mu_{i}}(\theta) = (\sum_{\mu} \sum_{m} d^M_{m}(\theta) \mu^I_{\mu_{i}} \sum_{\mu} \sum_{m} V_{L_\mu m}(\mu^2(\theta))^2)

(7)

Although \(f \) states are prepared coherently through SFI, the substates are incoherently populated (orthogonal) by the Hamiltonian (see the coupling matrices of our previous article). This allows each substate to be treated independently, for the construction of a basis set to interpret the degree of alignment from absorption signal. The overall angular information is determined as

\[
I_{\mu_{i}}(\theta) = \sum_{\mu} f_{\mu_{i}} I_{\mu_{i}}(\theta)
\]

(8)

where \(f_{\mu_{i}} \) are the fractional population coefficients of the substate distribution and are normalized (\(\sum f_{\mu_{i}} = 1 \)). A summation over the final substates is required because they are not resolved.

IV. RESULTS

IV.A. Alignment in Singly Charged Ions, Xe\(^+\). A closed shell, p\(^6\), contains only a rank 0 tensor (population), which has equal probability of absorbing light in all directions, which therefore, the SFI (p\(^6\) \(\rightarrow \) p\(^7\)) defines the quantization axis, becomes a scalar, and is uninteresting. Alignment is prepared in \(^2P_{3/2} \) allowing the subsequent XUV absorption to exhibit anisotropy, \(\beta_2 \). The XUV absorption spectra for Xe\(^+\) have been previously described and alignments measured.\(^{2,3,24}\) The basis set and therefore the theoretical limits on anisotropy for the Xe\(^+\) transitions are presented in Table 1. The \(^2P_{3/2} \rightarrow ^2D_{3/2} \) transitions are presented in Table 1. The \(^2P_{3/2} \rightarrow ^2D_{3/2} \) table is shown. Although the signal at 55.4 eV is larger than that of any Xe\(^+\) peaks by more than a factor of 30. The differences in alignment measurements for Xe\(^+\) will be further addressed in the Discussion.

The transition at 56.2 eV is assigned to \(^2P_{1/2} \rightarrow ^2D_{3/2} \). Alignment cannot exist in the \(^2P_{1/2} \) state, making the absorption isotropic (\(\beta_2 = 0 \)). The anisotropy measurement is within error, \(\beta_2 = 0.03 \pm 0.05 \). The \(^2P_{1/2} \rightarrow ^2D_{3/2} \) transition remains well isolated from other transitions and remains isotropic (\(\beta_2 < 0.05 \)) even at the highest laser intensities explored.

The line strength for \(^2P_{3/2} \rightarrow ^2D_{3/2} \) (75.3 eV) is an order of magnitude lower than that of \(^2P_{3/2} \rightarrow ^2D_{3/2} \) (55.4 eV), making observation more difficult. Alignment makes the peak more intense with perpendicularly polarized laser pulses. Due to this difference in line strength, the spectra recorded with perpendicular polarized pulses is shown in Figure 2, where both peaks are easily observed and the difference between these peaks is minimized due to alignment. As both peaks originate from the same term, \(^2P_{5/2} \), the measured alignments should be in agreement. The theoretical limits for the anisotropy are larger for this peak, where \(\beta_2 \in [0.80, +0.80] \), making it more sensitive to alignment. A value of \(\beta_2 = -0.59 \pm 0.04 \) is obtained, suggesting an alignment of [87±3 : 13±3]. The agreement is acceptable with the alignment determined from the \(^2P_{3/2} \rightarrow ^2D_{3/2} \) transition. However, there is clearly a higher order angular structure from neighboring peaks is contaminating the measurement, as shown in Figure 4c. Although the resolution of the instrument does not allow for the separation of the contaminating peaks, it is possible to resolve the contributions using the angular distribution. When the data points (0 to 20\(^\circ\) to 20\(^\circ\) to 180\(^\circ\)) that are most affected by the overlapping Xe\(^+\) peaks are omitted from the fitting procedure, an anisotropy of \(\beta_2 = -0.80 \pm 0.04 \) is obtained. This gives an alignment of [100±3 : 0±3], which matches the measurement at 55.4 eV for \(^2P_{3/2} \rightarrow ^2D_{3/2} \). As noted above, the near perfect alignment measured here for Xe\(^+\) \(^2P_{3/2} \) is in good agreement with theory but is also higher than previously measured under similar laser intensities.

Exploring the angular distribution of Xe\(^+\) at laser intensities below those associated with the production of Xe\(^{2+}\) results in agreement with the model. The relative experimental absorption cross sections versus angle for the XUV transitions attributed to Xe\(^+\) are presented in Figure 4 and the anisotropy coefficients are tabulated in Table 2. At low intensity, \(1 \times 10^{14} \) W/cm\(^2\), where double ionization is minimized, the anisotropy at 55.4 eV for \(^2P_{3/2} \rightarrow ^2D_{3/2} \) of \(\beta_2 = 0.23 \pm 0.04 \) is recorded, indicating a higher order angular structure from neighboring peaks that is contaminating the measurement, as shown in Figure 4c. Although the resolution of the instrument does not allow for the separation of the contaminating peaks, it is possible to resolve the contributions using the angular distribution. When the data points (0 to 20\(^\circ\) to 20\(^\circ\) to 180\(^\circ\)) that are most affected by the overlapping Xe\(^+\) peaks are omitted from the fitting procedure, an anisotropy of \(\beta_2 = -0.80 \pm 0.04 \) is obtained. This gives an alignment of [100±3 : 0±3], which matches the measurement at 55.4 eV for \(^2P_{3/2} \rightarrow ^2D_{3/2} \). As noted above, the near perfect alignment measured here for Xe\(^+\) \(^2P_{3/2} \) is in good agreement with theory but is also higher than previously measured under similar laser intensities.

Table 1: Theoretical Basis Set for Describing a Single Photon Absorption and Determining the Alignment Distribution in Xe\(^+\)

<table>
<thead>
<tr>
<th>energy (eV)</th>
<th>transition</th>
<th>(\sigma)</th>
<th>(\beta_2)</th>
<th>(\beta_4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>54.3</td>
<td>(^2P_{1/2} \rightarrow ^2D_{3/2})</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>55.4</td>
<td>(^2P_{1/2} \rightarrow ^2D_{3/2})</td>
<td>0.60</td>
<td>0.20</td>
<td>-</td>
</tr>
<tr>
<td>55.4</td>
<td>(^2P_{1/2} \rightarrow ^2D_{3/2})</td>
<td>0.60</td>
<td>-0.20</td>
<td>-</td>
</tr>
<tr>
<td>56.1</td>
<td>(^2P_{1/2} \rightarrow ^2D_{3/2})</td>
<td>0.66</td>
<td>0.00</td>
<td>-</td>
</tr>
<tr>
<td>57.3</td>
<td>(^2P_{1/2} \rightarrow ^2D_{3/2})</td>
<td>0.066</td>
<td>-0.80</td>
<td>-</td>
</tr>
<tr>
<td>57.3</td>
<td>(^2P_{1/2} \rightarrow ^2D_{3/2})</td>
<td>0.066</td>
<td>0.80</td>
<td>-</td>
</tr>
</tbody>
</table>

"Forbidden parameters are shown as dashes. The dimensionless line strengths, \(\sigma \), determined through numerical integration, do not express angular information but instead just the overall strength of the transition. For Xe\(^+\), all angular information is expressed by \(\beta_2 \)."

transition limits \(\beta_2 \in [0.20, -0.20] \), depending on the degree of alignment in \(^2P_{1/2} \). At the Xe\(^+\) saturation intensity (2 \(\times \) \(10^{14} \) W/cm\(^2\)), the model here predicts an alignment in \(^2P_{1/2} \), \(M_J = \{1/2 : 3/2\} \) of [95 ± 5] in close agreement with previous theoretical work.\(^{23}\) Erosion of singly charged states exposed to laser intensities exceeding the threshold for sequential ionization increases the alignment of Xe\(^+\). The mechanism is similar to the reason the states are aligned in the first place: different ionization rates and pathways to double ionization. The \(^2P_{3/2} \rightarrow ^2D_{3/2} \) erodes faster than \(^2P_{3/2} \) making the alignment approach unity with increasing laser intensity. According to the model, at \(5 \times 10^{14} \) W/cm\(^2\), \(\approx 50\% \) doubly ionized, the orbital alignment in \(^2P_{3/2} \), \(M_J = \{1/2 : 3/2\} \) is predicted to increase to [97 : 3].

The Journal of Physical Chemistry A
Table 2. Experimental Anisotropy Parametersa

<table>
<thead>
<tr>
<th>Energy</th>
<th>Transition</th>
<th>β_3</th>
<th>β_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>55.4</td>
<td>(Xe)$^+$ 2P${1/2} \rightarrow 2D{5/2}$</td>
<td>0.23 ± 0.04</td>
<td></td>
</tr>
<tr>
<td>56.1</td>
<td>(Xe)$^+$ 2P${1/2} \rightarrow 2D{3/2}$</td>
<td>-0.03 ± 0.05</td>
<td></td>
</tr>
<tr>
<td>57.4</td>
<td>(Xe)$^+$ 2P${3/2} \rightarrow 2D{5/2}$</td>
<td>-0.59 ± 0.04</td>
<td></td>
</tr>
<tr>
<td>56.9</td>
<td>(Xe)$^+$ 3P$_2 \rightarrow 1D_2$</td>
<td>0.44 ± 0.06</td>
<td>0.63 ± 0.07</td>
</tr>
<tr>
<td>57.1</td>
<td>(Xe)$^+$ 3P$_2 \rightarrow 1D_2$</td>
<td>0.64 ± 0.04</td>
<td>0.45 ± 0.04</td>
</tr>
<tr>
<td>57.6*</td>
<td>(Xe)$^+$ 3P$_2 \rightarrow 1D_2$</td>
<td>-0.70 ± 0.05</td>
<td>0.70 ± 0.06</td>
</tr>
<tr>
<td>57.6</td>
<td>(Xe)$^+$ 3P$_2 \rightarrow 1D_2$</td>
<td>-0.35 ± 0.02</td>
<td>0.41 ± 0.02</td>
</tr>
<tr>
<td>59.1</td>
<td>(Xe)$^+$ 3P$_2 \rightarrow 1D_2$</td>
<td>-0.65 ± 0.04</td>
<td>0.55 ± 0.05</td>
</tr>
</tbody>
</table>

aFor Xe$^+$, all angular information is expressed by β_3, whereas β_4 is required for the Xe$^{2+}$ transitions. Energy is expressed in electronvolts. The measurements for Xe$^+$ are made at 4.1 × 1014 W/cm2, and for Xe$^{2+}$ are at 5 × 1014 W/cm2. The * at the first instance of 57.6 eV represents the measurement at a laser intensity of 2 × 1014 W/cm2.

Table 3. Theoretical Basis Set for Describing the Observed Transitions in Xe$^{2+}$

<table>
<thead>
<tr>
<th>Energy (eV)</th>
<th>Transition</th>
<th>σ^*</th>
<th>σ</th>
<th>β_3</th>
<th>β_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>57.1</td>
<td>3P$_{1/2} \rightarrow 3D_1$</td>
<td>1.008</td>
<td>0.690</td>
<td>-1.516</td>
<td>0.535</td>
</tr>
<tr>
<td>57.1</td>
<td>3P$_{3/2} \rightarrow 3D_1$</td>
<td>1.008</td>
<td>0.575</td>
<td>1.176</td>
<td>0.200</td>
</tr>
<tr>
<td>57.1</td>
<td>3P$_{1/2} \rightarrow 3D_1$</td>
<td>1.008</td>
<td>0.708</td>
<td>2.151</td>
<td>0.693</td>
</tr>
<tr>
<td>57.6</td>
<td>3P$_{3/2} \rightarrow 3D_1$</td>
<td>1.305</td>
<td>1.111</td>
<td>-1.516</td>
<td>0.535</td>
</tr>
<tr>
<td>57.6</td>
<td>3P$_{3/2} \rightarrow 3D_1$</td>
<td>1.305</td>
<td>1.045</td>
<td>0.790</td>
<td>-1.750</td>
</tr>
<tr>
<td>57.6</td>
<td>3P$_{1/2} \rightarrow 3D_1$</td>
<td>1.305</td>
<td>1.116</td>
<td>1.909</td>
<td>2.892</td>
</tr>
<tr>
<td>57.6</td>
<td>3P$_{1/2} \rightarrow 3D_1$</td>
<td>0.569</td>
<td>0.623</td>
<td>1.082</td>
<td>0.649</td>
</tr>
<tr>
<td>57.6</td>
<td>3P$_{3/2} \rightarrow 3D_1$</td>
<td>0.569</td>
<td>0.538</td>
<td>-1.358</td>
<td>0.344</td>
</tr>
<tr>
<td>59.1</td>
<td>3P$_{1/2} \rightarrow 3D_1$</td>
<td>0.248</td>
<td>0.154</td>
<td>1.397</td>
<td>-0.147</td>
</tr>
<tr>
<td>59.1</td>
<td>3P$_{3/2} \rightarrow 3D_1$</td>
<td>0.248</td>
<td>0.244</td>
<td>-1.678</td>
<td>0.742</td>
</tr>
</tbody>
</table>

aThe line strength as determined through FAC38 (σ^*) for a single electronic transition is shown for comparison, and all other parameters are obtained through numerical integration from eq 7.

IV.B. Alignment in Doubly Charged Ions, Xe$^{2+}$. The sequential ionization model predicts strong alignment of the 3P_2, 1D_2, and 3P_3 states of Xe$^{2+}$ (1S_0 and 1P_0 cannot be aligned). The basis set to interpret the degree of alignment from the doubly charged ion absorption signals, as constructed from eq 7, is presented in Table 3. The first ionization step ($p^6 \rightarrow p^5$) defines the quantization axis and aligns the ion, and the second ionization ($p^5 \rightarrow p^4$) contribution is limited to a $k = 2$ tensor. The XUV absorption ($p^4 \rightarrow d^6p^5$) yields a $k = 2$ tensor, making the observation a product of two $k = 2$ tensors. The observed anisotropy ($k = 4$) is consistent with absorption spectroscopy involving three electronic transitions originating from an unaligned state.

The feature at 56.9 eV (peak d of Figure 2 and Figure 5a) is attributed to $^3P_2 \rightarrow 3D_0$, which constitutes a spin-forbidden transition in LS coupling and cannot be interpreted with this level of theory. It is therefore not analyzed, but the experimental cross sections versus angle are nevertheless presented in Figure 5a. The absorption feature at 57.1 eV is attributed to $^3P_2 \rightarrow 3D_3$ and shown in Figure 5b. From the measured anisotropy values of $\beta_3 = 0.44 \pm 0.06$ and $\beta_4 = 0.63 \pm 0.07$, an alignment of $|M_l| = [0 : 1 : 2]$ of [27±6 : 45±11 : 29±0] is extracted, as shown in Figure 5c. For 3P_2, the sequential model predicts an orbital alignment ratio of $[33 : 53 : 14]$, in relatively good agreement, and validates the sequential ionization rate model.

The 57.6 eV peak (peak f of Figure 2 and Figure 6) is composed of two transitions, of which the $^1D_2 \rightarrow 1F_3$ transition has approximately double the XUV oscillator strength of $^3P_1 \rightarrow 1D_2$. Unambiguous separation is not possible, as the instrument has insufficient spectral resolution. According to the sequential model, at threshold ionization intensity, 3P_1 has 3 times the population, compensating for the difference in oscillator strength and therefore more strongly contributing to the absorption peak. In Figure 6a, the anisotropy of the absorption peak is shown at a threshold laser intensity of 2 × 1014 W/cm2, where the anisotropy parameters are measured as $\beta_3 = -0.70 \pm 0.05$ and $\beta_4 = 0.70 \pm 0.06$. Assuming that the $^3P_1 \rightarrow 1D_2$ transition is the sole contributor to the peak at this intensity, which may be an overestimation, a 3P_1 alignment of $|M_l| = [0 : 1 : 2]$ of [66±3 : 34±1] is measured. This is in excellent agreement with the sequential ionization rate model, which suggests an alignment of $[65 : 35]$.

The laser intensity was maintained below the appearance of triple ionization, meaning all of the peaks representing isolated doubly ionized transitions present a constant anisotropy. However, due to the difference in energy between 3P_1 and 1D_2, adjustment of the laser intensity can be used to influence the ratio between 3P_1 and 1D_2 and therefore the anisotropy.
First, the raw signal (red line) is assumed entirely 1D$_2$−anisotropy at the highest laser intensities examined 5 cm2, where the anisotropy parameters are measured to be 57.6 eV. (a) At low laser intensity of 2 peak is ascribed to 3P$_1$ and 1D$_2$ are predicted to be approximately MJ = 1, and gold for $M_I = 2$. (c) The theoretical and experimental orbital populations for 3P$_2$ in (b) are compared. The error bars on the bar charts represent one standard deviation of the fit.

Figure 6. Similar to Figure 5. The Xe$^{2+}$ 5p4 → 4d25p3 absorption transitions measured at a laser intensity of 5 × 1014 W/cm2. (a) 56.9 eV is assigned to 1P$_1$ → 3D$_2$. The green line represents the contributions from $M_I = 0$, purple for $M_I = 1$, and gold for $M_I = 2$. (c) The theoretical and experimental orbital populations for 3P$_2$ in (b) are compared. The error bars on the bar charts represent one standard deviation of the fit. measured for only this peak. As the laser intensity increases, the anisotropy measured at 57.6 eV changes to reflect the growing contribution of the 1D$_2$ → 1F$_3$ transition. Figure 6b shows the anisotropy at the highest laser intensities examined 5 × 1014 W/cm2, where the anisotropy parameters are measured to be $\beta_1 = -0.35 \pm 0.02$ and $\beta_2 = 0.41 \pm 0.02$. At this laser intensity, the populations of 3P$_1$ and 1D$_2$ are predicted to be approximately equivalent by the sequential ionization model, but because the oscillator strength is stronger for 1D$_2$, this state contributes more to the peak. Experimentally, it is not possible to isolate the contribution of 1D$_2$ → 1F$_3$, and so the data are fit on the basis of two extreme cases. As an upper limit, the anisotropy is treated as if the peak is entirely attributed to 1D$_2$ → 1F$_3$, and an alignment $|M_J| = [0 : 1 : 2]$ of $[18 \pm 0 : 25 \pm 1 : 57 \pm 1]$ is measured. At the other extreme, we remove an overestimated 1P$_1$ → 3D$_2$ contribution by subtracting the anisotropy obtained at the threshold intensity and scaled to account for half of the peak, as shown in Figure 6b. Fitting the anisotropy of the remaining peak, the data suggest an alignment in 1D$_2$, of $[18 \pm 1 : 39 \pm 2 : 43 \pm 2]$. Both results indicate an almost complete lack of alignment in the 1D$_2$ state, where an unaligned distribution is $[20 : 40 : 40]$. Although the actual alignment of 1D$_2$ is most likely between these two extremes, it is clear that the results are in poor agreement with the sequential ionization model where a large alignment of $[60 : 39 : 1]$ is predicted. This suggests that the alignment is greatly diminished, and the $M_I = 0$ population is not as prominent as predicted by the sequential ionization model. This is further addressed in the Discussion.

Finally, at laser intensities of 5 × 1014 W/cm2, a small peak at 59.1 eV is observed as shown in Figure 2, peak g. Although the energy of the p4 terms are well-known, the d9p5 terms are less well characterized and inaccuracies in the calculations of the energy levels resulting from the multielectronic interactions of the open d shell make peak assignments difficult. Atomic calculations predict 1P$_1$ → 1D$_1$ at 58.5 eV and 1P$_2$ → 1P$_0$ at 59.5 eV,31 with the first peak being 20%33 to 55%34 larger. A previous high resolution photoelectron experiment observed two peaks at 58 and 59 eV and assigned them to these transitions, although the calculated line strengths were not in agreement. Here, an anisotropy of $\beta_1 = -0.65 \pm 0.04$ and $\beta_2 = -0.55 \pm 0.05$ is measured, as presented in Figure 7. The peak at 59 eV was previously assigned as 1P$_2$ → 1P$_0$,32 but the angular distributions cannot account for the observed anisotropy, which may suggest that the previous assignment is incorrect. Instead, we assign the peak to the 3P$_1$ → 1D$_1$ transition, which by having a larger cross-section should be more easily observed. An alignment for 3P$_1$ of $|M_J| = [0 : 1 : 2]$ of $[56 \pm 2 : 44 \pm 2]$ is extracted. This alignment is only slightly lower than predicted by the sequential ionization model. Also shown in Figure 7b is the measured alignment of 3P$_1$ taken at 2 × 1014 W/cm2 for the peak at 57.6 eV.
V. DISCUSSION

Both tunneling ionization and electron-recollision occur due to the interaction of the strong electric field of the laser and the active electron and therefore are not easily separated. As both processes are thought to always be present, a well-defined transition between nonsequential and sequential ionization does not exist. At intensities too low to induce tunnel ionization, electron recollision is believed to be responsible for NSDI. However, at very high laser intensities the recollision is expected to play less of a role, and the sequential ionization rates can account for the ion yields. The sequential ionization model described here ignores the third step of the recollision model and relies on the assumption that once an electron is removed, it no longer interacts with the remaining ion core. The alignment measurements for the triplet states are in general agreement with this level of theory. However, the anisotropy attributed to the \(^3\text{D}_2 \) state represents an almost entirely unaligned distribution and is in poor agreement with the model. Together, these results suggest that the alignment generated by SFI with linearly polarized laser pulses is spin state dependent.

This stark contrast in the agreement between experiment and theory for the alignments of singlets and triplets can be understood by including spin in the rescattering concept. A “hole” is treated as a particle with defined spin and angular momentum that represents the properties of the missing electron. In singlets, where the two holes have an orthogonal spin direction, they may occupy the same final atomic orbital. In triplets, both holes have identical spin directions and cannot occupy the same space due to the Pauli exclusion principle, and therefore, they must reside in different atomic orbitals. The experimental results suggest that for linearly polarized light, the probability for the liberated electron to return to and impact with its parent orbital is large, diminishing the alignment in the process of forming singlet states. In contrast, the probability for recollision with a different atomic orbital may not be as significant for linearly polarized light, which allows the sequential tunnel ionization rates to determine the alignment of triplet states.\(^{47,48}\)

Therefore, although the effects from electron recollision and NSDI can be ignored in triplet spin states, their influence is strong in singlet spin states over the intensity range where these experiments are performed. The difference between singlet and triplet final state alignment in strong-field double ionization provides a new window on electron correlation phenomena.

The alignment measured here for Xe\(^+\) is in excellent agreement with the sequential ionization model. Testing the sequential model with various laser pulse parameters does not explain the reduced alignment observed in previous experiments. However, the alignment is prepared not only by the anisotropy of laser-atom interaction but also by scattering introduced through the electron–ion recollision. Consider two laser pulses of equal peak intensity but contrasting pulse width. For long laser pulses, electron tunneling is most probable at the very peak of the electric field as intensity slowly increases during the leading edge of the pulse envelope. The intensity of each subsequent laser half-cycle increases only slightly meaning the electron has little or no kinetic energy when returning to the ion and therefore may not significantly influence the alignment. However, for very short, few-cycle pulses, the laser intensity increases so abruptly that tunneling occurs away from the field’s peak, and the phase of the laser at the time of ionization becomes important. The subsequent half-cycle can have significantly higher amplitude and therefore return the electron with large kinetic energy (up to \(3.2^1\)) times the ponderomotive potential of the laser field). This energetic impact can randomize the orbital alignment in the final state of the ion. This predicts alignment to be in better agreement for longer pulses, which matches the literature trend. A complete description of the scattering event requires accounting for the nonlinearity of the electric field, Coulomb interaction between electrons, and a well-characterized laser pulse.

The orbital alignment in Xe\(^{2+}\) may be strongly dependent on the polarization parameters of the laser and the prospect of controlling the state alignment warrants further investigation. Recollision is not expected when circularly polarized light is driving the ionization, and therefore it may be investigated if such parameters can be used to prepare aligned singlet states. With elliptically polarized light, it may also be possible to enhance the recollision into other atomic orbitals and therefore influence the alignment in triplet states, or even prepare an orientation in the quantum state distribution. The small disagreements between experiment and theory for the triplet states might be considered in terms of the coherent electron motion that occurs in the ion during the time between where the electrons tunnel or recollide with the ion. Tracing the motion of electrons on the attosecond time scale, by using laser pulses of duration less than or comparable to the spin–orbit period, will reveal additional details regarding the multi-electronic effects during ionization. Gaining a better understanding of electron correlation effects has important consequences for further developing SFI for the measurement of the electronic properties of molecules, clusters, and solid state materials, which is essential to understanding attosecond wave packet formation and propagation.

VI. CONCLUSIONS

The alignment prepared through the strong-field single and double ionization of xenon has been measured using core–hole absorption spectroscopy. For singly charged ions, an almost perfect alignment was recorded in \(^3\text{P}_{3/2}\) with the hole occupying the \(|M_J| = 1/2\) state, in excellent agreement with theory. The anisotropy of Xe\(^{2+}\) transitions \(4d^{10}5s^4 \rightarrow 4d^25p^5\) were quantified in terms of multipole expansion parameters, \(\beta_2\) and \(\beta_4\). From the anisotropy, the alignment of
the p terms were extracted and used to reveal the role of electron correlation in the alignment prepared through the strong-field double ionization of noble gas atoms. For the triplet spin states, the recorded alignment is in good agreement with the sequential ionization rate model. However, although the sequential ionization model predicts a strong alignment in the singlet spin state (1D), the experimental data suggest that the state is nearly unaligned. We attribute the loss of alignment in the singlet to electron–ion recombination that occurs during NSDI. For linearly polarized laser pulses the electron–ion recombination occurs in singlet spin states more prominently than in triplet spin states. Our results imply that alignment generated through strong-field double ionization is spin-state dependent, and dynamical calculations may reveal a broader context for spin dependence in these processes.

Author Information

Corresponding Author
*S. R. Leone: e-mail, srl@berkeley.edu; tel, (510) 643-5467; fax, (510) 643-1376.

Author Contributions
The manuscript was written through contributions of all authors. All authors have given approval to the final version of this manuscript.

Notes
The authors declare no competing financial interest.

Acknowledgments

We thank A. N. Pfeiffer for fruitful discussions. S.G.S. is supported by the National Science Foundation Chemistry Division CHE-1049946. E.R.H. and S.R.L. acknowledge support from the National Science Foundation Engineering Research Center for Extreme Ultraviolet Science and Technology Grant No. EEC-0310717. Funding for materials and equipment was provided through the Department of Energy Grant No. DE-AC02-05-CH11231 via the LBNL Chemical Sciences Division. S.R.L. acknowledges additional support that contributed to the intellectual content of this project: W.M. Keck Foundation; Department of Defense National Security Science and Engineering Faculty Fellowship.

References

(28) Shiner, A. D.; Schmidt, B. E.; Trallero-Herrero, C.; Wörner, H. J.; Patchkovskii, S.; Corkum, P. B.; Kieffer, J.-C.; Légare, F.; Villeneuve,

(44) Robinson, R. L.; Kovalenko, L. J.; Smith, C. J.; Leone, S. R. Individual Cross Sections for 'D_2' Sublevels (M_e = 0,1,2) in the Alignment-Dependent Process: Ca(4p^4 1D_2) + Rg → Ca(3d4p 1F_2) + Rg as a Function of Rare Gas. *J. Chem. Phys.* 1990, 92, 5260–5269.

