
UCLA
UCLA Electronic Theses and Dissertations

Title
Logistic Gifi: A Logistic Distance Association Model for Exploratory Analysis of Categorical 
Data

Permalink
https://escholarship.org/uc/item/5ts8876w

Author
Evans, Gary William

Publication Date
2014

Supplemental Material
https://escholarship.org/uc/item/5ts8876w#supplemental
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5ts8876w
https://escholarship.org/uc/item/5ts8876w#supplemental
https://escholarship.org
http://www.cdlib.org/


University of California

Los Angeles

Logistic Gifi: A Logistic Distance Association

Model for Exploratory Analysis of Categorical

Data

A dissertation submitted in partial satisfaction

of the requirements for the degree

Doctor of Philosophy in Statistics

by

Gary William Evans

2014



c© Copyright by

Gary William Evans

2014



Abstract of the Dissertation

Logistic Gifi: A Logistic Distance Association

Model for Exploratory Analysis of Categorical

Data

by

Gary William Evans

Doctor of Philosophy in Statistics

University of California, Los Angeles, 2014

Professor Jan de Leeuw, Chair

In this work, we explore a distance association method, Logistic Gifi, for categor-

ical data which advances geometric data analysis techniques in much the same

way that homogeneity analysis did with regard to correspondence analysis, mul-

tidimensional scaling, and general clustering methods. It uses the methods of

multidimensional unfolding with a probability-based loss measure to create low-

dimensional geometric representations of data in which distances correspond in

a direct way to the probabilistic structure of the data. As with homogeneity

analysis, a central feature of our method is the use of binary indicator matrices

and, in some applications, fuzzy-coded (i.e., non-binary, row stochastic) indicator

matrices to represent categorical data. This gives us a very versatile method with

considerable flexibility in the types of data which can be analyzed. We create

and study algorithms to use the method to compute low-dimensional geometric

representations of various types of data. We analyze the convergence properties

of this complex algorithm and show how minimal polynomial extrapolation can

be used to accelerate it. We then study relationships between this logistic dis-

tance method and logit-based regressions. We present several applications of the

method to visualizations of regression results as well as data types such as roll
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calls, social networks, and Markov chains. Finally, a version of the method with

bias parameters is introduced and developed and used to emphasize features of

data visualizations. We show how bias constraints can be used to represent cer-

tain types of model testing. Noting the similarities between the model with bias

parameters and ideal point discriminant analysis, we examine these using bias

constraints and different forms of indicator matrices. Last, we study the stability

of the method.
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CHAPTER 1

Introduction

We will first look at some basic ideas of distance association methods using in-

dicator matrices. Then we will introduce what we have referred to as a logistic

distance association model, Logistic Gifi, and discuss some of its basic properties.

We will close this section by looking at two basic demonstrations of the model;

the first using binary indicator data, the second using fuzzy-coded indicator data.

We begin with a simple example to illustrate the construction of indicator

matrices and the aim of the method. Suppose we have n persons each asked

to select their one favorite among m categories - of music, for example (with,

generally, m much smaller than n). The results of this survey can be represented

in an n × m indicator matrix, G, with each row containing a single 1 and m-1

zeroes. Also, we assume that each type of music is chosen at least once; i.e, each

column of the matrix contains at least one 1 (otherwise, we can simply discard

that category from the data). Obviously, each person is identified with 1 category,

the group of persons is partitioned by category membership, and, conversely, each

category can be identified with a group of 1 or more persons.

Next, suppose that we have some other partitionings of the persons based on

some other extrinsic characteristics, such as gender or age, for instance. These can,

likewise, be represented by indicator matrices. It is not likely that each of these

will partition the group of persons identically to the music preference matrix. So

now, each person has a profile based on their category memberships and each music

category has a somewhat more complex profile based on the persons choosing that
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type of music and some weighting of their other category memberships. Thus,

we become interested in modeling the probabilities that persons with particular

profiles will prefer music of a certain type and we want a geometric representation

to reflect this aspect of the data. Further, we hope to do so in such a way that

the probabilities can be derived directly from the distances between points in the

geometric configuration.

This basic example motivates the distance model we shall examine, named

”Logistic Gifi” (LG) by its inventor, De Leeuw (2005) [15]. The approach ad-

vances geometric data analysis techniques in much the same way that De Leeuw’s

homogeneity analysis did with regard to correspondence analysis (CA), multidi-

mensional scaling (MDS), and general clustering methods. (A detailed treatment

of this can be found in Gifi (1990) [33], with an excellent summary in Michaelidis

& De Leeuw (1998) [49].)

We will first consider a version of LG using Euclidean distance (d(x, y)) as

the plotting metric. For a single n x m binary indicator matrix, G, as we have

postulated above, which models the data as the realization of n multinomial trials,

we let:

(1) πil(X,Y) = exp(−d(xi,yl))∑m
j=1 exp(−d(xi,yj)))

where πil is the probability that object i is in (or has chosen) category l, xi and yj

are, respectively, the ith and j th rows of the coordinate matrices X and Y; that is,

X and Y are respectively, n × d and m × d matrices with each row of X giving the

coordinates of a person (which we shall refer to from here on as an object) in the

d-dimensional geometric representation of the data we seek and each row of Y the
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coordinates of a category.1 We refer to this as Unbiased2 Euclidean LG, denoted

uLG-1, to distinguish from the general LG model which includes weighting, or

bias, parameters, and, as noted, may involve difference distance metrics.3

Notice the resemblance of the uLG-1 modeling function to the logit link func-

tion used in logistic regression. Hence, the name given by De Leeuw to the model.4

The general model further betrays an affinity with the the ideal point discrimi-

nant analysis (IPDA) of Takane et al. (1987) [63], and the log-linear modeling

of contingency table data, of which a thorough review is presented in De Rooij

(2001) [25]. (Each of these topics will be discussed in some detail in later sections;

IPDA in Chapter 5 on LG with Bias Parameters and log-linear modeling in Chap-

ter 2 on Categorical Longitudinal Data and Model Testing and in Chapter 5.) As

will be seen, with LG, De Leeuw has connected these techniques with the more

1Though sometimes higher dimensional models are useful to consider, unless otherwise re-
quired or specified, we will choose d = 2 for two main reasons. First, this provides ease of display
and interpretation and, second, in most scaling models, when a 1-dimensional representation is
not viable, 2 dimensions, occasionally 3, have usually been found to give adequate model fit.
See Heiser & Meulman, 1986 [40].

2We use the term Unbiased here and throughout to mean without bias parameters, not to
refer to expectations of parameter estimates.

3In the most general form of LG, which we refer to as Biased LG (to mean LG with bias
parameters), for a single n × m indicator matrix, G, we model the probability that object i is
in category l as:

πil(X,Y) = βlexp(−φ(xi,yl))∑m
j=1 βjexp(−φ(xi,yj))

where β’s are the bias parameters and φ(xi, yl) is a function giving a distance between object
i and category j. In the uGL-1, all β’s = 1 and φ is Euclidean distance. We will discuss the
model with bias parameters and some of its uses in sections to follow.

4In addition to Euclidean distance, DeLeeuw proposes as well the use of squared Euclidean
distances and inner products in the LG model. Squared-distances were used in the original
development of MDS since their derivatives are much easier to compute and work with. In log-
linear modeling, they are typically used for the same reason, since such modeling is generally
done by maximum-likelihood methods requiring the computation of an information matrix. With
the development of the majorization method we will work with, known as SMACOF, it is no
longer necessary to work with squared distances. Since, in visualization applications, Euclidean
distances are easier to directly assess and interpretation of distances is essentially the same, we
will study only Euclidean distance models in this work. As for the inner product model, we have
found that interpretation of these types of configurations is often quite difficult. For this reason,
again, in this work we will forego their study in favor of Euclidean distance. Importantly, as De
Leeuw (2006) [17] notes, by suitably adjusting the bias parameters, fitting a squared distance
model with bias is equivalent to fitting an inner product model. A probit-linked distance model
is also proposed by De Leeuw
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general distance methods of MDS and, in particular, multidimensional unfolding

(MDU). Through the use of indicator matrix data considered as (or, in the case of

fuzzy indicators, given as) measures of probabilities, this allows for the techniques

to be examined in a broader range of data analysis contexts. Also, within the

framework of MDU, we can view LG as having been developed to address some

of De Leeuw’s concerns about this method.

With the model as set out above, the goal is to find coordinates (xi1, xi2) for

each object i = 1, 2,...,n and (yj1, yj2) for each category j = 1, 2,...,m, so that

the probabilities computed by (1) using the resulting distances between points

are as close to the data as possible. Since we are using the negative of distances

for powers, the optimum coordinates will be such that objects are closest to the

categories they belong to or select and relatively farther from the other categories.

A key feature of the design is that persons and categories with similar profiles will

be located close together. Some preliminary observations are helpful in further

understanding uLG-1.

First, for data which categorizes the objects on a single variable (i.e., data

represented by a single binary indicator matrix), to have a perfectly fitting model

we must have d(xi,yj) = 0 for all i, j such that object i is in category j (i.e.,

for g ij = 1) and d(xi,yj) = ∞ otherwise. Notice that for a single variable with

two or three categories, this is theoretically possible in 1 dimension and in 2

dimensions several categories can be accommodated. We are, however, interested

in realizable, as opposed to idealized, geometric representations of data, so we will

not accept plots with infinite distances. Nonetheless, even with this restriction, it

is easy to see that for any finite number of objects measured on any single variable

represented by a binary indicator matrix (with a finite number of categories), a

1-dimensional solution can be found to any desired degree of point-wise precision.5

5It is also easy to see, for example, that this is true for classifications involving more than
1 variable if they each have the same number of categories and these identically partition the
objects. From the point of view of LG, such variables are essentially identical.
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An important result of De Leeuw (2006) [14] extending this observation is that,

for multiple binary variables, each object can be plotted closest to all categories to

which it belongs, if and only if, deviance can be made arbitrarily close to 0. That

is to say, the minimization will find coordinates so that the model probabilities

will approximate the data to any desired uniform point-wise precision. We refer

to this as the Ideal Model Theorem (IMT).

We give a proof of the IMT here for Unbiased LG with Euclidean distance. The

brief discussion above on the basics of LG gives an indication of how to proceed.

First, suppose we have a configuration in which each object is closest the category

to which it belongs for all variables. Without loss of generality, to simplify the

notation somewhat, we consider one variable at a time. We have:

(2) πil(X,Y) = exp(−d(xi,yl))∑m
j=1 exp(−d(xi,yj))

,

and we want to show that we can obtain a configuration such that (2) can be

made arbitrarily close to 1 for all i and l such that object i is in category l. To

further simplify the notation, assume object i is in category 1 (since some object

must be). Notice that, by the assumed distance condition, we have, for j ≥ 2:

(3) d(xi, yj) = d(xi, y1) + cj, where all cj >0.

Thus, exp(-d(xi, yj)) = exp(-d(xi, y1) - cj) = exp(-d(xi, y1))exp(- cj) and, by

factoring out exp(-d(xi, y1)), (2) becomes

(4) πi1 = 1
1+

∑m
j=2 exp(−cj)

.

Let ε >0 be arbitrarily small. To have 1 - πi1 <ε, it is clear that we must

5



produce a configuration satisfying the distance condition for which the cj’s are

increased so that
∑m

j=2 exp(−cj) is sufficiently close to 0. We can do this by

a dilation of the configuration; i.e., by multiplying all coordinates of the given

configuration by some constant D >1. It is easily seen that doing this has the

effect of multiplying all object-to-category distances by the same factor, D, and

it preserves the distance condition. So, we must find D so that:

(5) 1 - 1
1+

∑m
j=2 exp(−Dcj)

<ε;

or, after a little algebra:

(6)
∑m

j=2 exp(−Dcj) <
ε

1−ε .

Since limx→+∞ e−x = 0, and ε is fixed, the dilation constant D can be chosen so

that all m-1 terms of the sum on the left of (6) are less than ( ε
1−ε)(

1
m−1

). Thus, (6)

is true. Now, since the object and category are randomly chosen both from a finite

number of possibilities and since ε is arbitrarily small and D can be arbitrarily

large, it follows that D can be chosen so that the APWL over all variables can

made as small as possible. The only if direction is obvious, particularly from the

preceding demonstration, and this gives the result. Notice that it is clearly seen

that this proof applies to squared Euclidean distances and inner product distances

since the effect of dilation is the same.6

These properties of LG we have been discussing are mainly due to two facts:

first, as noted above, objects should be closest to the categories they are in, but,

6An interesting implication of the IMT is that if another method, such as e.g. homals,
produces a 100% classification configuration, that configuration can be dilated to create an
LG plot with arbitrarily small APWL. Thus, with very little extra work, the data can be
simultaneously studied from the point of view of both methods. With homals, for example, the
notions of discrimination measure and correlation of variables which are features of that method
can be analyzed in connection with LG.
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for binary indicators, they do not need to be identically far from the other cate-

gories; second, the distances from object to object and from category to category

are not directly involved in (1). Thus, to increase the precision of the model, cer-

tain objects and categories (those with relatively unique profiles) can be moved

large distances from the main groups in the configuration. It is hard to overem-

phasize that only distances from objects to categories are used in the probability

computations. An important implication of this is that, as noted above, the

method somewhat resembles MDU; thus, MDU theory plays a significant role in

the development and study of LG.

Considering the above observations, we further see that, in general, the co-

ordinates giving us desired precisions, or even exact solutions where those are

available, are not unique. They can be changed by rotation, translation, or reflec-

tion and the overall configurations of two equally well-fitting plots can, in theory,

be quite different. In examining an LG plot, the focus, then, is generally to be

on the distance differences between object and category points, the clustering of

between and within object and category groups, and on basic geometric patterns

in the final configuration. Interpretation is based heavily on object and category

profiles, such as in CA; however, interpretation of the dimensions or principal axes

of the plot, though possibly informative, is secondary.

Turning back to our music selection example, suppose now that we have binary

indicator matrices which classify these objects (persons), perhaps, as mentioned

previously, by age, gender, and ethnicity, etc.7 It is not now always possible

to find 1-dimensional coordinates for a given point-wise precision and may not

be possible to find 2-dimensional ones. We need a procedure, therefore, which

will find coordinates to minimize the overall discrepancies between the data and

7Age can be considered a categorical designation, of course, by classifying persons as being in
a particular age interval. In this way, such a classification, and continuous variables in general,
can be modeled, or coded, by binary indicator matrices. Such matrices can be used to code
various other types of data, as well. Chapter 2 of Gifi (1990) [33] has a thorough discussion of
this topic and also presents three methods for coding missing data.
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model probabilities. We can think of this, in the parlance of MDS, as the stress

of the model. However, as noted above, De Leeuw’s work in MDS and MDU led

him to be skeptical of the traditional stress functions. He sought an approach

which would not rely on arbitrary normalizations to avoid degenerate solutions

and the results of which could be assessed based on a more reliable and readily

interpretable measure than traditional stress. See De Leeuw (2007) [19] and De

Leeuw & Heiser (1982) [22] for interesting discussions of these points.

The approach taken by De Leeuw [15] is to view the data as arising from a

multinomial or product multinomial distribution and to minimize the negative log-

likelihood, or deviance, of the model. As De Leeuw notes, this is not necessarily a

realistic description of the data generating mechanisms in such studies, but it is a

useful conceptualization. It allows for fairly direct, likelihood-based computations

and interpretations since distances model probabilities, instead of dissimilarities or

abstract preferences, as they do in classic MDS and MDU. Of particular interest

is that the algorithmic computation of the configuration uses MDU, leading to

applications of MDU in contexts outside of the realm of psychometrics.

1.1 The LG Algorithm

Let us turn now to that computation. Consider the most general case, where we

have k variables with variable j = 1,2,...,k having mj categories and each variable

measured on n objects. We can form what we call a super-indicator matrix, G,

by column-binding the indicator matrices for each of the k variables. We must

find coordinates now for each of the
∑k

j=1mj categories and each of the n objects.

Thus, we have to set initial positions for, and ultimately determine solutions for, k

category coordinate matrices, Yj and for the objects (call their coordinate matrix,

X). For notational convenience, we row-bind the category coordinate matrices into

a single coordinate matrix, Y. With our data and parameters in this form, we use
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De Leeuw’s multinomial distribution concept to write the likelihood (assuming

independence) as:

(7)
∏n

i

∏k
j

∏m
l
jπijl(X,Y)gijl

Thus, the negative log-likelihood (or deviance) is:

(8) ∆(X,Y) = -
∑n

i

∑k
j

∑m
l
j g ijllogπijl(X,Y)

To find configuration coordinates that will minimize this function, we use

quadratic majorization8 to reduce the problem to an iterated least squares prob-

lem. We will show that in each iteration we must minimize:

(9)
∑n

i

∑k
j

∑m
l
j(d(xi, yjl) - z̃ijl)

2

where

(10) z̃ijl = d(x̃i, ỹjl) - 4(g ijl - πijl(X̃, Ỹ ))

X̃ and Ỹ being coordinate matrices from the prior iteration of the algorithm and

the target, z̃, changing with each iteration. We follow the derivation of this result

sketched by De Leeuw (2005b) [16].

We begin with a basic description of the majorization-minorization (MM) op-

timization method.

Suppose we wish to iteratively minimize a complicated function f:Rm→ R. A

8For excellent discussions of majorization and, in particular, quadratic majorization, see
Lange (2004) [45] and De Leeuw & Lange (2009) [23]. In the contexts of MDS and MDU, see
also De Leeuw & Mair (2009) [24]. This latter work is essential to what is to follow here.
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function g(x | xm) is said to majorize f at the support point xm if:

(11) f(xm) = g(xm | xm), and

(12) f(x) ≤ g(x | xm) for all x 6= xm.

Thus, g is tangent to f at xm and above it elsewhere in their common domain.

It can be shown that, if xm+1 is the minimum of g(x | xm), then

(13) f(xm+1) ≤ f(xm).

So, if a simple majorizing function g(x | xm+1) can be found in a closed form

dependent in some way on the function f, we can minimize f by successively min-

imizing the majorizing functions. That is, we will have an iterative algorithm

which finds a sequence of points {xm} in the domain of f such that (13) holds at

every iteration. If f is bounded below (as when, for example, f:Rm→ (0, ∞)), the

sequence of points {f(xm)} converges to a minimum. This descent property gives

the MM method a high degree of numerical stability.

It is easy to show that majorization is closed under summation; i.e., if g1 ma-

jorizes f1 and g2 majorizes f2, then g1 + g2 majorizes f1 + f2. This property is

useful for majorizing log-likelihoods, as we shall see.

Finding a suitable majorizing function is not always easy. However, an impor-

tant result (which we will refer to here as the quadratic majorization theorem)

states that, for f:R→R, if f is twice differentiable and there is a B >0 such that

f”(x) ≤ B for all x, then for each y the convex quadratic function

10



(14) g(x) = f(y) + f’(y)(x-y) + 1
2
B(x-y)2

majorizes f at y. This is easily proved by considering the Taylor series expansion

of f at y. See De Leeuw & Lange (2009) [23]. A more general version of this

theorem for functions on Rm is that

(15)) g(x) = f(y) + d f(y)(x-y) + 1
2
(x-y)tB(x-y)

majorizes f(x) at y, where B is a positive definite matrix such that B - d2f(x) is

positive semi-definite. See Lange (2004) [45] and Böhning & Lindsay (1988) [5]

We can apply this theorem and the closure over summation property to the terms

of the LG link function (1) to obtain a majorizing function.

Now, for the LG link function, considered for 1 categorical variable we have

from (1),

πil(X,Y) = exp(−φ(xi,yl))∑m
j=1 exp(−φ(xi,yj))

.

Thus:

(16) ∂πil
∂φil

= π2
il − πil,

and,

(17) ∂πil
∂φiv

= πilπiv.
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Here, φ represents whatever distance function we choose for the LG link. In our

applications, it is the Euclidean distance function, but notice as we proceed that,

for this derivation, it need not be. It could represent squared distances or even

some non-Euclidean metric. It need not even satisfy the definition of a distance

function. So, in general, we have:

(18) ∂πil
∂φiv

= πilπiv − πilδlv

where δlv is the Kronecker delta equal to 1 if l = v and 0 otherwise.

From this, it follows that for the negative log-likelihood (8), we have:

(19) ∂∆
∂φil

= gil − πil

(20) ∂2∆
∂φil∂φiv

= πilδ
lv − πilπiv.

Thus, d2∆ is a matrix of the form H = Π− ππt where π is some probability

vector and Π is the diagonal matrix with the vector π on the diagonal. The largest

eigenvalue λ1 of this matrix being bounded above by any matrix norm (see eg.

Gentle (2007) [32]), we have:

(21) λ1 ≤ maxni=1

∑n
j=1 |hij| = maxni=1 2πi(1− πi) ≤ 1

2

i.e.; the sums of the row absolute values are of the form 2πi(1 − πi) and, thus,

bounded by 1
2
. Thus, the positive definite matrix B = 1

2
I is such that B - d2∆

has all real, non-negative eigenvalues and is, therefore, positive semi-definite.

Notice we have examined this for a single variable, but additional variables

12



simply add summands of the same form to the partials of ∆. Applying the gen-

eral quadratic majorization theorem stated above and the closure property of

majorizations for sums to this multivariate form of ∆ (expanding around the dis-

tance matrices φijl(X̃,Ỹ )) and grouping terms, we have:

(22) ∆(X,Y)≤∆(X̃,Ỹ ) +
∑n

i

∑k
j

∑m
l
j (g ijl - πijl(X̃,Ỹ ))(φijl(X,Y) - φijl(X̃,Ỹ ))

+ 1
4

∑n
i

∑k
j

∑m
l
j(φijl(X,Y) - φijl(X̃,Ỹ ))2

where X̃ and Ỹ are given coordinate matrices at a particular iteration of the

majorization. The next step is to view the right side of (22) as a sum of several

quadratic expressions and to complete the square of each one. This is done by di-

viding both sides of (22) by 1
4
, then adding 4((g ijl - πijl(X̃,Ỹ ))2 to each quadratic

term. Notice that neither the division by a positive number nor the adding of a

square (hence, non-negative) term disturbs the majorization inequality. Regroup-

ing terms and dividing both sides back by 4 again, gives:

(23) ∆(X,Y)≤∆(X̃,Ỹ ) + 1
4

∑n
i

∑k
j

∑m
l
j((φijl(X,Y) - φijl(X̃,Ỹ )) + 2(g ijl - πijl(X̃,Ỹ )))2

- 2
∑n

i

∑k
j

∑m
l
j (g ijl - πijl(X̃,Ỹ ))2.

Now it is evident that minimizing (23) amounts to minimizing the middle term

on the right of the inequality since, at any given iteration, the other terms are

constants. Rewriting the middle term as

(24) (φijl(X,Y) - φijl(X̃,Ỹ ) + 2(g ijl - πijl(X̃,Ỹ )))2

it is clear that the minimum occurs at the coordinates X and Y which give:
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(25) φijl(X,Y) = z̃ijl

where

(26) z̃ijl = (φijl(X̃,Ỹ ) - 2(g ijl - πijl(X̃,Ỹ )).

Notice that the majorization can be applied to LG with Bias Parameters as well

simply by writing φ(X,Y) = d(X,Y) + log(β) where d is the chosen distance

function. This does not change the derivation above.

Finally, since the diagonal elements of H are bounded above by 1
4

and the

off-diagonal elements by 0, we can use local bounds, combined with generalized

block-relaxation, to bound H by 1
4
I. See De Leeuw (1994) [21]. Using the same

calculations as above, we get the majorization:

(27) ∆(X,Y)≤∆(X̃,Ỹ ) +
∑n

i

∑k
j

∑m
l
j (g ijl - πijl(X̃,Ỹ ))(φijl(X,Y) - φijl(X̃,Ỹ ))

+ 1
8

∑n
i

∑k
j

∑m
l
j(φijl(X,Y) - φijl(X̃,Ỹ ))2

which yields the target minimum:

(28) z̃ijl = (φijl(X̃,Ỹ ) - 4(g ijl - πijl(X̃,Ỹ )).

This gives a slightly sharper majorization and slightly improved performance from

our algorithm.

A little parsing of these equations gives rise to a straightforward approach to

constructing an algorithm for computing coordinates in uLG-1. Suppose we have

some proposed configuration for objects and categories; either a starting configu-

ration or one produced as an iterate of our algorithm. From the coordinates of this
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configuration, we can compute, for each variable, the object-to-category distance

matrix, then column-bind these into a super distance matrix, d(X̃,Ỹ ). From (26)

and (28), it is obvious that deviance is decreased and ultimately minimized by

a configuration with super distance matrix equal to the target, -z̃ijl. This new

distance matrix is obtained by pointwise subtraction of four times the difference

between indicator and model probabilities from d(X̃,Ỹ ).

This seems quite simple, but note that we are not really seeking a distance

matrix, even one with perfect or near-perfect model fit. We point out here that

these can fairly easily be obtained by observing the following: Let pij be the i,j th

entry in the indicator matrix; i.e., pij is the probability that subject i chooses

or is in category j. Now, suppose that from the data we have an estimate of the

distances between the objects and category 1 - call them di1’s - that satisfies the

basic ordinal condition that di1 < dj1 if and only if pi1 > pj1 (i.e., large probabili-

ties correspond to small distances and vice versa) and, perhaps, some basic metric

condition, as well. From these distances, we can easily compute the distances be-

tween the objects and all other categories that must exist in an ideal (i.e., perfect

fitting) LG model by the simple formula:

(29) dik = di1 + log(pi1) - log(pik).

For fuzzy indicator matrices with all non-zero entries, the terms of this equation

are all well-defined. For binary matrices, we need to replace zero probabilities with

some small ε > 0. Though well-defined arithmetically, note that dik may then be

negative, which we do not consider to be feasible distances. To cure this problem,

notice that to each distance, we may, without changing the model probabilities

given by (1), add a positive constant (the absolute value of the minimum negative

distance, for example) to make all distances in the matrix non-negative. We now

have a distance matrix that will exactly model the indicator probabilities (for
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positive fuzzy indicators) or, for binary indicators, as near-exactly as we wish,

depending on our choice of ε.

What we are seeking, however, is a configuration; i.e., a set of coordinates,

which produces such a distance matrix between them. The method for doing

this from a full distance matrix is MDS; from a partial distance matrix as we

have in LG, it is MDU. For a full discussion of these techniques, see Borg &

Groenen (2005) [6]. Therefore, the next step in the LG algorithm must be to use

MDU to compute object and category coordinates that give the object-to-category

distances found in the -z̃ijl matrix. We will then iterate this process until we have

reached our desired precision. This we measure by average pointwise loss (APWL)

since pointwise loss is directly involved in the algorithm and since it is more easily

interpretable in this context than likelihood or log-likelihood.

Here, we have to be prepared to deal with 2 issues. First, the -z̃ijl matrix may

contain negative entries. There are existing MDU algorithms we can employ to

compute coordinates, but these are not well-behaved when the distances to be

fitted are negative. Fortunately, we can deal with this, as discussed above, by

adding a constant to the distance matrix for each variable to make all distances

non-negative. Second, the distances, even after being adjusted as above, may

not be embeddable in two or even three dimensional space. Thus, we must use

an MDU algorithm which will find an optimum fitting of the distances when an

exact solution does not exist.

Two MDU algorithms were evaluated for uLG-1. The first was from the R

package, munfold which uses the well-known algorithm of Schönemann (1970)

[57]. Since Schönemann’s algorithm, itself, uses linear algebra to compute ex-

act solutions, but does not find optimum, non-exact solutions, munfold refines

Schönemann’s solution using conjugate gradient methods. Distances are first

transformed to allow Schönemann’s linear algebra operations to compute a so-

lution before optimization is attempted. Perhaps because of the often large dis-
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tances used to model zero or near-zero probabilities, this method, while quite

good at finding exact solutions, had considerable difficulty with uLG-1 data. The

second algorithm considered, and ultimately chosen for the uLG-1 algorithm, was

smacofRect from the R package smacof of De Leeuw & Mair (2009) [24]. This

algorithm uses majorization to minimize unfolding stress (SMACOF stands for

Scaling by Majorizing a Complicated Function). It seems to have little difficulty

dealing with the large distances, and sometimes large category/object ratio, of

uLG-1 data. Our uLG-1 algorithm, known as UnbiasLG, was coded in R and is

found in the supplementary file. As arguments, it takes a list of indicator matrices,

a maximum number of iterations, a chosen dimension for the configuration, and

a desired APWL.9 Outputs include coordinates, APWL, and variable distance

matrices for the configuration.10

At this point, it is instructive to look at two basic demonstrations. For the

first, we shall analyze compositional data on alcohol consumption compiled by the

9APWL rather than fixed-coordinate precision is used to gauge convergence of the algorithm
to avoid the possibility of the algorithm reflecting, rotating, or translating from one iteration to
the next. If this should occur, the algorithm could find a series of optimum configurations, but
fail to converge due to relatively large changes in the coordinates found. In practice, this does
not seem to happen, but it is certainly a theoretical possibility.

10It should be noted here that loss in the uLG-1 algorithm comes from two sources: First,
from the fact that, at each iteration, we are minimizing a majorization, not the deviance itself
and, second and more important, from the fitting of non-embeddable distances by MDU. A
method to minimize this latter source suggests itself. As we have seen in discussing negative
target distances, adding a constant to all within-variable distances results in equal model fit
(in terms of APWL). What if, for our chosen dimension, we could compute a constant at each
iteration that, by adding it to the distance matrix, would produce embeddable distances. MDU
(or distance-fitting) loss would then be zero. This is a version of a well-known problem in
MDS, the additive constant problem. It has been shown that a constant can always be found
such that the distances can be embedded in (n-2)-dimensional space, where n is the number of
objects. In fact, in Calliez (1983) [8] a formula is derived to find the smallest such constant.
We have tried to use this constant in the above approach without success in improving the
performance of the algorithm. Finding such a constant for a fixed dimension (usually two or
three) less than (n-2), a problem apparently first proposed by Torgerson (1952) [64], cannot
always be done. One must settle for a constant that will give best fitting distances in a least-
squares sense. Finding this involves something of an elaborate heuristic process or an iterative
approximation. See Messick & Abelson (1956) [48] and Cooper (1972) [10], respectively. See
also De Leeuw & Heiser (1982) [22]. Computing this constant and using it to transform the -z̃ijl
matrix at each iteration of the uLG-1 algorithm may be worthwhile for some applications, but
our experimentation with this approach has found it not to yield greatly improved efficiency or
performance, particularly in comparison to other methods that will be reported on.
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World Health Organization (WHO). (For all data referred to herein not appearing

in the text, including this dataset, see the supplementary file.) From an original

dataset with 95 countries11, 47 were chosen at random. The table shows percent-

ages for each country indicating that country’s preference among the four listed

types of alcoholic beverage. For our first analysis, we wish to use LG to perform a

cross-classification of the countries by continent versus whether or not beer is the

preferred drink. Thus, we will use two indicator matrices, one of dimension 47 ×

2 with categories for beer and other and one of dimension 47 × 4 with categories

for Africa, Asia, Europe, and North/South America.

The UnbiasLG algorithm was run on this data, with initial coordinates in

2 dimensions, until an average point-wise loss (APWL) < .001 was achieved.

(Recall that average point-wise loss (APWL) means the average of the absolute

differences between data probability and corresponding model probability.) The

resulting plot of objects (countries) and categories is shown in Figure 1.1.

Notice that there are 8 possible cross-classifications of the countries, but only 7

clusters of objects produced. A quick check of the data shows that all of the

NA/SA countries preferred beer; i.e., no country in the list has an other-NA/SA

profile. Further, it is important to note that the 47 objects are each assigned to one

of 7 points, depending upon which of the existing dual profiles they have. (Points

in the plot were jittered to provide legibility.) Thus, LG provided something of

an exact clustering of this data. We see that, for most countries, regardless of

continent, beer is the preferred drink. Those countries with a different preference

were separated from their dominant continent groupings and pulled to the other

category point in nearly radial directions with the beer category near the center

point. The sub-groupings contain countries all from the same continent with their

11In the original data, Poland’s percentages were entered erroneously. The Poland row totaled
only .52. The row was removed and the evenly numbered rows of the remaining 94 × 4 table
were used for the analysis.
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Figure 1.1: WHO Beverage Cross Classification

respective main continent groupings between them and the beer category point.

Notice that they are closest to their respective main continent groups.

In addition to this clustering process, recall that distances between objects and

categories (and, for this cross-classification, profile clusters and categories) deter-

mine model probabilities. Working with this sort of cross-classification involving

binary indicator matrices, these probabilities are, again, somewhat conceptual.

They provide us with our measure of model fit, of course, but are not necessarily

of primary importance in the data analysis. When working with fuzzy-coding

applications, they take on more significance. We turn to these next.

Recall that a fuzzy-coded indicator is a non-binary, row-stochastic matrix; i.e.,

all entries are non-negative with at least one row having at least two positive en-

tries and a row sum of 1. Some rows (often, all or nearly all rows) of the indicator

matrix (or object profile) are, therefore, non-degenerate discrete probability vec-

tors. To better understand the ULG-1 model applied to such data, we consider,
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as above, some basic examples.

First, suppose that row i is uniform over m categories; i.e., the probability

that object i is classified in any of the categories is 1/m. Then, it is easy to see

that, for an exact model, all category points should be placed equidistant from

the object i point - on a circle if we are in 2-dimensional space (or in general,

a d-dimensional sphere). Of course, if we are plotting only object i, then all

category points can be placed at any identical point (even the object point) since,

from the probabilistic viewpoint, the categories are identical. Thus, as with binary

indicators, without constraints, we have unidentifiable models. Suppose then that,

in addition to object i, we have several other objects each with differing profiles.

It will of course no longer be possible to plot all categories at a single point. In

trying to reposition them, however, we will try to keep the categories on some

sphere about object i, the uniform profile, then position other objects according

to the model equations. This, in essence, is what the LG algorithm carries out.

Note the following basic properties of LG with fuzzy coding:

For any n × 2 fuzzy indicator with all positive entries, there is an exact 1- dimen-

sional solution. In fact, there are infinitely many different (i.e., non-equivalent)

solutions. For m (the number of categories) > 2, notice that if one row profile is

uniform and a second is not, a configuration of at least dimension 2 is necessary

for perfect fit (which is not always attainable). This has implications for missing

data applications and for psychometric theory.

Also, as shown in (29), the absolute difference in distances from an object point

to 2 categories gives the model log-risk of the object being in the closer (more

probable) versus the farther category. This is an aspect of the model which pro-

vides a connection to multinomial regression, as we shall see.
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We close this introductory section with an application using fuzzy coding. The

data is the same WHO alcoholic beverage data analyzed above. This time, we

will consider only one variable, the preference percentages as compositional data.

We can apply the UnbiasLG algorithm directly to the table of percentages. Figure

1.2 shows the resulting plot after running the algorithm until an APWL < .01 is

attained.

-4 -2 0 2 4 6

-1
0

-5
0

5

x

y

Algeria
Angola

Austria
Bangladesh

Belgium
Brazil

Bulgaria
Cameroon

Cape Verde

ChadCongo

Croatia

Denmark

Eritrea

Fiji

France

Georgia

GhanaHonduras

Indonesia

Ireland

Japan

Kyrgyzstan

Latvia
LiberiaMadagascar

Malta

Mexico

Mongolia

Nepal

New Zealand

Nigeria

Palau

Papua New Guinea

Philippines

Republic of Korea

Sao Tome and Principe

Serbia

Singapore

Slovenia
Spain

Sweden

Thailand

Timor-Leste Uganda

Uruguay

Zambia

BEER

WINE

SPIRITS

OTHER

Figure 1.2: WHO Beverage- Fuzzy Indicator

Notice that the OTHER category, which has several 0 entries, is pushed away

from the rest of the category points and the region of object points. Mongolia

and Nigeria, countries with by far the largest percentages favoring an OTHER

beverage (.385 and .350, respectively), are positioned to reflect that. Both have a

lack of preference for wine which is reflected as well.

By way of basic interpretation, we note that Georgia, Sao Tome, and France are

the countries most favoring wine, with Korea, Timor-Leste, and Latvia favoring
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spirits. The group of countries including Philippines, Algeria, Zambia and Spain

are countries in which beer and wine together make up nearly 100% of beverage

preference, with both categories having some non-negligible percentage. A large

group of countries (which include Sweden, Bangladesh, New Zealand, and Papua

New Guinea) have close to uniform density among beer, wine, and spirits. Such

a profile should be located near the center of the unique circle containing these

category points; or, equivalently, at the intersection of the bisectors of segments

joining them. (It is worth repeating here that when interpreting an LG plot it is

important to keep in mind three ideas. First, relative distances in terms of absolute

difference (not ratio) are of interest, second, due to the exponentiation used in

the model, small apparent differences in distance can indicate large differences in

the model probabilities, and third, and perhaps most important, given non-trivial

data, objects with similar profiles are positioned close to each other, as in CA.)

Notice that BEER, SPIRITS, and OTHER appear nearly co-linear. If they

were exactly so, this would indicate that, in 2 dimensions, there is no country

that can be plotted to have exactly uniform preference for these categories. Put

another way, the closer three category points are to being co-linear, the farther

away from all three will be the unique point (in 2 dimensions) equidistant to them.

For three co-linear categories, there is no such point. Thus, to plot an object with

relatively equal distances to the three categories, we must plot it relatively far

from all three, and the farther, the better, in terms of precision. (The converse

notion to this line of thought is that, in theory, absent such an object in the

dataset, the LG algorithm can plot the corresponding categories in close to a

1-dimensional representation.) For our data, Mongolia is the only candidate for

such a point; i.e., it is the only country with even close to uniform preference for

these beverages (0.200, 0.370, 0.385).

These comments apply as well to the OTHER, SPIRITS, WINE categories.

Notice that these points lie on a very broad arc. The circle containing this arc
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has its center far from the region of country points in our plot. Thus, a country

plotted there, having uniform preference for those three categories of beverage

(with a relatively small preference for beer), would be quite unusual. There is,

in fact, no such country in our data. It should be noted that such a partially

uniform profile could be approximated quite closely by plotting a country point

far from the three categories in a direction determined by the country’s prefer-

ence for beer. Mongolia and Nigeria should be examined in this regard. Notice

that neither has close to uniform preference among the OTHER-SPIRITS-WINE

categories (Mongolia: 0.200 (beer), 0.385 (other), 0.370 (spirits), 0.045 (wine))

and Nigeria: (0.500 (beer), 0.350 (other), 0.100 (spirits), .050 (wine)).12 Their

respective positioning relative to the BEER category is explained by their beer

preferences.

1.2 Voronoi Cells

If applying the uLG-1 formula results in a perfectly-fitted model, the distances

between object points and category points will be ordered in the same way as the

probabilities with which the objects are placed in the corresponding categories.

That is, each object will be closest to the categories with which it is placed with

highest probability, second closest to the category with second highest probabil-

ity, etc. Thus, along with the probabilistic metric discussed above, uLG-1 also

provides a non-metric or ordinal model of the data. A useful geometric construct

for studying this aspect of the LG output is the Voronoi cell.13

12The model probabilities for Mongolia are : 0.202 (beer), 0.371 (other), 0.409 (spirits) 0.018
(wine) and for Nigeria: 0.427 (beer), 0.258 (other), 0.287 (spirits), 0.028 (wine). The results
for Mongolia are modeled quite accurately while Nigeria’s relatively strong preferences for the
BEER and OTHER categories made positioning it more difficult. This suggests interesting
properties of model fit to be examined below.

13After this brief introductory section, we will return to the subject of Voronoi cells in our
discussion of the convergence of LG algorithms. For our purposes, we need not explore the
mathematics of Voronoi diagrams in great detail, though that certainly has been done in the
field of computational geometry. The interested reader is referred to Aurenhammer (1991) [4]
for a concise introduction of the subject with a thorough bibliography.
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The Voronoi cell of a category point is the set of all points in the model space

that are closer to that category point than to any other category point. This set

of points depends, of course, upon the configuration of all category points in the

model. Notice that the IMT of De Leeuw can be stated in terms of Voronoi cells

as follows: For any ε > 0, object and category coordinates can be found by the LG

algorithm such that the model loss is less than ε if and only if, for each variable,

each object can be placed in the Voronoi cell of the category to which it belongs.

Again, an example is instructive for studying Voronoi cells. Figure 1.3 is a

2-dimensional LG model (with the Euclidean distance metric) for a subset of the

WHO beverage data. The data for this model was obtained by removing from the

data used above all six rows in which the OTHER category was non-zero. This

left 41 countries. Then the OTHER category was removed leaving a dataset with

dimension 41 × 3. On this data, our LG algorithm was run in R, this time until

an APWL < .001 was attained.14

It is clear that, using the Euclidean distance model in 2 dimensions, to find

the Voronoi cells of this plot we simply draw the perpendicular bisectors of the

segments joining the pairs of category points. For three categories, there are 3

such bisectors and, if the category points are not collinear, these will intersect at a

unique point, as they have in Figure 1.3, that point being the center of the unique

circle through all 3 points. Each bisector divides the plane in half. The Voronoi

cell for each category can easily be seen as the intersection of the 2 half-planes

14Here, it is instructive to consider another property of uLG-1. The APWL of this 41 country
model was, in fact, .00099, attained after 499 iterations of the algorithm. Most probabilities are
fit exactly. In this dataset, there are 3 (out of 123) zero probabilities. In a simple experiment,
we removed these rows leaving us with a 38 × 3 dataset. An APWL of .00099 was reached
for this dataset after only 194 iterations and the APWL for the uLG-1 model of this dataset
after 499 iterations is .00052, nearly 50% less. For the 41 country data, APWL was .00197 after
499 iterations. Notice how much of the loss in the 41 object model (nearly half) was due to
fitting the three 0’s (out of 123 points) using finite distances and the increase in efficiency of the
algorithm resulting from their removal. This is a common characteristic of uLG-1models and
useful to keep in mind for model interpretation and further study of the algorithm.
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containing the category point created by the bisectors involving that category

or, equivalently, the union of two regions known as cones emanating from the

common point of intersection of the bisectors.

Here, it is helpful for fuller understanding of LG and Voronoi cells to under-

take a basic analysis of our model. The most obvious feature to notice is that

Bangladesh is plotted nearly right at the intersection of the bisectors. As dis-

cussed above, we therefore expect Bangladesh to have a uniform preference for

the 3 beverages. In fact, its preferences are 0.305 (beer), 0.362 (wine), 0.333 (spir-

its) and it is easily the country with closest to a uniform preference.15 Its model

results are identical to the data. Next, we see that Sao Tome, Georgia, Italy, and

France are clearly within the WINE Voronoi cell. They are the four countries

with the highest preference for wine (0.687, 0.924, .650 and 0.590 respectively).

Notice, however, that of these four, Georgia is furthest from the wine category

despite having by far the highest preference. We are tempted to wonder if there

are problems with fitting these points, but model fit here is optimum: for France

we have 0.190, 0.590, 0.220 for both data and model and for Sao Tome, 0.275,

0.687, 0.038, for Italy .25, .65, .1 and for Georgia .023, .923, and .054. There are

several other pairs of points that demonstrate this same pattern. The analysis

of these points highlights the operative principal, commented on previously, in

analyzing an LG plot as a metric model; namely, it is relative distance differences

15As noted above, the presence of such an object profile in data with many other objects
with profiles that greatly diverge from the uniform requires at least a 2-dimensional model
for optimum fit. In fact, attempting to fit a 2-dimensional model with a 1-dimensional initial
category configuration resulted in poor model fit even running the uLG-1 algorithm with nearly
twice as many iterations. Thus, we see that, in LG, the initial configuration can effect model fit
just as in MDS. In a thorough study of this issue by Spence (1972) [60], he surmised that this is
due to local minima being found from some starting points. For uLG-1, we have found that, in
general, a 2-dimensional, concentric circle initial configuration seems to work well, even for 1 and
3 dimensional models; i.e., at least as well as more strategically devised starting configurations.
For example, using the HOMALS configuration as the initial configuration seemed to be a
promising approach. HOMALS seeks to place objects closest to the categories they are in and
the IMT would suggest that this would lead to efficiency gains in running uLG-1. Unfortunately,
we did not obtain greater efficiency nor greater precision than with the concentric circle starting
configuration. See Gifi (1990) [33] and Michaelidis & De Leeuw (1998) [49] for a complete
description of the HOMALS approach.
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that are important. Thus, often we must combine this metric approach with the

ordinal approach using Voronoi cells to fully analyze the models.

Looking further at Figure 1.3, notice that the three Voronoi cells are each

unbounded. They are each composed of two of the six unbounded regions created

by the bisectors. It is easy to see that these regions correspond to an ordering of

beverage preferences among the country points that fall within them and they are

labelled with the orderings to which they correspond. In MDS, these are referred

to as isotonic regions associated with the orderings. In Figure 3, there are six

such regions, of course, each corresponding to one of the six possible orderings

of the three beverages. Based on the model, we would expect no country in the

dataset to have a clear preference for spirits, wine, and beer (SWB) in that order,

which is, in fact, the case.

Figure 1.3 nicely illustrates a classic result attributed to Coombs (1964) [9] that

if there are n category points in n-1 dimensional space, then the isotonic regions

are unbounded. Thus, given the flexibility available for locating points into the

proper unbounded isotonic region, for 3 categories we can expect a 2-dimensional

LG model to fit quite well in terms of APWL. This is the case here in which a very

satisfactory model fit was achieved in a relatively small number of iterations. If the

number of category points is increased, then, in general, more bounded isotonic

regions will result. In connection with multidimensional unfolding, it is shown

by Borg & Groenen (2005) [6] that, even with the constraining effects of these

bounded regions, satisfactory models will still be found if the objects are such that

they are relatively evenly distributed throughout the order relationships among

categories. As we discovered above, our data here is not of this sort. Nearly all

of the countries have a leading preference for beer, none fall in the SWB region,

as previously noted, and very few in either the WINE or SPIRITS cells. We

would expect, then, that supplementing this data with additional objects requiring

additional categories would make such a model fit more difficult to attain. In fact,
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we saw this in our model of the 47-country, 4-category dataset. In that model, our

LG algorithm produced 10 times the APWL and a model that had some difficulty

fitting one of the supplementary objects (Nigeria).
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CHAPTER 2

Applications of uLG-1

2.1 LG and MDU

LG being a new, largely untried method, it is useful to begin by presenting some

applications in established data analysis settings. A natural starting point for

considering applications is to examine how LG can be used to carry out standard

MDU. We shall apply it to the breakfast dataset from Green & Rao (1972) [37].

Forty-two individuals were asked to rate fifteen breakfast items from 1 (favorite)

to 15 (least favorite). Further information and a classic MDU analysis of the

dataset can be found in De Leeuw & Mair (2009) [24] and the smacof package in

R.

The classic MDU approach is to consider the ratings as distances then use

smacofRect to compute rater (object) and item (category) coordinates. The LG

approach is slightly different. We must first transform these distances to proba-

bilities in some sensible way to create a fuzzy indicator matrix. A logical way to

do this is to use the LG link with the ratings as the distance inputs.

This approach results in the plot shown in Figure 2.1. The APWL is .028 with

41 of the 42 raters properly classified (by being closest to their favorite item).

Interestingly, the configuration is somewhat similar to the smacof plot. Raters

are mostly centrally located. The items cluster into toast, muffin, cake, and sweet

groups with raters who have strong first preferences for these positioned near the

29



-15 -10 -5 0 5 10 15

-1
5

-1
0

-5
0

5
10

15

x

y

toast

butoast

engmuff

jdonut

cintoast
bluemuff

hrolls
toastmarm butoastj

toastmarg

cinbun

danpastry

gdonut

cofcake
cornmuff

1 2
3 4

5

6

7

8
9

10

11 1213

14

1516

17

18

19

20

21

22

2324

25
26

27

28

29

30

31

32

33

34

35

36

37

38

39
40

41

42

Figure 2.1: Breakfast with LG Link Probs.

30



clusters. The only noteworthy difference is that, here, danpastry and cinbun are

switched with danpastry grouped as a cake and cinbun as a sweet. In the smacof

plot, the opposite is true.

Of course, there are other straightforward ways to transform the ratings into

probabilities. An obvious one is simply to use a uniform latent variable approach

in which a rating of 1 corresponds to a probability of 15
120

, 2 to 14
120

, etc. Using this

as an indicator, uLG-1 produces the plot in Figure 2.2. Here, we see a somewhat

different configuration, but one that, nonetheless, reveals similar structure. The

toast cluster is presented as qualitatively different from the rest of the items and

the raters with toast preference (32, 36, 37, & 39) are positioned nearby. The

remaining items are arranged on a scale from sweet to cake to muffin with raters

appearing to be similarly aligned. The danpastry and cinbun are more closely

associated and positioned closest to cake. APWL is .018 and, on their favorite

item, only 15 of the 42 raters are correctly classified. It appears, however, that,

overall classification, taking into account second, third and least favorites, may be

more accurate than the LG link plot.

That such different configurations can reveal similar structural relationships

in the data is something that, as we shall see, must always be kept in mind when

applying LG. Here, the difference arises from the different transformations used.

Figure 2.3 shows how the two transformations we used differ in their scaling of

the rated items. (The straight line is, of course, the uniform transformation.)

Selecting the most appropriate transformation is a task that will depend on the

extrinsic knowledge of the researcher. As illustrated here, the affect of a particular

transformation must always be examined and accounted for.
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2.2 Roll Call Data

Historically, the study of choice behavior has been perhaps the primary source

of distance association models. We have already referenced Shepard’s model, for

example, as an ancestor of LG. Ranking data, like the breakfast dataset, is a

special case of this type of data, but perhaps the most fundamental type is voting,

or roll call, data.

Distance methods have been used for many years to study this type of data.

In its most basic form, voters, typically legislators, are the objects and Yea or Nay

votes are recorded for them on a number of bills or resolutions. In the context

of LG, the data is expressed by a 2-column binary indicator for each vote. Over

the years, several analysts have developed scaling methods for such data. As with

LG, the aim of these methods is to locate voters and choices in a low-dimensional

(1 or 2) psychological space in such a way that the voters are closest to all their

choices. In 1-space, this means voters are on the correct side of the midpoint of the

choice points; in 2-space, of the perpendicular bisector of the segment joining the

choices. Of course, when many votes are involved, 100% classification is generally

impossible so a loss-function-minimizing approach is needed.

Currently, WNOMINATE of Poole et al. (2011) [52] appears to be the most

popular method for this type of modeling. It extends the NOMINATE method of

Poole & Rosenthal (1985) [53] to allow for scaling in more than 1 dimension and

to account for polytomous voting (i.e., abstentions and absences).

The WNOMINATE model is somewhat elaborate. It postulates a utility func-

tion for each legislator’s Yea vote on each bill as:

(30) U ijy = u ijy + εijy,

where:
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(31) u ijy = β exp(-
∑s

k w2
kd2

ijyk

2
).

Legislators are assumed to maximize their utility with their votes, subject to some

random error. In the above, d ijyk is the distance between a legislator’s ideal point

and a particular Yea vote point in an s-dimensional space, β and the w ’s are types

of bias parameters, and the ε’s represent an error term which is assumed to follow

an extreme value distribution.

Given this distribution assumption, the probability that legislator i votes Yea

on bill j is:

(32) P ijy =
exp(uijy)

exp(uijy)+exp(uijn)
.

In the manner of LG, these probabilities are used to construct a likelihood function

and parameters are found to maximize this function. A block-relaxation algorithm

is used to do this. First, vote point coordinates and are found by fixing voter points

and bias parameters. The vote points are reported by their midpoint and the

distance between them. Next, with vote midpoints and between-vote distances

fixed from the first step, voter points are found. This involves using SVD to

solve a linear least squares problem. Compare to De Leeuw (2006) [18] for a

similar approach. Then, the bias parameters are found, subject to heuristically

determined constraints. This process is iterated until all parameters correlate at

0.99 or better with the previous iterations’s estimates.

In this study, we will compare the more parsimonious LG approach, which can

also represent the data in any dimension and for any number of vote choices, to

WNOMINATE on two datasets found in the R package wnominate of Poole et

al. (2011) [52]. The first dataset records the votes for three sessions of the 59-
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country UN Security Council. A total of 237 votes are recorded with Yeas, Nays

and abstentions. However, to achieve greater stability in its stochastic modeling,

wnominate removes near-unanimous votes (18, in this case). These are votes in

which the losing side has fewer than 2.5% of the vote. Since this occurs usually

with procedural or ceremonial votes that do not reflect the ideological or psycho-

logical dynamics of the voting process, we consider this a sound approach and

have followed it in our uLG-1 model. Using its SVD approach, wnominate de-

termines the lowest adequately-fitting dimension for the choice space - 2 in this

case - and finds coordinates. We therefore have run uLG-1 for a 2-dimensional

plot. It is shown in Figure 2.4. The obvious division is between Warsaw Pact and

non-Warsaw Pact countries and is nearly identical to what is given by wnominate.

Some other interesting country groupings (geographical and political) are visible

as well. Figure 2.5 shows LG’s classification rates across the 219 votes. Overall

classification is 78.2%, comparable to wnominate. This rate includes abstentions

and, since there are relatively few of these, they are not likely to be correctly

classified. Also, our overall rate is influenced by 2 outlier votes. It would most

likely be of interest to a political analyst to examine these votes more closely.

The second dataset from wnominate records 596 votes of the 90th Senate of

the United States. This covers the last years of the Johnson administration,

1967-1969. We will compare the 181 agriculture-related votes to the 338 non-

agricultural related votes1, following a study suggestion in Poole et al. and the

identification, in the paper, of the agriculture vote numbers. Again, we will use

a two-dimensional plot since wnominate found this to be adequate for modeling

the entire voting dataset.

Our first plot, shown in Figure 2.6, reveals an interesting feature of the data.

One Republican and one Democrat are moved fairly far from the remaining objects

1There were 27 near-unanimous agriculture votes and 50 near unanimous non-agriculture
votes that were removed, following the procedure noted above.
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in their parties. The Republican is Goodell and the Democrat is Robert Kennedy,

both of New York. Goodell replaced Kennedy after the latter was assassinated in

June, 1968. Thus, both men were absent for portions of the Senate votes. These

absences are recorded as a fourth category of voting and they are the only 2

voters with any 1’s in that category. Thus, they are regarded by LG as somewhat

similar, even though it is very well known that their actual votes place them at

the opposite ends of the political spectrum in the United States at the time. This

gives an interesting look at the possible uses of LG for examining missing data,

since the absences can be so regarded. For our purposes here, however, we decided

to remove these 2 voters since their effect on the data can be fairly well accounted

for.

-2 -1 0 1 2 3 4

-2
-1

0
1

2
3

D

D

D

D
D

D

R

D

D

R

R

RR

D

D

R

R

D

DD

D

R

D

D

R

R

R

D

D

RR

R

R

R

R

D

D

D

R

D

D

R

D

R

D

D
D

DD

D

D

D

D

R

R

D

D

D

R

R

D

D

D

R R

D

D

D

R

D

D

D

D

D D

R

R

D

D

D

D

R

D

R

R

D

D

R

R

D

R
R

D

D

D D

D

D

D

D

R

D

Figure 2.6: 90th Senate - Full Senate Agriculture Voting

39



The resulting plot is shown in Figure 2.7. It is a fairly similar configuration

(with a rotation), perhaps giving slightly clearer demarcation of the parties, but

showing, as in Figure 3, some overlap and a tendency, particularly among some

Democrats, to move to the middle on agriculture issues. Figure 2.8 shows the

classification rates. Very few votes are below 60%, none under 50%, and the

overall rate is 75.8%.
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Next, we plot the remaining Senate votes, again removing Goodell and Kennedy.

The configuration is shown in Figure 2.9. Here, we see much clearer demarcation

of the parties, indicating a higher degree of partisanship on the non-agriculture

related votes. The plot is quite similar to the one obtained by wnominate shown

in Poole et al. (2011) [52]. Figure 2.10 shows the classifications. Even with two
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votes below 50% classification (which, again, would likely be of interest to an

analyst), overall classification is 76%, comparable to the wnominate rate for the

entire dataset.
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2.3 Multinomial Regression

We next apply LG in connection with multinomial regression. In multinomial

regression, a response variable with J > 2 categories is modeled as a linear system

of explanatory variables. The explanatory variables can be either discrete or

continuous and the response categories can be either nominal or ordinal. As with

binomial (logistic) regression, a logit model must be used to link the category

probabilities to the linear combinations of explanatory variables to ensure that

the predicted probabilities are between 0 and 1.

For nominal response data, the general multinomial logit model is used. (It

can be used for ordinal data as well, but the information about order is not used
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resulting in some loss of model fit.) See Faraway, (2006) [28]. The general logit

model is:

(33) pij =
exp(βjxi)∑J

k=1 exp(βkxi)
.

For identifiability, we set β1 = 0, so we have pi1 = 1 -
∑J

j=2pij. Given this, note

that

(34) pij =
exp(βjxi)

(1+
∑J

k=2 exp(βkxi))

and

(35) log(
pij
pi1

) = βjxi, j = 2, 3,...,J

The parameters of this model are estimated using maximum likelihood and stan-

dard methods of inference are applicable. Details are provided in Agresti (2002) [1]

and Faraway (2006) [28].

Although LG, like log-linear models, does not ordinarily distinguish between

response and explanatory variables, it is, as noted above, structurally similar to the

multinomial logit model and generates similar output, as well. These similarities

can be exploited to gain insight into the regression model. With regard to output,

suppose we have two variables, one a binary variable with m1 categories and the

other either binary or fuzzy with m2 categories. Applying the LG algorithm to

this data results in a plot containing points for the n objects along with the

m1 + m2 categories. These points are positioned so that the distances from the

object points to the category points reflect the probability profiles of each object

according to (1), which we can think of as the LG link function. If we take the
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first variable to be a response variable, we can use the LG link to convert the

object-to-category distances to probabilities giving us model probability output

for each object of the type we obtain from multinomial regression. Also, applying

the LG link to the distances between each of the m1 response category points

and the m2 explanatory categories gives a maximum likelihood predictor profile

of each response. An example of this is provided below. In some cases, standard

errors and significance levels can be obtained through resampling methods.

To see the structural similarity, consider data consisting of n objects measured

on some number of variables. Suppose the first is a binary indicator. The second

can be either a binary or a fuzzy indicator, but suppose for now that the explana-

tory variable is binary or, indeed, that we have a number of binary explanatory

variables. In a well-fit LG model; i.e., one with low APWL, the binary response

probabilities (either ones or zeros) will be approximated almost exactly. Thus,

taking objects with the same explanatory profile and averaging their response

probabilities amounts to a simple counting operation. The resulting probabilities

will be essentially identical to the given empirical frequencies. LG can then be

used to graphically compare the model probabilities with the empirical ones. This

is done by viewing the model and empirical probabilities as fuzzy indicators and

constructing LG models of both.

An illustration of this idea is helpful to its understanding. Consider the data

in Table 2.1. It shows a four-way classification of 1681 renters in Copenhagen

who were surveyed on their type of housing, level of contact with other residents,

feeling of influence on their property management, and level of satisfaction with

their housing conditions. It is given in Venables & Ripley (2002) [66], having been

taken in from a study originally by Madsen (1976).

We are interested in studying a main effects regression model with satisfac-

tion as the response variable. We will use LG as described above to set a sort
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Contact Low High

Satisfaction Low Med High Low Med High

Housing Influence

Tower Blocks Low 21 21 28 14 19 37

Medium 34 22 36 17 23 40

High 10 11 36 3 5 23

Apartments Low 61 23 17 78 46 43

Medium 43 35 40 48 45 86

High 26 18 54 15 25 62

Atrium Houses Low 13 9 10 20 23 20

Medium 8 8 12 10 22 24

High 6 7 9 7 10 21

Terraced Houses Low 18 6 7 57 23 13

Medium 15 13 13 31 21 13

High 7 5 11 5 6 13

Table 2.1: Copenhagen Housing Data
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of baseline for comparison to the regression. First, we convert this data to four

binary indicator matrices, one with two columns, two with three, and one with

four, and each with 1681 rows. With three explanatory variables, we expect a

three-dimensional LG model to be adequate. It gives us an APWL of .0021 with

correct classification of all objects on all variables2, which is excellent fit. Note

that there are 24 explanatory profiles for objects. The objects in each profile

will be divided by LG into three points, depending on their satisfaction level. As

noted above, with APWL this low, when we average the satisfaction probabilities

for these objects, the result is essentially identical to the empirical satisfaction

probabilities. These are displayed in Table 2.2 and it can be easily checked that

this is the case.

Next, we row-bind the contact halves of this matrix to form a 24 × 3 fuzzy

indicator matrix, in which the objects are the 24 explanatory profiles. A two-

dimensional uLG-1 plot of the profiles is shown in Figure 2.11. APWL is .0071

with 100% classification accuracy. It is a little crowded, but some structure is

discernible. In particular, residents of Tower Blocks appear to have higher satis-

faction in general while residents of Terraced Houses tend to be lower. Influence

seems to be positively correlated with satisfaction as well.

We can see these relationships more clearly by plotting the groupings of ex-

planatory profiles. The next three figures (2.12 - 2.14) do this, grouping by type

of housing, level of influence and level of contact respectively. Along with the

observations above, we see that apartments tend to provide for lower satisfaction

and the contact seems important, but far less so than influence. Of interest to

us, now, is whether the main effects multinomial regression model will show these

2Here, as in what follows, classification is based upon largest model category probability or,
equivalently, correct Voronoi cell assignment.
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Contact Low High

Satisfaction Low Med High Low Med High

Housing Influence

Tower Blocks Low .30 .30 .40 .20 .27 .53

Medium .37 .24 .39 .21 .29 .50

High .17 .19 .63 .10 .16 .74

Apartments Low .60 .23 .17 .47 .28 .26

Medium .36 .30 .34 .27 .25 .48

High .27 .18 .55 .15 .25 .60

Atrium Houses Low .40 .28 .31 .32 .37 .32

Medium .28 .29 .43 .18 .39 .43

High .27 .32 .41 .18 .26 .56

Terraced Houses Low .58 .20 .22 .61 .25 .14

Medium .37 .32 .32 .48 .32 .20

High .30 .22 .48 .21 .25 .54

Table 2.2: Copenhagen Housing Data - Empirical Probabilities (by LG)
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Figure 2.11: Copenhagen Housing Explanatory Profiles - LG Model

same relationships.

The regression model we will use is presented in Venables & Ripley (2002) [66].

They use a surrogate Poisson model computed with the glm function from the R

package stats to fit a corresponding main effects multinomial regression. Conven-

tional residual analysis shows it to be of satisfactory fit with no serious problems

with model assumptions. They obtain the model probabilities shown in Table

2.3. Notice that these are close to the empirical probabilities, but, there are some

fairly large differences.

As above, we convert these probabilities to a 24 × 3 fuzzy indicator and com-

pute an 2D uLG-1 model. The plot is shown in Figure 2.15 on the right of the LG

plot, which also appears in Figure 2.11 above. It has APWL of .0083 with 100%

classification accuracy. Since the categories (i.e., satisfaction levels) are plotted

similarly, the two plots can be compared fairly easily. The smoothing effect of the
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Figure 2.12: Copenhagen Housing Types - Empirical Probabilities
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Figure 2.13: Copenhagen Housing Influence Levels - Empirical Probabilities
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Figure 2.14: Copenhagen Housing Contact Levels - Empirical Probabilities
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Contact Low High

Satisfaction Low Med High Low Med High

Housing Influence

Tower Blocks Low .40 .26 .34 .30 .28 .42

Medium ..26 .27 .47 .18 .27 .54

High .15 .19 .66 .10 .19 .71

Apartments Low .54 .23 .23 .44 .27 .30

Medium .39 .26 .34 .30 .28 .42

High .26 .21 .53 .18 .21 .61

Atrium Houses Low .43 .32 .25 .33 .36 .31

Medium .30 .35 .36 .22 .36 .42

High .19 .27 .54 .13 .27 .60

Terraced Houses Low .65 .22 .14 .55 .27 .19

Medium .51 .27 .22 .40 .31 .29

High .37 .24 .39 .27 .26 .47

Table 2.3: Copenhagen Housing Data - Regression Model Probabilities
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regression is evident in its plot, and some of the relationships we observed above

are discernible, but not quite as clearly as before.
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Figure 2.15: Copenhagen Housing Profiles- Empirical and Regression Models

As before, it is useful to plot the profile groupings separately. In Figure 2.16,

we see the housing grouping. Comparing it to Figure 2.12 above, we see that the

regression smoothes somewhat the effect of the Terraced Housing variable. Also,

the regression views the Atrium Houses as slightly favoring medium and high sat-

isfaction, whereas the empirical probabilities are more neutral. In Figure 2.17, the

influence groupings are shown together with Figure 2.13, the influence groupings

of the empirical data, here with the regression on the bottom row. In both models,

the relationship between influence and satisfaction is displayed, though again, we

notice in the regression some smoothing of the Tower Blocks effect. Finally, the

contact groupings are displayed together, again with the regression on the bottom.

We see that the contact effect, in itself, is slightly larger in the data than in the

regression model. Overall, we have clearly displayed that the regression model fits
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the data quite well.
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Figure 2.16: Copenhagen Housing Types - Regression Model

Using constrained LG3 we can extend the above approach to provide a visu-

alization of multinomial regression model testing. This approach is particularly

useful in situations where we have some extrinsic or a priori knowledge or beliefs

about the objects involved. An LG plot and a multinomial regression can be com-

3As we will discuss below, constrained LG involves unfolding with one set of coordinates
(usually category points in our work) fixed for some theoretical reason. In MDU literature, it is
sometimes referred to as external unfolding.
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Figure 2.17: Copenhagen Housing Influence Levels- Empirical and Regression

Models

puted using a training sample. The LG plot provides a configuration of category

points (the training configuration) and the regression a set of coefficients from

which classification predictions can be made. With the training configuration

fixed, the LG model can be run on the testing data to see how well coordinates

can be computed with the category constraints. Then, regression predictions can

be made using the testing sample and these can also be modeled using the con-

strained LG algorithm. The resulting plots can be compared to assess graphically

the fit of the linear model, somewhat akin to an actual-vs.-predicted plot, which

is otherwise difficult to construct for multinomial regression.

To illustrate this idea, we will examine a dataset taken from the Mapping LA

Neighborhoods data maintained by the LA Times. (See the supplementary file.)

There are 2 variables, hence two indicators. The first is a compositional variable

giving the percentage of Asians, Blacks, Latinos, and Whites in each neighbor-
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Figure 2.18: Copenhagen Housing Contact Levels- Empirical and Regression Mod-

els
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hood, producing a fuzzy indicator, and the second an ordinal variable classifying

the median income of each neighborhood as Lower, Lower-Middle, Upper-Middle,

or Upper, producing a 4-column binary indicator. Fifty-three neighborhoods were

selected at random from the dataset. For 8 of these, the four ethnic groups above

did not account for 100% of the ethnic makeup, with other ethnicities accounting

for from 1% to 4%. For these 8 objects, the four main ethnic group percentages

were proportionately scaled to total 100%. Since our goal here is mainly illustra-

tive, this very small modification of the data can be accepted to avoid working

with a category of mainly 0’s and a few very small non-zeroes.

Our uLG-1 algorithm was run for two dimensional output with maximum it-

erations at 1500, experience showing this to be an appropriate point to end the

computation for this dataset. Figure 2.19 shows the resulting plot (with some jit-

tering of object points to enhance legibility). The APWL for the fuzzy indicator

portion of the data is .03919 and for the binary portion .00631. These results are

quite good for mixed indicator data. Further, all 53 neighborhoods are correctly

classified by income quartile. We generally prefer having the clarity of a 2D data

visualization and are able to have that here since the APWL improvements seen

in higher dimensions can generally be considered marginal.

The plot has some interesting features, showing the correlation structure be-

tween neighborhood ethnicity and income and identifying a handful of distinctive

neighborhoods. It will be useful, here, to examine it in some detail keeping in

mind our principles of LG interpretation. First, note that the neighborhoods are

clustered by the binary variable, income quartile, which efficiently limits a source

of APWL. Next, we see that the Asian and White ethnicities are fairly closely as-

sociated with the Upper Middle quartile, with White having considerably higher

association with the Upper quartile. (Remember, the small shift of White toward

the Upper category point is quite significant in LG.) Black and Latino are more
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Figure 2.19: LA Neighborhoods
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closely associated with the Low and Low Middle quartiles, with Latino showing

much greater association than Black with Upper Middle. The slight pulling-apart

of the clusters is of interest, showing that Low quartile neighborhoods have some

diversity of mixture among Asian, Black, and Latino, while, among the other

three quartiles there appears to be considerably less ethnic diversity, with only 3

neighborhoods having somewhat higher Black and Latino percentages. Table 2.4

shows the explanatory variable profiles under this model for the income quartiles.

It clearly shows that the Upper and Upper Middle income areas are predominantly

White and does appear to give some evidence supporting greater movement to up-

per income areas within the city among Latinos and Asians than among Blacks.

Asian Black Latino White

Low 0.080 0.135 0.766 0.019

LoM 0.048 0.175 0.601 0.176

UpM 0.194 0.013 0.264 0.530

Up 0.113 0.018 0.119 0.751

Table 2.4: Income Quartile Ethnic Profiles for uLG Plot

It is of interest to compare Table 2.4 with the mean ethnic group percentages

among income quartiles in the data. Table 2.5 gives those and we can see that,

though there are some relatively large cell differences, the LG profiles of Table 2.4

capture very well, and emphasize, the patterns in the data noted above, which

are also reflected in Table 2.5. It should be kept in mind that the profiles in both

tables are to be taken as profiles of typical objects in the dataset; they do not give

an estimate of the overall ethnic makeups of persons at these income levels in the

population at large.

Next, we fit a multinomial regression to this data using income quartile as

the response. This is an ordinal response variable so that an adjacent-categories
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Asian Black Latino White

Low 0.118 0.223 0.621 0.038

LoM 0.084 0.185 0.543 0.187

UpM 0.133 0.052 0.380 0.435

Up 0.106 0.036 0.121 0.738

Table 2.5: Income Quartile Mean Ethnic Profiles

or cumulative logit model may be most appropriate; however, we shall use the

multinomial logit model since it is closest in structure to the uLG-1 link which is

our main interest. Some loss of statistical significance in the regression results is,

therefore, to be expected, but is not of great concern at this descriptive stage of

analysis.

The model is fit using the function multinom from the R package, nnet of

Venables & Ripley (2002) [66]. It uses neural network methods to compute maxi-

mum likelihood parameter estimates. Table 2.6 shows the model summary. Note

that fairly high significance levels are attained for the Black, Latino, and White

coefficients. We are interested in using a testing sample to evaluate this model

against the uLG-1 model and in using uLG-1 to visualize the testing performances.

A random sample of 12 LA neighborhoods was selected from the Mapping

LA Neighborhoods data. We first attempted to fit the data to the LG model by

inputting it into a version of the uLG-1 algorithm which fixes the category points

in Figure 2.19 (and which we will refer to as fixed category or constrained LG).

Model fit is comparable to the overall model, with APWL = .0462 for the ethnicity

fuzzy indicator matrix and .0069 for the income quartile binary indicator. Here

also, all neighborhoods are correctly classified by income quartile.

Next, we test the regression model with the same testing sample. The regres-
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Coefficients:

(Intercept) Asian Black Latino White

2 11.46361 -71.87422 -10.47171 -17.77053 111.5801

3 11.46207 -67.52283 -15.19345 -20.60330 114.7816

4 10.90360 -71.26630 -11.48956 -24.36326 118.0227

Std. Errors:

(Intercept) Asian Black Latino White

2 5.791940 45.61703 5.092904 9.037179 63.39479

3 5.932054 45.84592 6.686741 9.487593 63.41959

4 5.926362 46.08585 6.244399 9.798397 63.43789

Table 2.6: Multinomial Regression Summary

sion prediction itself has an APWL of .2111 against the binary income quartile

indicator, which, with a binary indicator, still allows for correct classification by

the regression of 9 of the 12 neighborhoods. (This is somewhat better than the

regression model’s performance on the training data in which 33 out of 53 neigh-

borhoods were correctly classified.) A fixed- category uLG-1 model was fit using

the regression predictions as the indicator (a fuzzy indicator) for income quartile.

Figure 2.20 shows the fixed category plot of both the uLG-1 (black) and regression

(purple) test results. APWL for the regression income quartile indicator is .0424

and for the ethnicity indicator, .0829. Note that the APWL for the regression

predictions is somewhat higher than the fixed category APWL’s. This suggests

that there is some degree of stability in the category configuration. Also, we see

at a glance that the regression misclassifies East Hollywood as Low Middle, close

to Upper Middle, instead of Low. East Hollywood has an 18.7% white popula-

tion which is somewhat higher than usual for a Low income neighborhood. This

likely accounts for the misclassification. Notice that it is not misclassified by LG,

which suggests that influence points are less likely (perhaps, far less likely) in
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LG than in regression. The other misclassifications are also revealing. Baldwin

Hills/Crenshaw (71% black) is misclassified as Low Middle, not Low, and Pico

Robertson (74% white) as Upper, not Upper Middle. Finally, an interesting fea-

ture of the plot is that the smoothing, or approximating, affect of the regression

is apparent in the positioning of the regression neighborhood points along a line

that seems to almost simultaneously bisect all pairs of categories, hewing closely

to the Low Middle - Upper Middle bisector.
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Figure 2.20: LA Neighborhoods - Actual vs. Predicted

The significance of this last observation is made clearer by examining the

mathematical relationship between the multinomial logit and the LG link. Sup-

pose that we have computed an LG model. From (29) and (35), we have:
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(36) βjxi = di1 - dij

where the xi’s are the predictor values and the right hand side distances can

be calculated from the LG model. Thus, finding the regression parameters, βj,

amounts to solving an elaborate system of linear equations. This, of course, can-

not be solved exactly, so a best-fitting solution is sought. As we see from our

example above, some loss and some smoothing are to be expected.

2.4 Social Network Plotting

One of the most important uses of data visualization is social network plotting.

Social network data can be viewed as a set of actors, or nodes (possibly with some

attribute variables), and the ties between them. The ties may be non-directed or

directed, and may be weighted. (Here, for the time being, we shall consider non-

weighted networks.) Aspects of the network such as density, prestige (or degree) of

actors, cliques of actors and brokerage among cliques, transitivity and reciprocity

(for directed networks) of ties, types of stars, triads, and other formations, etc. are

of interest to the researcher. An excellent comprehensive text on descriptive social

network analysis (SNA) discussing these topics is Wasserman & Faust (1994) [67].

Typically, the network ties are represented by a sociomatrix, which is essen-

tially an adjacency matrix, to borrow a term from graph theory, and the network

can be visualized as the corresponding graph, digraph, or weighted graph. Of

course, there are many arbitrary ways to draw the graph of any network; the goal

of social network plotting is to draw it in such a way that it can assist in the

description and investigation of the network by displaying features of it that may

warrant further study. Our purpose here is to describe how uLG-1 can be used
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to construct network plots, to provide examples of such plots for three classic

networks, and to compare these to plots constructed by two other popularly used

algorithms.

One of these oft-used methods is known as force-based or force-directed graph-

ing. This is the default method, for example, in the R packages network and sna.

There are several different force-directed algorithms. They share a central idea

which is to view the network as a physical system (of springs or electric or grav-

itational forces, for example) and the plotting problem as involving positioning

nodes and ties in such a way that the system is placed in equilibrium. Classic

expositions of the method are Fruchterman & Reingold (1991) [30] and Kamada

& Kawai (1989) [43] and a fairly comprehensive survey can be found in Kaufmann

& Wagner (2001) [44]. 4 The main visual characteristics of force-directed graphs

are relatively uniform edge (or tie) lengths, few crossing edges, uniform node

distribution and central positioning of high-degree (or highly-connected) nodes.

Pictured below are force-directed plots made in R using network of three clas-

sic, well-studied social networks. The first (Figure 2.21) is known as Sampson’s

Monks and is based on directed (i.e., possibly non-symmetric) friendship ties ob-

served within a small monastery (Sampson (1969)). Data for this network is

found in network and in sna. The common features of force-directed graphing

are present; in particular, relatively even spacing among nodes and central posi-

tioning of high-degree nodes (e.g., John and Bonaventure). What does not stand

out here is the clustering of the monks into three groups which was of importance

in Sampson’s research into this network. We will discuss this further below.

The second network plotted (Figure 2.22) is known as the Florentine Families

(originally from Padgett & Ansell (1993) [51] and obtained, again, from network

4Interestingly, the spring model can be viewed as finding ideal spring lengths, then minimizing
the difference between these and a set of Euclidean distances; i.e., as a metric multidimensional
scaling problem. See Kaufmann & Wagner (2001) [44] on this topic.
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Figure 2.21: Sampson’s Monks - Force Directed
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and sna) and shows marriage ties among several prominent families in Renaissance

Florence. It has a low density, so is very cleanly visualized by the force-directed

method. Of importance here are the prominence of the Medici’s, the Strozzi

clique, and the relations between the two. These are displayed here, but, it is fair

to say, not emphasized.
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Figure 2.22: Florentine Families - Force Directed

The third network (Figure 2.23) is of friendship ties among the French Finan-

cial Elite (from network featured in a classic study by Kadushin (1995) [42]). Its

most noteworthy feature, discussed at length by Kadushin, is that it appears to be

the joining of two different social structures, or moieties, one of which is clearly

denser than the other. Kadushin found there to be 13 actors in the less-dense

moiety and found moiety membership to be related to attendance of a prestigious

French business school, the ENA. Within the denser moiety (of ENA alums),
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Figure 2.23: French Financial Elite - Force Directed

68



nodes E72 and E77 are of high-degree and centrally positioned. Nodes E8, E26,

E76, and E98 play something of a brokerage role between the groups. The group

of densely connected nodes is well-displayed in the plot and the moiety struc-

ture is detectable, but, again, because of the uniformity of positioning, it is not

emphasized.

A second very important method of social network plotting is the latent space

approach developed by Hoff, Raftery, & Handcock (2002) [41]. In the latent space

models (LSM), nodes are positioned so that the probability of a tie between any

two is given by a function of the distance between them in a latent social space.

At the conceptual level, the approach has much in common with LG. In fact,

a logistic regression model is used to parameterize the likelihood of the network

configuration. Letting yij be a binary variable indicating presence or absence of

a tie between nodes i and j, the model is given by:

(37) log odds(yij = 1|zi, zj, xij, α, β) = α + βxij - ‖zi - zj‖

where α is a network density parameter, xij are observed dyad covariates, β is

a vector of coefficients, and the zi’s are node position coordinates. Under the

assumption that the value of yij is independent of all other ties in the network

given the positions of the two nodes, the parameters and distances between nodes

are estimated using maximum likelihood methods. The position coordinates are

then computed from the distances using MDS methods, with MCMC methods

used to determine confidence regions for the positions. The function ergmm in the

R package latentnet computes the positions under various modeling options.

Note that in Euclidean space, LSM favors reciprocal and transitive tie structures

because of these properties of Euclidean distances. Also, in both this model and

the Biased LG model (introduced in footnote 3 of Chapter 1 and to be discussed

below), the log odds ratio of a tie from node i to node j versus i to k is the product
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of a ratio of bias or adjustment parameters and the differences in the distances

from i to j and i to k.

Pictured in Figures 2.24 - 2.26 are LSM plots for the same three classic net-

works shown above produced by latentnet. For Sampson’s Monks, this plot has

clearly separated the monks into 3 clusters. Notice that John and Bonaventure

are no longer classed together due to their centrality, but, instead, are easily seen

as belonging to separate clusters. These clusters correspond to Sampson’s identi-

fication of three factions in the monastery (named, young Turks, loyal opposition,

and outcasts), thus the plot is a useful visualization of this aspect of Sampson’s

results. Next, is the LSM plot of the Florentine Families. It is structurally simi-

lar to the force-directed plot, clearly emphasizing the prominence of the Medicis

through central positioning. Also, it more clearly highlights the Strozzi clique.

However, the plot may be considered slightly misleading since two other families

appear nearly as central as the Medicis. Figure 2.26 is the latentnet LSM of

the French Financial Elite. It is, frankly, difficult to discern Kadushin’s moiety

structure in the plot as opposed to a central-versus-peripheral structure (which,

we should say, may itself be worthy of study). Figure 2.27 is the same network,

this time plotted with functional parameters specifically set to find 2 groups in the

network. The moiety structure is now somewhat more apparent, with latentnet

having identified (by yellow vertices) 7 of the 13 members in the less-connected

group.

We next discuss network plotting using uLG-1. To represent the network

in the proper form for a standard application of LG (i.e., as a set of indicator

matrices each giving category membership for a collection of objects), we consider

the network nodes to be both objects and variables. This is similar to what is

known as dédoublement in the French correspondence analysis school. Thus, if

there are n nodes, there are also n variables and n indicator matrices each of
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Figure 2.24: Sampson’s Monks - Latent Space Model
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dimension n × 2; one column for absence of a tie, the other for presence. Since,

ultimately, LG classifies by object profile, we consider each node to have a tie

with itself; i.e., each node belongs to its own tie category so that it will be seen

as similar to other nodes with ties to it.

The LG plot of Sampson’s Monks (Figure 2.28) is strikingly similar to the

LSM plot, clearly showing the same clustering pattern. This clustering, then, can

be seen to be based upon tie profile independently of any node attributes.
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Figure 2.28: Sampson’s Monks - LG Model

On the other hand, the LG plot of the Florentine Families (Figure 2.29) is

quite different from its counterparts. Rather than placing the Medicis at the cen-

ter of the network, it has plotted the network hierarchically with the Medicis at

the apex. This goes slightly against the grain of traditional network plotting,

but it is difficult to say that the LG plot does not emphasize the prominence of
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the Medicis, perhaps better than both the force-directed and LSM plots. Also,

in the LG plot, the Strozzi clique is at essentially the opposite position from the

Medicis, giving another useful visualization of an important feature of the network.
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Figure 2.29: Florentine Families - 2D LG Model

A 3-dimensional LG plot of the Florentine Families greatly improved APWL

(.09998 vs. .01148). It is shown in Figure 2.30. Again, it is hierarchical in struc-

ture with the Medicis at its apex. Notice that it is the network structure produced

by the Strozzi (plotted by a lower-case s) clique that seems to require the 3-D con-

figuration for accurate visualization and it is likely that this is the source of the

greatly improved APWL. (Note that due to labeling limitations, the Pucci family,

the network isolate, is marked with an X.)

A brief discussion of the construction of the Florentine Family plots is of value

76



Figure 2.30: Florentine Families - 3D LG Model
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in understanding the network plotting of LG and, in particular, the hierarchical

structure of this plot and the one to follow. In the LG scheme using dédoublement,

each node is represented by 3 points: its object point and two category points,

one category point for a tie (or connection) and one for no tie. The LG algorithm

(uLG-1 in these examples) finds optimum positions for all 3 of these points though

our network plots show only object points since they are the most readily inter-

pretable. Each object will be fairly closely associated with its tie category point

and the other tie categories it is in and relatively far from the no-tie categories

it is in. For a low-density network like the Florentines with an isolate node (the

Puccis), all object points must be relatively close to the Pucci no-tie point and

each object must be relatively close to several other no-tie points. To efficiently

reduce APWL, the algorithm centrally places these no-tie points and moves ob-

ject points and tie category points in an approximately concentric pattern around

them. This produces the hierarchical appearance of this plot as well as of the

French Financial Elite, Figure 2.31.

Given the nature of the French Financial network, this does not seem inap-

propriate. Actors E72 and E77 are most prominent and are at the apex of the

network. Their very high prestige, as reflected by their network tie degrees, is

very clearly displayed. Also, the plot effectively visualizes the moiety structure of

the network. Eleven of the 13 members of the lesser moiety are easily spotted in

the plot. Being an ENA alum is thought to be a significant classifier of moiety

membership, but this plot shows another possible distinguishing characteristic:

direct ties with E72 and E77.

With ENA in mind, an indicator for ENA attendance was added to the data

and a new uLG-1 plot was produced, shown in Figure 2.32. The ENA at-

tribute produces a two-category indicator so this is something akin to instructing

latentnet to look for two groups in a latent space plot as was done above. ENA
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Figure 2.31: French Financial Elite - LG Model
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membership does appear to be associated with moiety membership and the plot

does not appear to be much different. APWL changes only very slightly, from

.1343 to .1377. Closer examination, however, reveals that moiety membership is

now easily discernible only for 9 of the 13 members of the less prestigious group.

These are the 9 non-ENA members on the NoENA side of the gray dashed line

which bisects the ENA-NoENA segment. The four ENA members of the lesser

group are now shifted toward the more prestigious group (with only 2 non-ENA

alums out of 15) or, more accurately, toward the ENA category. Thus, accounting

for ENA attendance disturbs slightly the moiety structure. It would likely be of

interest to the researcher to test other node attributes (such as political party) or

combinations thereof in the same way and to compare the results with those for

ENA. These observations, as well as those made about the other networks and

network plots, suggest that LG is a promising method for exploratory SNA.
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Figure 2.32: French Financial Elite w/ ENA - LG Model
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Through the use of fuzzy indicators, LG can be used, as well, in connection

with probabilistic plotting of networks to give a more conventional view of net-

work structure. This method also provides a straightforward way to plot weighted

networks. We will simply add 1 to the diagonal of the adjcency matrix then di-

vide each row by its row sum to create a fuzzy indicator, then plot this with LG.

Our first example is shown in Figure 2.33 (with a magnification in Figure 2.34)

for the French Financial Elite. The plot appears drastically different from the

dédoublement-style LG plot.
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Figure 2.33: French Financial Elite - Probabilistic Plot

The higher degree nodes and the more densely tied node groups are now more

conventionally positioned near the center of the plot with lower degree nodes

moved to the edge (since they have 0 probability of ties with a relatively large
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Figure 2.34: French Financial Elite - Probabilistic Plot with Magnification
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number of nodes). The plot is somewhat similar to the 2-group LSM plot. In-

terestingly, as with LSM, it is only with the addition of the ENA covariate that

we can clearly discern the 2-moiety structure. Without it, we would just as likely

consider this as one tightly connected group with a few peripheral nodes.

A second example is shown in Figure 2.35. It is the Florentine families. The

similarities between this plot and the force-directed plot above are quite striking.

(Note that the network isolate, the Pucci family, is not shown in the LG plot since

it has zero probability of a tie with any family. By convention, we would place

it somewhere far from the rest of the plot.) In both, the Medicis are centrally

positioned. In the LG plot, the secondary families are closer to the Medicis while

the more peripheral families are further away. This makes this, perhaps, the more

effective of the visualizations.
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Figure 2.35: Florentine Families - Probabilistic Plot
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2.5 Categorical Longitudinal Data and Markov Chain Tran-

sition Matrices

Categorical longitudinal (or transition frequency) data, in which subjects are mea-

sured on identical categorical variables at different time points, has long been

analyzed using log-linear modeling. See Hagenaars (1990) [39] for a thorough in-

troduction. Recently, distance association methods have been used in conjunction

with log-linear models to relate the overall interaction to Euclidean distances. For

a discussion, see De Rooij and Heiser (2005) [26]. LG can provide a method for

visualizing these time-related changes.

A typical log-linear model of this sort of two-way transition table is:

(38) πij=µαiβjexp(-dij(X,Y))

where πij is the probability of a transition from category i to category j, µ is the

general mean probability, αi and βj are main effect parameters and exp(-dij(X,Y))

is the interaction parameter modeled as a distance association. This, of course,

can be extended to three-way and other multi-way tables. For the two-way table

example, if we write µαiβj = 1∑m
j=1 exp(−dij(X,Y ))

, we have a model that is essentially

equivalent to the LG model. We say essentially equivalent because, in the log-

linear model, X and Y are coordinates for variable categories at the two time

points while in LG they are coordinates for subjects and categories respectively.

Thus, the methods are slightly different in that the log-linear model analyzes

cell counts to compute category coordinates while LG uses the raw data in the

form of indicator matrices to compute both subject and category coordinates. In

both cases category coordinates are computed based upon essentially the same

information from the data, but to slightly different ends, with LG, in general,

being the more descriptive approach.
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A rich source of transition frequency data is found in political science, specif-

ically, election and roll call data. A classic example is the 1964-1970 Swedish

election data analyzed in De Rooij (2001) [25], the original source for which is

Upton (1978) [65]. Table 2.7 shows this data which gives the voting results for

1651 Swedish people in 3 consecutive elections. The political parties are, from left

to right on the political spectrum, the Social Democrats (SD), the Center (C),

the Peoples (P), and the Conservatives (Con).

1970

1964 1968 SD C P Con

SD SD 812 27 16 5

C 5 20 6 0

P 2 3 4 0

Con 3 3 4 2

C SD 21 6 1 0

C 3 216 6 2

P 0 3 7 0

Con 0 9 0 4

P SD 15 2 8 0

C 1 37 8 0

P 1 17 157 4

Con 0 2 12 6

Con SD 2 0 0 1

C 0 13 1 4

P 0 3 17 1

Con 0 12 11 126

Table 2.7: Transition Frequency Table for Swedish Election Data
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To analyze this data with LG, it must be converted from the three-way table

form to three binary indicator matrices. The matrices represent the three years

with each matrix having four columns for the four political parties. The conversion

is a fairly straightforward exercise. De Rooij found a 2-dimensional, 1 slide-vector

model to best fit this data. The parties in this model have a diamond-shaped,

or circular, configuration. It can be interpreted to suggest a dichotomy in the

electorate in which the SD and C parties are together in opposition to the P and

Con parties. The time element is modeled as a shift of 1 step to the political

center, reflecting a significant movement of voters to the center parties from 1968

to 1970.

Since the political spectrum is typically thought of as a unidimensional con-

struct, we chose to analyze this data first in one dimension with uLG-1 before

examining the 2-dimensional models. The resulting configuration is shown in Fig-

ure 2.36. For clarity, category points are labeled off the scale and the asterisks

represent the objects, which have been reduced to four groups. Overall APWL for

the configuration is approximately .161 (with a low of .156 for the 1968 indicator),

while classification percentages are 70.2, 72.3, and 73.0 for 1964, 1968, and 1970,

respectively. For a 1-dimensional model, both of these metrics are fairly good,

though perhaps just a little short of what was hoped for. This suggests that a

two dimension model should probably be examined.

To continue with regard to Figure 2.36, the 1-D model, it is noteworthy that

the parties are located on the scale in order from the political left to the political

right. This occurred without any constraints on the model (other than dimension),

so we take this to reflect that voters’ perceptions of these parties were in accord

with conventional political thought. Also, there is no overlapping of the party

groupings; i.e., the convex hulls (intervals, in this 1-dimensional configuration) do

not intersect. This shows the high level of stability in the parties over the years
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in question; some 79.4% of these voters did not once switch parties.5

The object groupings (represented by the asterisks, as noted above) are quite

interesting as well. The left most point contains only the 812 persons who re-

mained Social Democrats for all three years. The second to the left group contains

all 96 persons who were Social Democrats in exactly two of the years. The second

from the right group contains the 65 persons who were Social Democrats during

exactly one of the years. The right most group, closest to the nine other category

points, contains all 678 persons who were Center, People’s or Conservative in all

three years as well as all others who were never Social Democrats. This position-

ing is very much like a weighted Coombs unfolding, simultaneously carried out

over three scales or time points.

As for the category points, the plot presents essentially a dichotomy between

Social Democrat voters and non-Social Democrats. There is some shift in the

latter from 1968 to 1970, but it is difficult to discern its meaning in this plot.

Further investigation of this is required. Finally, a striking feature of the uncon-

strained plot is the relatively large space between the SD categories and those of

the other parties. This is most likely due to the large number of initial SD voters:

912 of the 1651 total sample with another 60 voters becoming SD at some point.

The large space allows the algorithm to position these several object points with

relatively little point-wise loss, thus making it easier to limit overall APWL. This

simple sort of efficiency is characteristic of the uLG-1 algorithm.

These observations lead us to De Rooij’s results, making it worthwhile to test

his 2-dimensional, 1 slide-vector model. To have a baseline model for comparison,

5This is such a dominant feature of the data, that a static, or no-change, model was tested
in 1 dimension, using the 1964 party positions as the category locations for all 3 times. APWL
was, again, .163 with classification percentages of 70.2, 72.6, and 71.3. Some assessment of the
significance of these statistics needs to be made, but, comparing them to the unconstrained
results, the lower classification success for 1970 may justify rejecting the static model. This
is particularly so in light of the results for a constrained 1-dimensional model with 1 shift (in
1970) of the Social Democrats and Conservatives each 1 step to the center. APWL was .161
with classification percentages: 70.7, 73.6, and 73.5.
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Figure 2.36: Swedish Election Category Points in 1D

we first ran an unconstrained uLG-1 model in 2 dimensions, shown in Figure

2.37. APWL is .036 with classification percentages of 92.2, 96.3 and 97.9. These

improvements over the 1-dimensional model are to be expected given the greater

ease of fitting LG models in higher dimensions and may signify nothing beyond

that. That is to say, we appear to be overfitting the data. Despite the increase

modeling accuracy, the configuration seems to show little important structure.

The convex hulls of the party clusters do not intersect, reflecting the stability of

the data noted above, but this was seen in one dimension, also. The Center party

being most centrally positioned and in the tightest cluster may reflect that it is

the only party to have gained votes from 1964 to 1970, but this is something of a

conjecture.

An interesting feature of the plot is that, though there are 1651 objects in

the dataset, there are only 49 object points. That is because there are only 49

actual party transition groups. (There are 64 of these possible, of course, but in
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the actual data 15 of these have zero counts.) The objects in each of these groups

have essentially identical coordinates. Thus, each object point can be thought of

as a group point weighted by the number of objects in the group. This observation

may be helpful in later work in constructing a more efficient algorithm.) We have

labeled some peripheral points in the interest of studying this aspect of the LG

method. Note that they are all party-switching profiles with very few members.

(The membership numbers are given in parentheses. Thus, they can be moved

away from the main configuration without large increase in loss. Finally, note the

asterisk points which are the no-party-switching object classes. They are located

in a diamond shape very similar to that found by De Rooij, though not with the

same ordering of parties. Despite the ordering, this configuration reinforces that

it is worthwhile to test the 1 slide-vector model with constrained LG.
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Figure 2.37: Swedish Election Object & Category Points

With categories fixed in the two-dimensional, 1-slide slide-vector configuration

89



(in which the 1964 categories also represent the 1968 categories), constrained LG

was run until average coordinate change was .000.6 Figure 2.38 shows the plot

which was produced. APWL is .222, which seems rather high. Note that it is, in

fact, higher than the APWL for the unconstrained 1D plot. Interestingly, however,

classification accuracies7 are much higher: .900, .953, and .941. At first, the high

APWL seems to be an indication of the degree of the constraint we have imposed

on the model. But considering the high classification rate and our work on the

IMT, we realize that it is solely a function of the chosen scale for the category

constraints. If we dilate our configuration by a factor of 10, thereby producing

a geometrically equivalent configuration with identical classification accuracy, we

obtain an APWL of .041, which is quite comparable to the unconstrained 2-

dimensional plot. Experimenting with dilation factors shows this APWL to be

essentially optimum for this configuration. This is a subject we will return to in

later sections.

An obvious feature of this plot is that the object points seemed divided into

two groups along an axis parallel to the slide vector - i.e., along a line that divides

the left and right halves of the political spectrum - with some points from each

group arrayed around the periphery of the category configuration. Examining

some of these points give us some insight into the structure of the plot. Points

close to the axis line are groups with voters switching across the political spectrum.

There are relatively few of these types of voters and generally larger numbers of

voters in the peripheral groups, which involve switches within the same half of

the spectrum. This highlighting of the importance of the political left-right axis is

probably the most important contribution of this model over the 1D model, which

clearly divides the parties much differently. One can see from this process that

6It should be noted, if it has not yet been made clear, that the constrained LG algorithm uses
a fixed-point convergence criterion, unlike uLG-1 which uses an APWL target. With constrained
categories, there is little concern that the algorithm will provide reflected, translated, or rotated
configurations from iteration to iteration.

7Recall that these are based on maximum model category probability.
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many exploratory hypotheses about this data can be studied using constrained

LG.
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Figure 2.38: Swedish Election Data - Slide Vector Model

A natural extension of the use of LG with longitudinal data is to use the

method to visualize discrete-time Markov chain transition matrices. For a Markov

chain with one-step transition matrix, P, we compute n-step state probabilities by

taking successive powers of P until we reach the chain’s steady-state (assuming

convergence of the sequence of powers of P). Viewing the states as objects and each

time step as a variable, each transition matrix can be considered a fuzzy indicator

matrix and this collection of indicators can be input into uLG-1. The resulting

configuration can give an interesting view of the progression of the Markov chain.

Consider the matrix shown in Table 2.8 which is used as an instructional

example in Nelson (1995) [50]. To give some context, it can be thought of as a

transition matrix to model basic activity on a particular website, state 1 being
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S1 0 .95 .01 .04

S2 0 .27 .63 .10

S3 0 .36 .40 .24

S4 0 0 0 1

Table 2.8: Markov Chain One-Step Transition Matrix

login, state 2 being a search, state 3 a scrolling or reading, and state 4 a log off.

After 43 steps, the chain converges (to 4 decimal places) to the matrix in Table

2.9; i.e., all users are log offed. This data, four states as objects measured on 43

variables, each with a 4 × 4 fuzzy indicator matrix, was input into uLG-1 for a

2-dimensional model. The resulting configuration is shown in Figure 2.39. APWL

is .0018 (after 1500 iterations), indicating that 2 dimensions is adequate for fitting

the probabilities. The (trivially) transient log on state moves quickly at first, then

slowly to infinity, no return to it from any other state being possible.8States 2 and

3 show fairly quick, simultaneous convergence to the steady-state. State 4, the

log off, an absorbing state, moves steadily toward the active states.

S1 0 0 0 1

S2 0 0 0 1

S3 0 0 0 1

S4 0 0 0 1

Table 2.9: Steady-State Matrix

Next, we modify the matrix slightly by adding a fifth state for log off by timing-

out. (Like state 4, it is an absorbing state.) The one-step transition matrix is

shown in Table 2.10. The chain converges (again, to 4 decimal places) in 49 steps

8Note that we could have removed state 1 as a category - that is, removed the first column
from each indicator since they are all columns of zeros. Generally, this is advisable to increase
the efficiency of the algorithm and because such categories are of little analytical interest. The
category was left in here for demonstration purposes.
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Figure 2.39: Markov Chain N-Step Probabilities
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to the steady-state matrix shown in Table 2.11. For this run of two-dimensional

uLG-1, we will eliminate the state 1 category (the column of zeros) from each

of the 49 n-step probability matrices as discussed in the footnote to the above

paragraph.

S1 0 .95 .01 .03 .01

S2 0 .27 .63 .09 .01

S3 0 .36 .40 .23 .01

S4 0 0 0 1 0

S5 0 0 0 0 1

Table 2.10: 5-State Markov Chain One-Step Transition Matrix

S1 0 0 0 .9341 .0659

S2 0 0 0 .9417 .0583

S3 0 0 0 .9483 .0517

S4 0 0 0 1 0

S5 0 0 0 0 1

Table 2.11: 5-State Steady-State Matrix

The resulting configuration is shown in Figure 2.40. APWL is .0059 after 1495

iterations. Again, states 2 & 3 are positioned together near the center of the plot.

The absorbing states, 4 & 5, converge directly to them, though state 4 comes much

closer, the log off being far more probable than the time-out. The convergence

pattern of states 2 & 3 are each marked by a discontinuity which suggests an area

for further investigation of the chain. Because of this and the slightly high APWL

of the 2D plot, a uLG-1 model was run in three dimensions. APWL is .0015

(after only 581 iterations) indicating somewhat better fit. The 3D plot (Figure

2.41) shows some similar patterns to the 2D. States 2 & 3 (labeled by numbers)
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are close to each other near the center of the plot. The absorbing states 4 and

5 converge toward them as before. (As categories, they are marked by o’s and

t’s, respectively, for log Out and T ime-out, due to the labeling procedures of the

scatterplot3d function.) Notice how the time-out becomes less likely at first,

then more likely as it converges. Of course, what is most noticeable is that the

discontinuities in the convergence patterns of the state 2 and state 3 categories

(labeled Search and Read, respectively) are here even more pronounced, to the

point where they would appear to more significantly affect model probabilities. A

computational analysis of this would likely be of some interest to those studying

this chain.
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CHAPTER 3

Convergence

From our work to this point, we see that to better understand the creation of

uLG-1 plots, an analysis of the convergence properties of the LG algorithm is

needed. In carrying this out, we will restrict our attention, at the outset, to uLG-

1 with binary indicator matrices. The analysis involves two key questions: The

first is whether, for a given dataset, there is a stationary point of the algorithm;

i.e., some configuration that is a global minimum for the APWL function. The

second somewhat related question is what is the rate of convergence.

The IMT gives us some insight into the first question. We know that if the data

can be plotted so that all objects are in the Voronoi cells of the categories they

belong to (i.e., we have what we refer to as 100% classification accuracy), then

larger and larger dilations of such a configuration will produce lower and lower

APWL’s. Though from a practical point of view, we obtain quite satisfactory

plots in this way, the APWL function in this case has no global minimum and the

algorithm has no stationary point.

This situation is similar to what is known, in connection with logistic regres-

sion, as complete separation of the data. In a classic paper, Albert & Anderson

(1984) [3] show that, if there is complete separation of the data, the MLE of the

logistic regression parameters does not exist, in the sense that, as in LG, they are

attained at infinity, on the boundary of the parameter space. We will adopt this

terminology and refer to data that satisfy the condition of the IMT as completely

separated.
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Given this result, it is of interest to determine if a particular dataset can

be completely separated in low (i.e., 2 or 3) dimensional space. If so, the LG

algorithm need be run only until 100% classification accuracy is attained or, to

be more precise, only until the categories are positioned so that the number of

separating Voronoi cells1 equals the number of distinct object profiles, although

this latter condition is more difficult to test during the operation of the algorithm.

Then, dilation will give APWL to any desired cutoff.

To determine whether a dataset is completely separable is, in general, a rather

complex problem. We will restrict our attention to 2-space and first consider some

particular cases, then comment on the general case. To begin, assume all of the

variables are dichotomous. It is obvious that, if j = the number of variables, then

for j = 1 or 2, the data is completely separable. However, if j ≥ 3 and all possible

object profiles are found in the data, they are not. This is shown as follows. Note

that each dichotomous variable places 2 category points in the configuration. The

Voronoi cells of these are the half planes determined by the line bisecting the

segment connecting the category points for the variable. The separating cells are

the intersection of these half-planes. Figure 3.1 gives an illustration for 3 dichoto-

mous variables.2 Notice there are 3 bisecting lines resulting in 7 separating cells,

1 bounded and 6 unbounded. This illustrates a result of Coombs & Kao (1955)

that, in 2-space, n separating lines will create:

(39) τ(n ,2) =
∑2

k

(
n
k

)

profile cells (of which 2n are unbounded). For n = 3, τ(3,2) = 7 and, in general,

for n ≥ 3, τ(n,2) <2n, which is the number of possible distinct object profiles.

1By separating Voronoi cells, separating cells or profile cells, we mean an intersection of cat-
egory Voronoi cells, each from a different variable, corresponding to an object profile classifying
the object in those categories.

2We have used the R package deldir to draw the Voronoi cells. deldir stands for Delaunay
triangulation and Dirichlet tessellation, the latter being the process of drawing the Voronoi cells.
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Figure 3.1: Separating Cells for 3 Dichotomous Variables

To study the workings of the LG algorithm, we created a dataset with 100

objects randomly classified on 3 dichotomous variables with all 8 possible object

profiles appearing. The uLG-1 plot is shown in Figure 3.2. The objects are

grouped into 8 distinct object points. Notice that there are 2 object profile points

in the 2-1-1 (2-a-A) profile cell. The point closest to the origin, which contains 6

misclassified objects, is the 2-2-1 (2-b-A) point for which there is no profile cell.

APWL for this configuration is .041 after 15000 iterations of uLG-1.3

3Interestingly, dilation by a factor of 10 lowers the APWL to .0205 and this appears to be very
near the global minimum for this configuration. We see here that, for classification near 100%,
dilation can be effective for lowering APWL, though not to 0. For less accurate classification,
dilation tends to increase APWL.
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Removing the 6 misclassified objects, giving us completely separated data, re-

sults in the plot in Figure 3.3. Again, there are 7 separating cells and, now, all

objects are correctly classified. APWL is .0009 after 3335 iterations and .0002

after 15000. Dilation of the .0009 configuration by a factor of 10 produces a an

APWL of 1 × 10−26. It is important to note that the pictured and the dilated

configurations have congruence coefficient and distance correlation of 1.
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Figure 3.3: Three Dichotomous Variables with 7 Profiles

Applying our previous observations about algorithm operation, we note that,

at 19 iterations, a configuration with .063 APWL gives 100% classification. Dila-

tion of this by a factor of 10 gives an APWL of 1 × 10−8, far lower than even a

20000 iteration run of the algorithm and in a miniscule fraction of the time.
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For polytomous variables, determining the number of profile cells that can be

created in 2-space seems, at first, to be a straightforward problem. Figure 3.5

shows that, for 2 variables each with 3 categories, a configuration giving 9 profile

cells, and, hence, complete separation, can be created. In fact, we can see from

Figure 3.5 that, in general, for 2 variables, if variable 1 has m categories and

variable 2 n categories, then the category points can be linearly positioned along

the coordinate axes to create a checkerboard pattern with nm separating cells,

hence, complete separation, as is shown in Figure 3.4. This can easily be seen

to generalize to up to n variables in n-space. Of course, whether LG will create

such profile cells is a different question. In Figure 3.6, we see a case where it does

for a synthetic dataset of 100 objects with profiles generated at random on two

3-category variables in which all 9 object profiles appear. The plot is created af-

ter 18 iterations of the algorithm. A factor-of-10 dilation gives APWL of 1 × 10−7.

For more than two polytomous variables in 2-space, it follows from the Coombs-

Kao formula (35) that the number of possible object profiles will be greater than

the number of possible profile cells. We conjecture that this is true in general;

i.e., for more than n polytomous variables in n-space. In that case, there can

be no complete separation for such data. In the terminology of Albert & An-

derson, data of this sort may be said to be overlapping. For logistic regression,

Albert & Anderson show that, for such data, parameter estimates can be found;

i.e., the likelihood function has a global maximum. Whether this is true of LG

is an open question, but our work with dilations of less-than-100%-classification

configurations suggests that it is.

A third result of Albert & Anderson is that, for data that has quasicomplete

separation, again, parameter estimates do not exist. In LG, quasicomplete sep-

aration means, roughly put, that some object points will be on the borders of

category Voronoi cells. A simple example of this is a 4-object dataset with the
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following indicator matrix to be plotted in 2-space:


1 0 0

0 1 0

0 0 1

1
3

1
3

1
3


Obviously, as we have commented on previously, we can draw a configuration

with APWL arbitrarily close to 0 by placing object 4 at the origin and the other

3 objects exactly at their category points all on a large circle centered at the ori-

gin. Thus, as with complete separation, no configuration giving a global minimum

APWL can be found.

The uLG-1 algorithm takes essentially this approach. Figure 3.7 shows suc-

cessive configurations found through 20000 iterations of the algorithm. The open

dots show the final configuration which has APWL of 1.8 × 10−5. Figure 3.8

shows the sequence of APWL’s. After dropping quickly, they move only very

slowly toward the limit of 0.4 Figure 3.9 is a magnification showing this process

more clearly.

Of course, by placing the 3 binary object-category points on a circle of radius,

say, 1000, we can, without the aid of the algorithm, instantly create a much lower

APWL configuration. This brings us directly to the question of convergence rate.

The performance of the algorithm on the 4-object quasiseparated data above illus-

trates a result of De Leeuw (1988) [12] regarding the smacofRect MDU algorithm

at the heart of uLG-1. In this seminal paper, De Leeuw showed that the algorithm

4Interestingly, weighting the data by adding a large number of objects with one of the binary
profiles does not seem to change the operation of the algorithm. That is, that object is not
moved further away more quickly to decrease APWL.
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converges linearly to a minimum stress configuration with rate given by the largest

eigenvalue not equal to 1 of the second derivatives of the smacof update evaluated

at the stationary point. In terms of LG, in which APWL arises primarily from

MDU stress, if the sequence of APWLs generated by the algorithm, xk, converges

to some value, L, we have:

(40) limx→∞
xk+1−L
xk−L

= λ ≤ 1.

Further, in almost all cases λ is very close to 1, which is referred to as sublinear

convergence. De Leeuw conjectures (personal communication, 2013) that, if no

stationary point exists; i.e., if APWL is minimized by moving objects or cate-

gories to∞, then convergence is, in fact, sublinear. Figure 3.10 shows the ratio of

APWLs for the iterations of the 4-object quasiseparated data which, along with

a number of other examples we have examined, seems to strongly support the

conjecture.
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CHAPTER 4

Algorithm Acceleration

As we have seen, with even moderately sized data sets, if we select a desired

APWL target (which may by chance be lower than what can be obtained) and

have the uLG-1 algorithm run until it is met or until some large iteration limit

is reached, considerable computing time may be required. For example, the 1495

iterations of uLG-1 used to produce the two-dimensional 5-state Markov chain

model ran for over 2 hours and datasets with many variables, such as typical roll

call data, may run much longer. This is, of course, a major impediment to using

LG. Runs of the LG algorithm which include bias parameter computation will

likely be even more time-consuming.

From the IMT, we see that a possible time-saving approach would be to run

just enough iterations of the algorithm to produce a reasonable approximation to

the stationary configuration, then to dilate it until optimum APWL is reached.

Our discussion of the 2-dimensional slide-vector model of the Swedish Election

data gives an example of how this method might work. However, we cannot

determine in advance what a sufficient number of iterations might be and may end

up undershooting the number, which will result in a sub-optimum configuration,

or overshooting, which will result in wasted computing time. We must also find

an optimum dilation factor, an essentially heuristic process which, though not

particularly difficult, still adds to our computing time.

Fortunately, there is an approach which essentially carries out this process, but

overcomes the difficulties mentioned above. It is known as Minimal Polynomial
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Extrapolation (MPE). We have had some success applying MPE to accelerate the

algorithm. MPE allows us to compute configurations equivalent to those of the

maximum-iteration approach with far fewer iterations of the algorithm and con-

sequent saving of system time. It does this by essentially projecting forward from

a few iterations to calculate an approximate stationary point of the algorithm.

We do not need to guess at a target APWL or test if some sub-optimal configura-

tion is close enough in congruence to be dilated. And, the sub-linear convergence

property of uLG-1 discussed above allows MPE to function well even if, in theory,

some object or category points should be moved to∞. We provide a brief outline

of MPE here. An excellent and thorough discussion of the method is found in

Smith et al. (1987) [59].

We suppose that we have a sequence of N -dimensional vectors of the form

(41) xj+1 = Axj + b, j=0,1,2,. . .

where A and b are fixed, but unknown. Assume, for the moment, that all eigen-

values of A are less than 1 so that the iterative sequence will converge to a unique

fixed point. MPE allows us to find that fixed point without computing A and

without inverting an N × N matrix. The procedure, for the details of which the

reader is referred, again, to the very elegant presentation of Smith et al. cited

above, is as follows: We first compute the difference vector

(42) u0 = x1 - x0,

then consider the monic polynomial of least degree, or minimal polynomial, P(z),

such that
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(43) P(A)u0 = 0.

Suppose the degree of P is k. We then form k+1 difference vectors

(44) uj = xj+1 - xj, j=0,1,2,...k

and column-bind them into a matrix, U. It can then be shown that the non-leading

coefficients of P, which we denote by the vector c (recall that P is monic so the

lead coefficient is 1) are given by

(45) c = -U+uk

where U+ is the Moore-Penrose generalized inverse of U. Further, it can be shown

that the fixed point or limit of the sequence, denoted s, can be computed as

(46) s =
∑k

j=0 cjxm+j∑k
j=0 cj

for any k+1 consecutive terms of the vector sequence, xm,. . .,xm+k.

To this procedure, three clear objections, two general and one specific to LG,

are sure to be raised. The first general objection is how can k be determined. The

answer is that, in general, it can’t be. In practice, we proceed by approximating k

by using vector subsequences of different lengths to construct the matrix, U, and

to ultimately compute s, the limit vector. Smith et al. report that this approach

has been found to lead to good approximations of s. The second general objection

is how to proceed if the vector sequence does not converge for all elements of the

vector. Non-convergence for uLG-1 might occur, for example, if the configura-

tions returned at each iteration of the algorithm are not uniformly centered and
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oriented. Fortunately, the SMACOF algorithm, which computes the coordinates

of the configurations, always returns centered category configurations.1 This has

proved to be a sufficient guarantor against non-convergence induced by transla-

tions or rotations of the configurations.2 In general, non-convergence might also

occur if points of the vector are moving to ∞. In such cases, Smith et al. give

methods to transform the sequence to one that converges to an anti-limit and

give ways to interpret these. We have not yet encountered this situation with

our LG-related experiments with MPE. This is likely because, although for some

datasets uLG-1 will ideally move points toward ∞, convergence of the algorithm

in such cases is so slow that MPE will compute finite coordinates.

The LG-specific objection pertains to how MPE can be applied to LG since

it does not appear to generate vector sequences by linear iterations. First, it is

true that the main output of uLG-1 are two configuration matrices, one for ob-

jects the other for categories. So, to apply MPE to the algorithm, we simply

vectorize these matrices, obtain the limit vector, which is, after all, given by the

coordinate-by-coordinate limits, then reconstruct the configuration matrices. Sec-

ond, it is also true that the functional iterations of uLG-1 are not linear. However,

as discussed by Smith et al., and in greater detail by De Leeuw (2008) [20], if the

sequence-generating function, F, can be approximated by a linear function in a

neighborhood of the fixed point, s, MPE can still be applied, since we have, for

all x in such a neighborhood

(47) F(x) ≈ s + dF(s)(x-s) = dF(s)x + (I-dF(s))s .

1This is because, in SMACOF as it is applied in uLG-1, each iteration gives a configuration
of the form Xk+1 = V+B(Xk)Xk where the matrices V+ and B(Xk) are symmetric matrices with
row sums equal to 0. In particular, for B(Xk) the diagonal elements are equal to the negative
of the sum of all other row elements. The matrix V+ has a slightly different structure; for our
applications V+ is a block-diagonal matrix with blocks of the form n1

-1(I - n-111t) . See De
Leeuw & Mair (2009) [24] for details of the derivation.

2Though it is not commented on explicitly, this appears to have been the experience, as well,
of the researchers who conducted the leading published study of SMACOF with MPE, Rosman,
et al. (2008) [56].
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Of course, in such a case an exact solution for s cannot be guaranteed, but

excellent results can still be obtained. Inspection of the functions that comprise

the uLG-1 algorithm, show them to be sufficiently well-behaved for (47) to apply.

This is fairly clear for the distance and probability calculations that are made

at each iteration. With regard to the unfolding process, we see from a review of

de Leeuw & Mair (2009) [24], that the smacofRect algorithm computes unfolding

configurations by repeated minimizations of a simple quadratic function. This can

be assumed to be well-behaved also, so we can apply MPE to the LG algorithm.

The MPE procedure, then, is to run a small number of iterations of uLG-1,

saving the resulting configurations for each, then vectorize the configurations as

discussed above, compute the one-step difference vectors uj (42) and the vector

c by (45), then compute s using (46). We have used the simple R code for this

found in Loisel & Takane (2011) [46].3 The vector s is then formed into the

configuration matrix which is then evaluated for APWL. All values of k from 2 up

to the length of the vector sequence are used to compute a vector, s. Subsequences

from the beginning and the end of the generated sequence are used, with the lowest

APWL configuration taken as the output. The R function mpeLG1 found in the

supplementary file carries this out.

The results, so far, have been very promising. For the 5-state Markov chain

(which, as noted above, took nearly 1500 iterations and over 4 hours to run on

UnbiasLG), 30 iterations of UnbiasLG were used for mpeLG1. After a total run-

ning time just over 4 minutes, a configuration was found with APWL = .0101

(compared to .0059 using the unaccelerated algorithm). This configuration was

computed using 14 of the 30 vectors in the generated vector sequence (or, put

another way, by approximating k, the degree of the minimal polynomial, to be

13). It is plotted in Figure 4.1 and can be seen to be strikingly similar to the

3It uses the ginv function from the MASS package in R.
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original uLG-1 plot in Figure 2.40.4 That the second one was computed with a

nearly 6000% decrease in computing time is somewhat astounding.

Next, we computed a configuration for the French Financial Elite network

using mpeLG1. Recall that, for the configuration in Figure 2.31, APWL is .1343.

This was obtained at the max-iteration termination (2500) after over 2 hours of

system time. Using mpeLG1, a configuration with APWL of .0891 was computed

in just under 10 minutes. This involved a vector sequence of length 200, the last

145 of which were used to compute the limit vector. The configuration is shown

in Figure 4.2. Its structural similarity to the original plot is obvious.5

To try MPE with fuzzy indicator data, we used the method to compute a

configuration for the LA Neighborhoods data used in the section on multinomial

regression. The uLG-1 configuration, with APWL of .0223, was produced in only

65 seconds of system time. With MPE, a .0346 APWL configuration (Figure 4.3)

was produced in 2.6 seconds using the last 68 vectors of a 100-vector sequence. But

for a rotation, it is essentially identical to Figure 2.19, the uLG-1 plot (congruence

coefficient of .988, distance correlation .954). It is pictured below.

From considering the above process, a technique for improving the estimate

4Indeed, the congruence coefficient between the 2 configurations is .993, with distance corre-
lation of .972. In MDS or MDU, the generally accepted approach for comparing configurations
is to compute both of these statistics. (Simple examples to show that it can be misleading
to rely on the correlation alone are given in Borg & Groenen (2005) [6]. The congruence
coefficient, c(X,Y) , between the configurations given by coordinate matrices X and Y is given by

c(X,Y) =
∑j

i<j dij(X)dij(Y )

((
∑j

i<j d
2
ij(X)).5(

∑j
i<j d

2
ij(Y )).5)

.

Notice that by the Cauchy-Schwartz inequality, 0 ≤ c(X,Y) ≤ 1 and c(X,Y) = 1 if X and Y
are perfectly geometrically similar. This similarity can, in general, include difference by dilation
as well as reflection and rotation. For LG, however, it is easily seen, but nonetheless should
be noted, that 2 configurations that are similar up to a dilation cannot be equivalent models
of fuzzy indicator data. Thus, to say that 2 LG models are similar (or equivalent) under this
test is to say that they are congruent. In general, to claim that two configurations are similar,
both the correlation of distances, rd, and c(X,Y) should be statistically significant as discussed
in Borg & Leutner (1985) [7]. For these configurations, with relatively large numbers of points,
the two statistics are significant. Thus, it can be safely said that, for analytical purposes, the
configurations are essentially identical.

5The congruence coefficient is, again, .993, with distance correlation of .959.

117



-5 0 5

-5
0

5

x

y 2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4

5

2

3

4

5

2

3

4

5

2

3

4

5

2

3

4

5

2

3

4

5

2

3

4

5

2

3

4

5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

2

3

4
5

S1S2S3S4
S5

F2

F3

F4
F5

Figure 4.1: 5-State Markov Chain - MPE Model
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of the limit configuration suggests itself. We proceed as above to compute a

configuration, then use it as the starting point to generate another sequence of

vectors for MPE, then repeat this until the desired precision is attained. This is

referred to as cycling. According to Smith et al., it is reasonable to think, and, in

fact, may sometimes be the case, that the new sequence of vectors need only be

as long as the number used to compute the limit in the prior iteration. If so, the

computing time would increase slightly; however, this is by no means guaranteed.

For the 5-state Markov chain, two cycles, both run by generating a 30-vector

sequence, produced a configuration (Figure 4.4) with APWL of .0062, with only an

additional 8 minutes of computing time. Again, from an analytical point of view,

it clearly resembles the original uLG-1 configuration (with congruence coefficient

of .975 and distance correlation of .901).

For the French Financial network, one cycle with a 100-vector sequence pro-

duced (with only 2 minutes of additional system time) a very slight improvement

in APWL to .0863 and the configuration in Figure 4.5, which again is essentially

identical to both the uLG-1 and the MPE configurations (with congruence coef-

ficient of .992 and distance correlation of .954 with the uLG-1 plot). A second

cycle of 100 vectors did not result in any improvement.

For the LA Neighborhoods, two cycles, both using the last 26 of 100 vectors,

produced a configuration, shown in Figure 4.6, with APWL of .0238. It has

congruence coefficient of .996 and distance correlation of .984 with the original

uLG-1 plot and is, again, essentially identical.

Finally, we applied MPE with cycling to the constrained LG algorithm using

the Swedish Election slide vector model. The constrained LG algorithm uses a

fixed-point convergence criterion, so it is not surprising that MPE produces a

configuration (Figure 4.7) essentially identical in all respects, though in one-tenth

of the time. Cycling did not result in any significant improvement.
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The conclusion to be drawn from these studies is that MPE provides a very

effective method for accelerating the LG algorithm. Considering these empiri-

cal results, we can be confident that configurations produced by MPE will be

essentially equivalent to those produced by high-iteration runs of the generating

algorithm. Key factors in maximizing the acceleration are the number of vectors

that must be generated by iterations of LG and the number of cycles that should

be run. At this point, there does not seem to be a way to determine the minimum

number of vectors needed in advance. On cycling, we follow the recommendation

of Smith et al. that cycling should be run until no marked improvement in preci-

sion is achieved. From hereon in this research, all uLG-1 models will be run using

MPE.
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CHAPTER 5

bLG-1: Euclidean LG with Bias Parameters

As noted above, the full LG model of De Leeuw, containing bias parameters is

written:

(48) πil(X,Y) = βlexp(−φ(xi,yl))∑m
j=1 βjexp(−φ(xi,yj))

(for a single indicator matrix). We refer to it as Biased LG1. As was briefly

discussed previously, it is formally similar to the IPDA of Takane et. al (1987) [63],

certain log-linear models and some models from item response theory.

Since IPDA is, in important ways, the most similar method, a review of its

development is useful for working with Biased LG. Like LG, IPDA seeks to map

subject and category points into a low (usually 2)-dimensional common Euclidean

space so that subject points will be closer to the category points they belong to,

or are predicted to belong to. This predictive component is the main difference

between IPDA and LG, though, as we will see in the next chapter, we can simulate

it in LG for categorical predictors.

In IPDA, the probability that object k belongs to group g of a categorical

variable with K categories is:

(49) pgk =
ωgexp(−φkg∑K

h=1 ωhexp(−φkh)

1Again, we mention that this terminology is not intended to connote anything about expec-
tations of parameter estimates
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where the ω’s are category bias parameters and the φij’s are squared Euclidean

distances between the subject and category (or ideal) points.

The model likelihood is:

(50)
∏N

k

∏K
g (pgk)

fgk

where fgk is the category indicator function. Notice the use of squared distances

in the probability formula. This allows for optimization of the log-likelihood using

Fisher scoring.

It is most important to note here that, in IPDA, the probability in (49) is con-

ditioned on a given vector of predictor values. Thus, the likelihood is conditional

as well. That is, if Y is the coordinate matrix of the subject points and X is the

matrix of predictor values, we want

(51) Y = XB

for a matrix of regression coefficients, B. To streamline the IPDA optimization,

it is usually assumed that the category points are given by the centroids of the

object points belonging to them. Thus, if M is the matrix of category coordinates,

with the centroid assumption, we have

(52) M = (ZtZ)−1ZtY = (ZtZ)−1ZtXB

where Z is the indicator matrix of category membership. Therefore, with the

centroid assumption, in optimizing the log-likelihood only B and the ω’s, the bias

parameters, need to be calculated. Biased LG differs in that the predictor con-

straint is removed allowing for optimization by majorization and MDU methods.
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Takane et. al [63] note the evident relationship of IPDA to Coombs’s unfold-

ing model, the Luce biased choice model, and to log-linear models (as we have

with LG). Another important ancestor, we feel, is Shepard’s (1957) [58] model of

confusion matrices.2

In the case of unconstrained bias parameters, we must compute for a given

dataset the configuration coordinates, as is done in uLG-1, and the bias parame-

ters, β’s, which give optimum APWL. Notice that, since we are giving a formula

for probabilities, the β’s must be positive. Also, it is important to note that

bias parameters are not uniquely identified. Multiplication of the parameters for

a given variable by a positive constant will produce the same APWL since the

constant can be factored out of the LG formula. Thus, we can divide each of the

parameters for a given variable by their sum and consider them as summing to 1.

The algorithm BiasLG finds the desired configuration and bias parameters using,

as in uLG-1, Euclidean distance. The process, which we call bLG-1, is as follows:

First, a configuration is computed using uLG-1. Then bias parameters are com-

puted to minimize APWL starting from that configuration. The bias parameters

2Shepard sought to model the probability of stimulus confusions (and associated response
confusions) based upon their dissimilarities. To make more rigorous the concept of dissimilarity,
Shepard related it to the Euclidean distance between the stimuli in psychological space. He
then modeled the probability of a confusion between two stimuli, i and k, as:

Pi,k = Wkexp(−dik)∑n
h=1Whexp(−dih)

.

Working from data in the form of symmetric empirical confusion probability matrices, Shep-
ard gave algebraic expressions for the computation of the model distances based upon these
probabilities. Weights were introduced into the model to provide for the concept of asymmetric
inter-stimuli or inter-response distances; i.e., unfamiliar stimuli are more likely to be confused
for familiar ones than vice versa. Algebraic formulas for the weights can be derived from the
empirical probabilities, as well. To visualize the dissimilarity relationships, early MDS methods
were used to find coordinates for the stimuli and responses (separately) based upon the model
distances. Of interest would be to use LG to carry out Shepard’s approach. We would have to
cast the stimulus-response data in indicator matrix form. Depending on the nature of the data,
this could involve fuzzy indicator matrices or, possibly, multiple binary indicators, as we used
with the social network and Markov transition data. Then, the LG bias parameters could be
constrained to account for asymmetry in the dissimilarities among the stimuli. This is a project
for another time, but we mention it here to further show the flexibility and broad applicability
of LG.
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are computed using the R function nlminb, a gradient-based method which uses

PORT3 routines for constrained optimization of general vector functions. Using

(53) βlexp(-φ(xi, yl)) = exp(-φ(xi, yl) + log(βl)),

we adjust the configuration distance matrix. The adjusted distance matrix is

then used as a new starting configuration for uLG-1, which is run until a desired

APWL is reached. New bias parameters are computed for this configuration, and

the steps are then repeated until convergence to a desired APWL. The BiasLG

function requires inputting indicator matrices, a chosen dimension, and maximum

iterations for the initial and secondary uLG-1 runs as well as for the bias parameter

computation with nlminb. As with uLG-1, MPE can be used to accelerate all three

steps of the computation. The output gives the initial unbiased configuration as

well as the final configuration and the bias parameters and APWL corresponding

to both. Any messages from nlminb regarding the performance of the optimization

algorithm are stored as well. Our primary interest being data visualization, uLG-1

is typically run until a well-fitting configuration is found before computing bias.

However, as is suggested by our work in preceding sections, it will no doubt

sometimes be the case that bias parameters are sought for fixed or partially fixed

configurations and, of course, configurations for fixed bias parameters.

Two questions arise from this algorithmic procedure, one from its construction

and the other from its implementation. The first is whether the bias parameter

computation process can itself be used to accelerate the computation of configura-

tions with optimal APWL. That is, does the process of adding a small amount to

each object-to-category distance, constant in each category, aid in the underlying

unfolding process? Unfortunately, but not surprisingly, the answer appears to be

3PORT stands for Portable, Outstanding, Reliable, and Tested. The PORT library is a
collection of mathematical algorithms, including several for optimization, developed by Bell
Labs. For details, see Fox (1997) [29] and Gay (1990) [31]
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no. The reason is that the bias distance adjustments are computed to decrease

APWL, or, equivalently, to better model the data probabilities. Unlike the MDS

additive constants, they are not computed to make distances viable. Thus, we

have found that, to find configurations with optimal APWL, the uLG-1 process

must do most of the work. The computation of bias parameters and adjustment of

distances with them only slightly refines the underlying configurations and only

marginally affects APWL. Since these computations are themselves fairly time

consuming, the process does not provide acceleration.

The second question is of some importance. It is, what do the bias param-

eters tell us about our data and the model produced from it; i.e., how should

they be interpreted? In the similar types of analyses discussed above, different

interpretations are suggested. The bias parameters resemble, for example, item

discrimination parameters in IRT. See de Ayala (2009) [11] for further discussion.

In log-linear distance modeling of contingency tables, such parameters are gener-

ally computed for each dimension and represent either a stretching or shrinking

of the dimension. An excellent analysis and interpretation of such parameters is

found in De Rooij (2001) [25].

It is clear, though, that neither of these interpretations are applicable to the

general LG model. In particular, the bias parameters are not computed for each

object or dimension, but separately for each category within each variable. For

a particular configuration, they give the one distance (or relative distance) each

object must be moved uniformly from or toward each separate category of each

variable to give optimum APWL. Geometrically, it may be (and generally is)

impossible to carry out or visualize such a move, so these parameters must be

thought of in a conceptual way. In IPDA, Takane et al. (1987) [63] suggests that

they be viewed as something like a prior group probability or as the marginal

effects or overall likelihoods of the columns. This is an interpretation that does

seem to apply to LG, at least loosely. Notice that in the absence of any dis-
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tance parameters, or put another way, with all distances set at 0, all information

about the model probabilities is given by the bias parameters. If they were to be

computed with distances so constrained, they would give, when put into the LG

formula (50), the empirical column marginals. We see that as follows. Consider

that, for πil as in (54) (where we are considering the case of 1 variable since bias

parameters are computed separately for each variable); that is:

(54) πil(X,Y) = βlexp(−φ(xi,yl))∑m
j=1 βjexp(−φ(xi,yj))

the log-likelihood is:

(55) L =
∑N

i=1

∑k
l=1 gillog

βlexp(−φ(xi,yl))∑m
j=1 βjexp(−φ(xi,yj))

.

Now, suppose object i ∈ category l. Then ∂L
∂βl

will have the form:

(56) 1
βl
− exp(−φ(xi,yl))∑m

j=1 βjexp(−φ(xi,yj))
= 1

βl
− 1

βl
πil.

Assume there are nl such terms. Next, suppose j∈m, m 6= l. Then, ∂L
∂βl

will have

nm terms of the form:

(57) − exp(−φ(xj ,yl))∑m
j=1 βjexp(−φ(xi,yj))

= − 1
βl
πjl.

Continuing in this way, we see that

(58) ∂L
∂βl

=
∑n

i
l ( 1

βl
− 1

βl
πil) -

∑
j /∈l

1
βl
πjl

where there are N - nl terms in the second summation.
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Notice that in the absence of any distance parameters, or put another way,

with all distances set at 0 (and all information about the model probabilities given

by the bias parameters), and keeping in mind the constraint that
∑
βi = 1, we

have:

(59) ∂L
∂βl

= nl(
1
βl

- 1) - (N - nl).

Setting this equal to 0, we get βl = nl

N
, the column (or category) marginals. This

justifies our thinking of the bias parameters as prior group probabilities and the

applications of constrained bias parameters we will use below.

Conversely, when running unconstrained BiasLG on the datasets discussed

above, we have found that the bias parameters often come out nearly identical

across variables; i.e., they place a uniform multinomial marginal probability across

the categories. Thus, the distance parameters contain nearly all information about

model probabilities. This is all very much in keeping with what Takane refers to

as a prior probability. It also provides some ideas on how to use constraints on

the bias parameters for LG modeling.

The most obvious use is to constrain the bias parameters, βl, to be propor-

tional to category size. This is suggested by Takane as a standard procedure for

IPDA, for example. To further investigate the effect of using the bias parameters

in this way, we re-ran models using some of the datasets examined previously.

First, we used the four-category WHO beverage consumption data. The uLG-1

configuration is shown in Figure 1.2 above. Recall that APWL is .009. Forty-three

of the 47 countries (91.5%) are correctly classified by beverage with maximum con-

sumption. To find the bLG-1 configuration, we used the function ConstrBiasLG.

This function seeks the lowest-APWL LG configuration given a fixed set of bias
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parameters. The bLG-1 configuration is shown in Figure 5.1, with a detail of the

main configuration in Figure 5.2. APWL is somewhat higher at .051, but 44 of

the 47 objects (93.6%) are classified correctly. Comparing the two configurations,

we notice that, in the bLG-1 plot, the wine and spirits categories are located far-

ther apart allowing somewhat clearer discrimination between countries with these

respective preferences. Also, the relative bias for the beer category requires fit-

ting countries with this preference, by far the dominant one, close to the category

point, providing for slightly more pronounced clustering of these objects.
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Figure 5.1: WHO Beverage Data with Constrained Bias

Next, we used ConstrBiasLG with fixed bias parameters as discussed above,

to create a bLG-1 plot of the LA Neighborhoods data, the uLG-1 plot for which

is shown in Figure 22.19 above. For the uLG-1 plot, APWL is .039, with 100%
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Figure 5.2: WHO Beverage Data with Constrained Bias - Main Configuration
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classification of the neighborhoods by income quartile. APWL for the bLG-1 plot

(Figure 5.3) is .051, also with 100% classification. Comparing the plots, we notice

there is little change in the income quartile category points. This is expected

since those categories were essentially unbiased. For the ethnic groups, the White

category is moved noticeably toward the center of the configuration, as is the

Latino category, though slightly less so. The Asian and Black points are moved

slightly farther away. This is the effect we expect and, in fact, that we are seeking.

The association of the White category with the upper quartiles and the upward

mobility of the Latino group are both effectively highlighted.
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Figure 5.3: LA Nbhds with Constrained Bias

Also of interest with regard to this model are the income quartile profiles

produced by the configuration. They are shown in Table 4.1. Comparing them to
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the uLG-1 profiles, we see that the percentages of Latinos and Whites in the upper

quartiles are increased, as are the percentages of Blacks in the lower quartiles while

the percentage of Asians in the upper quartile is significantly decreased. The

profiles depart slightly more from the mean profiles than the uLG-1 results. This

seems to arise directly from the bias of the Asian and Black groups which has led

to something of an over-emphasis of certain patterns in the data. By contrast, the

Latino and White groups reflect the mean profiles more closely, again with some

emphasis of the association between the White group and the upper quartiles.

Asian Black Latino White

Low 0.081 0.187 0.662 0.070

LoM 0.014 0.291 0.506 0.190

UpM 0.135 0.002 0.316 0.546

Up 0.028 0.020 0.161 0.792

Table 5.1: Income Quartile Ethnic Profiles - Constrained Bias Model

Our most noteworthy results with bias constrained as above come from using

ConstrBiasLG on the 1-dimensional display of the Swedish Election data. The

bLG-1 plot is shown in Figure 5.4 below. Comparing it to the uLG plot, we see

some similarities, but also some important differences. As before, there are 4

object points. They are located similarly to Figure 2.36 and they are composed of

the same voter groupings. Also, the category (political party) points are positioned

in their order on the political spectrum with the large Social Democrat (SD) party

positioned well away from the others. Now, however, the SD points are essentially

collapsed into one point coincident with the 812 member 3-time SD object group.

Again, this is the effect of the bias of the SD categories and it is an emphasizing

of an effect we have seen before with uLG, where the algorithm positions large

blocks of similarly-profiled objects in this manner as an efficient way to minimize

overall APWL. Note also the initial pulling apart of the Center (C) and People’s
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(P) categories from 1964 to 1968, with the C being pulled toward the object points

and the P away from them. This is slightly more pronounced than in the uLG plot.

Much more pronounced is the marked shift of the 1970 C, P, and Conservative

(Con) points toward the left, with the C point being quite close to the right most

object point. These positionings are indicative of the leftward movement of the

voters from 1968 to 1970 which manifested itself in significant gains by the Center

party. In fact, it gained 95 voters and is the only party to have made overall gains

from 1964 to 1970. The bLG plot very effectively captures this feature of the data.
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Figure 5.4: Swedish Election Data with Constrained Bias

5.1 Using Bias Constraints for Model Testing

Exploiting the relationships between log-linear models and LG, we can use other

bias constraints to perform a type of model testing on certain types of cross-

classified data. Consider Table 4.2, taken from Agresti (2010) [2] summarizing

ratings of 160 movies by the famous film critics, Siskel and Ebert. Among the
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questions of interest for this type of matched pair, rater agreement data, is whether

the ratings are independent or associated in some way. Between the complete inde-

pendence and complete agreement, or dependence model (in which all off-diagonal

frequencies are 0), there are a number of possible types of association, such as

quasi-independence, symmetry, quasi-symmetry (identical to quasi-independence

for this 3 × 3 table), diagonals-parameter symmetry, and ordinal agreement, all

testable using corresponding log-linear models. The seminal work of Goodman

(1979 [34], 1981 [35], & 1983 [36]) elegantly develops many of these ideas. We are

interested in studying whether LG with certain bias constraints can be used to

explore these possible types of association. We give an example of how such an

exploration can be carried out.

Ebert

Siskel Con Mixed Pro

Con 24 8 13

Mixed 8 13 11

Pro 10 9 64

Table 5.2: Siskel and Ebert Movie Ratings

To start, we must, as always, transform the data from the tabular form to

indicator matrix form. Note that there are two ways to do this. We could construct

2 indicator matrices, one for each rater and each with 3 rating categories, or we

could construct a single 9 category indicator matrix, with a category for each of

the possible pairs of ratings. Since the relations between these are what we are

exploring and what we will be biasing, we take the latter approach. To establish

a baseline, a uLG-1 model for this data was run. Because of the exact-clustering

property of LG as stated in De Leeuw’s IMT, this 9 category, binary data can

be fit to almost 0 APWL. Indeed, our model has an APWL of .00014 and 100%

object classification accuracy.
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We are interested in testing the complete agreement model first. Cursory

inspection of the data shows that the raters disagreed on 59 out of 160 movies,

so we should not expect this model to fit well. To test this with LG, we place

high bias on the diagonal cells and divide the remaining bias among the six other

cells. With this bias, the data was rerun in ConstrBiasLG. The resulting model

has APWL of .040, nearly 277 times the unbiased model, and accurately classifies

only 134/160 (83.75%) objects. Because LG is able to nearly perfectly fit the

unbiased data, we consider this comparably poor model fit to be a solid indication

that the complete agreement model should be rejected. The bias-induced poor

LG fit is due to the fact that objects in the low bias cells are able to be positioned

further from their category points resulting in some encroachment of objects into

incorrect Voronoi cells and there are enough of them to greatly affect the model

performance.

We next consider the independence model. This is tested by placing high bias

on the off-diagonal cells and the remaining bias on the diagonals. For this model,

APWL is .0197, around 140 times the unbiased model, and classification accuracy

is 91.875% (147/160). Again, this is fairly poor considering the nature of this

data. Based on these results, we are inclined to reject both of these models, as

did Agresti in his log-linear analysis of the data.

As noted above, between these extremes there are generally several possibil-

ities for association. With a table of these dimensions, these are subsumed into

essentially two possibilities, the quasi-independence (QI) and the ordinal (and

reverse-ordinal) agreement models. We first consider the ordinal agreement mod-

els. Ordinal agreement postulates that, given rater disagreement, there is a ten-

dency for higher ratings by one rater to occur with relatively high ratings by the

other. Reverse-ordinal agreement is, of course, the converse. Formally, the models

are given by

140



(60) log µij = λ + λi
A + λj

B + βuiuj + δI(i = j)

where the parameters β and δ added to the independence model describe associ-

ation off the diagonal and beyond-chance agreement on the diagonal respectively.

The u’s are ordered category scores. The sign of β determines whether ordinal or

reverse-ordinal agreement exists. Without the β term, we have the formula for

the QI model.

To use LG to test ordinal agreement on this table is straightforward. We

place low bias on cells (1,3) and (3,1) of the table, those where Siskel’s lowest

rating is matched with Ebert’s highest and vice versa, the only cells where large

frequencies would not be consistent with the null hypothesis. ConstrBiasLG yields

a model with APWL of .0234 and correct classification of only 150 of 160 objects

(93.75%). For the reverse ordinal agreement, we adjust the bias of cells (1,2) and

(3,2), which yields APWL of .0205 and correct classification of 143 of 160 objects

(89.375%). Based on these results, we reject the ordinal agreement models, as

does the log-linear approach (which finds the β parameter to be insignificant).

This leaves the QI model. For quasi-independence, given rater disagreement,

the ratings are independent. Constructing a bias scheme for this is difficult. Fol-

lowing our approach above, we’ll want to set an equal bias for the diagonal cells

with the off-diagonal cells equally dividing the remaining bias. What those biases

are to be, however, cannot be determined a priori. Notice, for example, that both

the complete agreement and independence models are examples of this type of

biasing scheme. In fact, they trivially satisfy the quasi-independence definition

and can be taken as extreme examples of the QI model. This suggests a method

for testing QI. Over 200 iterations of bias, we uniformly vary the biases from the

complete agreement setting to the independence setting and measure the APWL’s

resulting from the ConstrBiasLG configurations. The left-hand side of Figure 5.5

below shows these plotted by iteration. Notice that, only for the extreme bias set-
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tings; i.e., those closest to the complete agreement or independence settings, do we

see significant increases in APWL. Classification accuracy decreases only at even

slightly more extreme cases. This stability of the configurations under these bias

schemes suggests that quasi-independence settings fit the data well. For compar-

ison, the right-hand figure gives the same plot as the ordinal agreement settings

are varied uniformly between ordinal and reverse-ordinal. We observe exactly the

opposite effect. The ordinal agreement models result in poor-fitting configura-

tions. For the poorest fitting model, classification drops to 75% (120/160) which

is strikingly weak performance for LG on this type of data.
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Figure 5.5: APWL Patterns for QI and Ord. Agmt. Bias Schemes

To further examine the soundness of this technique, we apply it to the synthetic

data in Table 4.3 for which the ordinal agreement model is clearly appropriate.

The unbiased model has APWL of .00013. Biasing for ordinal agreement gives an

APWL of .0012, about 9 times that of the overfitted model, with 100% classifi-

cation accuracy. The reverse ordinal agreement biasing with high probability of

overall agreement gives APWL of .0039, about 30 times that of the baseline model.
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Biasing for reverse ordinal agreement with low probability of overall agreement

gives APWL of .0083, 63 times the baseline. Finally, the corresponding indepen-

dence models give APWL’s of .0132 and .0173, 102 and 133 times the baseline,

respectively. Interestingly, classification accuracy for all of these biased models is

still 100%. This may be due to the fact that, for a table of such small dimensions

and with a small sample size, it is difficult for a biasing scheme to distinguish

between these types of associations. Despite this, the APWL results are quite

in line with what this method should demonstrate and suggest that, with fur-

ther refinement, it can be highly effective for testing various contingency table

associations.

Rater 1

Rater 2 Con Mixed Pro

Con 24 20 2

Mixed 20 13 20

Pro 2 20 64

Table 5.3: Synthetic Rater Agreement Data

5.2 Bias Constraints and Visualizing Interaction Effects

A final application we will consider of bias constraining is visualization of inter-

actions among predictors in logit-based regression. As we have seen from our

regression studies, LG allows us to visualize the relationship among predictors,

but, using our previous approach, it is relatively difficult to assess interactions.

This is because it is difficult to precisely locate the ideal point for objects with

each of the interaction profiles. To overcome this, we can use a combination of

fuzzy indicators and bias constraints. Again, we use an example to illustrate the

method.
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Consider the data below (Table 5.4) on mental impairment (MI) by socio-

economic status (SES) and life events (LE) taken, again, from Agresti (2010) [2].

In Agresti’s regression analysis, the predictors are SES, a binary variable (0 for low,

1 for high), and LE, a composite measure of the number and severity of recent

stressful life events undergone by the subject, recorded as an ordinal variable

ranging from 0 to 9. The response is MI, a 4 category ordinal variable. We are

interested in visualizing the interaction, if any, between SES and LE and the 0,

4, and 9 levels, these being the low, median, and high levels for the LE variable.

Some difficulties are immediately apparent. We have only very few subjects

with the six combined predictor profiles we are interested in. And these have

different MI scores which means that, using binary indicators, we would not pro-

duce a single point for such objects. To overcome these obstacles, we first create

a larger population using bootstrap-type resampling, of size 200 for this instruc-

tional example. Next, we identify all of the objects with the 6 predictor profiles

we are interested in and compute a fuzzy (i.e., probabilistic) indicator matrix for

their probability scores. Notice that this leaves us with only 6 objects in our

dataset and, even with a fuzzy indicator matrix, we are not likely to get interest-

ing or representative results using UnbiasLG. However, we will bias the SES and

LE variables based on their sample proportions to better reflect the population.

Using the approach, ConstrBiasLG produces the plot shown in Figure 5.6.

We submit that, from this plot, we can readily understand both the relationships

between the predictors and the response variable and the interactions among the

predictors at these levels. Certainly, it is clear that high SES is associated with

low levels of impairment and vice versa. For LE, the association from low to high

is nowhere near as stark. Regarding interactions, notice that high SES makes

relative lack of impairment much higher at 0 LE, slightly higher at 4 LE, and has

essentially no effect at 9 LE. On the other hand, for a subject with low SES, 0 LE

is nearly indistinguishable from a 4 LE and, in fact, substantially more likely to
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Subj MI SES LE Subj MI SES LE

1 W 1 1 21 Mild 1 9

2 W 1 9 22 Mild 0 3

3 W 1 4 23 Mild 1 3

4 W 1 3 24 Mild 1 1

5 W 0 2 25 Mod 0 0

6 W 1 0 26 Mod 1 4

7 W 0 1 27 Mod 0 3

8 W 1 3 28 Mod 0 9

9 W 1 3 29 Mod 1 6

10 W 1 7 30 Mod 0 4

11 W 0 1 31 Mod 0 3

12 W 0 2 32 Imp 1 8

13 Mild 1 5 33 Imp 1 2

14 Mild 0 6 34 Imp 1 7

15 Mild 1 3 35 Imp 0 5

16 Mild 0 1 36 Imp 0 4

17 Mild 1 8 37 Imp 0 4

18 Mild 1 2 38 Imp 1 8

19 Mild 0 5 39 Imp 0 8

20 Mild 1 5 40 Imp 0 9

Table 5.4: Mental Impairment by SES and Life Events
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be impaired than a 4 LE with high SES. For 9 on LE, low SES accentuates the

tendency toward impairment. These observations are consistent with Agresti’s

regression results.
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Figure 5.6: Mental Impairment Predictor Interactions
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CHAPTER 6

LG and IPDA

At this point, it will be worthwhile to further explore the similarities between LG

and Takane’s IPDA which we’ve noted above. In particular, now that we have

closely examined LG, with and without bias, we are in a position to compare

the configurations obtained by De Leeuw’s and Takane’s methods. We start by

modeling Guilford’s (1936) [38] data on judgment of lifted weights, shown in Table

6.1. It is taken from Takane (1989) [62], where it was analyzed by IPDA. The

reader is referred to the Takane paper where his results, including a 2-dimensional

configuration, are given.

Weight(gms) Judgment: A is

A B Greater Doubtful Less Total

185 200 5 4 91 100

190 200 12 18 70 100

195 200 15 25 60 100

200 200 30 42 28 100

205 200 55 35 10 100

210 200 70 18 12 100

215 200 85 9 6 100

Total 272 151 277 700

Table 6.1: Guilford Weight Judgment Data

To model this data in LG, we first convert it to indicator matrix form, using
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two indicator matrices, each with 700 object rows. The first matrix has 7 columns,

one for each of the weighting schemes, while the second has three columns corre-

sponding to the three possible judgments. Notice that biasing here is unnecessary

since there are the same number of objects in each of 7 object classes. IPDA pro-

duces essentially a one-dimensional solution for this data, but the weight-pairing

and judgment points lie on a quadratic. From psychometric theory, this is viewed

as an important aspect of this data. UnbiasLG produces the 2-dimensional plot

shown in Figure 6.1. Like the IPDA configuration, the weight pairs are arrayed

in essentially a quadratic pattern. In contrast to the IPDA results, the judgment

points are not placed along that quadratic. Instead, they are moved to the inte-

rior of the curve and placed in strata to correspond to the weight pairs that tend

to produce the judgments. We have seen this type of stratification before in LG

plots and it appears to be a common characteristic of the clustering method. It

seems to be very effective here in capturing the relationships in the data. Clearly,

a judgment of Heavier (the large 3 in the plot) is closely associated with pairings

6 and 7, to which it most directly corresponds, and slightly less so with pairing

5 (not quite as heavy). Also, a judgment of Lighter (the large 1) is associated

with pairings 1, 2, and 3. For this plot, notice that a judgment of Doubtful (the

large 2) is closely associated with pairing 4 (equal weights), as is expected, but

associated more closely to pairing 5 (A is heavier) than 3 (A is lighter). In the

IPDA plot, the opposite is true. Here, LG seems to reflect the data slightly more

accurately since 35 doubtful responses come from pairing 5 while only 25 come

from pairing 3.

Our second example involves Maxwell’s (1961) [47] hypothetical mental health

data, taken from Takane (1987) [61] and analyzed by IPDA, therein. It is shown

in Table 6.2. The predictor patterns give presence or absence of the following

symptoms: anxiety, suspicion, thought disorder, and guilt, then the subjects are

diagnosed as schizophrenic, manic-depressive, or anxiety disordered .
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Profile Frequencies

A S T G SC MD AX

1 0 0 0 0 38 69 6

2 0 0 0 1 4 36 0

3 0 0 1 0 29 0 0

4 0 0 1 1 9 0 0

5 0 1 0 0 22 8 1

6 0 1 0 1 5 9 0

7 0 1 1 0 35 0 0

8 0 1 1 1 8 2 0

9 1 0 0 0 14 80 92

10 1 0 0 1 3 45 3

11 1 0 1 0 11 1 0

12 1 0 1 1 2 2 0

13 1 1 0 0 9 10 14

14 1 1 0 1 6 16 1

15 1 1 1 0 19 0 0

16 1 1 1 1 10 1 0

Total 224 279 117

Table 6.2: Maxwell Mental Health Data
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For LG analysis, there are two possible approaches. First, we can deconstruct

the data, as we’ve done before, giving us five indicator matrices, each with 620

rows (one for each patient). There will be one matrix for each of the symptoms

(which will each have 2 columns for absence or presence of the symptom) and one

three column matrix classifying the patient by diagnosis. mpeLG1 produces the

configuration shown on the left of Figure 6.2. This plot provides some important

information about the data. The clearest association is between thought disorder

and schizophrenia. Schizophrenia is also most marked by presence of suspicion.

Anxiety disorder is, of course, most closely associated with presence of anxiety

and, somewhat less, with absence of guilt. Manic-depression (MD) is also marked

by presence of anxiety and, in fact, has a similar symptom profile to anxiety

disorder, but for the much closer association of MD with presence of guilt. IPDA

does not easily produce such a plot. This is because it views the 16 predictor

patterns as its objects and views the predictors themselves as explanatory rather

than as variables to be jointly scaled and plotted as we have done here with LG.

This brings us to the second LG approach, which more closely follows IPDA.

Here, we cast the data as two indicator matrices, each with 16 object rows. The

objects are the predictor patterns. The first matrix is a 16 × 16 identity ma-

trix; i.e., its categories represent predictor patterns, the same as its objects. The

second is a three column fuzzy indicator matrix in which the frequencies shown

in the table are converted to probabilities. In this approach, biasing by column

membership is important since the predictor groups are different sizes, as are the

diagnosis groups. With this bias, ConstrBiasLG produces the configuration on

the right of Figure 6.2. This is similar to the plots produced by IPDA, except that,

again, LG produces the stratification effect in the diagnosis points. The plot on

the left is helpful to understand and interpret the right-side plot. Notice that the

predictor profiles in the SC (schizophrenia) strata are all those in which thought

disorder is positive, except profile 5 which is positive for suspicion alone. Profile 9,
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positive on anxiety alone, is most closely associated with anxiety disorder, while

profile 2, guilt alone, is with manic-depression. Other interesting associations can

be identified as well. The reader is referred to Takane’s (1987) [61] results for

further comparison.

153



CHAPTER 7

Stability Studies

We have presented LG as primarily an exploratory and visualization method.

Nonetheless, as with any such method, it is important to consider whether the

patterns and relationships we remark upon in the created plots are meaningful

or whether they are chance occurrences elevated to meaning by what has been

referred to as magical thinking. (See, for example, Diaconis (1985) [27]). This

raises questions of stability, a central concept in the Gifi system. (For an excellent

discussion of this, see Michailidis and De Leeuw (1998) [49].)

We say that data analysis results are stable if small, unimportant changes

in the analytical input (for LG, the indictor matrices) lead to negligible changes

in the output (the configuration). There are two types of stability to consider,

internal and external. We begin with internal stability, which is the more relevant

to exploratory methods. It refers to a plot’s resistance to outliers and other

potential influential features of a dataset. It gives a sense of how well the plot

summarizes the data at hand. An important objective of exploratory data analysis

being to thoroughly know one’s data before moving to modeling and questions of

inference, internal stability is an essential feature of any exploratory method. It

can be thought of as a type of robustness.

One of the most important forms of internal stability is known as data selection

stability. A model or method has data selection stability if variations in the

input data, such as omitting outlier objects or collapsing categories, do not cause

unexpected variations or breakdowns in the output. To provide an example of an
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internal stability test in LG, we consider the data selection stability of our first

model of the Maxwell data, plotted on the left of Figure 6.2. We will consider this

to be the baseline output for the test. Recall that this was constructed using data

in the form of 620 objects with five binary indicator matrices giving the status of

the four symptom diagnoses and the final disease diagnosis. First, notice that the

data has several final diagnosis categories that contain only one or two objects.

A standard stability test is to remove these to see if such unusual observations

unduly affect the output. Having done this and computed a new category plot,

we need a way to compare this to the baseline. This can be done fairly well, in

this case, just by visual inspection, though with any much larger plot that would

be impracticable. The plot is shown in Figure 7.1 and is strikingly similar to the

baseline plot. There are only slight differences in category positioning that do not

alter our assessment of the relationships between the variables. Even noting this,

however, since we are interested in the precise distance relationships between the

categories, some finer measures need to be evaluated. We shall use the congruence

coefficient and distance correlations, which compare these distance relationships

in the aggregate, as well as APWL and classification accuracy, which give some

measure of the object alignment. In this case, all of these are consistent with

our visual comparison. The congruence coefficient with the baseline is .989 with

distance correlation of .944. The APWL of the test plot is .038 compared to .045

for the baseline with classification rates of .997 versus .989.1

Another type of data selection stability test involves collapsing of categories.

1It is worth considering these results, which are fairly common for LG used on moderate-
sized data sets, in light of the Ideal Model Theorem. As we have noted above, if a plotting
technique, such as homals, produces a configuration with 100% classification, sufficient dilation
of the configuration will produce a plot with arbitrarily small APWL under the LG metric. Now
suppose we have a configuration with nearly 100% classification produced by LG. From the study
we have done here, we see that it is likely that replotting after removal of the few misclassified
objects would not significantly change the overall configuration. Thus, after removing these
objects from the plot (giving 100% classification), we can dilate to achieve an arbitrarily low-
APWL LG configuration of the remaining data which we can be reasonably certain gives a fair
picture of the complete dataset. This can be a useful time-saving approach if, for example, the
near-100% plot was produced after relatively few iterations of the algorithm.
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Figure 7.1: Maxwell Data - Outlier Objects Removed

In the Maxwell data, for example, a researcher might notice that 110 of the 117

anxiety disorder diagnoses are positive for the anxiety symptom, with six of the

remaining seven being recorded as asymptomatic. Ninety-two of the 110 are pos-

itive on anxiety alone. This might suggest that the other symptoms evinced by

these patients are irrelevant or possibly even erroneous. If this is the case and

we collapse these 117 objects into just one profile category - positive on anxiety

alone - a robust visualization of the data should not be greatly affected. We see

that here for the LG method. The congruence coefficient with the baseline is .967

with .889 distance correlation. APWL is .032 with classification accuracy of .988.

An inspection of the plot, shown in Figure 7.2, again shows only slight alteration

in category positions and none that substantially affect our sense of the variable

relationships.

Another test of this type on this data involves the schizophrenia diagnosis.

We notice that profiles 3, 4, 7, and 15 include a total of 92 patients, all of whom
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Figure 7.2: Maxwell Data - Anxiety Diagnosis Collapsed

are diagnosed as schizophrenic. That all of these objects have the same diagnosis

suggests that these profiles should be identically positioned in the model space.

The common characteristic of these profiles being a positive thought disorder

finding, we collapse all 92 of these objects into that symptom profile. We obtain

a congruence coefficient of .995 with the baseline model with distance correlation

of .975. APWL is .033 with classification accuracy of .995. The plot is shown in

Figure 7.3. As expected given these readings, it is quite difficult to detect any

significant differences between this plot and the baseline plot. Interestingly, these

last two configurations are seen to be highly similar. In fact, they have congruence

coefficient of .976 and distance correlation of .919. These results suggest that LG

is indeed capturing real structure in the data as opposed to easily-varied chance

features. Of course, these are results for just one data set, but our experiments

with LG suggest that this type of internal stability is characteristic of the method.

A logical next step is to combine these collapsings. It should be kept in mind
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Figure 7.3: Maxwell Data - Schizophrenia Diagnosis Collapsed

that this involves altering the profiles of 88 of the 620 objects in the data set. The

resulting plot is shown in Figure 7.4. Its congruence coefficient with the baseline

is .943, which, as we will see, is actually a borderline result. The distance cor-

relation is .714, which indicates some clear difference in positioning among these

plots. Inspection of Figure 7.4 reveals some of these. The diagnoses categories are

fairly similarly aligned, but, not surprisingly, the Anxiety and Thought Disorder

symptom categories are positioned differently, reflecting the sharpened identifi-

cation of these symptoms with the Anxiety and Schizophrenia diagnoses, respec-

tively. Notice that, even with the altered positioning, the relationships between

the symptom and diagnoses points we would draw from this plot are essentially

the same as those we see in the baseline.

We turn next to external stability. A method is externally stable if samples

from the same population give essentially the same output. This is also known as

replication stability. Thus, external stability typically involves measures of statis-
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Figure 7.4: Maxwell Data - Anxiety and Schizophrenia Diagnoses Collapsed

tical significance and confidence levels in inferential and confirmatory analysis.

Although LG is a primarily an exploratory method, we wish to have some way

to assess if and to what extent our observations about the input variables can

be generalized to some larger population. We will attempt this, again, with the

Maxwell data. In this test, we will use the second of the LG approaches, plotting

the 16 symptom profiles using bias parameters. The bias parameters provide a way

of accounting to some degree for sampling variability. Samples are obtained using

the bootstrap. Following the approach of Michailidis and De Leeuw (1998) [49]

for using the bootstrap in homogeneity analysis, we sample objects (or data rows)

with replacement using 100 samples of the same initial population size of 620.

The data are then tabulated, as in Table 6.2, then profiles are computed using a

fuzzy indicator and constrained bias parameters, as with the right hand plot in

Figure 6.2.

Evaluating the replication stability of these results is not as straightforward as

with classical point processes. We first consider confidence regions for the object
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and category points, but we should note that since we are mainly interested in

distance relationships among these points, the regions can be quite difficult to

evaluate. As an example, the main diagnosis configurations for our 100 runs are

plotted in the Figure 7.5 (after being centered and oriented). It shows a tendency

for these plots to preserve the strata relationships among the categories. We also

see that the manic-depression point has the smallest variation and anxiety the

largest. This is how we want the method to behave, but beyond this, it is difficult

to draw any precise conclusions.
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Figure 7.5: Maxwell Data - Main Diagnoses Resampling Regions

As with internal stability, it is natural to consider the congruence coefficients

between the resampling configurations and the original data configuration. Figure

7.6 gives their distribution. At first, it is encouraging to note that only one of
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these is below .900. But for this configuration, the distance correlation is .435

and the configuration is actually quite different from the baseline. This is true, as

well, of the other 6 outlier configurations. Further, for the low outlier, only 7 of

the profiles give the same maximum probability for the main diagnoses, only 9 for

the high outlier. Thus, some further examination is required. For the low, non-

outlier, the configuration is plotted in Figure 7.7. It has congruence coefficient

of .929 and distance correlation of .816. We can see that it much more closely

resembles the baseline. Although profiles 6, 8, 10, and 13 are quite differently

plotted, it is fair to say that we get a picture of the data roughly consistent

with the baseline. It turns out that the congruence coefficients and the distance

correlations have a correlation of .996. Thus, as we move higher in congruence

coefficient, we obtain configurations that more and more closely resemble the

baseline. Figure 7.8 shows the probability residuals for the main diagnoses profiles

for the configurations at the 1st quartile congruence coefficient (.948, red), median

(.959, orange), 3rd quartile (.967, blue), and maximum (.989, black). The dotted

lines are at ±.2. Note that the higher residuals appear at profiles 5 and 6, 8,

and 12 and 13. These are profiles with relatively mixed main diagnoses patterns.

We also note that, from the 1st quartile on, these configurations appear to be

relatively stable in terms of modeling the main diagnoses probabilities; that is

to say, relatively stable in terms of profile positioning. To summarize, in testing

LG models for replication stability, the congruence coefficient can be used, but it

must be kept in mind that coefficients much below .95 must be studied further

to see how they vary from one’s baseline model. Examining the configurations

themselves, computing distance correlations, and plotting residuals can all be done

to determine if replication stability exists.
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CHAPTER 8

Conclusion

What is most noteworthy about LG is its versatility. We have used it to provide

useful visualizations of classic rank data MDU, roll call data, multinomial regres-

sion and log-linear models and even social network data. Applications with many

other types of data are not difficult to conceive.

This versatility springs from features of LG that are characteristic of De

Leeuw’s work: the generality of the indicator matrix method of data represen-

tation, a deep interest in finding unifying mathematical principles among varying

techniques and an accompanying interest in parsimonious analysis. Contrast LG

to WNOMINATE or the log-linear distance association methods or even to latent

space social network modeling and we see that its relative simplicity is quite strik-

ing. Yet, it appears to give at least equally valuable and, in some cases, equivalent

visualization of datasets. This is because, though it is simpler, LG expresses what

is at the mathematical heart of these methods.

It can be countered that these other methods are superior since they can be

used for inference and can account for model-fitting. Our response is that LG is

an exploratory method and should be evaluated as such. Though LG does involve

a probabilistic metric and an MLE approach to optimization, it should be recalled

that these are expressly used as principles of construction, not of data generation.

So, when we use LG to visualize multinomial regression or log-linear modeling

results, for example, we do not mean to replace these by LG, but rather that they

be used in tandem. Their predictive capabilities can be availed of as appropriate.

164



To paraphrase what De Leeuw (1988) [13] once said about homogeneity analysis,

with LG we are interested in making a picture of our data which can be used

to assist researchers in understanding it and making appropriate generalizations

and predictions from it. It is for the statistician to construct the picture using

a sensible process and to explain the implications of that process. It is for the

researcher to do the predicting and generalizing.

This is not a new debate in any sense, but one that has gone on through much

of the recent history of multivariate analysis, particularly where social science data

or, more generally, categorical data is involved. In researching this dissertation, we

came across an interesting instance of it involving the model-based MDS of Ram-

say (1978) [54]. Ramsay had provided an approach to finding confidence region

estimations for the points in an MDS solution. The model posited that observed

distances between objects are distributed log-normally about the true distance

with a variance dependent on point location. MLE methods were used to find

point coordinates and it was shown that a generalized inverse of the information

matrix gave the variances and covariances needed to find the elliptical confidence

regions. It is not an overstatement to say that this is quite an impressive paper.

Ramsay (1982) [55] was invited to present this work to the Royal Statistical

Society. The member responses to his paper are nearly as interesting as the paper

itself and we briefly discuss some of them here to place our comments on LG into

some historical context. A number of members believed that Ramsay’s approach

to MDS added little of value to the method. His distributional assumption seemed

to be made for mathematical convenience. Even given this, the mathematics

seemed needlessly complicated. It was doubted that social scientists, who at the

time were the main users of MDS, could make much of it beyond what they could

already do with classical MDS. If a useful MDS plot was produced but confidence

regions were not well-behaved, what would that signify? Should the MDS result

be seriously called into question?
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Interestingly, De Leeuw is one of these respondents. While clearly respecting

Ramsay’s intellectual accomplishment, he weighs in on the side of the divide

holding that MDS is best seen as a non-inferential, graphical method and is none

the less valuable for it. So, we take a similar view with regard to LG. We do not

dismiss the interesting model-based work we have reviewed, but do not view it as

a slight to consider LG as an exploratory graphical method.

Another aspect of Ramsay’s work which was criticized at the RSS was his

use of MLE methodology in connection with MDS. Our study of LG gives some

insight into this issue. Notice that, in LG, the likelihood of a configuration is

a function of its scale. Given a suitable configuration, we can use dilation to

increase its likelihood. In fact, for separated data, the likelihood can be made

arbitrarily close to 1. Every configuration dilated in this way is exactly congruent

to the starting configuration. They give precisely the same view of the data.

And this is true no matter how the configuration is constructed. It could, for

example, be the result of HOMALS. The likelihood interpretation arises simply

by placing the LG metric on the plot. So, we have configurations quite possibly

with low likelihood giving useful insight into the relationships between the objects,

variables, and categories of our dataset. This is somewhat of a difficult concept for

traditional views of MLE. Does likelihood in distance association methods come

down to simply a choice of transformations of distances? In LG, all of this is fairly

easily reconciled. MLE methodology is used only as a principle of construction or

classification. It is not intended to give insight into the data generation processes

or to give any deeper meaning to the space in which the LG plot is displayed.

It is the use of MLE abstracted from its usual interpretations that leads to

the versatility of LG. Through this innovative blending of MLE, majorization,

MDU, and general distance association methods, we have in LG a somewhat rare

creation: a very useful technique for analysis of a wide range of data types that,

at the same time, raises interesting questions at the foundations of its methods.
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