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ABSTRACT OF THE DISSERTATION

Cyber-Physical Systems Optimization with Reinforcement Learning:

Methods and Applications

by

Xianzhong Ding

Doctor of Philosophy in Electrical Engineering and Computer Science

University of California Merced, October 2023

Professor Wan Du, UC Merced, Chair

Cyber-Physical Systems rely on many control and decision-making algorithms. How-

ever, the majority of cyber-physical systems today are still operated by simple rule-

based and feedback controls such as on-off control or proportional-integral derivative

(PID) control. These prescriptive and reactive control strategies do not take into

consideration predictive information on disturbances, such as weather changes [4],

making their performance sub-optimal. Optimal control strategies such as MPC ad-

dress these drawbacks by iteratively optimizing an objective function over a receding

time horizon. However, despite many successful cyber-physical systems applications

of MPC (e.g., [5, 6]), its wide-spread adoption has been limited by the need of ac-

curate models [4, 7]. This is especially challenging because cyber-physical systems

are heterogeneous [8]. Thus, custom models are required for cyber-physical systems,

limiting the scalability of MPC.

To overcome the above challenges, we investigate deep reinforcement learning

(DRL) for solving challenging cyber-physical system optimization problems. Deep

reinforcement learning is a data-driven control method and learns an optimal control

policy directly from data, without using any pre-programmed control rules or explicit

assumptions about the cyber-physical systems. DRL also allows us to use domain

knowledge to train a control agent (a neural network) without labeled data. The

generalization ability of the neural network enables the control agent to better handle

the dynamically-varying factors (e.g., weather changing).

xiv



We use this approach to build a series of cyber-physical systems for impor-

tant applications including building control, irrigation control, and virtual machine

rescheduling. In the first building control application, we take a holistic approach

to deal with the trade-offs between energy use and comfort in commercial build-

ings. Further, we investigate the common data-efficiency problem when leveraging

DRL to cyber-physical systems and propose two data-efficient model-based RL meth-

ods for multi-zone building control. In the second irrigation control application, we

design a DRL-based irrigation system that generates optimal irrigation control com-

mands according to current soil water content, current weather data, and forecasted

weather information. In the third virtual machine rescheduling application, we design

a two-stage DRL agent framework to balance rescheduling performance and solution

speed. In future work, we will use the insights from these systems to identify com-

mon problems and develop new data-efficient reinforcement learning techniques for

cyber-physical systems.
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Chapter 1

Introduction

Cyber-physical systems (CPS) represent a category of embedded systems tightly

integrated with computer algorithms, computation, and communication. In today’s

fast-evolving digital landscape, CPS systems are gaining widespread prevalence, driven

by the rapid growth of the internet and information technology. These systems find

application in various domains, including building energy management, irrigation

control, and data-center infrastructure. Within these diverse CPS applications, the

primary focus often centers on optimizing energy and water efficiency and refining

scheduling algorithms. However, as the complexity of physical dynamics within build-

ings, irrigation systems, and data centers continues to increase, the design of robust

management systems for energy, water, and virtual machine scheduling, as well as

the development of highly efficient control and scheduling algorithms, has become

increasingly critical and challenging. In this dissertation, we introduce deep rein-

forcement learning methodologies aimed at enhancing the energy and water efficiency

of smart buildings and irrigation systems, along with improving scheduling perfor-

mance in data centers, to address these evolving demands of CPS applications in our

dynamic technological landscape.

In Chapter 2, we introduce a holistic approach to deal with the trade-offs be-

tween energy use and comfort in commercial buildings. We developed a system called

OCTOPUS, which employs a novel deep reinforcement learning (DRL) framework

that uses a data-driven approach to find the optimal control sequences of all build-

ing’s subsystems, including HVAC, lighting, blind and window systems. The DRL

architecture includes a novel reward function that allows the framework to explore

1
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the trade-offs between energy use and users’ comfort, while at the same time en-

abling the solution of the high-dimensional control problem due to the interactions of

four different building subsystems. In order to cope with OCTOPUS’s data training

requirements, we argue that calibrated simulations that match the target building

operational points are the vehicle to generate enough data to be able to train our

DRL framework to find the control solution for the target building. In our work, we

trained OCTOPUS with 10-year weather data and a building model that is imple-

mented in the EnergyPlus building simulator, which was calibrated using data from

a real production building.

In Chapter 3, we conduct a set of experiments to analyze the limitations of

current MBRL-based HVAC control methods, in terms of model uncertainty and

controller effectiveness. Using the lessons learned, we develop MB2C, a novel MBRL-

based HVAC control system that can achieve high control performance with excellent

sample efficiency. MB2C learns the building dynamics by employing an ensemble

of environment-conditioned neural networks. It then applies a new control method,

Model Predictive Path Integral (MPPI), for HVAC control. It produces candidate

action sequences by using an importance sampling weighted algorithm that scales

better to high state and action dimensions of multi-zone buildings. We evaluate

MB2C using EnergyPlus simulations in a five-zone office building.

In Chapter 4, we introduce a deep reinforcement learning (DRL)-based irrigation

system. DRLIC uses a neural network (DRL control agent) to learn an optimal

control policy that takes both current soil moisture measurement and future soil

moisture loss into account. We define an irrigation reward function that facilitates

the control agent to learn from past experience. Sometimes, our DRL control agent

may output an unsafe action (e.g., irrigating too much water or too little). To prevent

any possible damage to plants’ health, we adopt a safe mechanism that leverages a

soil moisture predictor to estimate each action’s performance. If it is unsafe, we

will perform a relatively-conservative action instead. Finally, we develop a real-world

irrigation system that is composed of sprinklers, sensing and control nodes, and a

wireless network.

In Chapter 5, we introduce a virtual machines rescheduling algorithm using deep

reinforcement learning in data centers. Modern industry-scale data centers receive

thousands of virtual machine (VM) requests per minute. Due to the continual creation
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and release of VMs, many small resource fragments are scattered across physical

machines (PMs). To handle these fragments, data centers periodically reschedule

some VMs to alternative PMs. Despite the increasing importance of VM rescheduling

as data centers grow in size, the problem remains understudied. We first show that,

unlike most combinatorial optimization tasks, the inference time of VM rescheduling

algorithms significantly influences their performance, causing many existing methods

to scale poorly. Therefore, we develop a deep reinforcement learning system for VM

rescheduling, VMR2L, which incorporates a set of customized techniques, such as a

two-stage framework that accommodates diverse constraints and workload conditions,

as well as an effective feature extraction module. Our experiments on an industry-

scale data center show that VMR2L can achieve a performance comparable to the

optimal solution, but with a running time of seconds.



Chapter 2

Deep Reinforcement Learning for

Holistic Smart Building Control

Recently, significant efforts have been done to improve quality of comfort for

commercial buildings’ users while also trying to reduce energy use and costs. Most

of these efforts have concentrated in energy efficient control of the HVAC (Heating,

Ventilation, and Air conditioning) system, which is usually the core system in charge

of controlling buildings’ conditioning and ventilation. However, in practice, HVAC

systems alone cannot control every aspect of conditioning and comfort that affects

buildings’ occupants. Modern lighting, blind and window systems, usually considered

as independent systems, when present, can significantly affect building energy use,

and perhaps more importantly, user comfort in terms of thermal, air quality and

illumination conditions. For example, it has been shown that a blind system can

provide 12%∼35% reduction in cooling load in summer while also improving visual

comfort.

In this paper, we take a holistic approach to deal with the trade-offs between

energy use and comfort in commercial buildings. We developed a system called OC-

TOPUS, which employs a novel deep reinforcement learning (DRL) framework that

uses a data-driven approach to find the optimal control sequences of all building’s sub-

systems, including HVAC, lighting, blind and window systems. The DRL architecture

includes a novel reward function that allows the framework to explore the trade-offs

between energy use and users’ comfort, while at the same time enable the solution of

the high-dimensional control problem due to the interactions of four different building
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subsystems. In order to cope with OCTOPUS’s data training requirements, we argue

that calibrated simulations that match the target building operational points are the

vehicle to generate enough data to be able to train our DRL framework to find the

control solution for the target building. In our work, we trained OCTOPUS with

10-year weather data and a building model that is implemented in the EnergyPlus

building simulator, which was calibrated using data from a real production building.

Through extensive simulations we demonstrate that OCTOPUS can achieve 14.26%

and 8.1% energy savings compared with the state-of-the art rule-based method in

a LEED Gold Certified building and the latest DRL-based method available in the

literature respectively, while maintaining human comfort within a desired range.

2.1 Introduction

Energy saving in buildings is important to society, as buildings consume 32%

energy and 51% electricity demand worldwide [9]. Rule-based control (RBC) is widely

used to set the actuators (e.g., heating or cooling temperature, and fan speed) in the

HVAC (heating, ventilation, and air-conditioning) system. The ”rules” in RBC are

usually set as some static thresholds or simple control loops based on the experience of

engineers and facility managers. The thresholds and simple control rules may not be

optimal and have to be adapted to new buildings at commissioning time. Many times

these rules are updated in an ad-hoc manner, based on experience and feedback from

occupants and/or trial and error performed by HVAC engineers during the operational

use of the building. As a result, many model-based approaches have been developed

to model the thermal dynamics of a building and execute a control algorithm on top of

the model, such as Proportional Integral Derivative (PID) [10] and Model Predictive

Control (MPC) [11]. However, the complexity of the thermal dynamics and the

various influencing factors are hard to be precisely modeled, which is why the models

tend to be simplified in order deal with the parameter-fitting data requirements and

computational complexity when solving the optimization problem [11].

To tackle the limitations of the model-based methods, some model-free ap-

proaches have been proposed based on reinforcement learning (RL) for HVAC control,

including Q-learning [12] and Deep Reinforcement Learning (DRL) [13]. With RL,

an optimal control policy can be learned by the trial-and-error interaction between a
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control agent and a building, without explicitly modeling the system dynamics. By

adopting a deep neural network as the control agent, DRL-based schemes can handle

large state and action space in building control [14]. Some recent work [15, 13] has

shown that DRL can provide real-time control for building energy efficiency. However,

all existing methods only consider a single subsystem in buildings, e.g., the HVAC

system [15] or the heating system [13], ignoring some other subsystems that can affect

performance from the energy use and/or user comfort point of view.

At present, more and more buildings are been equipped with automatically-

adjustable windows and blinds. For example, motor-operated windows and blinds,

like the intelligent products from GEZE, have been installed using an effective natural

ventilation strategy. In addition, researchers have studied the potential of energy

saving by jointly controlling the HVAC system and another subsystem, like blind [16],

lighting [17], and window [18]. For example, the energy consumed by HVAC can be

reduced by 17%∼47% if window-based natural ventilation is enabled [18].

In this work, we argue that a holistic approach that considers all available sub-

systems (HVAC, blinds, windows, lights) in buildings, which have complex and non-

trivial interactions should be used in coordination to achieve a specific energy effi-

ciency/comfort goal. Figure 2.5 shows a depiction of a modern building that includes

multiple subsystems (e.g., HVAC, window, blind and lighting) that work together

to guarantee human comfort goals, including thermal comfort, visual comfort, and

indoor air quality goals. For example, indoor temperature can be influenced by three

subsystems, like setting the HVAC temperature (adjusting the discharge tempera-

ture set points at the VAV level), and/or adjusting blind slats (allowing external

sunlight to heat indoor air) and/or the window system (enabling exchange of indoor

and outdoor air).

To achieve more efficient energy management in buildings, we propose to study

the joint control problem of four subsystems of a building to meet three human

comfort metrics as depicted in Figure 2.2. The energy consumption of a building

is determined by four subsystems and their interaction. It is challenging to control

four subsystems jointly, since they may have opposite outcomes on different human

comfort metrics. For example, opening the window can improve indoor air quality and

save the energy consumed by the HVAC system for ventilation, but it may also reduce

(in winter) or increase (in summer) indoor temperature. To handle the temperature
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Figure 2.1: Four Subsystems in a Typical Building.

variation caused by the open window, the HVAC system may need to spend more

energy rather than the energy saved by natural ventilation.

This paper presents a customized DRL-based control system, named OCTOPUS,

which controls four subsystems of a building to meet three human comfort require-

ments with the best energy efficiency. It leverages all the advantages of DRL-based

control, including fast adaptation to new buildings, real-time actuation and being

able to handle a large state space. However, to control four subsystems jointly in a

unified framework, we need to tackle three main challenges:

High-Dimension Control Actions. With a uniform DRL framework, OCTOPUS

needs to decide a control action for four subsystems jointly and periodically, including

the heating/cooling air temperature of the HVAC system, the brightness level of

electric lights, the blind slat range and the open proportion of the window. Each

subsystem adds one dimension in the action space. The goal of OCTOPUS is to

select the best action combination As from the set of all possible combinations Aall

that meet the requirement of human comfort with the lowest energy consumption.

Since each subsystem can set its actuator to a large number of discrete values, e.g., we

have 66 possible values to set the zone temperature by the HVAC system, the set of

all possible action combinations Aall is extremely large, i.e., 2,371,842 actions in our

case. To solve this problem, we leverage a novel neural architecture featuring a shared

representation followed by four network branches, one for each action dimension. In

addition, from the shared representation, a state value is obtained that links the joint

interrelations in the action space, and it is added to the output of the four previous

branches. This approach achieves a linear increase in the number of network outputs

by allowing independence for each action dimension.
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Figure 2.2: Relationship between Four Subsystems and Three Human Comfort
Metrics

Reward Function. To explore the potential energy saving energy across four

subsystems while considering three human comforts, we formulate this problem into

an optimization problem. We define a reward function in our DRL framework to

solve the optimization problem. The novel reward function jointly combines energy

consumption, thermal comfort, visual comfort, and indoor air quality, offering better

control and more flexibility to meet the unique requirement of specific users.

Data Training Requirements. While model-free approaches in general, and RL

techniques in particular, are very powerful, their main weakness is the amount of

data [19] required to train them properly. The amount of training data should be

in proportion to the action space, which in our case it is very large. This issue is

very important since we cannot expect building stakeholders to have years of building

data readily available so we can use OCTOPUS. Instead, we use a calibrated building

simulator combined with weather data that is readily available, in order to generate

as much training data as we needed. We trained our OCTOPUS system with 10-year

of weather data of two areas; one is Merced, CA, and the other one in Chicago, IL,

due to their distinct weather characteristics. The critical point is that this method

allows to train OCTOPUS for any building under any weather profile, as long as there

is a repository of weather data for the location, and a few months of building data to

perform the calibration of the simulator.

We would like to highlight the main contributions of the paper:

• To the best of our knowledge, this is the first work that leverages DRL to balance

the tradeoff between energy use and human comfort in a holistic manner.

• OCTOPUS adopts a special reward function and a new DRL architecture to tackle

the challenges imposed by the combined joint control of four subsystems with a very

large action space.

• We tackle the issue of data training requirement by adopting a simulation strategy

for data generation, and spending effort in calibrating the simulations to make them
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Figure 2.3: Thermal Comfort, PMV.
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Figure 2.4: Visual Comfort, Illuminance.

as close as possible to the target building. This allows our system to generate as

much data as needed within a finite amount of time.

2.2 Related work

Conventional control of the HVAC system. Model predictive control

(MPC) models have been developed for HVAC control. For example, complex mod-

els are commonly used to model building temperature response [11]. However, MPC

control only works well for low-order system dynamics, and its control variables must

be carefully set for different buildings [20].

Conventional control of multiple subsystems. Kolokotsa et al. [21] develop

an energy efficient fuzzy controller based on a genetic algorithm to control four sub-

systems (HVAC, lighting, window, and blind) and meet the occupant requirements

of human comfort. However, the genetic algorithm requires a few minutes to hours

to generate one control action. It is not practical to be used in real building control.
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Figure 2.5: Temperature Effect.

RL-based control of the HVAC system. Li et al. [12] adopt Q learning

for HVAC control. Dalamagkidis et al. [22] design a Linear Reinforcement Learn-

ing Controller (LRLC) using linear function approximation of the state-action value

function to meet the thermal comfort with minimal energy consumption. However,

the tabular Q learning approaches are not suitable for problems with a large state

space, like the state of four subsystems.

DRL-based control of the HVAC system. Wei et al. [15] develop a data-

driven deep reinforcement learning approach to intelligently learn an effective strategy

for HVAC control. Zhang et al. [13, 23] implement and deploy a DRL-based control

method for radiant heating systems in a real-life office building. Although the above

works can improve the performance of HVAC control, they require discretization of

the state-action space and are only focused on HVAC subsystem.

2.3 Design of Octopus

In this section, we describe in detail the design of OCTOPUS, including a system

overview, DRL-based building control, branching dueling Q-Network, and reward

function calculation.

2.3.1 OCTOPUS Overview

The design goal of OCTOPUS is to meet the requirement of human comfort by

energy efficient control of four subsystems in a building [24]. Our goal is to minimize

the energy E consumed by all subsystems in the building, including the energy used in
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Figure 2.6: OCTOPUS architecture

heating/cooling coils to heat and cool the air, the electricity used in the water pumps

and flow fans in the HVAC system, electricity used by the lights, and the electricity

used by the motors to adjust the blinds and windows. The value of E is constantly

being affected by the vector As, which is an action combination for four subsystems,

which belongs to the vector Aall that is all the possible action combinations.

In addition to the minimization of energy, we would like to maintain the human

comfort metrics within a particular range. This can be expressed as Pmin ≤ PMV ≤
Pmax, Vmin ≤ V ≤ Vmax, and Imin ≤ I ≤ Imax. PMV is a parameter that measures

thermal comfort; V measures visual comfort; and I measures indoor air quality. The

consumed energy E and the human comfort metrics (PMV , V , and I) are determined

by the current state of all four subsystems, the outdoor weather and the action we

are about to take. They can be measured in real buildings or calculated in a building

simulator, like EnergyPlus, after the action is executed.

The achieved human comfort results should fall into an acceptable range to meet

the requirements of users. We use [Pmin, Pmax], [Vmin, Vmax], [Imin, Imax] to present

the accepted range for thermal comfort, visual comfort and indoor air quality. They

can be set by individual users according to their preference, or by facility managers

based on building standards. The details on calculation of the above parameters (E,

PMV , V and I), the definition of an action (As) and the settings of the human

comfort ranges (e.g., [Pmin, Pmax]) will be introduced in Section 2.3.4.

Our goal is to find the best As from Aall for each action interval (15 mins in

our implementation). The best As should maintain the three human comfort metrics

in their acceptable ranges for the entire control interval with the lowest energy con-

sumption (E). To achieve this goal, we implement a DRL-based control system for

buildings. Figure 2.6 shows the overview of OCTOPUS as a building control system.
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Figure 2.7: Deep Reinforcement Learning Model.

It consists of three layers, i.e., building layer, control layer, and user demand layer.

The building layer is composed of the real building or a building simulation model,

and the sensor data management components. It provides sensor data to the control

layer and executes the control actions generated by the latter. The user demand

layer quantifies the user requirement of three human comfort metrics. The range of

each human comfort metric is then passed to the control layer, which searches for the

optimal control to meet the human comfort ranges with minimal energy consumption.

2.3.2 DRL-based Building Control

Basics for DRL and DQN

In a standard RL framework, as shown in Figure 2.7, an agent learns an optimal

control policy by trying different control actions for the environment. In our case, the

environment is a building simulation model due to the extensive data requirements

to train the system. With DRL, the agent is implemented as a deep neural network

(DNN). The agent-environment interactions of one step can be expressed as a tuple

(St, At, St+1, Rt+1), where St is the environment’s state at time t, At is the control

action performed by the agent at time t, St+1 is the resulting environment’s state after

the agent has taken the action, Rt+1 is the reward received by the agent from the

environment. The goal of DNN agent training is to learn an optimal control policy

to maximize the accumulated returned reward by taking different control actions.

State in OCTOPUS

The state is what the DRL agent takes as input for each control step. In this

study, the state is a stack of the current and historical observations, as shown below:

S = {obt, obt−1, ..., obt−n} , (2.1)
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where t is the current time step, n is the number of the historical time steps to be

considered, and each ob consists of the following 15 items: outdoor air temperature

(◦C), outdoor air relative humidity (%), indoor air temperature(◦C), indoor air rel-

ative humidity (%), diffuse solar radiation (W/m2), direct solar radiation (W/m2),

solar incident angle (◦), wind speed (m/s), wind direction (degree from north), av-

erage PMV (%), heating setpoint of the HVAC system (◦C), cooling setpoint of the

HVAC system (◦C), the dimming level of lights (%), the window open percentage (%),

and the blind open angle (◦). All the values we can be calculated by the EnergyPlus

simulation model. Min-max normalization is used to convert each item to a value

within 0-1.

Action in OCTOPUS

The action is how the DRL agent controls the environment. Given the state, we

want the agent to find the most suitable action combinations among HVAC, lighting,

blind and window system to balance energy consumption and three human comfort

metrics. There are four action dimensions when considering these four subsystems,

represented as

At = {Ht, Lt, Bt,Wt} , (2.2)

where At is the action combination of four subsystems at time t. Ht is the temperature

set-point of the HVAC system, which can be set to 66 values. Lt is the dimming level

of electric lights. Bt is the blind slat angle. The range of blind slat can be adjusted

from 0 ◦ ∼ 180 ◦. Wt is the open percentage of the window. Each of the above
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three actuation parameters can be set to 33 values in our current implementation

to achieve a proper balance between control granularity and calculation complexity.

According to Equation 2.2, the total number of possible actions in the action space

is 2,371,842 (66 × 33 × 33 × 33). Existing DRL architectures, like Deep Q-Network

(DQN) in [15] and Asynchronous Advantage Actor-Critic (A3C) in [13], cannot work

efficiently in our problem, because the large number of actions requires to be explicitly

represented in the agent DNN network and it will significantly increase the number of

DNN parameters to be learned and consequently the training time [25]. To solve this

problem, we leverage a novel neural architecture featuring a shared representation

followed by four network branches, one for each action dimension.

Reward Function in OCTOPUS

Reward illustrates the immediate evaluation of the control effects for each ac-

tion under a certain state. Both human comfort and energy consumption should be

incorporated. To define the reward function, a common approach is to use the La-

grangian Multiplier function [26] to first convert the constrained formulation into an

unconstrained one:
R = −[ρ1Norm(E) + ρ2Norm(Tc)

+ρ3Norm(Vc) + ρ4Norm(Ic)],
(2.3)

where ρ1, ρ2, ρ3 and ρ4 are the Lagrangian multipliers. E is energy consumption,

Tc is thermal comfort, V c is visual comfort and Ic is Indoor air quality. Norm(x)

is a normalization process, i.e., Norm(x) = (x - xmin )/(xmax - xmin) to transform

energy and three human comfort to the same scale. This reward function merges the

objective (e.g. energy consumption) and constraint satisfaction (e.g. human comfort).

The reward consists of four parts, namely, the penalty for the energy consumption of

the HVAC and lighting system, the penalty for the occupants’ thermal discomfort,

the penalty for the occupants’ visual discomfort and the penalty for the occupants’

indoor air condition discomfort. Specifically, the reward should be less, if more energy

is consumed by the HVAC system or the occupants feel uncomfortable about the

building thermal, visual and indoor air condition. The details about how to define

and formulate energy consumption E, thermal comfort Tc, visual comfort V c and

indoor air condition Ic are explained in Section 2.3.4.
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2.3.3 Branching Dueling Q-Network

To solve the high-dimensional action problem described in Section 4.3.3, OCTO-

PUS adopts a Branching Dueling Q-Network (BDQ), which is a branching variant of

the dueling Double Deep Q-Network (DDQN). BDQ is a new neural architecture fea-

turing a shared decision module followed by several network branches, one for each

action dimension. BDQ can scale robustly to environments with high dimensional

action spaces and even outperform the Deep Deterministic Policy Gradient (DDPG)

algorithm in the most challenging task [27]. In our current implementation, we use

a simulated building model developed in EnergyPlus as the environment for training

and validation. Our BDQ-based agent interacts with the EnergyPlus model. At each

control step, it processes the state (building and weather parameters) and generates

a combined action set for four subsystems.

Figure 2.8 demonstrates the action branching network of BDQ agent. When a

state is inputted, the shared decision module computes a latent representation that

is then used for the calculation of the state value and the output of the network

(Advantages dimension in Figure 2.8) for each dimension branch. The state value

and the factorized advantages are then combined, via a special aggregation layer, to

output the Q-values for each action dimension. These Q-values are then queried for

the generation of a joint-action tuple. The weights of the fully connected neural layers

are denoted by the gray trapezoids and the size of each layer (i.e. number of units)

is depicted in the figure.

Training Process: The training process of the BDQ-based control agent is

outlined in Algorithm 1. At the beginning, we first initialize a neural network Q

with random weight θ. Another neural network Q− with the same architecture is also

created. The outer ”for” loop controls the number of training episodes, and the inner

”for” loop performs control at each control time step within one training episode.

During the training process, the recent transition tuples (St, At, St+1, Rt+1) are

stored in the replay memory Λ from which a mini-batch of samples will be generated

for neural network training. The variable At stores the control action in the last

step, and St and St+1 represent the building state in the previous and current control

time steps, respectively. At the beginning of each time slot t, we first update four

actions and obtain the current state St+1. In line 7, the immediate reward Rt+1 is
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Algorithm 1 The Training Process of Our BDQ-Based Agent

Input: The range of human comfort metrics and maximum acceptable energy con-
sumption

Output: A trained DRL agent
Initialize BDQ’s prediction Q with random weights θ Initialize BDQ’s target Q− with
weight θ− = θ for episode =0,1,...,M do

Obtain the initial state St and At randomly for control time step t = 0,1,...,T
do

Update Ht, Lt, Bt,Wt by the control action, At Calculate reward Rt+1 by
Equation 2.3 Obtain current state observation St+1 Store (St, At, St+1, Rt+1)
in reply memory Λ Draw mini-batch sample transitions from Λ Calculate
the target vector and update weights in neural network Q Update target
network Q−

d (s, ad) using Equation 2.5 Perform greedy descent iteratively to
tune BDQ by Equation 2.6.

end

end

calculated by Equation 2.3. A training mini-batch can be built by randomly drawing

some transition tuples from the memory.

We calculate the target vector and update the weights of the neural network Q by

using an Adam optimizer for every control step t. Formally, for an action dimension

d ∈ 1, ...N with n discrete actions, a branch’s Q-value at state s ∈ S and with action

ad ∈ Ad is expressed in terms of the common state value V (s) (the result of the

shared representation layer in Figure 2.8) and the corresponding (state-dependent)

action advantage Ad(s, ad) of each branch (the result of the each advantage dimension

in Figure 2.8) by:

Qd(s, ad) = V (s) + (Ad(s, ad)− 1
n

∑
a
′
d∈Ad

Ad(s, a
′

d)). (2.4)

The target network Q− will be updated with the latest weights of the network

Q every c control time steps. c is set to 50 in our current implementation. Q− is

used for inferring the target value for the next c control steps. We use yd to represent

the maximum accumulative reward we can obtain in the next c steps. yd can be

calculated by temporal-difference (TD) targets in a recursive fashion:

yd = R + γ 1
N

∑
d Q

−
d (s

′
, arg max

a
′
d⊆Ad

Qd(s
′
, a

′

d)), (2.5)
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where Q−
d denoting the branch d of the target network Q−; R is the reward function

result; and γ is discount factor.

Finally, at the end of the inner ”for” loop, we calculate the following loss function

every c control steps:

L = E(s,a,r,s′ ) ∼ D [
∑

d(yd −Qd(s, ad))
2] , (2.6)

where D denotes a (prioritized) experience replay buffer and a denotes the joint-

action tuple (a1, a2, ..., aN). The loss function L should decrease as more training

episodes are performed.

2.3.4 Reward Calculation

This section describes how we calculate the reward function in Equation 2.3,

including energy cost E, thermal comfort T , visual comfort V and indoor air condition

I.

Energy Consumption

The energy consumption of a building includes heating coil power Ph and cooling

coil power Pc and fan power Pf from the HVAC system and electric light power Pl

from the lighting system. We calculate the reward function for energy consumption

E during a time slot as

E = (Ph + Pc + Pf + Pl) (2.7)

The heating and cooling coil are used to cool or heat the air and the fan is used

to distribute the heating air or cooling air to the zone. The electric lights are used for

normal work in the zone. They are calculated by EnergyPlus simulator in our training

and evaluation. In our current implementation, we ignore the power consumed by the

water pumps and the motors to adjust blinds and windows, because it is relatively

small compared with the power consumption of the HAVC system or the lighting

systems, and can be safely ignored (less than 1% total).

Human Comfort.

We define and explain the measurement of the three human comfort metrics.
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Thermal Comfort: It is determined by the index PMV (Predictive Mean Vote)

that is calculated by Fanger’s equation [28]. PMV predicts the mean thermal sen-

sation vote on a standard scale for a large group of persons. The American Society

of Heating Refrigerating and Air Conditioning Engineers (ASHRAE) developed the

thermal comfort index by using coding -3 for cold, -2 for cool, -1 for slightly cool,

0 for natural, +1 for slightly warm, +2 for warm, and +3 for hot. PMV has been

adopted by the ISO 7730 standard [29]. The ISO recommends maintaining PMV at

level 0 with a tolerance of 0.5 as the best thermal comfort. We calculate the reward

function for thermal comfort Tc during a time slot as

Tc =

{
0, PMV ⩽ P

|PMV − P |, PMV > |P |
(2.8)

The occupants can feel comfort when PMV value is within an acceptable range.

We denote the range as [−P, P ], where P is the threshold for PMV value. If the PMV

value lies within [−P, P ], it will not incur a penalty. Otherwise, it will incur a penalty

for the occupants’ dissatisfaction with the building thermal condition.

Visual Comfort: The research on visual comfort is dominated by studies ana-

lyzing the presence of an adequate amount of light where discomfort can be caused

by either too low or too high level of light as glare. In this paper, the major glare

metric is illuminance range [30]. The illuminance source includes daylight and elec-

trical light. Thus, the main subsystems that can have an impact on visual comfort

are blind system and lighting system. We calculate the reward function for visual

comfort Vc during a time slot as

Vc =


−F −ML, F < ML

0, ML ⩽ F ⩽ MH

F −MH , F > MH

(2.9)

The occupants can feel comfort when illuminance value F is within an acceptable

range. We denote the range as [ML, MH ], where M is the threshold for illuminance

value. If the illuminance value lies within [ML, MH ], it will not incur a penalty.

Otherwise, it will incur the penalty for the occupants’ dissatisfaction with the building

illuminance condition.
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Indoor Air Quality: Carbon dioxide (CO2) concentration in a building is

used as a proxy for air quality [31]. The carbon dioxide concentration comes from

building’s users. There are various other sources of pollution (NOx, Total Volatile

Organic Compounds (TVOC), respirable particles, etc.). Ventilation is an important

means for controlling indoor air quality (IAQ) in buildings [32]. Ventilation in this

work mainly comes from the HVAC system and the window system. We calculate the

reward function for indoor air condition Ic during a time slot as

Ic =


−C − AL, C < AL

0, AL ⩽ C ⩽ AH

C − AH , C > AH

(2.10)

The occupants can feel comfort when carbon dioxide concentration value C is

within an acceptable range. We denote the range as [AL, AH ], where A is the threshold

for dioxide concentration value. If the dioxide concentration value lies within [AL,

AH ], it will not incur a penalty. Otherwise, it will incur a penalty for the occupants’

dissatisfaction with the building indoor air quality.

2.4 Implementation of Octopus

In this section, we illustrate in detail the implementation of OCTOPUS including

platform setup, HVAC modeling and calibration, and OCTOPUS training.

2.4.1 Platform setup

Our building model is rendered using SketchUp [33]. It replicates a LEED Gold

Certified Building in our University Campus. Using OpenStudio, the HVAC, lighting,

blind and window system are installed in the building/zones. The control scheme -

OCTOPUS is implemented using Tensorflow, which is an open-source machine learn-

ing library for Python. Using the Building Control Virtual Test Bed (BCVTB), a

Ptolemy II platform that enables co-simulation across different models [34], we im-

plement the control of each zone temperature set points, blinds, lighting and window

schedule during each action time in EnergyPlus for our Building alongside weather

data. OCTOPUS is modeled using EnergyPlus version 8.6 [35]. We train OCTOPUS
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based on 10-year weather data from two different cities, Merced, CA and Chicago,

IL due to their distinct weather characteristics. The weather data for Merced has in-

tensive solar radiation and large variance in temperature, while Chicago is classified

as hot-summer humid continental with four distinct seasons. To train our model, we

define an “episode” as one inner for loop of Algorithm 1.

2.4.2 Rule Based Method

We implement a rule-based method based on our current campus building control

policy. This policy was first set up at commissioning time by a mechanical engineering

company, and then it was further optimized by two experienced HVAC engineers when

going over the LEED certification process.

First, we assign different zone temperature setpoints. Each zone has a separate

heating and cooling setpoint. The heating setpoint is set to 70 ◦F, and the cooling

setpoint to 74 ◦F during the warm-up stage. The cooling setpoint is limited between

72◦F and 80◦F, and the heating setpoint is limited between 65◦F and 72◦F. Second,

we set control restrictions and actuator limits and control inputs are subject to the

following constraints: the heating setpoint should not exceed the cooling setpoint

minus 1 ◦F. The adjustment will move both the existing heating and cooling set-

points upwards or downwards by the same amount unless the limit has been reached.

Third, for the control Loops: two separate control loops operate to maintain space

temperature at setpoint, the Cooling Loop and the Heating Loop. Both loops are

continuously active.

2.4.3 HVAC Modeling and Calibration

The purpose of the calibration is to ensure the energy model can generate energy

use results close to the measured values in the target building using actual inputs,

including weather, occupancy schedule, and the HVAC system parameters and con-

trols.

The first step of the calibration is to collect the real weather data from a pub-

lic weather station for the period to be tested. We use a Dark Sky’s API, a public

weather website, to collect real weather data for three months. The second step is to

replace the default occupancy schedules in the simulator with the actual occupancy
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Table 2.1: Model Calibration Parameters

Parameter Range Adoption
Infiltration Rate 0.01 m3 ∼ 0.5 m3 0.05 m3

Window Type/Area Single Pane/1m2 ∼ 4m2 2m2

Window Thickness 3mm ∼ 6mm 3mm
Fan Efficiency 0.5 ∼ 0.8 0.7

Blind Type/Thickness Interior Blind/1mm ∼ 6mm 1mm

Table 2.2: Modeling Error after Calibration

MBE CVRMSE
February (hourly temperature) -1.48% 5.32%

March (hourly temperature) -0.26% 4.95%
April (hourly temperature) 1.20% 5.06%
May (hourly temperature) 0.48% 4.38%

February - May(monthly energy) -3.83% 12.33%

schedules collected from the real target building using ThermoSense [36]. This system

was installed in the target building on our campus and allows the collection of fine

grain occupancy data at the zone level in the building, allowing the evaluation using

accurate occupancy patterns. We used the hourly occupancy data from 3 months as

the occupancy schedule in our simulated building by EnergyPlus. The third step is to

calibrate certain system and control parameters to match those in the target building

we want to replicate. This involves multiple issues, including (a) the selection of the

parameters to be calibrated, (b) the range of those parameters, and (c) the step used

within the range. In our work, we use an N-factorial design with 5 parameters and

ranges to be tested based on operational experience. We tested different combinations

of HVAC system parameters (Infiltration rate) and control (mass flow rate, heating,

and cooling setpoints) and found the combination that minimized the calibrated error

(see below). The selected calibration parameters are listed in Table 2.1 with their cal-

ibration ranges and values selected. The final step is to compare the calibrated error

between the calibrated model and the actual measured zone temperature and en-

ergy consumption stored in the operational building database. The whole calibration

process of modeling our building takes nearly one month.

ASHRAE Guideline 14-2002 [37] defines the evaluation criteria to calibrate BEM

models. According to the Guidelines, monthly and hourly data can be used for cal-
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Table 2.3: Human Comfort Statistical Results for Rule Based, DDQN-HVAC and
OCTOPUS Schemes

Location Method Metric
PMV Illuminance (lux)

CO2

Concentration
(ppm)

Energy

Consumption

(kWh)
January July January July January July January July

Merced

Rule Based
Method

Mean 0.03 -0.25 576.78 646.45 623.61 668.03
1990.99 3583.03Std 0.11 0.13 152.54 157.11 120.64 181.22

Violation
rate 0 2% 0.94% 0 0.3% 3.629%

DDQN

HVAC
[13]

Mean -0.19 0.28 576.78 646.45 625.62 648.01
1859.10 3335.58Std 0.21 0.11 152.54 157.11 122.62 120.57

Violation
rate 2.99% 4.4% 0.94% 0 0 0.2%

OCTOPUS
Mean -0.31 0.27 587.12 569.88 594.77 612.33

1756.24 2941.46Std 0.2 0.10 382.27 75.83 111.59 110.35
Violation

rate 5.7% 2.5% 0.26% 0.2% 1.31% 0.33%

Chicago

Rule Based
Method

Mean -0.28 -0.15 583.27 637.07 610.26 638.33
3848.61 3309.56Std 0.11 0.02 163.96 151.37 63.94 151.37

Violation
rate 3.09% 0 1.1% 0 0 0

DDQN

HVAC
[13]

Mean -0.32 0.24 583.27 637.07 612.74 649.32
3605.21 3078.67Std 0.08 0.07 163.96 151.37 65.09 90.16

Violation
rate 3.7% 2.9% 1.1 % 0 0 0

OCTOPUS
Mean -0.4 0.29 598.34 544.09 640.31 633.71

3496.54 2722.03Std 0.1 0.11 259.88 55.37 99.85 111.04
Violation

rate 4.2% 1.47% 1.6 % 0 1% 1.31%

ibration. Mean Bias Error (MBE) and Coefficient of Variation of the Root Mean

Squared Error (CVRMSE) are used as evaluation indices. The guideline states that

the model should have an MBE of 5% and a CVRMSE of 15% relative to monthly

calibration data. If hourly calibration data are used, these requirements should be

10% and 30%, respectively. In our case, hourly data is used to calculate the error

metrics for the average zone temperature. We choose monthly data to calculate en-

ergy error metrics because energy data can only be obtained monthly. The calibration

results for zone temperature and energy consumption are shown in Table 4.17. It is

shown that less than 2% NMBE and less than 6% CVRMSE for the zone tempera-

ture can be achieved with the optimal parameter setting. We found that both the

CVRMSE for the monthly heating and cooling energy demand are relatively large,

but the NMBE and CVRMSE are still within the acceptable range. This means the

model can achieve accurate calculations for the monthly energy.

2.4.4 OCTOPUS Training

10-year weather data for training from the two locations tested (Merced, CA

and Chicago, IL) is randomly divided, with eight years used for training and the



23

5 10 15 20 25 30
DAY

30

40

50

60

70

80

Da
ily

 T
ot

al
 E

ne
rg

y 
Co

ns
um

pt
io

n(
kW

h)

Rule Based Method
DDQN-HVAC
OCTOPUS

Figure 2.9: Daily Energy Consumption of Control Methods.
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Figure 2.10: The Convergence of OCTOPUS.

remaining two years used for testing. In our implementation of OCTOPUS, we use

the Adam optimizer [38] for gradient-based optimization with a learning rate of 10−4.

We train the agent with a minibatch size of 64 and a discount factor γ = 0.99. The

target network is updated every 103 time steps. We use the rectified non-linearity

(or ReLU) [39] for all hidden layers and linear activation on the output layers. The

network has two hidden layers with 512 and 256 units in the shared network module

and one hidden layer per branch with 128 units. The weights are initialized using

the Xavier initialization [40] and the biases were initialized to zero. We used the

prioritized replay with a buffer size of 106. To explore actions well in our building

environment, we sample actions with a Gaussian noise throughout the training. The

duration of each time (action) slot is 15 minutes. We achieved convergence of our

reward function after 1000 episodes as explained in Section 3.5.3.
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2.5 Evaluation

In this section, we compare the performance of OCTOPUS with the rule-based

method and the latest DRL-based method.

2.5.1 Experiment Setting

The implementation of the rule-based HVAC control has been introduced in

Section 2.4.2. The rule-based method only controls the HVAC system. For the

conventional DRL-based method, we implement the dueling DQN architecture used

in [13], which controls the water-based heating system. We name that work as DDQN-

HVAC in our comparison. Since these two benchmarks do not control the light system,

for a fair comparison, we initialize the lights on in all experiments. OCTOPUS may

dim the lights if the blind is open during the day. In addition, the two benchmarks

always leave the blind and window system closed.

The three human comfort metrics are measured by PMV, Illuminance, and car-

bon dioxide concentration. We set the acceptable range of three human comfort

metrics according to building standards and previous experiences in related work.

The comfort range of PMV is set to -0.5 to 0.5 [41]. The comfort range of illuminance

is set to 500-1000 lux [30]. The comfort range of carbon dioxide concentration is set

to 400-1000 ppm [32].

We use three control methods to control the building we modeled in Section 2.4

for two months (January and July) and at two places with distinct weather patterns.

Table 3.1 shows the human comfort results of three control methods and their energy

consumption. The violation rate is calculated as the time when the value of a human
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comfort metric falls beyond its acceptable range divided by the total simulated time.

Other quality of service metrics, including the amount by the which the violation

occurred, or combination of amount and time will be explored in future work.

2.5.2 Human Comfort

From the results in Table 3.1, we see that all three methods can maintain the

PMV value in the desired range for most of the time since the violation rate is low.

The average PMV violation rate of OCTOPUS and DDQN-HVAC is higher than the

rule-based method by 2.19% and 2.22% respectively. The reason for this is that the

DRL-based methods try to save more energy by setting the PMV to a value close

to the boundary of the acceptable range. It can be observed in Table 3.1 that the

average PMV value of OCTOPUS and DDQN-HVAC (-0.36 and -0.26) is closer to

the range boundary (-0.5), compared with the rule-based method (-0.13).

For both visual comfort and indoor air quality, the three control methods provide

a very small violation rate. For illuminance, the mean illuminance value of OCTOPUS

and DDQN-HAVC is 590.69 lux and 610.89 lux respectively. OCTOPUS saves energy

by utilizing natural light as much as possible. For indoor air quality, the average of

CO2 concentration of OCTOPUS, DDQN-HVAC, and rule-based method is 620.28

ppm, 633.92 ppm, and 635.06 ppm. OCTOPUS adjusts both window system and

HVAC system to maintain the CO2 concentration level within the desired range.

DDQN-HVAC and the rule-based method only use the HVAC system.

2.5.3 Energy Efficiency

The results in Table 3.1 reveal that OCTOPUS save 14.26% and 8.1% energy on

average, compared with the rule-based control method and DDQN-HVAC. In both

cities, OCTOPUS achieves similar performance gain. OCTOPUS reduces the energy

consumption of HVAC by using the other subsystems. Figure 2.9 shows a daily

energy consumption of three control methods in January at Merced. In most days,

OCTOPUS consumes less energy than the other two methods; however, OCTOPUS is

not always the best although we see clear gains towards the second half of the month

due to a change in weather temperature. The average range of outdoor temperature

changes from 2◦C∼ 13◦C in the first half of the month to -1◦C ∼ 18◦C in the second
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half of the month. OCTOPUS could use external air with the window open for more

natural ventilation.

In Table 3.1, compared to the rule-based method and DDQN-HVAC, OCTOPUS

saves more energy in July (17.6% and 11.7%) than in January (10.05% and 3.9%).

In July, the outdoor air temperature range at Merced and Chicago is 15◦C ∼ 42◦C

and 15◦C ∼ 40◦C respectively. The window can be opened when the temperature

is within the acceptable range, in order to save the energy consumed by the HVAC

system. However, in January, due to the cold weather at both places, the windows

stay closed most of the time and cannot make much contribution to energy savings.

2.5.4 Performance Decomposition

We implement four versions of OCTOPUS to study the energy saving contri-

bution of each subsystem, i.e., OCTOPUS just with the HVAC system (OCTOPUS

HVAC), OCTOPUS with HVAC and lighting (OCTOPUS HVAC L), OCTOPUS

with HVAC, lighting and blind (OCTOPUS HVAC L B) and OCTOPUS with all

four subsystems (OCTOPUS HVAC L B W). Figure 2.11 depicts the energy con-

sumption of these four versions in two different months and at two different places

(Merced and Chicago). Compared with the rule-based method, OCTOPUS HVAC

can save 6.16% more energy by only considering HVAC. When the lighting system is

added in OCTOPUS HVAC L, 2.73% more energy can be saved. If the blind system

is further added in OCTOPUS HVAC L B 1.93% more energy can be saved. Finally,

when the window system is added in OCTOPUS HVAC L B W, 3.44% more energy

can be saved. Four subsystems make different contributions to energy saving in Jan-

uary and July. In January, four subsystems (i.e., HVAC, lighting, blind and window)

make 6.16%, 2.73%, 1.93% and 0% contribution of energy savings respectively. In

July, the contribution of these subsystems changes to 5.9 %, 3.31 %, 1.99%, and 6.4%

respectively. The most obvious difference between these two months is made by the

window system (6.4%). The reason for this has been explained above. In January,

the windows are closed almost all the time. In July, the cold outdoor air is used to

cool down the building instead of using the HVAC system.
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2.5.5 Convergence of OCTOPUS training

Figure 3.6 shows that the accumulated reward of OCTOPUS in each episode dur-

ing a training process. We calculate the reward function every control time step (15

minutes), and thus one episode (one month) contains 2880 time steps. The accumu-

lated reward of one episode (episode reward in Figure 3.6) is the sum of the rewards

of 2880 time steps. From the results in Figure 3.6, we see that the episode reward

increases and tends to be stable as the number of training episodes increases. When

the episode reward does not change much, it means that we cannot do further to im-

prove the learned control policy and thus the training process converges. As indicated

in Figure 3.6, the training reward fluctuates between two adjacent episodes, because

the number of time steps is large in one episode, i.e., 2880. The rewards calculated

at some of these 2880 time steps may vary dynamically because we randomly choose

some time steps by an exploration rate (determined by a Gaussian distribution with

a standard deviation of 0.2). At these time steps, we do not use the action generated

by the agent, but randomly choose an action to avoid local minimum convergence.

If we smooth the episode reward using a sliding window of 10 episodes, the average

reward in Figure 3.6 is more stable during the training.

2.6 Discussion

Deploying in a Real Building. Although we have developed a calibrated

simulation model of a real building on our campus for training and evaluation, we

have not deployed OCTOPUS in the building, because we do not have access to

automatic blind and window system at the moment. We are seeking financial support

to work with our facility team for a possible upgrade. OCTOPUS is designed for real

deployment in buildings. For a new building, we need to build an EnergyPlus model

for it and calibrate the model using real building operation data. After training the

OCTOPUS control agent using the calibrated simulation model and real weather

data, we can deploy the trained agent in the building for real-time control. For a

certain action interval (e.g., every 10 mins), the OCTOPUS control agent takes the

state of the building as input and generates the control actions of four subsystems.

OCTOPUS can provide real-time control, as one inference only takes 22 ms. We plan
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to deploy OCTOPUS in a real building in our future work.

Scalability of OCTOPUS. OCTOPUS can work in a one-zone building with

one HVAC system, lighting zone, blind and window. However, a realistic building

(or even a small home) is usually equipped with many lighting zones, blinds and

windows which may take different actions in one subsystem. OCTOPUS may solve

this scalability problem by increasing the number of BDQ branches, i.e., each branch

corresponds to one subsystem in each zone of a building. We will tackle this scalability

problem in our future work.

Building Model Calibration. A critical component of our architecture is the

use of a calibrated building model that is close to the target building, allowing us to

generate sufficient data for our training needs. However, getting a calibrated model

”right” is a tedious process of trial-and-error over a large number of parameters. Out

of the thousands of parameters available in EnergyPlus, we use our experience and

consulted experts to determine both the most important parameters and a sensible

range of values to explore (it took us four weeks to get it ”right”). However, there

is no magic bullet, and this may become a problem, especially for unusual building

architectures or specialized HVAC systems that may not be trivial to replicate in a

simulation environment.

Accepting Users’ Feedback. Some existing work [42] allows users to send

their feedback to the control server. The feedback can represent a user’s personalized

preference on different human comfort metrics and will be considered in the control

decision process. OCTOPUS can easily accept users’ feedback to train a better agent

model by making a small modification, i.e., changing the calculated comfort values in

the reward function by the users’ feedback. This can be used for the initial training

or for updated training (once deployed). For example, the OCTOPUS control agent

can be trained incrementally with a certain time interval (e.g., one month). The

newly-trained agent will be used for real-time.

2.7 Conclusions

This paper proposes OCTOPUS, a DRL-based control system for buildings that

holistically controls many subsystems in modern buildings (e.g., HVAC, light, blind,

window) and manages the trade-offs between energy use and human comfort. As
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part of our architecture, we develop a system that addresses the issues of large action

state, a novel reward function based on energy and comfort, and data requirements

for training using existing historical weather data together with a calibrated simulator

for the target building. We compare our results with both the state-of-art rule-based

control scheme obtained from a LEED Gold certified building, a DRL scheme used for

optimized heating in the literature, and show that we can get 14.26% and 8.1% energy

savings while maintaining (and sometime even improving) human comfort values for

temperature, air quality and lighting.



Chapter 3

Model-Based Deep Reinforcement

Learning for Multi-zone Building

Control

Deep reinforcement learning has been widely studied for controlling Heating,

Ventilation, and Air conditioning (HVAC) systems. Most of the existing works are

focused on Model-Free Reinforcement Learning (MFRL), which learns an agent by

extensively trial-and-error interaction with a real building.

However, one of the fundamental problems with MFRL is the very large amount

of training data required to converge to acceptable performance. Although simulation

models have been used to generate sufficient training data to accelerate the training

process, MFRL needs a high-fidelity building model for simulation, which is also hard

to calibrate.

As a result, Model-Based Reinforcement Learning (MBRL) has been used for

HVAC control. While MBRL schemes can achieve excellent sample efficiency (i.e.

less training data), they often lag behind model-free approaches in terms of asymp-

totic control performance (i.e. high energy savings while meeting occupants’ thermal

comfort).

In this paper, we conduct a set of experiments to analyze the limitations of

current MBRL-based HVAC control methods, in terms of model uncertainty and

controller effectiveness. Using the lessons learned, we develop MB2C, a novel MBRL-

based HVAC control system that can achieve high control performance with excellent

30
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sample efficiency. MB2C learns the building dynamics by employing an ensemble

of environment-conditioned neural networks. It then applies a new control method,

Model Predictive Path Integral (MPPI), for HVAC control. It produces candidate

action sequences by using an importance sampling weighted algorithm that scales

better to high state and action dimensions of multi-zone buildings. We evaluate

MB2C using EnergyPlus simulations in a five-zone office building. The results show

that MB2C can achieve 8.23% more energy savings compared to the state-of-the-

art MBRL solution while maintaining similar thermal comfort. MB2C can reduce

the training data set by an order of magnitude (10.52×) while achieving comparable

performance to MFRL approaches.

3.1 Introduction

Buildings account for 40% of energy usage in the US and 50% of that energy

goes to Heating, Ventilation, and Air Conditioning (HVAC) [43]. Rule-based Control

(RBC) is widely used to set actuators (e.g., heating or cooling temperature, and

fan speed) in HVAC systems [44]. One of the main advantages is that they are

easy to understand. However, RBC “rules” are usually set some if-then rules using

many times static thresholds based on the rule-of-thumb rules and the experience of

engineers and facility managers. They have two fundamental problems: first, they

do not scale well with the problem size, as the buildings become larger and more

complex, rules must be added; second, they do not handle incomplete or incorrect

information very well, an occurrence common in buildings in practice; and finally,

they do not necessarily provide a guarantee of optimal control.

Model Predictive Control (MPC) has been widely studied to address these draw-

backs by finding optimal control actions based on an analytical building model [11, 45].

Normally, an optimization problem is formulated with the building model and some

constraints, and analytic gradient computation is used to optimize over actions and

building states simultaneously. However, this often requires convexification of the

cost function and first or second-order approximations of building dynamics [46] in

order to solve the optimization problem fast and to scale well. As a result, the mod-

els used in current solutions are simplified to deal with the parameter-fitting data

requirement and computational complexity [11, 45].
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Deep Reinforcement Learning (DRL) has been widely studied for HVAC con-

trol [47, 13, 48, 49]. Current solutions mainly adopt Model-Free Reinforcement

Learning (MFRL), which learns an optimal HVAC control policy by trial-and-error

interactions with a real building. However, MFRL requires a large amount of interac-

tions to converge, e.g., in our experiments, it requires 500,000 timesteps (5200 days)

to achieve a high control performance. Although a simulated building model can be

used to accelerate the training process, it needs a high-fidelity model, which is hard

to calibrate [13, 47]. Recently, Model-Based Reinforcement Learning (MBRL) has

been tested for HVAC control to achieve high data efficiency [50]. The HVAC sys-

tem dynamics is first learned using a neural network based on historical HVAC data.

Based on the learned building dynamics model, an MPC controller tries to find the

optimal control action by using a Random Shooting (RS) method [50]. For control-

ling a single-zone HVAC system, an MBRL-based approach saves approximately 10×
training time of the MFRL approach, while achieving comparable performance [50].

However, most of the commercial buildings are multi-zone buildings [51]. In addition

to the above scheme not being suitable for multi-zone HVAC systems, MBRL often

lags behind the MFRL schemes in terms of control performance (high energy saving

while meeting the thermal comfort of occupants).

To overcome these limitations, this paper presents MB2C, a novel MBRL-based

HVAC control approach that can achieve both the data/sample efficiency of MBRL

and the control performance of MFRL. The design goal of MB2C is to meet the ther-

mal comfort requirements of the occupants while saving as much energy as possible.

The energy consumed by a building HVAC system and the thermal comfort of oc-

cupants are determined by a set of factors, including current state of all zones, the

outdoor weather and the control actions we are about to take (e.g. temperature set-

points). In a multi-zone building, the control actions can be represented as a vector

As, which is a combination of control actions for all thermal zones. MB2C finds the

best As from all possible action combinations Aall for each control cycle. The best As

maintains the thermal comfort in its acceptable range for the entire control interval

with the lowest energy consumption. MB2C is mainly composed of two parts: (a) a

building dynamics model, and (b) an HVAC control algorithm.

Our building dynamics model employs an ensemble of environment-conditioned

neural networks. We use a neural network model that takes the current state of the
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building and the action to perform as input, and outputs a prediction of the next state

of the building. To capture model uncertainty, we design a novel weighted ensemble

learning algorithm that aggregates the results of multiple building dynamics models

by dynamically adjusting the weight of each model according to their accuracy. We

also adopt an environment-conditioned neural network architecture by separating the

action-depended state items (e.g., zone temperature) and the environment-related

state items (e.g., outside temperature), since the latter cannot be actuated by control

actions.

Based on a learned building dynamics model, a flexible way to solve the control

optimization problem is a shooting method that samples stochastic action trajectories

for a number of incoming time-steps [52]. An action trajectory is a set of actions for

incoming H time-steps. Every time, H time-steps are evaluated, but only the first

action will be executed at the next time-step. For example, RS has been used in the

latest MBRL-based HVAC control solution [50], which entails sampling candidate ac-

tions from a uniform distribution. However, RS is insufficient to find the best action

trajectory, because randomly-shot action trajectories may not include it. We adopt

Model Predictive Path Integral (MPPI) control method, which has shown promising

performance in robotics control [53]. MPPI derives an optimal control action as the

first action of a noise-weighted average over sampled control action trajectories by

changing the initial control input and variance of the sampling distribution. We cus-

tomize MPPI control for building HVAC control under the MBRL-based framework

with the best parameter setting.

We implement MB2C in Tensorflow, an open-source machine learning library

in Python, with a 3-layer neural network as the building dynamics model and an

MPPI-based control algorithm. We study the performance of MB2C and compare it

with benchmark methods by controlling a building of five thermal zones. We conduct

a variety of simulations in EnergyPlus for evaluation. Extensive simulations reveal

that MB2C outperforms the latest model-based DRL method by 8.23% in total energy

consumption of the building, without scarifying thermal comfort. Compared with the

model-free DRL approach, we reduce the training convergence time by 10.52×, more

than an order of magnitude improvement.
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3.2 Related work

Model Predictive Control for HVAC. MPC solves an optimal control prob-

lem iteratively over a receding time horizon. [11] proposed an MPC approach for

HVAC control, which minimizes energy use while satisfying occupant comfort con-

straints. A very recent MPC work, OFFICE [45], proposed a novel MPC framework

that optimally manages the trade-off between energy cost and quality of comfort to

the building users. OFFICE uses a gray-box approach, where a parametrized first-

principled model is used, and the parameter of the model are dynamically learned and

updated over time. In our case, we use a black-box approach, where the neural net-

work learns from scratch the relationships between inputs and outputs in the system.

Also, the MPC controller used is also different. While OFFICE uses an interior-point

method based on a derivable function to find the optimal solution, we use an MPPI

controller, which uses sample noise for the exploration around the default values as a

search mechanism to find the best optimization solution.

Model-free DRL for HVAC control. Deep Reinforcement Learning has been
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Figure 3.3: Random shooting in the model-based DRL method.

applied to many areas [54, 55, 56, 57, 14, 58, 59, 60]. In particular, MFRL tech-

niques have demonstrated the potential optimal HVAC controls. In MFRL schemes,

the agent learns the policy by extensively trial-and-error interaction with the envi-

ronment. [49] leveraged RL to calculate thermostat set-points to balance between

occupant comfort and energy efficiency. [13] implemented and deployed a DRL-based

control method for radiant heating systems in a real-life office building. A holistic

building control accounting for HVAC, lighting, window opening and blind inclina-

tion was studied using branching dueling Q-network (BDQ) in [47]. However, prac-

tical application of RL was limited by its sample complexity, i.e. the long training

time required to learn control strategies, especially for tasks associated with a large

state-action space. Gnu-RL [61] adopted a differentiable MPC policy, which encodes

domain knowledge on planning and system dynamics, making it both data-efficient

and interpretive. However, they assumed that dynamics of a water-based radiant

heating system can be locally linearized. The assumption worked for the problems

they considered, but it may not extrapolate to more complex problems like ours.

Model-based DRL for HVAC control. To reduce sample complexity, re-

searchers have adopted model-based deep reinforcement learning for HVAC con-

trol [50]. In this work, they proposed an MBRL approach that learns the system

dynamics using a neural network. Then, they adopt MPC using the learned system

dynamics to perform control with RS method. MBRL method works well when the

action and state dimension is low, like single-zone building. They often cannot achieve

the final performance as model-free method when they are applied to high state and

action dimensions of multi-zone buildings.



36

3.3 Motivation

To understand the performance of a state-of-the-art MBRL method [50], we per-

form a set of simulations in EnergyPlus for a building with five zones. All system set-

tings are the same as [50], except the state and action dimension is higher for the five-

zone building, i.e. a multi-zone building instead of a single zone. We also implement a

simple MFRL-based method, Proximal Policy Optimization (PPO) [62], for compari-

son in this preliminary evaluation. Thermal comfort is measured by PMV [28], which

should be controlled within the range (-0.7∼0.7). The simulations are conducted with

weather data for the month of January. The building is 463 m2 in Fresno CA. It has

windows in all four facades and glass doors in south and north facades. The south-

facing glass is shaded by overhangs. For our 5-zone building, the state dimension is

37, including indoor air temperature, humidity, PMV, energy consumption for each

zone and related outdoor environmental parameters; and the action dimension is 10,

including cooling and heating set points for each zone.

Experiment results. Figure 3.2 shows the energy-saving performance of model-

based and model-free DRL control method with 50×104 time-steps of training data.

The reward means the energy-saving performance under the reasonable thermal com-

fort that is defined in Section 4.3.3. We evaluate the accumulated reward every 2976

time-steps (one month). The performance of the rule-based method is a straight line,

because its reward does not change as the weather data and building environment

are deterministic.

From Figure 3.2, we can see that model-based DRL and PPO method need

7.5×104 and 23.75×104 time-steps to behave better performance than rule-based

method. For converge time, the model-based method needs 11.5×104 and the PPO

method needs 50×104 time-steps. The model-based method is 4.38× more data-

efficient than PPO method. However, in the long run, the model-free method eventu-

ally outperforms the model-based method. It’s easy to see that the model-free method

is a trial and error method and the performance increases when using more training

data. However, in this case, our model-based method cannot achieve the same perfor-

mance as model-free method as the training data increases. The model-based method

performs well when the action and state dimension is low (e.g., 9 in [50]). However,

both the building dynamics model and the control method may not be efficient when
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the state and action dimension is high, like 47 in our 5-zone building.

Challenge 1 - Model Uncertainty. Neural network models may have epis-

temic uncertainty, due to the lack of sufficient data to uniquely model the underlying

system [63, 64, 65, 66]. In an MBRL-based HVAC control system, a building dynam-

ics model predicts the next state of the building, given the current state (e.g. current

zone temperature) and a control action (e.g. actuators’ temperature set-points). Even

a small bias of the building dynamics model may significantly impact the decision of

the controller [64, 65]. We conduct an experiment to study this uncertainty of the

existing building dynamics model. We use 8000 historical data points to train the

model, and 2000 data points for testing.

Figure 3.1 shows the predictive zone temperature as a function of the action

performed. The x-axis shows the temperature differential between the supply tem-

perature (action) and the zone temperature at time t, and the y-axis shows the

temperature differential between the zone temperature after and before actuation.

The figure depicts the predicted temperatures of two neural network models and the

ground truth. These two models have the same architecture and are trained with

the same training data, but their training processes start with different initialization

states. In the middle region of Figure 3.1, we have sufficient data, since most of

the actions in the historical data do not change the state sharply. In this region,

both models can accurately predict the next state. However, when the actions in-

tend to change the state much, we do not have sufficient data for training, and the

performance of the two models diverges.

Challenge 2 - Controller Effectiveness. RS generates N independent ran-

dom action sequences {at, ...at+H−1}, where each sequence Ai =
{
ai0...a

i
H−1

}
for
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i = 1...N is of length H action. Given a reward function r (s, a) that defines the

task, and given future state predictions ŝt+1 = st + fθ (ŝt, at) from the learned dy-

namics model fθ, the optimal action sequence Ai∗ is selected as the one with the

highest predicted reward: i∗ = arg maxiRi = arg maxi

∑t+H−1

t′=t
r (ŝt′ , ât′ ).

Figure 3.3 studies the energy consumption and thermal comfort of three HVAC

control methods, including a rule-based method, a model-based method and a model-

free method. To eliminate the impact of model uncertainty for the model-based

method, we use the ground-truth states of the building as the results of the building

dynamics model (i.e. perfect future state prediction). From the Figure 3.3, we can

see that all three methods can meet the requirement of thermal comfort with same

level of PMV value (0.48, 0.45, 0.41). The energy consumption of the model-based

method is 4.70% higher than the model-free method. It is caused by RS control,

because the building dynamics model used in the model-based method is perfect in

this experiment.

Based on the previous observations, our main goal is to overcome the drawbacks

of model uncertainty and controller effectiveness and find a method that is able to

match the high performance of model-free methods while having the sample/data-

efficiency of model-based methods.

3.4 Design of MB2C

In this section, we describe the design of MB2C, including model-based DRL for

a multi-zone building control, the building dynamics model and its training details,

online control action planning and in-situ update of the building dynamics model [67].

3.4.1 MB2C Overview

Figure 4.4 shows the overview of MB2C as a model-based DRL control approach

[65] for multi-zone building HVAC systems. At a high level, MB2C includes two key

components, i.e., a building dynamics model and a Model Predictive Path Integral

(MPPI) based controller. Our building dynamics model is built by an Ensemble of

multiple Environment-conditioned Neural Networks (ENN). It takes the current state

of the building HVAC system and a specific control action as input, and outputs the
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next state of the building HVAC system. Based on the historical data, we train the

building dynamics model as a supervised learning process. With the trained building

dynamics model, our MPPI-based controller can evaluate different control actions

and find the best control action for next time step, which meets the thermal comfort

requirement with minimal energy consumption.

When we deploy the system in a building, MB2C executes the best control ac-

tion by setting corresponding actuators every control cycle. At the same time, we

accumulate building data traces, i.e., the next HVAC state determined by the cur-

rent HVAC state and the executed control action. With the newly collected building

traces, we can perform in-situ updating of the building dynamics model periodically

(e.g., every week) with a sliding window of 2-months to improve its accuracy, as the

seasonality of the data changes during the year. One iterative training process takes

25.32 minutes to finish using a laptop with Intel 4-core i7-6700 CPU and Nvidia GTX

960M GPU, and it can be performed in parallel when the current model is being used

in the building; thus, the overhead of the iterative training process does not impact

the usage of MB2C in real buildings.

3.4.2 Model-Based Deep Reinforcement Learning for Multi-

zone Building Control

We extend the current MBRL-based method to multi-zone building HVAC con-

trol, including the design of those key components.

Preliminaries for DRL

The goal of deep reinforcement learning is to learn a policy that maximizes the

sum of future rewards. At each time step t, the controller is in state st ∈ S, executes

some action at ∈ A, receives reward rt = r(st, at), and transitions to the next state

st+1 according to some unknown dynamics function f : S ×A→ S. The goal at each

time step is to take the action that maximizes the discounted sum of future rewards,

given by
∑∞

t′=t γ
t
′−tr(st′ , at′ ), where γ ∈ [0, 1] is a discount factor that prioritizes

near-term rewards. Note that performing this policy extraction requires knowing the

underlying reward function r(st, at) that we use for planning actions under the learned

model.
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In model-based reinforcement learning, a model of the dynamics is used to make

predictions, which is used for action selection. Let fθ(st, at) denote a learned discrete-

time dynamics function, parameterized by θ, that takes the current state st and action

at and outputs an estimate of the next state at time t + ∆t. We can then choose

actions by solving the following optimization problem:

(at, ...at+H−1) = arg maxat,...at+H−1

∑t+H−1

t′=t
γt

′−tr (st′ , at′ ) (3.1)

In other words, we will pick the action sequence that maximizes the discounted

sum of reward of future H time-steps. In practice, it is often desirable to solve this

optimization at each time step, execute only the first action from the sequence, and

then re-plan at the next time step with updated state information. Such a control

scheme is often referred to as model predictive control (MPC), and is known to

compensate well for errors in the model.

State Design

The state is what the building dynamics model takes as input for the next pre-

diction step. In this study, we separate the state into 2 parts: (a) the building state

(sti), which are the state variables that change with our control actions; and (b) the

environment state (eti), which are the state variables that do not change with our

control actions.

Building State (sti) The building state vector that changes over time t for

the ith zone consists of the following items: indoor air temperature(◦C), indoor air

relative humidity (%), PMV, heating energy consumption (kWh) and cooling energy

consumption (kWh).

Environment State (eti) The environment state vector that changes over time

t for the ith consists of the following items: outdoor air temperature (◦C), outdoor air

relative humidity (%), diffuse solar radiation (W/m2), direct solar radiation (W/m2),

solar incident angle (◦), wind speed (m/s), wind direction and occupancy flag (0 or

1). The occupancy flag is an indicator to detect whether there are people in the ith

zone, and it is the only element in the vector that changes per zone.

Taking our 5-zone building as an example, the state dimension is 37 including

the building, and environment state variables.
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Action Design

The action vector (ati) shows the actuation variables used by the controller to

control the building state (sti). The action state vector that changes over time t

for the ith zone consists of the following items: cooling temperature set-point and

the heating temperature set-point (both in ◦C). Given the current state (sti and eti)

and action (ati), we want the controller to find the most suitable action combinations

(a(t+1)i) for all the zones to balance energy consumption and thermal comfort metrics.

The action dimension is 10 in our five-zone building.

Reward Design

The reward function controls the optimization parameters that want to be max-

imized when the agent performs an action (ati) to transition from the building state

sti to s(t+1)i. Both thermal comfort and energy consumption should be incorporated.

The reward function is defined as follows:

R = −
N∑
i=1

(ρNorm(|PMVi|) + Norm(Ei)) , (3.2)

where E is heating and cooling energy consumption for each zone, we use Fanger’s

formula for the Predictive Mean Vote (PMV) [28] to estimate comfortable tempera-

ture bounds for the “standard” occupant within the current seasonal conditions, as

defined by ASHRAE standard 55 [68]. The maximum high/low end of the comfort

range for Class C environments has PMV values of +/- 0.7. ρ is used to balance the

relative importance between energy consumption and thermal comfort. We use ρ = 4

during occupied periods and 0.1 during unoccupied periods since the range of human

comfort and energy consumption is different during occupied and unoccupied periods.

The reward evaluates the actions to meet the requirement of thermal comfort of all

the occupants in the building. N is the number of zones. In the following sections,

we will remove the i index for each zone to simplify the notation.

3.4.3 Learning the Building Dynamics

We require a parameterization of the building dynamics model that can cope with

high-dimensional state and action spaces, and the complex dynamics of a multi-zone
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building. Therefore, we represent the dynamics function f̂θ (st, at) as a multi-layer

neural network, parameterized by θ. This function outputs the predicted change in

state that occurs as a result of executing action at from state st, over the time step

duration of ∆t. Thus, the predicted next state is given by: ŝt+1 = st + f̂θ (st, at).

While choosing too small of a ∆t leads to too small of a state difference to allow

meaningful learning, increasing the ∆t too much can also make the learning process

more difficult because it increases the complexity of the underlying continuous-time

dynamics.

Environment-conditioned Neural Network Architecture

We define a neural network model f̂θ(st, at) for the building dynamics. In order to

make the model achieve both good predictive accuracies and tractable computational

optimization, we propose a simple and highly effective method for incorporating en-

vironment information. We formulate an environment-conditioned dynamics model

f̂θ(st, at, et) that takes as input not only the current building state st and action

at, but also the current environment state et. The model architecture is shown in

Figure 3.5. The building state vector st, the action vector at and the environment

state vector et are concatenated together and then are passed through two hidden

layers and a final output layer. As opposed to a straightforward outputting of all the

related states (building and environment), we produce a prediction of building state

difference ∆ŝt. This reduces the burden of the model to learn the changes in the envi-

ronment that are not necessary. We provide the ground truth value for environment

state, e.g., weather data and occupancy [61].
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Weighted Ensemble Learning

As prior work [64, 65] has shown, capturing epistemic uncertainty in the network

weights is important in model-based RL, especially with high capacity models that

are liable to over-fit to the training set and extrapolate erroneously outside of it. To

solve epistemic uncertainty, we propose a weighted ensemble learning algorithm, which

approximates the posterior p(θ|D) with a set of M models, each with parameters θi.

For deep models, it is sufficient to simply initialize each model θi with a different

random initialization θ0i and use different batches of data Di at each training step.

We have M environmental-conditioned models. The input for all M models is

the same and it includes the building and environment states and actions. To evaluate

the performance of each model, we calculate the mean square error (MSE) of the

past C timesteps (4 in our case) for each model compared to the ground truth for N

states using Equation 3.3.

MSE =
∑C

i=1

∑N
j=1 ϕ

C
∣∣∣fθ (si,j, ai,j)− f̂true

∣∣∣2 (3.3)

We introduce a temporal discount factor ϕ (0.9 in our case) that is used to

evaluate how important past model error to the current model error. The temporal

discount factor is a value between 0 and 1 since recent prediction cases are more

important to the performance of current prediction. After we have the MSE for each

model of past C timesteps, we first normalize the MSE to 0-1 scale. Norm(x) is a

normalization process, i.e., Norm(x) = (x− xmin)/(xmax − xmin). Then we calculate

the weight ratio W for all models by Equation 3.4.

W = 1−Norm(MSEi)∑M
i=1(1−Norm(MSEi))

(3.4)

The sum of all model’s weight is 1. After that, we leverage Equation 3.5 to

predict the next state.

st+1 =
∑M

i=1Wifθi (s, a) (3.5)

This allows our method to dynamically adjust the weights in aggregating the

M models (M=5 in our case) during the prediction. As the states result in unequal

prediction accuracy, our method is more robust against this variance.
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3.4.4 Training the Building Dynamics Model

In this section, we illustrate how we pre-process training data, and train the

proposed ENN model.

Data Collection

We collect the training dataset D(st, at, st+1) by executing the rule-based con-

troller at each time step, and recording the resulting data τ = (s(0), a(0), s(1), a(1), ..., s(T−
2), a(T − 2), s(T − 1))) of length T . We note that these data are very different from

the data the controller will end up executing when planning with this learned dynam-

ics model and a given reward function r(st, at) (Section 3.4.5), showing the ability of

model-based methods to learn from off-policy data.

Data Preprocessing

We slice the collected data {τ} into training data inputs (st, at) and correspond-

ing output labels st+1 − st. In building HVAC control, states can be temperature,

humidity ratio, energy consumption, etc. These measurements have various ranges

and the weights of the losses will be different if we feed the raw values directly to

train the neural network model. Thus, we subtract the mean of the states/action and

divide by the standard deviation x′ = x−x̄
σ(x)

, where x stands for state or action.

Training the ENN Dynamics Model

ENN model consists of an ensemble of models. To make sure the models be-

have differently on the same dataset D, we randomly initialize model parameter

θ1, θ2, ..., θM for all the dynamics models and use different batches of data D at each

training step. We train the dynamics model f̂θ (st, at) using stochastic gradient de-

scent [69] by minimizing the Mean Square Error (MSE) between predicted delta

observation and ground truth delta observation as follows:

ε (θ) = 1
D

∑
(st,at,st+1)∈D

1
2
∥(st+1 − st)− f̂θ (st, at) ∥2 (3.6)

We use 5-year weather data from Fresno, CA and Chicago, IL for the ENN model

training and a completely different one-year for testing in this study. We provide the
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ENN model with ground truth information on future environment state, i.e. weather

and occupancy [61]. In our implementation of ENN, we use the Adam optimizer [38]

for gradient-based optimization with a learning rate of 10−3. We train the ENN model

with a batch size of 512 and a discount factor γ = 0.99. The number of epochs is

40. Each dynamics model consists of a neural network of two fully-connected hidden

layers of size 200 with relu being nonlinear and a final fully-connected output layer.

The weights and biases are initialized using the Xavier initialization process [40]. The

number of samples for MPC controllers (RS, CEM, and MPPI) is 1000. The control

cycle (timestep) is 15 minutes that is widely used in classic HVAC control [70]. We

achieve convergence by 4.75x104 time-steps as explained in Section 3.5.3.

3.4.5 Online Control Action Planning

In our method, we use online planning with MPC to select actions via our model

predictions. Given the building state st at time t, the prediction horizon H of the

MPC controller, and an action sequence at:t+H = {at, ..., at+H}, the proposed ENN

model f̂θ (st, at) produces a prediction over the resulting data st:t+H . At each time

step t, the MPC controller applies the first action at of the sequence of optimized

actions AH
t = arg maxAH

t

∑t+H−1

t′=t
r (ŝt′ , at′ ). We adopt the MPPI control method [53]

to compute the optimal action sequence.

Model Predictive Path Integral (MPPI) Controller. MPPI control method

has been applied to autonomously control a vehicle and get good performance. MPPI

is an importance-sampling weighted algorithm and considers an update rule that more

effectively integrates a larger number of samples into the distribution update. As de-

rived by recent model-predictive path integral work [53], this general update rule

takes the following form for time step t, from each of the K predicted trajectories:

ai+1
t = ait +

∑K
k=1 ω(εk)ϵkt (3.7)

Where ω is the importance-sampling weight for each trajectory and ϵ is the noise

for exploration. The action for timesteps t of (i + 1)th trajectory is the sum of the

action for timesteps t of ith trajectory and the noise-weighted average over sampled

trajectories.

As shown in the algorithm 2, an initial control sequence is done either by initial-
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izing the input buffer with zeros or by using a secondary controller such as rule-based

method and using its inputs as the initial control sequence. We first sample H noise

from a normal distribution. Then, we compute K trajectories for H finite horizon

with Brownian motion. For each trajectory generated, a cost is computed and stored

in memory (line 2-7).

Algorithm 2 MPPI Controller

Input: ENN dynamics model f̂θ(st, at) K: Number of samples, H: Length of horizon
(a0, a1, ...aH−1): Initial control sequence λ:Control hyper-parameter

Output: The control sequence at:t+H

s0 ← GetStateEstimate()
for k = 0,1,...,K -1 do

s ← s0 Sample noise εk = {ϵk0, ϵk0, ...ϵkH−1} ∼ N(µ, σ)
for t = 1,...,H do

st ← f̂θ(st−1, at−1 + ϵkt−1) Cost(εk) += −reward defined by equation 4.5
end

end

β ← mink[Cost(εk)] η ←
∑K−1

k=0 exp(− 1
λ
(Cost(εk)− β)) for k = 0,1,...,K -1 do

ω(εk)← 1
η
exp(Cost(εk)− β)

end
for t = 0,1,...,H -1 do

a∗t = at +
∑K

k=1 ω(εk)ϵkt ;
end
SendToActuators(a0) for t = 0,1,...,H -1 do

at−1 = at;
end
at−1 = Initialize(at−1);

In model predictive control, optimization and execution take place simultane-

ously: a control sequence is computed, and then the first element of the sequence is

executed. This process is repeated using the un-executed portion of the previous con-

trol sequence as the importance sampling trajectory for the next iteration. In order

to ensure that at least one trajectory has non-zero mass (i.e., at least one trajectory

has a lowest cost), we subtract the minimum cost of all the sampled trajectories from

the cost function (line 9). Note that subtracting by a constant has no effect on the

location of the minimum. In the second loop, we get the noise weighted average

over K sampled trajectories (lines 10-11). The third loop computes an optimal input

sequence using least cost of the trajectories for H finite horizons (lines 12-13). The

top of the stack value is given to the actuators (line 14). After that, the whole input



47

control sequence is left shifted by 1 (lines 15-16). To maintain the length of buffer,

ainit is appended to the input control sequence (line 17). The states are then updated

from the ENN model.

3.4.6 Putting It All Together

We summarize the working flow of MB2C as follows. We first gather histor-

ical dataset D using a rule-based policy and randomly initialize model parameter

θ1, θ2, ..., θM for ENN. Then we train the ENN model using this dataset by Equation

3.6. Finally, we deploy the learned ENN model and our MPPI controller in the real

building for HVAC control.

For one control execution, we first obtain the current building state from sensors

(e.g., zone temperature from a temperature sensor). After that, the best action

sequence is sampled by MPPI controller with H horizon and the state is propagated

by ENN model by solving the optimization problem defined in Equation 3.1. We

execute the first action of the optimal action sequence in the building by setting

corresponding actuators.

When MB2C is running in the building, we can also collect building operation

data, which is composed of control action execution records D(st, at, st+1), including

current state, control action, and next state. We add the newly collected data into a

sliding window for two months of data and train the ENN model from scratch again.

We use a sliding window to adapt to the seasonality of the data, especially weather

data. We randomly divide the training data set into a set of batch and update the

weight through forward and backward propagation by feeding the data into the model.

This process is called one epoch training after traversing all the batch of data. We

will repeat this process for multiple epochs (40 in our current implementation) until

the model converges. This is an iterative in-situ updating process to improve the

accuracy of our building dynamic model.

3.5 Evaluation

In this section, we conduct a variety of experiments in EnergyPlus to evaluate

the performance of MB2C and three baselines by a set of performance metrics.
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Figure 3.7: Energy Consumption of MB2C and the Other Baselines.

3.5.1 Platform Setup

Building Example and its Dynamics Model in EnergyPlus In this work,

we evaluate the performance of MB2C in a building of 463 m2 at Fresno, California.

It is a single floor rectangular building of 5 thermal zones- 4 exterior zones, 1 interior

zone. There are windows on all 4 facades. The HVAC system is single duct terminal

reheat, which is composed by an Air Handler Unit (AHU) and Variable Air Volume

(VAV) boxes. The AHU includes a fan, heating and cooling coils that can change the

air’s temperature. The VAV boxes take this pre-conditioned air from the main duct,

heat it if necessary, and control the airflow provided to each zone.

Since we cannot conduct control experiments in the real building, we leverage

a building model in EnergyPlus version 8.6 and conduct simulations with Typical

Meteorological Year 3 (TMY3) weather data. In our implementation, the AHU set-

point is set by default EnergyPlus control logic, and we only control the heating and

cooling set-point in the VAV box.

EnergyPlus has been widely used to evaluate the HVAC control algorithm [13,
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Figure 3.8: Daily Energy Consumption for Five Zones.

61, 50, 47]. There are four reasons why we choose EnergyPlus. First, we do not have

one real building that allows us to conduct experiments. MB2C could be deployed

in a real building after we finish the ENN model training. Second, it is convenient

to generate enough historical training data of rule-based method to train the ENN

model. Third, in order to compare with a model-free DRL, we need a significant

training data set to train these models since MFRL is not sample efficient. In our

case, we need 5200 days (14+ years) of training data, which is unreasonable to obtain

from real buildings. Finally, it is easy for us to evaluate the performance of different

control algorithms under different locations, seasons and weather profiles.

MB2C System Components As shown in Figure 4.4, MB2C system includes

two main parts: the building dynamics model ENN and the MPPI controller. We

also need to store the newly collected building operation data for in-situ update of

the building dynamics model. All these three components are all implemented in

Tensorflow, which is an open-source machine learning library in Python. We use the

building control virtual testbed (BCVTB) [34] for establishing a connection between

EnergyPlus and MB2C. We execute the control action by setting the temperature

to a specific set point for each zone of our EnergyPlus building model during each

control cycle.

3.5.2 Experiment Setting

We train ENN model based on the weather data from two different cities, Fresno,

CA and Chicago, IL due to their distinct weather characteristics. The weather data

for Fresno has intensive solar radiation and large variance in temperature, while
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Chicago is classified as hot-summer humid continental with four distinct seasons.

We compare MB2C with the three baselines. We execute these four control meth-

ods to control the building HVAC system using the same weather data for simulation.

Rule-based Method: We implement a rule-based method according to our

current campus building control policy for training data generation and comparison

evaluation. We assign different zone temperature set-points. Each zone has a separate

heating and cooling set-point. The heating set-point is set to 70 ◦F, and the cooling

set-point to 74 ◦F during the warm-up stage. The cooling set-point is limited between

72◦F and 80◦F, and the heating set-point is limited between 65◦F and 72◦F.

Model-free DRL: We implement Proximal Policy Optimization (PPO) [62]

that is the default deep reinforcement learning algorithm at OpenAI because of its

ease of use and good performance.

Model-based DRL with RS: For the conventional model-based method, we

implement the deterministic neural network to model the building dynamics and RS

method to choose the heating and cooling setpoints [50].

3.5.3 Experiment Results

We compare MB2C with the above baselines by a set of performance metrics,

including convergence analysis, energy efficiency and thermal comfort. We also study

the performance of MB2C, including its daily energy consumption for each zone, the

performance gain of its key components, and its parameter setting.

Convergence Analysis

We first study the data efficiency of MB2C and the other three baselines. For

this study, we do not limit ourselves to a sliding window of two months for MB2C,

since the MFRL method requires copious amount of training data. Figure 3.6 shows

that the accumulated reward of four control methods in each episode during a training

process. One episode contains the data collected in one month, corresponding to 2976

time-step. We calculate the reward function every timestep. The reward in Figure 3.6

is the accumulated reward of one episode, i.e., the sum of the rewards of 2976 time-

steps. From the results in Figure 3.6, we see that the episode reward increases and

tends to be stable as the number of training episodes increases. When the episode
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Figure 3.9: Energy Decomposition.
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reward does not change much, it means that we cannot do further to improve the

learned control policy and thus the training process converges.

As indicated in Figure 3.6, MB2C behaves better than rule-based method after

the 1.75×104 time-steps. In this stage, the ENN model is first learned from off-

line historical data. Then it can be deployed into real buildings and leverages the

MPPI controller for exploration to further improve its performance. The model-based

DRL and model-free DRL need 7.5×104 and 23.75×104 time-steps to behave better

than rule-based method. MB2C achieves 4.28× and 13.57× more data-efficient than

model-based DRL and model-free DRL.

For convergence time, MB2C converges faster than both model-based DRL and

model-free DRL. MB2C needs 4.75×104 and model-based DRL needs 11.5×104 time-

steps. The model-free DRL needs 50x104 timesteps. MB2C is 2.4× and 10.52× data-

efficient than model-based DRL and model-free DRL with the same performance as

model-free DRL.
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Table 3.1: Thermal Comfort Statistical Results for Rule-based, Model-based, Model-
free and MB2C Schemes

Location Comfort Metric

Rule-based
method

Model-based
method

Model-free
based
method MB2C

January July January July January July January July

Fresno PMV
Mean -0.36 -0.20 -0.32 -0.19 -0.11 -0.03 -0.04 0.13
Std 0.26 0.36 0.31 0.34 0.15 0.18 0.11 0.14

Violation
rate 1.22% 1.51% 2.12% 1.71% 0 0.14% 0.40% 0.58%

Chicago PMV
Mean -0.17 -0.30 -0.26 -0.18 -0.25 0.07 -0.23 0.05
Std 0.23 0.33 0.24 0.31 0.17 0.19 0.07 0.20

Violation
rate 1.20% 2.04% 1.9% 2.13% 0.95% 0 0.46% 1.23%

Energy Efficiency

Figure 3.7 depicts the energy consumption results of four control methods. The

results reveal that MB2C saves 10.65% and 8.23% energy on average, compared

with the rule-based method and model-based DRL. Compared with model-free DRL,

MB2C achieves comparable performance. MB2C reduces the energy consumption of

HVAC by modeling the complex building dynamics accurately and finding better

heating and cooling setpoints.

We can also find that for different seasons and cities, the energy consumption

is different. In Fresno, the building consumes 4770.04 kWh in July which is 33.39%

more energy than that in January which consumes 3576.07 kWh. The reason is that

in July, the outdoor air temperature range at Fresno is 15◦C ∼ 42◦C. We have to

keep cooling in daylight. However, in January, the outdoor air temperature range at

Fresno -1◦C ∼ 18◦C. This means that we can use outside air that is already in best

range of thermal comfort to save energy.

In Chicago, the building consumes 4300.47 kWh in January that is 6.86% more
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Table 3.2: Effect of Different Network Architecture

Number of
hidden layers

Energy Consumption
(kWh)

Thermal Comfort
(PMV)

1 4911 0.11

2 4820 0.15

3 4988 0.09

4 5032 0.08

energy than in July, because the weather is cold and the outdoor air temperature

range in Chicago is -20◦C ∼ 15◦C. In July, the outdoor air temperature range at

Merced and Chicago is similar, 15◦C ∼ 42◦C and 15◦C ∼ 40◦C respectively. But

the energy consumption in Fresno is 18.53% higher than the energy in Chicago. The

reason is that the average day and night temperature difference for each day is larger

than Chicago.

Thermal Comfort

Table 3.1 presents the average PMV value for all five zones in January and July

under Fresno and Chicago weather data. All four control methods can maintain

the PMV value in the desired range (-0.7∼0.7) for most of the time. The average

violation rate of model-based method is 1.97%, which is a little higher than the other

three methods, because the controller tries random actions and some of the actions

may lead to bad thermal comfort. MB2C achieves a low average violation rate by

leveraging more accurate ENN model and more effective MPPI controller.

Neural Network Architecture

To investigate the impact of different neural network architectures on energy

consumption and thermal comfort, we conduct experiments using July weather data

from Fresno. Four neural networks were tested, each with a different number of

hidden layers: 1, 2, 3, and 4. The results of these experiments, presented in Table

3.2, demonstrate the energy consumption and thermal comfort achieved by DRLIC

with each neural network configuration.

Analyzing the experimental outcomes, we observe that neural networks with more

hidden layers generally provided better thermal comfort, as indicated by results closer
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to 0 on the thermal comfort scale. However, this improvement in comfort comes at

the cost of higher energy consumption. The underlying reason is that DRLIC aims to

strike a balance between energy consumption and thermal comfort, recognizing that

increased energy usage can enhance people’s perceived comfort.

Considering these findings, we select a neural network with 2 hidden layers for

DRLIC . This choice is motivated by its ability to minimize energy consumption while

still meeting the requirement for thermal comfort. By striking a suitable compromise

between energy efficiency and comfort, DRLIC demonstrates optimal performance

with this neural network configuration.

Daily Energy Consumption for Five Zones

We analyze the daily energy consumption of MB2C for five zones in July at

Fresno. As shown in Figure 3.8, we record the heating energy and cooling energy

for each zone per day. The top five hollow line symbols record the trend of cooling

energy for five zones respectively. The bottom five solid line shows the trend of heating

energy for five zones respectively. The energy spent by the third zone is higher than

the other zones, because the third zone is south-oriented and the sunlight hits into

that zone most of the time.

We also see that both heating and cooling occurs in some days, because the

day and night temperature difference is large. In the daylight, the average outdoor

temperature is 38◦C, and thus we need more energy for cooling. However, at night, the

average outdoor temperature is 15◦C, and thus we need some heating air to meet the

minimum requirement of thermal comfort (in our simulations we assume an office-like

environment with students working at night sometimes).

Performance Decomposition

We implement three versions of MB2C with different control methods, i.e., RS

(MB ENN RS), CEM (MB ENN CEM) and MPPI control method (MB ENN MPPI).

We also compare with the rule-based method and the existing model-based DRL

method (MB DNN RS).

For MB ENN CEM, we implement (Cross-entropy method) CEM [71] controller

that begins as the RS method and does this sampling for multiple iterations m ∈
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{0...M} at each time step. The top J highest-scoring action sequences from each

iteration are used to update and refine the mean and variance of the sampling dis-

tribution for the next iteration. After M iterations, the optimal heating and cooling

actions are selected to be the resulting mean of the action distribution.

Figure 3.9 demonstrates the energy consumption of these four methods in two

different months and at two different places (Fresno and Chicago). Compared with

the rule-based method, MB DNN RS can only save 2.42% energy. When the building

dynamics model in MB DNN RS changed to proposed model (MB ENN RS), 3.34%

more energy can be saved, which illustrates the efficiency of proposed model. When

we change the RS method to CEM method and MPPI method with the proposed

model, 2.39% and 4.89 % more energy can be saved that illustrates efficiency of the

MPPI controller.

Parameter Setting

MB2C has two important parameters that may influence its performance.

The Number of Samples in the MPPI Algorithm. Figure 3.10 illus-

trates the performance of the MPPI controller as the number of sample trajectories is

changed. We run MPPI controller with ground truth model to investigate the effect

of different number of trajectories (10, 30, 100, 500, 1000, 2000, 5000, 10000). We ran

10 times to calculate the mean and standard reward for each number of trajectories.

From Figure 3.10, we can see that the reward increases quickly as we increase the

number of trajectories before 1000 trajectories (power of 3 in the figure). Then it

increases slowly after 1000 trajectories, indicating that it is enough for the MPPI

algorithm to converge. We also calculate the latency for making one action selection

under different number of trajectories. we can see that the latency increases exponen-

tially when trajectories increase. Thus we choose 1000 as the number of trajectories

by considering the best reward and lower latency trade-off.

The Length of Horizon in the MPC Process. The horizon refers to the

number of steps to look ahead in the MPC process. We investigate the effect of

different length of Horizon H in Algorithm 2 to the performance of MPPI Controller.

From Figure 3.11, we can see that the reward increases as the length of H increases

and achieves the highest reward when H is 20. Then the reward decreases when we
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continue increasing the length of H. The reason is that small horizon results in more

greedy actions that may not consider future dynamics. Large horizon produces worse

actions since the prediction errors aggregate as the horizon becomes larger. We choose

20 for the horizon, which balances the prediction errors and action performance with

short latency.

3.6 Discussion

Building Model Calibration. Currently, we are leveraging the existing five-

zone building model in EnergyPlus to evaluate all the existing control methods. We

have not done the calibration for this building model since we have no historical

operation data of that building. The buildings implemented in EnergyPlus are based

on first principles thermodynamical models, so we expect this model to be similar in

performance to a real building. Moreover, it is reasonable to compare all the control

methods based on the same building model implemented in EnergyPlus as ground

truth. So, for the evaluation done in the paper, we believe this is a fair comparison to

test the relative performance of different schemes for “a particular building”. If the

proposed MB2C was to be deployed in a real building, we would first need to learn

the dynamics model from the existing historical data from a real building. Then we

deploy the model in the real building for control. If we were to do simulations to test

MB2C before real deployment, we need to develop a calibrated EnergyPlus model

that matches the target building [13, 47].

Occupancy and Weather Model. In MB2C, we provide the ground-truth

value of weather and occupancy for ENN dynamics model. MB2C might be a bit

more optimistic since we assume perfect prediction for the weather and occupancy.

The errors in prediction may impact controller performance. However, we believe the

performance will not significantly deviate from actual results considering model pre-

diction errors. First is that the existing occupancy and weather prediction model [11,

45, 72, 73] show very small prediction error. Second is that MPPI controller outputs

the optimal trajectory over the planning horizon. MPPI only takes the first optimal

action and re-plans at the next time step based on new observations. This efficiently

avoids compounding model error over time.
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3.7 Conclusions

This paper proposes MB2C, a novel model-based DRL HVAC control system

for multi-zone buildings. We develop a new building dynamics model as an ensem-

ble of multiple environment-conditioned neural network models. We also adopt a

model predictive path integral control method to perform HVAC control. We com-

pare the performance of MB2C with the rule-based, and state-of-the-art model-based

and model-free DRL schemes. The results show that MB2C can achieve 10.65%,

8.23% energy savings on the former and comparable performance with the later,

while maintaining (and sometimes even improving) thermal comfort of occupants.

Perhaps more importantly, we can achieve this by significantly reducing the training

set required by an order of magnitude (10.52× less).



Chapter 4

Deep Reinforcement Learning for

Irrigation Control

Agricultural irrigation is a major consumer of freshwater. Current irrigation

systems used in the field are not efficient, since they are mainly based on soil moisture

sensors’ measurement and growers’ experience, but not future soil moisture loss. It

is hard to predict soil moisture loss, as it depends on a variety of factors, such as

soil texture, weather and plants’ characteristics. To improve irrigation efficiency, this

paper presents DRLIC , a deep reinforcement learning (DRL)-based irrigation system.

DRLIC uses a neural network (DRL control agent) to learn an optimal control policy

that takes both current soil moisture measurement and future soil moisture loss into

account. We define an irrigation reward function that facilitates the control agent

to learn from past experience. Sometimes, our DRL control agent may output an

unsafe action (e.g., irrigating too much water or too little). To prevent any possible

damage to plants’ health, we adopt a safe mechanism that leverages a soil moisture

predictor to estimate each action’s performance. If it is unsafe, we will perform

a relatively-conservative action instead. Finally, we develop a real-world irrigation

system that is composed of sprinklers, sensing and control nodes, and a wireless

network. We deploy DRLIC in our testbed composed of six almond trees. Through

a 15-day in-field experiment, we find that DRLIC can save up to 9.52% of water over

a widely-used irrigation scheme.

58
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Figure 4.2: How plant production (growth) is affected by soil water content [2].

4.1 Introduction

Agriculture is a major consumer of ground and surface water in the United States,

accounting for approximately 80% of the Nation’s consumptive water use [74, 75] and

over 90% in many Western states1. California’s 2019 almond acreage is estimated at

1,530,000 acres, and almond irrigation is estimated to consume roughly 195.26 billion

gallons per year [76, 77]. With a historic drought afflicting the Western states, it

is imperative to improve the irrigation efficiency for saving our limited freshwater

reserve. This work is focused on the irrigation efficiency of almond orchards.

The primary goal of agricultural irrigation is to guarantee the trees’ health and

maximize production. To do so, the trees’ soil moisture should be maintained with a

range between the Field Capacity (FC) level and the Management Allowable Deple-

tion (MAD) level. If the soil moisture is lower than the MAD level, the almond trees

will turn brown or even die. If the soil moisture is higher than the FC level, excess

1Irrigation Water Use: https://www.ers.usda.gov/
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water in the soil will reduce the movement of oxygen, impacting the ability of the

tree to take in water and nutrients. Both FC and MAD levels can be determined by

the type of plants and soil. For a specific orchard, we need to know the soil type. We

can then find the FC and MAD levels for a specific soil type by referring to a manual

[78].

To maintain the soil moisture between the MAD and FC range, the sprinklers

need to be opened every day or several days, depending on the soil moisture change.

Due to the high evaporation loss in California, daily irrigation is recommended by

the Almond Board of California [78] and used in some existing irrigation systems [79,

80]. Current micro-sprinkler irrigation systems normally irrigate plants at night,

since irrigating during the day causes higher evaporative water loss (14-19%) [81].

Therefore, the irrigation scheduling problem is to decide the irrigation water volume

for each sprinkler to guarantee that the soil moisture will be still within the MAD and

FC range at next irrigation time. The decision is based on the current soil moisture

level and the predicted soil moisture loss of next day. The latter is determined by soil

type, local weather, and plants’ properties (e.g., the root’s length and the number of

leaves). The irrigation’s goal is to irrigate the trees with a proper amount of water,

so that the soil moisture will be still above the MAD level at the next irrigation time.

Optimal irrigation control strategies should model the soil moisture loss that

will be experienced before the next irrigation time. If we have such a soil moisture

prediction model, conventional Model Predictive Control (MPC) methods can be

used to decide the optimal amount of water to irrigate. However, the performance

of these methods relies highly on the accuracy of the soil moisture prediction model

[82, 83]. It is hard to obtain an accurate model for an almond orchard, because
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the soil moisture is affected by many factors, including soil type, topography and

surrounding environment (e.g., ambient temperature, humidity, and solar radiation

intensity), and internal transpiration from plants [84]. In addition, customized soil

moisture models are required for different orchards, limiting the scalability of MPC-

based methods. Due to the above two limitations, MPC-based methods have not

been used in orchards.

The irrigation systems currently used in orchards are ET-based or sensor-based

control methods. Evapotranspiration (ET) is an estimate of moisture lost from soil,

subject to weather factors such as wind, temperature, humidity, and solar irradiance.

All these weather factors are being measured by weather stations. Local ET value is

also publicly available [85] and updated every hour. Based on the ET values since the

last irrigation time, ET-based irrigation controllers start the sprinklers to compensate

for the soil moisture loss. However, they do not consider the soil moisture loss of next

day before the next irrigation time. If the soil moisture loss in the last day does not

equal the soil moisture loss that will happen in the next day, ET-based irrigation may

under-irrigate or over-irrigate. In addition, a safe margin of water [86] is normally

added, making ET-based methods over-irrigate in most cases [79].

With accurate soil moisture sensors, irrigation controllers can react directly to

the soil moisture level [79]. The commonly-used controllers are ”rule-based”, in which

a certain amount of water will be supplied once soil moisture deficiency is detected.

However, parameters for the time and the amount to irrigate are generally tuned by

growers by their experience. Without predicting how much water will be lost, sensor-

based irrigation normally does not systematically take into account future weather

information, such as rain and wind in next day.

To solve the limitations of the above existing irrigation schemes, we develop

DRLIC , a practical Deep Reinforcement Learning (DRL)-based irrigation system,

which automatically learns an optimal irrigation control policy by exploring different

control actions. In DRLIC , a control agent observes the state of the environment,

and chooses an action based on a control policy. After applying the action, the

environment transits to a next state and the agent receives a reward to its action. The

goal of learning is to maximize the expected cumulative discounted reward. DRLIC ’s

control agent uses a neural network to learn its control policy. The neural network

maps ”raw” observations to the irrigation decision for the next day. The state includes
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the weather information (e.g., ET and Precipitation) of today and next day.

To minimize the irrigation water consumption while not impacting the trees’

health, we design a reward function that considers three specific situations. If the soil

moisture result is higher than the FC level or lower than the MAD level, we will give

the control agent a negative reward. If the soil moisture result is within the MAD

and FC range, we will give the control agent a positive reward inversely proportional

to the water consumption.

Ideally, DRLIC ’s control agent should be trained in a real orchard of almond

trees. However, due to the long irrigation interval (one day in our case), the control

agent can only explore 365 control actions per year. It will take 384 years to train

a converged control agent. Therefore, to speed up the training process, we train our

control agent in a customized soil-water simulator. The simulator is calibrated by the

2-month soil moisture data of six almond trees and can generate sufficient training

data for DRLIC using 10-year weather data.

Working as an irrigation controller in the field, the control agent may meet some

states that it has not seen during training, especially for the control agent trained

in a simulated environment. In this situation, the control agent may make a poor

decision that violates plants’ health, i.e., making the soil moisture level lower than

the MAD level or higher than the FC level. To handle the gap between the simulated

environment and the real orchard, we design a safe irrigation mechanism. If DRLIC ’s

control agent outputs an unwise action, instead of executing that action, we use the

ET-based method to generate another action. We use the soil moisture model of our

soil-water simulator to verify whether an action is safe or not.

To evaluate the performance of DRLIC , we build an irrigation testbed with

micro-sprinklers currently used in almond orchards. Six almond trees are planted in

two raise-beds. Each tree has a sensing and control node, composed of an independently-

controllable micro-sprinkler and a soil moisture measurement set (two sensors de-

ployed at different depths in the soil). Each node can send its sensing data to our

server via IEEE 802.15.4 wireless transmission, and receive irrigation commands from

the server.

We have deployed our testbed in the field and collected soil moisture data from

six sensing and control nodes for more than three months. We use 2-month data to

train our soil moisture simulator and 0.5-month data to validate its accuracy. After
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training DRLIC ’s control agent, we have deployed the controller in our testbed for

15 days. Experiment results demonstrate that DRLIC can reduce the water usage by

9.52% over the ET-based control method, without damaging the almond tree health.

We summarize the main contributions of this paper as follows:

• We design DRLIC , a DRL-based irrigation method for agricultural water usage

saving.

• A set of techniques have been proposed to transform DRLIC into a practical

irrigation system, including our customized design of DRL states and reward

for optimal irrigation, a validated soil moisture simulator for fast DRL training,

and a safe irrigation module.

• We build an irrigation testbed with customized sensing and actuation nodes,

and six almond trees.

• Extensive experiments in our testbed show the effectiveness of DRLIC .

4.2 Irrigation Problem

Soil Water Content Parameters. Soil is a plant’s water reservoir. Water can

fill up to 35% of the space in soil. Soil water content is the amount of water in the

soil, which is often measured as a percentage of water by volume (%) or by inches

of water per foot of root (in/ft). Soil moisture sensors are used to measure the soil

water content (%) at one location in the soil. For a tree with a root of several feet,

multiple soil moisture sensors may be deployed in different depths along with the

root. The root is divided into a certain number of pieces. A soil moisture sensor is

deployed at the middle point of each piece. The soil water content of the tree can be

calculated as V =
∑M

j=1 φj ∗ dj, where M is the number of moisture sensors installed

at different depths (M is 2 in our experiments); φj is the reading measured by the

jth soil moisture sensor; and dj is the depth that the jth moisture sensor covers. If

such a set of soil moisture sensors are used to measure the soil water content of a

region, they will be deployed under a typical tree that has similar soil water content

with most of the trees in the region.
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A healthy plant’s root must be within a sufficient supply of water. Figure 4.1

shows two critical levels of soil water content for plants’ health [1]. 1) If the soil water

content is below the Permanent Wilting Point (PWP), plants cannot suck necessary

moisture out of the soil. Keeping soil below the PWP level for an extended period

of time will cause plants to wilt or eventually die. 2) If the soil water content of a

tree is above Field Capacity (FC), the soil has an over-abundance of water, which

will cause water waste and rotting of the root over time (impacting the trees’ health).

Therefore, the goal of irrigation systems is to maintain soil water content between the

PWP level and the FC level.

For fruit trees like almond, production is the major goal of irrigation. To maxi-

mize the production, we need to maintain the soil water content above the Manage-

ment Allowable Depletion (MAD) level, instead of the PWP level. Figure 4.2 depicts

the relationship between soil water content and plant production for almond trees [2].

The curve and the MAD level may be different for different fruits. From Figure 4.2,

we can see that the MAD level for almond trees is the median value (50%) between

the FC level and the PWP level. Therefore, almond trees can achieve their maximum

production, as long as we maintain the soil water content above the MAD level.

How to Determine these Parameters in an Orchard? The soil water

content range between the FC level and the PWP level is the Available Water holding

Capacity (AWC) of the soil. As shown in Figure 4.3, different soil types have different

AWCs [3]. The soil’s AWC may be affected by its texture, presence and abundance

of rock fragments, and its depth and layers. The soil’s AWC increases as it becomes

finer-textured from sands to loam [3], and the soil’s AWC decreases as it contains

more clay from loam to clay [3].

The AWC of a tree, Vawc, can be calculated as Vawc = σawc ∗ Dfoot, where σawc

is the soil’s AWC and Dfoot is the tree’s root depth in the unit of feet. The AWC for

different soil types, σawc, can be found in [3].

The PWP level for a soil type, Vpwp, can also be calculated as Vpwp = φpwp∗Dinch,

where φpwp is the soil moisture content at the wilting point of that soil type and Dinch

are the root depth of the plant in the unit of inches. φpwp for a specific soil type can

be found in [3].

Based on the above two parameter (Vawc and Vpwp), we can also obtain the FC

level as Vfc = Vawc + Vpwp, and the MAD level as Vmad = α ∗ Vawc + Vpwp, where α is
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set to 50% for almond trees.

How to Use these Parameters for Irrigation? The goal of irrigation is to

maintain the soil water content of plants between the FC level and the MAD level.

To correctly set an irrigation system, we need to know the soil’ AWC in the orchard

and the PWP level (Vawc and Vpwp). We can determine these two parameters based

on the above method, as long as we know the soil type. If the orchard is large, the

soil type varies in space and these two parameters change too. We need to adapt the

setting of these two parameters in the irrigation system accordingly.

How Many Valves to Control in an Orchard? Ideally, the sprinkler for

each tree should be individually controlled, since the ET of each tree in an orchard

varies from 0.12 to 0.20 inches [87]. Moreover, the soil type also varies spatially in an

orchard [78], e.g., there are 10 soil type differences with soil clay loam accounting for

from 45.6% to 54.7% and 0 to 8 percent slopes in a 60-acre orchard of California 2.

However, there are around 75-125 almond trees in one acre, it is costly to deploy

a soil moisture sensor under each tree. Thus, an orchard is normally divided into

several irrigation regions based on the similarity of soil texture. A valve is used

in each irrigation region to control all the sprinklers. The irrigation problem of a

large orchard is to control a number of valves. This paper is focused on irrigation

scheduling, but not field partitioning. A simple way to partition an orchard into

several irrigation regions is to survey the soil samples across the orchard using an

auger. Growers normally conduct the survey for other purposes too, such as planning

the density of trees and fertilizing the trees.

4.3 DRLIC System Design

In this section, we first give an overview of DRLIC [80, 88, 89]. We model the

irrigation problem as a Markov decision process. We design a DRL-based irrigation

scheme and a safe irrigation module.

2Soil Map: https://casoilresource.lawr.ucdavis.edu/gmap/
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Figure 4.4: DRLIC System Architecture.

4.3.1 Overview

Figure 4.4 shows the system architecture of DRLIC , which is composed of two

key components, i.e., a wireless network of sensing and actuation sprinkler nodes, and

a DRL-based control algorithm.

For an almond orchard, we install the sensing and actuation node for each irri-

gation region. One sensing and actuation node is equipped with a set of soil moisture

sensors that are deployed at different depths in the soil. Sensing data is transmitted

to the base station via an IEEE 802.15.4 network. The Base Station collects the data

from DRLIC nodes and sends them to a local server using Wi-Fi. These sensing data

collected from all DRLIC nodes creates a “snapshot” of the soil moisture readings φt

across the entire orchard.

On the server, the DRL-based irrigation control agent makes irrigation decisions

based on the soil moisture sensors’ readings, ET and weather data from local weather

stations. It provides the optimal irrigation schedule for all DRLIC nodes. The objec-

tive of DRLIC is to minimize the total irrigation water consumption while meeting

the requirement of almond health. The server will send the generated irrigation sched-

ules At to all DRLIC nodes. By receiving a command, a node may open its sprinkler

by a latching solenoid with two relays. The implementation details of the nodes will

be introduced in Section 4.4.
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4.3.2 MDP and DRL for Irrigation

We adopt the daily irrigation scheme, i.e., the irrigation starts at 11 PM every

day. Each time, the controller decides how long to open each sprinkler to guarantee

that the soil water content will be still within the MAD and FC range tomorrow

night. The future soil water content is determined by the current soil water content,

the irrigated water volume, the trees’ water absorption, and soil water loss (caused

by runoff, percolation and ET). Such a sequential decision-making problem can be

formulated as a Markov Decision Process (MDP), modeled as ¡S, A, T, R¿, where

• S is a finite set of states, which includes sensed moisture level from orchard

and weather data from local station.

• A is a finite set of irrigation actions for all control valves.

• T is the state transition function defined as T : S ×A → S. The soil water

content at next time step is determined by current soil water content and the

irrigation action.

• R is the reward function defined as S ×A→ R, which qualifies the performance

of a control action.

Based on the above MDP-based irrigation problem formulation, we will find an op-

timal control policy π(s)∗ : S → A, which maximizes the accumulative reward R.

We cannot apply conventional tools (e.g., dynamic programming) to search for the

optimal control policy, because the state transition function is hard to analytically

characterize. In this paper, we consider an RL-based approach to generating irri-

gation control algorithms. Unlike previous approaches that use pre-defined rules in

heuristic algorithms, our approach will learn an irrigation policy from observations.

DRL is a data-driven learning method. It has been widely applied in many

control applications [90, 57, 59, 91, 47]. DRL learns an optimal control policy through

interacting with the environment. At each time step t, the control agent selects an

action At = a, given the current state St = s, based on its policy πθ.

a ∼ πθ(a|s) = P(At|St = s; θ) (4.1)
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Figure 4.5: Deep Reinforcement Learning in DRLIC .

In DRL, the control policy is approximated by a neural network parameterized

by θ [92]. When the control agent takes the action a, a state transition St+1 = s′

occurs based the system dynamics fθ (Equation 4.2), and the control agent receives

a reward Rt+1 = r.

s′ ∼ fθ(s, a) = P(St+1|St = s, At = a) (4.2)

θ∗ = argmax
θ

Eπθ
[r] (4.3)

Due to the Markov property, both reward and state transition depend only on

the previous state. DRL then finds a policy πθ that maximizes the expected reward

(Equation 4.3).

4.3.3 Deep Reinforcement Learning in DRLIC

Figure 4.5 summarizes the DRL architecture of DRLIC . The irrigation control

policy (DRLIC Agent) is derived from training a neural network. The agent takes a

set of information as input, including current soil water content, today’s weather data

(e.g., ET and precipitation), and the predicted weather data for tomorrow. Based

on the input, the agent outputs the best action, i.e., the amount of water to irrigate.

Until the next day at 11 PM, the resulting soil water content is observed and passed

back to the agent to calculate a reward. The agent uses the reward to update the

parameters of the neural network for better irrigation control performance. Next, we

introduce the design of each DRLIC component.
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State in DRLIC

The state in our irrigation MDP model contains the information of three parts.

(a) Sensed state, which is the soil water content measured by DRLIC nodes. (b)

Weather-related state, which includes the current and predicted state variables from

weather station. (c) Time-related state, which is about date information.

Sensed State. The soil water content of each irrigation region, calculated by

Equation 4.6 using sensor reading φ from DRLIC node.

Weather-related State. It is a vector containing the weather information of cur-

rent day and next day: ET (inch), Precipitation (inch), maximum, average, minimum

Temperature (◦F), maximum, average, minimum Humidity (%), average Solar Radi-

ation (Ly/day), average Wind Speed (mph), Predicted ET by Equation 4.16 (inch),

and forecasted Precipitation (inch) from local weather station.

Time-related State. Date including the month. The soil moisture may vary in

different months.

Action in DRLIC

Based on the current state outlined above, our irrigation scheduling is to find the

best amount of water to irrigate (inch), which can maintain plant health (or maximize

production) with minimum water consumption. The action is a vector that contains

the water amount to irrigate for each irrigation region in an orchard. When the agent

outputs an action, we will convert the amount of irrigation water to the open time

duration (td) tdi for ith micro-sprinkler. It is calculated as tdi = ai/I, where I is

the irrigation rate. We set I to 0.018 inch/min according to the specifications of the

micro-sprinklers used in our testbed.

Reward in DRLIC

We define the reward function to express our objective of achieving good plant

health with minimum water consumption. Both plant health and water consumption

should be incorporated in the reward function. As we know from Section 4.2, to

achieve the maximum production of almond trees, we need to maintain the soil water

content between the MAD level and FC level. We use the soil water content deviation

from these two levels as a proxy for plant health.
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To minimize water consumption while not affecting the plant health, we consider

three situations in the design of the reward, as shown in Equation 4.5. First, when

the soil water content (Vi) for ith irrigation region is higher than the FC (Vfc) level,

the irrigated water is more than the plants’ need. In this case, the plants’ health is

affected by over-irrigated water, and water consumption is too high. Second, when

Vi is between Vfc and Vmad, the plants are in good health. In this case, we strive to

maintain the Vi close to Vmad to save water, so we give a reward inversely proportional

to the water consumption. Third, when Vi is lower than Vmad, the plants are under

water stress. The plants’ health is significantly impacted, proportional to the distance

between Vi and Vmad.

By considering the above three situations, our reward function is defined as

follows:

R = −
N∑
i=1

Ri (4.4)

Ri =


λ1 ∗ (Vi − Vfc) + µ1 ∗ ai, Vi > Vfc

µ2 ∗ ai, Vfc > Vi > Vmad

λ3 ∗ (Vmad − Vi) + µ3 ∗ ai, Vi < Vmad

(4.5)

V =
∑M

j=1 φj ∗ dj (4.6)

Vmad = α ∗ Vawc + Vpwp (4.7)

Vfc = Vawc + Vpwp (4.8)

Vpwp = φpwp ∗Dinch (4.9)

Vawc = σawc ∗Dfoot (4.10)

where N is the number of irrigation regions in one orchard. a is the amount of water

from the RL agent. σawc and φpwp are set by referring to the manual of California

Almond Board [78] based on our specific soil type in our testbed. Equations 4.6, 4.7,

4.8, 4.9 and 4.10 have been introduced in Section 4.2.

In our current implementation, the parameters of our reward function are set

to the values shown in Table 4.1, based on the specifications of our testbed. The

parameters in Equation 4.5 (i.e., λ1, µ1, µ2, λ3 and µ3) are set to the best values that
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Table 4.1: Parameter Setting in Reward.

Parameter Value Parameter Value
λ1 3 α 50 (%)
µ1 8 Dinch, Dfoot 23.62 inches, 1.97 (feet)
µ2 3 d 11.81 (inches)
λ3 10 φpwp 10 (%)
µ3 1 σawc 2.4 (in./ft.)

provide the best rewards during training. Their values are set by grid search, which

will be introduced in detail in Section 4.5. The values of these parameters in Table

4.1 confirm with our design goal of the reward function. First, when Vi is larger than

Vfc, we give penalties due to both plants’ health and water consumption (λ1 = 3, but

µ1 = 8). Second, when Vi is lower than Vmad, we give a higher penalty due to plants’

health (λ3 = 10, but µ3 = 1).

4.3.4 DRLIC Training

Policy Gradient Optimization

In the above DRL framework, a variety of policy gradient algorithms can be used

to train the irrigation control agent. Policy gradient algorithms achieve the objective

in Equation 4.3 by computing an estimate of the policy gradient and optimizing the

objective through stochastic gradient ascent (Equation 4.11).

θ ← θ + α▽θ Eπθ
[r] (4.11)

In this work, we use proximal policy optimization (PPO) [62], which has been

successfully applied in many applications such as navigation [93] and games [94]. PPO

is known to be stable and robust to hyperparameters and network architectures [62].

PPO minimizes the loss function in Equation 4.12, which is equivalent to max-

imizing the Monte Carlo estimate of rewards with regularization. The advantage

function Ât given by Equation 4.13 is used to estimate the relative benefit of taking

an action from a given state.

LPPO(θ) = −Êt[min(wt(θ)Ât, clip(wt(θ), 1− ϵ, 1 + ϵ)Ât)] (4.12)
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Ât =
∞∑
i=0

γirt+i (4.13)

wt(θ) =
πθ(at|st)
πθold(at|st)

(4.14)

In Equation 4.14, πθ(at|st) is the policy being updated with the loss function and

πθold(at|st) is the policy that was used to collect data with environment interaction.

As the data collection policy differs from the policy being updated, it introduces a

distribution shift. The ratio wt(θ) corrects for this drift using importance sampling.

The ratio of two probabilities can blow up to large numbers and destabilize training,

so the ratio is clipped with ϵ.

Data Collection and Preprocessing

On day t, the DRLIC agent observes a state s (e.g., moisture level), and then

chooses an action (water amount). After applying the action, the soil-water envi-

ronment’s state transits to st+1 next day and the agent receives a reward r. After

that, a data pair (st, at, rt, st+1) can be collected. We conduct data normalization by

subtracting the mean of the states/action and dividing by the standard deviation.

We use 10-year weather data (2010-2020) to generate the data pairs in our dataset,

which will be used to train our DRLIC agent.

Training Process

Ideally, DRLIC ’s control agent should be trained in an orchard of almond trees.

A well-trained DRL agent needs 384 years to converge due to the long control interval

of irrigation systems. It is impossible to train DRLIC agent in an orchard. A feasible

solution is to refer to a high-fidelity simulator. However, there are no such simulators

available in the soil-water domain. Then we decide to leverage a data-driven simu-

lator to speed up the training process. We employ the soil water content predictor

introduced in Section 4.3.5 as our soil-water simulator. The simulator allows DRLIC

to ”experience” the weather of 10 years in several minutes.

The training procedure of DRLIC is outlined in Algorithm 3. We train DRLIC

using 1000 episodes and length of an episode as 30 days. For each episode, we can

collect 30 training data pair (st, at, rt, st+1) under different weather data and leverage
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Algorithm 3 DRLIC Training Algorithm

Input: State s, Action a, Reward r, an initialized policy, πθ;
Output: A trained irrigation control agent
for i=0,..., # Episodes do

State ← Soil-water environment
θold←θ
for t = 0, ..., Steps do

ât = πθ(st) st+1, rt+1 = env.step(ât)
end

Compute Ât With minibatch of size M θ←θ − α▽θLPPO(θ)
end

Equation 4.12 to optimize the objective in Equation 4.3 through stochastic gradient

ascent. The training ends once Algorithm 3 converges: at the end of each episode

the total reward obtained is compared with the previous total. If the current episode

reward does not change by ± 3%, we consider the policy has converged. If the

policy does not converge, the training will continue up to a maximum of 100 training

iterations (# episodes = 100). After the training, we will deploy the trained DRLIC

agent into the real almond orchard.

When we are given a new environment (e.g., a new orchard), we first need to

collect the real-world irrigation data of new environment by existing controller (e.g.,

ET-based control) to build a soil water content predictor to describe the water balance

in the root zone soil. Then we leverage the soil water content predictor to speed up

the training process, after that, we deploy the well-trained DRLIC agent for this new

orchard.

4.3.5 Safe Mechanism for Irrigation

We design a safe mechanism that integrates the RL and ET controller in a coupled

close-loop. Figure 4.6 illustrates the workflow of safe mechanism, with the following

key elements. (i) Different from the pure RL framework, we introduce a safety mois-

ture condition detector to evaluate whether the RL algorithm outputs a safe action.

(ii) If so, the action goes to the RL agent, who will be in charge of irrigation control.

(iii) Otherwise, we will use an ET-based controller to generate an action for that

control cycle. (iv) DRLIC will the RL agent for the future control cycles. We now

introduce the soil water content predictor and safety condition detector.
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Figure 4.6: Deep Reinforcement Learning with Safe Mechanism.

Soil Water Content Predictor. To enable early detection of an unsafe action,

we design a soil water content predictor to predict the moisture trend after taking

an action. Then we design a safe condition detector to detect almond health penalty

p(t). The idea is to detect whether the damage metric for an almond tree is higher

than a threshold. If so, the detector will command DRLIC to switch from RL to

ET-based controller.

We design a soil water content predictor to describe the water balance in the

root zone soil. The variations of water storage in the soil are caused by both inflows

(irrigation and precipitation) and outflows (evapotranspiration). This leads to the

following mathematical expression:

Vi,t+1 = c1 ∗ Vi,t + c2 ∗ (Ai,t + Pt) + c3 ∗ Et + b (4.15)

Et = Γc ∗RA ∗ TD(1/2) ∗ (Tt + 17.8◦C) (4.16)

where Vi,t+1 denotes the predicted moisture level in the root zone for ith irrigation

region after taking the action from RL, Et and Pt are the plants’ ET and the measured

rainfall. In time period t, and Ai,t is the irrigation amount for ith irrigation region. c1,

c2, and c3 are coefficients. It is assumed in this work that runoff and water percolation

are proportional to soil moisture level [95, 96, 97] in Equation 4.15. All the coefficients

can be determined by means of system identification techniques [98]. All variables

are normally expressed in inches.

The weather data can be get from local weather station. For ET , we adopt the

simple calculation model established in [99]. As shown in Equation 4.16, where Γc

is a crop-specific parameter. RA stands for extraterrestrial radiation, which is in

the same unit as Et. TD denotes the annual average daily temperature difference,
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Table 4.2: Coefficients of Predictor for Each Tree.

c1 c2 c3 b R2 NRMSE
Tree1 0.973 0.288 -0.103 0.003 0.982 0.062
Tree2 0.937 0.325 -0.121 0.013 0.985 0.071

which can be derived from local meteorological data, and Tt is the average outdoor

temperature during the tth time period.

Safety Condition Detector. We employ the difference between predicted

moisture level and lower bound as a detector to estimate the almond tree damage. As

explained in Section 4.2, MAD is the lower bound. Then we use
∑N

i=1(Vmad − Vi,t+1)

as a safety condition detector, Vi,t+1 denotes the predicted moisture level from ith

irrigation region for t timestep. Vmad is the water content lower bound. DRLIC

will evoke ET-based controller once safety condition detector detects the dangerous

irrigation action.

Parameter Learning of our Soil Water Content Predictor. We leverage

the designed testbed to collect the irrigation amount of almond trees for 2 months.

The ET value for each day is collected from a local weather station [85] and the

moisture level for each tree is collected by the designed DRLIC node. Then the

linear least square method was applied to estimate the coefficients. R2 is used to

explain the strength of the relationship between the moisture level and related factors.

Normalized root-mean-square error (NRMSE) is used as a goodness-of-fit measure for

predictors. The results are shown in Table 4.2, we can see that the R2 is close to 1

indicating that the irrigation, ET and precipitation have a strong relationship with

soil water content for the tree. The NRMSE is less than 0.1 which means that the

predictor can achieve accurate prediction for soil water content.

4.4 Testbed and Hardware

4.4.1 Testbed and Microsprinkler Description

Figure 4.7 shows our micro-sprinkler irrigation testbed. The micro-sprinkler

irrigation system is installed and designed to be identical in hardware, micro-sprinkler

coverage, etc. This irrigation system measures 290 cm x 160 cm, with micro-sprinklers

arranged in a 3x2 grid, each 97cm from the next. The micro-sprinklers chosen were
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Figure 4.7: Testbed and Microsprinkler Irrigation System.

1/4 ’, 360 ◦ pattern by Rainbird, which are currently considered state-of-the-art in

micro-sprinkler technology. Six all-in-one young almond trees were planted into the

testbed (three for each). The average height is 2 meters. The soil with 2.7 m 3 volume

is collected from a local orchard that is a typical loam soil and the plant-available

water-holding capacity is 2.4 inches of water per foot.

4.4.2 DRLIC Node Development.

The designed DRLIC node in Figure 4.4 consists of four main parts: sensors,

actuator, power supply and transmission module.

Sensors: It consists of several moisture sensors for different depths. The mois-

ture sensors vary in their sensitivity and their volume of soil measured. Each mois-

ture sensor for 12-inch depth provides accurate quantitative soil moisture assessment

following the Almond Board Irrigation Improvement Continuum [78]. We assign 2

moisture sensors for each DRLIC node since the depth of root zone of the almonds

in our testbed is 24 inches.

A key feature of the DRLIC node is the ability to measure the volumetric water

content in the surrounding soil. We opted to purchase research-quality Decagon EC-
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Figure 4.9: On and off Circuit Diagram for Latching Solenoid.

5 sensors 3, with a reported accuracy of ±3%. Raw sensor readings collected over

a period of one day with a high sampling frequency can be seen in Figure 4.8. The

sensors report the dielectric constant of the soil, which is an electrical property highly

dependent on the volumetric water content (VWC).

φ(m3/m3) = 9.92 ∗ 10−4 ∗ raw reading − 0.45 (4.17)

A linear calibration Function 4.17 above provided by the sensor manufacturer is

used to convert the raw readings to VWC. The range of φ is between 0% and 100%.

φ of saturated soils is generally 40% to 60% depending on the soil type.

Actuator: It consists of a latching solenoid with two relays. A standard solenoid

requires constant power to allow water to flow, making it a poor choice for a battery-

powered system. The nine-volt performance all-purpose alkaline batteries from Ama-

zon can only continue to power the standard 12V DC solenoid for 8 hours. To extend

3Decagon devices. http://www.decagon.com/products/soils/
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DRLIC node lifetime, we chose to use a latching solenoid for micro-sprinkler actua-

tion, requiring only a 25ms pulse of positive (to open) or negative (to close) voltage.

The h-bridge is usually used to produce a bi-directional current to control the latching

solenoid [100]. However, it needs a special design to meet different voltages require-

ments for the ESP32 and latching solenoid.

In order to control the latching solenoid, we design a circuit diagram using two

relays to operate with a very little connection overhead. A relay is an electrically

operated switch. Figure 4.9 shows the turn-on and off circuit diagram for latching

solenoid. When both the relays are off, there is no current going through the solenoid

(S). Initially, both the relays are in a normally closed (NC) position. To turn the

solenoid on, Relay 1 is switched from NC to normally open(NO) for 25ms, providing

the positive current pulse through the solenoid. The current path shown in Figure

4.9(a) is: VCC − > NC1 − > COM1 − > S − > COM2 − > NO2 − > GND. To

turn the solenoid off, Relay 2 is switched from NC to NO for 25ms, de-latching the

solenoid to the closed position. The current path shown in Figure 4.9(b) is: VCC − >

NC2 − > COM2 − > S − > COM1 − > NO1 − > GND. To prevent over-irrigation

in the event of a power failure, we have the power supply module to continuously

provide the power.

Power Supply: Power supply consisted of a 5v, 1.2W solar panel for energy-

harvesting and a 18650 Lithium Li-ion battery with a capacity of 3.7V 3000 MAH

for energy storage. The TP4056 lithium battery charger module comes with circuit

protection and prevents battery over-voltage and reverse polarity connection. All

sensors (1 ESP32, 2 moisture sensors, 2 relays and 1 latching solenoid) are powered

with this power supply module. It can provide continuous power to prevent over-

irrigation in the event of a power failure for the actuator module.

Transmission Module: Transmission includes uplink and downlink. In the

uplink path, the moisture sensor readings from the field are sampled by the ESP32, a

low-cost, low-power system on a chip (SoC) series with Wi-Fi capability. The readings

are then sent from ESP32 to the base station as input for the optimal control. In

downlink path, the control command calculated by the DRL agent will be routed to

all ESP32 to turn on or off the solenoids.
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4.5 Implementation

In this section, we illustrate in detail the implementation of DRLIC and tuning

hyper-parameters.

DRLIC Implementation Details We implement DRLIC in Python using widely

available open-source frameworks, including Pandas, Scikit-learn and Numpy. The

control scheme - DRLIC is implemented using the scalable deep reinforcement learn-

ing framework, RLlib [101]. RLlib supports TensorFlow, TensorFlow Eager, and

PyTorch. RLlib provides multi-ways for us to customize the training process of the

target environment modeling, neural network modeling, action set building and dis-

tribution, and optimal policy learning. The 10-year weather data (2010-2020) are

collected for DRLIC , with 9 years used for training and the remaining 1 year used for

testing. In our implementation of DRLIC , we use the Adam optimizer for gradient-

based optimization with a learning rate of 0.01. The discount factor is 0.99. The

neural network model has 2 hidden layers with 256 neurons for each. The local server

for training and running DRLIC is a 64-bit quad-core Intel Core i5-7400 CPU at 3.00

GHz that runs Ubuntu 18.04.

Training Details and Tuning Hyper-parameters. The performance of DRLIC

agent is sensitive to the hyperparameter values chosen. Unfortunately, there is no

simple approach that allows DRLIC agent to understand whether a specific value

for a given parameter would improve total reward. To address this issue and further

increase DRLIC ’s performance, we leverage a tuning approach to optimize the DR-

LIC ’s hyperparameters, such as λ, µ associated with rewards and penalties, and the

learning rates. In particular, we employ grid search which allows us to specify the

range of values to be considered for each hyper-parameter. The grid search process

constructs and evaluates our model using every combination of the hyper-parameters.

Finally, we employ cross-validation to evaluate each learned model.

4.6 Evaluation

In this section, we evaluate the performance of DRLIC in the field. We evaluate

DRLIC system for 15 days in the real world.
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Figure 4.10: ET-based Method.
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Figure 4.11: Sensor-based Method.

4.6.1 Experiment Setting

Baseline Strategy:

We compare DRLIC to two state-of-the-art irrigation control schemes introduced

in Section 4.7.

ET-Based Irrigation Control [78]. To implement an ET-based controller, we

query a local weather station for the previous day’s ET loss. To compensate for the

loss, we use the sprinkler’s irrigation rate provided by its dataset to calculate how

long the system should be activated for irrigation.

Sensor-based Irrigation Control [79]. The sensor-based controller has two

thresholds, the lower and upper soil water content levels. The first is set at 4.96

inches, 10% higher than MAD to avoid the under irrigation occurring prior to the

wetting front arriving at the sensor depth. The latter is set to 6.97 inches, 5% below

FC to allow for some rainfall storage. We carefully set these two thresholds based on

the soil environment of our testbed.
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Figure 4.12: DRLIC.

Performance Metrics

We evaluate the performance of DRLIC and two baseline systems in terms of

two performance metrics.

Quality of Service. Although the irrigation system has no control over solar

exposure and soil nutrients, it has direct control over the moisture levels in the soil.

For this reason, our primary metric for irrigation quality is the system’s ability to

maintain soil moisture above this MAD threshold at all times at all of our measured

locations. By doing so, we are guaranteeing that the plant has sufficient moisture to

be healthy and no production loss. In this paper, we call this the quality of service

of the irrigation system.

Water Consumption. As each sprinkler uses a water supply and we directly

control the times at which each micro-sprinkler is active, we can monitor the amount

of water consumed by these three systems at all times to determine the efficiency of

each system. Thus another metric is the water consumption, which we would like to

minimize subject to the quality of service constraints.

Experiments in our Testbed

We validate the DRLIC system with baselines in real-world deployment in terms

of plant health and water consumption for 15 days. In the case study, we have six

almond trees in our testbed as shown in Figure 4.7. DRLIC , sensor-based control and

ET-based control are used to irrigate the upper, middle and lower two trees separately

since there is no runoff between trees in our testbed. To allow three irrigation systems

to operate independently, Every micro-sprinkler is controlled by a DRLIC node. In
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Figure 4.13: Daily Water Consumption.

this way, the only difference among the three systems is the schedules sent to the

nodes.

4.6.2 Experiment Results

Quality of Service

Irrigation systems are installed to maintain almond health with no production

loss. Figure 4.10, 4.11, and 4.12 shows the daily soil water content in the field for ET-

based control, Sensor-based control and DRLIC . The black horizontal line shows the

MAD level. If soil water content is below this line, tree health will be impacted. We

can see that DRLIC and ET system can maintain the soil water content above MAD

threshold during the 15 days deployment and thus meet the requirement of almond

health. However, the trees irrigated by Sensor-based method are in an under-irrigation

period of 18 hours for four days (day 1, 4, 7 and 9) since the soil water content of

Sensor-based method is lower than the MAD. The reason is that the moisture level

of previous day is close but not reached to MAD, so the sensor-based method will

not irrigate even though the moisture level is in an under-irrigation trend. DRLIC

system can irrigate what the trees need based on the learned model about the water

changes in the soil and maintain the soil water content close to MAD level.

All three underlying irrigation systems begin with enough water content on the

first day. We see that the soil water contents of the two trees in ET control system are

much above the FC threshold. In our deployment of DRLIC against the ET control

strategy in Figure 4.10, we see that soil water content for these two trees is different
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and much higher than the MAD level. This emphasizes the limitations of ET and

the core of our work. The irrigated regions don’t receive moisture the same way, and

most of the time, the ET-based controller irrigates more water than the plant needs.

Water Consumption

When a decision must be made to switch to a new almond irrigation control

system, a primary concern is the efficiency of the proposed system. The system’s

ability to return its investment based on increased efficiency will often dictate the

acceptance of the technology. In addition, the environmental benefits of reduced

freshwater consumption are clear and help promote system adoption.

In our experimental setup, the water source provided by each micro-sprinkler

is pressure-regulated to the industry standard, 30 psi. Each micro-sprinkler head

distributing water uses a clearly-defined amount of water per unit time, as described

in the almond irrigation manual [78]. By tracking exactly when each micro-sprinkler

is actuated by the system, we can determine very accurately how much water has

been consumed.

Figure 4.13 shows the daily irrigation amount of two trees actuated by ET-based

control, sensor-based control and DRLIC in a 15 days’ deployment experiment. From

this figure, we can see that DRLIC can save an average 9.52% and 3.79% of the

water compared with ET-based and Sensor-based control during 15 days deployment

experiment. ET-based control is a centralized control method to irrigate all almond

trees without considering their specific need. Sensor-based control is water-efficient

by monitoring the moisture and irrigating when the moisture level is lower than the

MAD level. However, the thresholds are site-specific and not optimal. DRLIC can

learn optimal irrigation control by interacting with the local weather and soil water

dynamic environment.

4.6.3 Effect of our Safe Irrigation Mechanism.

In the 15 days’ deployment, we find that there are two days (Day 2 and 14 in

Figure 4.12) DRLIC triggers the ET-control method. This can also be validated from

Figure 4.13, we can find the water consumption of ET method and DRLIC on days

2 and 14 are the same. We check the weather data to understand the reason and
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Figure 4.14: Daily Soil Water Content with Safe Mechanism.
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Figure 4.15: Daily Soil Water Content (w/o Safe Mechanism).

find that the wind speeds of days 2 and 14 are 7.2 and 11.9 mph receptively which is

much higher than the average 2.8 mph of the other 13 days.

We now run DRLIC with and without safe mechanism for a whole growing sea-

son in simulation, labeled as Robust-RL and RL-only, respectively. Figure 4.14 and

4.15 show the daily soil water content of Robust-RL and RL-only for a same grow-

ing season 2020, respectively. From the almond’s perspective, Robust-RL maintains

health with 0 days below the MAD level. The RL-only irrigation method has 21 days

below the MAD level. The reason is that the RL models trained from past weather

data “misbehave” on the test weather data. while it may be possible to train on

changing weather to obtain a robust policy, no offline training can ever cover all pos-

sible weather changes. The RL agent with safe mechanism from DRLIC , however,

is robust to weather changes because the safety condition detector will detect the

dangerous actions from RL agent and the ET system will take control.
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4.6.4 Effect of proposed Reward.

In this section, we discuss the simulation results of DRLIC with different rewards

for a whole growing season (March 1st to October 31st, 246 days).

In order to minimize the water consumption while not affecting the plant health,

we consider three situations in the reward. 1) The soil water content (Vi) is higher

than the FC (Vfc) level. 2) Vi is between Vfc and Vmad. 3) Vi is lower than Vmad.

Only in the second situation, the plants are in good health. To evaluate our reward

function, we compare it with a simple reward (DRLICMAD) that only maintains Vi

above Vmad. It is commonly used in the sensor-based method [79]. The reward is

defined as: R = −
∑N

i=1 λ3 ∗ (Vmad−Vi) +µ3 ∗ai, Vi < Vmad. This function gives more

penalty to plant health when Vi lower than Vmad since plants’ health is significantly

impacted. All the parameters are the same in Section 4.3.3.

Figure 4.19 shows the water consumption of DRLIC with our proposed reward

(DRLIC ) and the simple reward (DRLIC MAD). DRLIC can save 2.04% more

water than DRLIC MAD, as the latter does not consider the case when Vi is higher
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Figure 4.19: Water Consumption for DRLIC with Different Reward

than Vmad. DRLIC considers two more situations by giving different penalties to

plants’ health and water consumption. The first case is over-irrigation. The water

consumption is too high. Therefore, the penalty for water consumption is higher than

plant health. In the second case, the plants are in good health. DRLIC strives to

maintain the Vi close to Vmad to save more water.

4.6.5 DRLIC Policy Convergence.

Figure 4.16 shows the RL training process and the policy converges around the

500th training iteration. We define the length of an episode as 30 days. We randomly

vary the soil water content for each tree between the FC (7.08 inches) and MAD

(4.72 inches) at the beginning of each episode. By doing so, the policy is exposed

to different soil water content conditions and learns to avoid water depletion than

the MAD level during training. At the beginning of the experiment, the RL policy

receives a larger negative reward as it does not know a valid sequence of actions that

maximize the reward. The policy converges at the 500th training iteration. The
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Table 4.3: Micro-sprinkler Node Manufacture Cost.

Component Price Component Price
Moisture Sensor x 2 $250 ESP32 $6.5
18650 Li-ion battery $3 Solar Panel $4.3

Latching Solenoid $4 Switch Relay x 2 $5
Waterproof Enclosure $12 Maintenance Fee $10

Total $294.8

whole training (i.e. 1000 training iterations) takes ∼ 4 hours using a 64-bit quad-core

Intel Core i5-7400 CPU at 3.00 GHz.

4.6.6 Energy Consumption of Sensor Nodes

From a wireless sensor network standpoint, the ability of a system to operate for

a long period of time without user intervention is fundamental. DRLIC nodes are no

different, especially if they are meant to be put on the ground. For this reason, our

hardware and software were designed to consume as little energy as possible. DRLIC

nodes were fitted with a latching solenoid, allowing the flow of water to be turned

on or off with a short pulse of power, rather than a constant supply. For additional

energy savings, the radio in each node is duty-cycled, activating for only a 10 second

period every 1 minute. We need this high data frequency, the reason is that the

base station can send an off command to DRLIC with a minute granularity. In our

devices, the four peripherals that consume significant energy are the two moisture

sensors, solenoid, two relays and radio. To meet this energy, we design an energy

harvesting mechanism by leveraging one 5/6 V 1.2 W solar panel.

Figure 4.17 shows the energy consumption for different sensors. Each moisture

sensor sample requires 10 mA of power for 10 ms, and each flip of the latching solenoid

requires 380 mA of power for 30ms. The ESP32 radio requires 180 mA of power for

50ms when in transmitting mode. The relay requires 250 mA for 20 ms for switching

on or off. In our system, to ensure we don’t cut power too early, we add a safety band

of 50% on the timing on both of these devices, triggering for 15 ms and 45 ms for the

sensor and solenoid, respectively. Overall, the solar-harvest mechanism can meet the

daily requirement of all the sensors in DRLIC node.

Figure 4.18 shows the two days’ energy charging and discharging process. After

a night discharge, the 18650 battery level is increasing at 9:15 am on May 3rd. It
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usually takes 2 hours to fully charge the battery (9:15 - 11:35 am). The battery level

will keep 100% from 11:35 am to 18:45 pm, the energy harvested from solar can meet

the energy requirement of all sensors in DRLIC node. The battery will discharge

from 100% at 18:45 pm of May 3rd to the 90.7% at 8:45 am of May 4th. Then the

whole energy charging and discharging process repeat. The lowest battery level is an

average of 90%. In the 2 week’s deployment, we find that even on a cloudy day, the

battery can also be charged and will take one more hour to be fully charged.

4.6.7 Return on Investment

A primary concern to purchasing or upgrading an irrigation control system is

the return on investment, i.e., how long does it take to save enough money from

water consumption to cover the cost of the new irrigation system. To calculate the

return on investment of DRLIC , we take into account the initial investment cost of

the DRLIC system and the money saved from the less water consumption provided

by our increased irrigation efficiency.

We first calculate the cost to develop a single DRLIC node. All the components of

a DRLIC node can be found in a consumer electronics store and a home improvement

store. Table 4.3 lists the cost of all components. In total, a DRLIC sensing and

actuation node costs $294.8. A large portion of the budget is the cost of two soil

moisture sensors. We use two expensive soil moisture sensors that provide accurate

measurement and a long lifetime.

The factors that mostly influence the payback of our system are water price and

water volume saved by DRLIC . Water price varies considerably in different irrigation

district and over time. This study assumed 100% groundwater usage and availabil-

ity. Each tree costs $11.3 for irrigation water per month. Based on our experiment

results, DRLIC can save 9.52% of water expense per month, corresponding to $1.08.

Normally, almond orchards have 100 trees per acre. As a result, DRLIC can save

$108 per month. Take a 60-acre almond orchard with 10 irrigation regions as an

example. Each irrigation region is six acres. DRLIC can save $648 in each irrigation

region per month.

In each irrigation region, we need to deploy one DRLIC node, which costs $294.8.

The other irrigation components will use the existing infrastructure, such as the
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pipelines and micro-sprinklers under each tree. The cost of upgrading the existing

irrigation system with our irrigation control system is $294.8 for one irrigation region

in an orchard. Every month, our system can save $648. Therefore, it only needs half

a month for our irrigation system to return the investment.

4.7 Related work

ET-Based Irrigation Control. As the weather is a primary water source or

sinks in an irrigated space, systems have been developed to use weather as input

for control. The simplest of these systems use standard fixed-schedule irrigation,

but allow a precipitation sensor to override control to save water during rain. The

more complicated systems, now the industry standard, use evapo-transpiration (ET),

an estimate of the amount of water lost to evaporation and plant transpiration to do

efficient water-loss replacement [102]. Some providers boast an average 30% reduction

in water consumption, but as with all industry irrigation systems, ET-based systems

are limited by centralized control, and can not provide site-specific irrigation, reducing

potential system efficiency and quality of control.

Sensor-based Irrigation Control. With the introduction of more accurate

and efficient soil moisture sensors [103], work has been done to create irrigation con-

trollers that react directly to moisture levels in the soil [79]. Moisture sensors buried

in the root zone of trees accurately measure the moisture level in the soil and transmit

this data to the controller. The controller then adjusts the pre-programmed water-

ing schedule as needed. There are two types of soil moisture sensor-based systems:

1) Suspended cycle irrigation systems. Suspended cycle irrigation systems use tra-

ditional timed controllers and automated watering schedules, with start times and

duration. The difference is that the system will stop the next scheduled irrigation

cycle when there is enough moisture in the soil. 2) Water on-demand irrigation re-

quires no programming of irrigation duration (only start times to water). This type

maintains two soil moisture thresholds. The lower one to initiate watering, and the

upper one to terminate watering [79]. However, without a model of the way water is

lost, these thresholds are usually set based on experience and are not optimal.

Model-based Irrigation Control. In [100], a mechanistic PDE model of mois-

ture movement within irrigated space is built. Using this model, an optimal watering
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schedule can be found to maintain a proper moisture level. However, the PDE model

is not updated over time and future weather prediction is not taken into account.

To tackle these two limitations, the same authors further improve the control system

in [86]. The PDE model is eschewed in favor of an adaptive approach that involves

models trained from sensor data. Long-term and short-term models are developed

to describe the relationship of runoff between sprinklers in the movement of water

through the soil.

As indicated by the authors [86], their system is designed for turf irrigation, and

it is unlikely to provide benefit in shrubbery or tree irrigation. First, the turf soil

moisture is affected by water runoff on soil surface and the overlapping coverage of

sprinklers. The models in [86] are focused on capturing the relationship of runoff

between sprinklers. For tree irrigation, however, there is little runoff due to the tree

space. The soil moisture model for tree irrigation needs to consider the soil-water

relationship under different depths. Second, as shown in [104], the decay of volumetric

water content derived from the long-term model of [86] was shown to be much quicker

than the real-world scenarios. It is bound to irrigate lightly and frequently, which has

been found to be inefficient [105].

DRL-based Control. DRL has been applied in many applications, such as

network planning [90], large language model training [106, 107], sensor energy man-

agement [108], mobile app prediction [109, 110] and building energy optimization

[47, 111]. However, this paper tackles some unique challenges for irrigation control.

First, we define an irrigation reward function that considers three cases for tree ir-

rigation, as introduced in Section 4.3.3. Second, to prevent any possible damage to

plants’ health, we adopt a safe mechanism that replaces some unwise actions gener-

ated by DRL agent. Third, due to the data inefficiency, we leverage a data-driven

simulator to speed up the training process.

4.8 Conclusions

We present DRLIC , a DRL-based irrigation system that generates optimal ir-

rigation control commands according to current soil water content, current weather

data and forecasted weather information. A set of techniques have been developed,

including our customized design of DRL states and reward for optimal irrigation, a
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validated soil moisture simulator for fast DRL training, and a safe irrigation module.

We design DRLIC irrigation node and build a testbed of six almond trees. Extensive

experiments in real-world and simulation show the efficiency of DRLIC system.



Chapter 5

Virtual Machines Rescheduling

Using Deep Reinforcement

Learning in Data Centers

Modern industry-scale data centers receive thousands of virtual machine (VM)

requests per minute. Due to the continual creation and release of VMs, many small

resource fragments are scattered across physical machines (PMs). To handle these

fragments, data centers periodically reschedule some VMs to alternative PMs. De-

spite the increasing importance of VM rescheduling as data centers grow in size,

the problem remains understudied. We first show that, unlike most combinatorial

optimization tasks, the inference time of VM rescheduling algorithms significantly

influences their performance, causing many existing methods to scale poorly. There-

fore, we develop a deep reinforcement learning system for VM rescheduling, VMR2L,

which incorporates a set of customized techniques, such as a two-stage framework

that accommodates diverse constraints and workload conditions, as well as an effec-

tive feature extraction module. Our experiments on an industry-scale data center

show that VMR2L can achieve a performance comparable to the optimal solution but

with a running time of seconds.

92
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5.1 Introduction

Cloud service providers allow end-users [112, 113] to access computing resources,

such as CPU and memory . They adopt resource virtualization to maximize hardware

utilization, allocating Virtual Machines (VMs) [114, 115] with the requested resources

to end-users. An industry-scale data center typically has hundreds to thousands of

Physical Machines (PMs), where each PM can host multiple VMs that run indepen-

dently [116]. A central server manages all VM requests on PMs by performing two

tasks, scheduling and rescheduling. When a new VM request arrives, the scheduling

algorithm assigns it to a proper PM for different resource utilization goals, such as

minimizing the overall fragment rate (FR) or maximizing the number of available

PMs. For example, when the remaining resources on a PM cannot fulfill a VM re-

quest of X CPU cores, X∈{2,4,8,16,32}, a fragment occurs. FR is the ratio between

the remaining CPU resources that cannot be further utilized by a X-Core VM and

the total free CPU resources across all PMs.

An optimal scheduling algorithm needs to consider all the VM requests in an

optimization problem. However, as the demand for computing resources increases,

hundreds of VMs can enter and exit a data center per minute. The execution time

to solve the resource allocation problem is too long to process all the requests in real

time. Simple heuristic algorithms [117, 118, 119, 120] are normally used, but they

are not optimal and may result in many fragments scattered across PMs. Therefore,

the VM manager needs to periodically migrate some VMs to alternative PMs to

reduce FR. As a result, rescheduling is critical to optimize resource usage. Taking a

datacenter of two PMs as an example, each PM has 44 CPUs. PM1 has 24 allocated

CPUs and 20 free CPUs. PM2 has 32 allocated CPUs and 12 free CPUs. The FR

is calculated as ((20%16)+(12%16))/32=50%. X is set to 16, as VMs requesting 16

or less cores are the most popular specifications sought by end-users. In our dataset

from a commercial data center, these VMs account for 88.87% of all VM requests.

The cloud service providers want to save the available PM resources for future 16-

core VMs. Although the total number of free CPUs on two PMs is 32, they can only

serve one more 16-core VM on PM2, resulting a FR of 50%. Assuming there is a

4-core VM on PM2, we can reschedule this VM from PM2 to PM1, reducing FR to

(16%16+16%16)/32 = 0%. All free CPUs can now be utilized for up to two 16-Core
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VM requests. By simply rescheduling one VM, we can double the number of new

16-core VM requests that can be served.

We can formulate VM rescheduling as a Mixed Integer Programming (MIP) prob-

lem that finds the best VMs and migrates them to proper PMs for optimizing resource

utilization. The problem may have some constraints from the service expectations

(e.g., the maximum number of migrated VMs) and the available hardware resources

(e.g., current number of allocated VMs and occupied PMs). An off-the-shelf MIP

solver, such as Gurobi [121] and CPLEX [122], can be used to solve the optimization

problem. However, solving a large-scale MIP problem costs minutes or even hours,

especially for large data centers beyond thousands of VMs and PMs. Such a long run-

ning time is intolerable, since new VM requests will have arrived during this delay,

causing the generated solution to be no longer optimal or even feasible.

To accelerate the running speed of the MIP approach, hand-tuned heuristics can

be integrated into the process, e.g., adding constraints to limit the solver’s search

space. These heuristics must trade-off between the optimality of the solution and

the tractability of the problem. Unfortunately, even highly-skilled experts need many

iterations to find a proper trade-off manually. Moreover, no universal heuristics that

can achieve a good trade-off for all VM rescheduling scenarios. Operators have to

manually examine and repeat the iterative design process for every scenario.

In this work, we develop VMR2L, a deep Reinforcement Learning (RL) system for

VM rescheduling. VMR2L trains a Deep Neural Network (DNN) as the rescheduling

agent that learns an optimal rescheduling algorithm by interacting with a data center.

The DNN agent takes the current state of the data center as input, and outputs a pair

of VM and PM as action (i.e., migrating the VM to the PM). Such a DNN inference

can be done within 10 ms. We can run the inference multiple times to move a certain

number of VMs to new PMs. To avoid the cost of training a VM rescheduling agent in

a real data center, we use a simulator that generates the next state (the VM mapping

over all PMs) according to the current state and the VM migration action. As a

result, VMR2L can provide comparable rescheduling performance as the MIP solver,

but only within 1 second. To transform VMR2L into a practical system, we need to

tackle the following three challenges.

First, a commercial data center needs to handle thousands of VMs over hundreds

of PMs. An action of VMR2L is to find a VM and migrate it to a proper PM. The
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action space is large, e.g., almost millions of combinations. It’s hard for RL agent

to explore such a large action space and learn a good policy [123, 124]. To handle

this problem, we design a two-stage VM rescheduling pipeline. The first stage selects

a VM to be migrated and masks out all the PMs that cannot host the selected

VM due to some constraints, such as insufficient CPU resources or affinity between

VMs. The second stage chooses the appropriate destination PM to host the selected

VM. Additionally, we also inject domain knowledge from conventional methods by

pretraining the first stage via knowledge distillation.

Second, VMs continually enter and exit data centers, leading to a dynamic num-

ber of VMs deployed on PMs; however, VMR2L’s rescheduling agent takes the map-

ping of all VMs over PMs as the input. Due to a dynamic number of VMs, the

state’s dimension to the RL agent changes too. To handle this problem, we lever-

age a transformer-based neural network to extract effective features from raw data.

Notably, we recognize the VM rescheduling problem as reassigning edges on a bipar-

tite graph composed of two-level trees. To incorporate the graph information into

our model, we introduce a sparse attention within each local tree and redesign the

transformer network accordingly.

Third, we implement a prototype of VMR2L including the above three key com-

ponents. Extensive evaluation on two real datasets demonstrates that The results

show that under a typical workload, VMR2L can generate a solution within one sec-

ond and its solution is only 2.67% worse than the optimal solution. We also verify

that VMR2L can generalize to different workloads and additional objectives beyond

FR.

We summarize the contributions of this paper as follows:

• RL for VM rescheduling. We formulate the VM rescheduling problem as a

Markov Decision Process (MDP), and develop a RL-based system, VMR2L, to

solve this problem.

• Customized RL techniques for VM rescheduling. We tackle three chal-

lenges in designing a RL framework for VM rescheduling and tackle them by

three customized RL techniques, including two-stage VM rescheduling pipeline,

effective feature extraction, and risk-seeking evaluation of the VM rescheduling

agent.
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• A VMR2L prototype and extensive evaluation. We develop a prototype

of VMR2L and conduct extensive experiments over two real datasets. We release

the datasets and a custom Gym environment for RL training.

5.2 Related Work

Connections to Bin Packing. The use of optimized placement mechanisms proved

to be successful in a broad set of use cases, including production quality scenarios

[125, 60] as well as transportation logistics [126, 127, 128, 129]. A typical solution

exploits heuristics based on bin packing [130]. In fact, VM placement can be modeled

as a bin-packing problem, where VMs and PMs are objects and bins, respectively.

Bin packing typically involves packing a set of items into fixed-sized bins such that

the number of bins required [126] or the total surface area is minimized [127, 128].

However, there are two notable differences. First, the problem of VM rescheduling

concerns adjusting an initial assignment of VMs to PMs and has practical value in

the industry, since some VMs might terminate causing the problem state to change.

On the other hand, rebalancing items that are already packed in bins has received

little attention in the context of other traditional bin-packing applications. Second,

the total number of VMs and PMs in a data center can easily go into the range of

several thousands or more [129], and is far more than the typical scale of bin packing

problems, which typically involve no more than a few hundred items [131, 132, 133,

134].

RL for Optimization Problems. RL has been recently introduced to solve opti-

mization problems, e.g., building ML compilers and optimizing neural network archi-

tectures [135]. In particular, RL is used to select branching variables or find cutting

planes in the Branch-and-cut method [136, 137, 138, 139, 140, 141, 142]. Besides, RL

can also be applied to existing heuristics for MIPs to further increase the quality of

solutions [143, 144, 145]. However, the above approaches are not directly appropriate

for the VM rescheduling task due to their poor computation complexity. Although

they are designed to accelerate MIPs, even a state-of-the-art technique as POP [146]

fails to deliver a satisfying solution within the second-level inference time limit re-

quired for the VM rescheduling task.
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Figure 5.1: VM scheduling procedure.
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Figure 5.2: VM rescheduling procedure.

5.3 Background

5.3.1 VM Scheduling and Rescheduling

Cloud service providers offer VMs to users for their computation requests. This

process involves 1 VM Scheduling and 2 Rescheduling stages shown in Figure 5.1 and

Figure 5.2.

VM Scheduling (VMS). When new VM requests arrive, there are multiple avail-

able PMs that can host them. A typical solution exploits heuristics based on bin-

packing, where VMs and PMs are objects and bins respectively. For instance, the

first-fit algorithm [117, 118] traverses all the PMs and places the VM on the first PM

that can meet the CPU and memory requirement of the VM request. The best-fit

algorithm [119, 120] sorts all PMs that can meet the requirements of the current VM

according to the amount of the FR reduction before and after this VM is added, and

schedule the PM with the largest FR reduction. The best-fit method is currently

used in **anonymous company**’s data centers to reduce FR.

VM Rescheduling (VMR). The VM rescheduling algorithms migrate VMs from

their source PMs to destination PMs. Due to the overhead of VM migrations, a
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Figure 5.3: Number of VM changes.

number limit is set to control the number of VMs to migrate. At **anonymous

company**, whenever a high FR is observed that could potentially lead to insufficient

resources for upcoming VM requests, a round of VM rescheduling is initiated.

The Necessity of Rescheduling. Commercial data centers need to handle hun-

dreds of VMs (queries) arriving and exiting per second (QPS) with a high processing

throughput. We collect a 30-day dataset from an **anonymous company** data cen-

ter including the number of VMs changes (VMs arriving and exiting) per minute.

We also do experiments with the data from a large-scale data center in Section 5.5.

Figure 5.3 depicts the maximum number of VM changes traced per minute over 24

hours. To ensure scheduling is robust, the VM rescheduler needs to meet the max-

imum number of VMs changes rather than the average, as indicated by the green

line in Figure 5.3. During the running time of a VM rescheduling algorithm, the VM

scheduling algorithm is still processing incoming VM requests and some accomplished

VMs may also be deleted. To mitigate the impact of VM allocation and dealloca-

tion, the VM rescheduling process is typically performed periodically (e.g., every day,

mostly during off-peak hours). Figure 5.3 highlights the time (2:00 AM) to execute

the VM rescheduling algorithm with a red point.

5.3.2 Problem Formulation and Motivation

Problem Formulation and Two Algorithms

In a data center, let V ,P be the set of VMs and PMs, respectively. On the

supply side, a PM i ∈ P has two NUMAs1, where NUMA j can provide Ui,j CPU

resources and Vi,j memory resources. On the demand side, a VM k ∈ V requires

1Non-uniform memory access.
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Table 5.1: The VM types we consider in our experiments.

VM Types large xlarge 2xlarge 4xlarge 8xlarge 16xlarge 22xlarge

Requested CPU 2 4 8 16 32 64 88
Requested Memory (GB) 4 8 16 32 64 128 256
Deploy NUMA Single Single Single Single Double Double Double
Percentage 11.01% 43.51% 16.13% 17.62% 6.22% 5.31% 0.20%

uk CPU resources and vk memory resources and should be deployed on a single PM

using wk ∈ {1, 2} NUMAs. wk is the number of NUMAs required by VM k (1 for

single-NUMA deployment, 2 for double-NUMA). After deploying several VMs on PM

i ∈ P , it remains Ũi,j spare CPU resources on NUMA j. We define X-core fragment

of PM i as
∑

j(Ũi,j%X), i.e., the remaining CPU resources cannot be further utilized

by any additional X-core VMs.

Given an initial assignment of M VMs each onto one of the N PMs, the VM

rescheduling task is to reassign a subset of deployed VMs and migrate them each

onto a new PM. The maximum number of VMs that we can migrate for a given task

is called Migration Number Limit (MNL). We formulate the VM rescheduling as an

optimization problem that searches for a reassignment of MNL-selected VMs, in order

to minimize the total X-core fragments across all PMs:

Minimize:
∑
i,j

(
Ui,j −

∑
k

xk,i,j · uk

wk

−Xyi,j

)
(5.1)

Subject to:
∑
k

xk,i,j · uk

wk

+ Xyi,j ≤ Ui,j, (5.2)∑
k

xk,i,j · vk
wk

≤ Vi,j, (5.3)∑
i,j

xk,i,j = wk, (5.4)

∑
k

(1− xk,ik,jk) ≤MNL, (5.5)

xk,i,0 = xk,i,1, ∀k ∈ {k|wk = 2}, (5.6)

xk,i,j ∈ {0, 1} and yi,j ∈ Z. (5.7)

Here, {x, y} are the decision variables, where xk,i,j represents whether VM k is de-
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ployed to the NUMA j of PM i in the new assignment (0 for No, 1 for Yes), and yi,j

represents the maximum number of X-core VMs can be deployed on NUMA j of PM

i using the remaining CPU resources. The objective in Equation 5.1 is to minimize

the total X-core fragments.

Equation 5.2 and 5.3 enforce that the resource usage by VMs cannot exceed the

total capacity of a PM. Equation 5.4 indicates that each VM must be deployed on

exactly one PM. Equation 5.5, in which ik and jk are the initial PM id and NUMA

id (0 for double-NUMA VMs) of VM k, means the total migration number should

not exceed the limit. Lastly, Equation 5.6 restricts VMs with double NUMAs from

deploying both of its NUMAs on the same PM.

Note (1) each PM has two NUMAs; (2) wk is a constant for each VM as de-

termined by their types (Table 5.1). Thus,
∑

i,j xk,i,j = wk (Equation 5.4) enforces

that the actual NUMA allocation number of VM k matches the desired configuration.

When wk = 1, Equation 5.4 constraints VM k to be deployed on one NUMA of a

PM; when wk = 2, Equation 5.4 constraints VM k to be deployed on both NUMAs

of a PM. Note that deploying VM k on two NUMAs of two different PMs (each PM

hosting a NUMA) violates xk,i,0 = xk,i,1,∀k ∈ {k|wk = 2} (Equation 5.6). Because

wk ̸= 0, it guarantees each VM is deployed.

Mixed Integer Programming (MIP) Solvers. The formulation qualifies

as a Mixed Integer Programming (MIP) problem because it includes integer decision

variables xk,i,j and yi,j, as well as linear constraints and an objective function that

intertwines these integers with continuous resource parameters, embodying a classic

MIP structure with a blend of discrete and continuous elements. The above opti-

mization problem can be solved by an off-the-shelf MIP solver such as Gurobi [121]

and CPLEX [122], which can find an optimal solution through algorithms of branch

& bound, cutting planes, etc. In our experiments, we use the former. The primary

issue of the MIP approach is that its poor time complexity prevents it from scaling

to industry-scale data centers with thousands of PMs and VMs.

Greedy Algorithm (GA). To obtain a feasible solution within a short time

frame, greedy algorithms are often used in industry data centers [147]. They normally

include two stages: filtering and scoring. In the filtering stage, we calculate the

change in FR for each VM if it is removed from its source PM, and only select the

VM candidate that corresponds to the most significant drop in FR. In the scoring



101

1s 5s 20s 1min 5min 10min 30min 50min
Solution Time

0.30

0.35

0.40

0.45

0.50

0.55

Fr
ag

m
en

t R
at

e

Average Initial FR
Average Final FR

Figure 5.5: Effect of the Running Time of MIP at MNL 50.

0 10 20 30 40 50
Migration Number Limit

0.30

0.35

0.40

0.45

0.50

0.55
Fr

ag
m

en
t R

at
e

GA
MIP

Figure 5.6: Fragment Rate Performance.

stage, we calculate the change in FR if the selected VM is migrated to each of the

eligible PMs. We then greedily assign the selected VM to the PM that leads to the

largest drop in FR. The above two stages are repeated until the MNL is reached.

Although GA can significantly reduce the search space of the rescheduling problem,

we show that it often fails to yield a good solution.

Experiment Results

We conduct experiments to quantify the performance of the above MIP and GA

algorithms in terms of FR and running time. We use a real dataset collected from a

data center with 280 PMs and 2089 VMs. The detailed experiment settings will be

found in Section 5.6.

Figure 5.6 depicts the FR performance of MIP and GA under different MNLs.

MIP’s FR is higher than the GA since it guarantees a near-optimal solution. More-

over, the FR gap between MIP and GA becomes larger as MNL increases, because
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GA only exploits the action that would lead to the most significant drop in FR when

it migrates one VM.

In Figure 5.7, the time required for MIP and GA to generate a solution is dis-

played, and the green dashed line indicates the one-second guarantee (OSG). If the

solution time is less than 1 second, the FR performance is guaranteed and the impact

of VM changes on FR is negligible. However, as the MNL increases from 25 to 50, the

computation time of MIP grows exponentially, taking 1.78 minutes for 25 migrations

and 50.55 minutes for 50 migrations. One contributing factor is the NP-hard na-

ture of VM rescheduling, which leads to an exponential increase in complexity as the

problem size grows. This is evident when the number of MNLs rises, significantly ex-

panding the possible solutions and solution space. Additionally, Gurobi uses a range

of heuristics and cutting strategies to accelerate solving these problems. However, the

efficiency of these strategies varies based on the specific characteristics of the prob-

lem. Notably, when the number of MNLs reaches around 25, these heuristics may

lose their effectiveness, resulting in a marked increase in the time required to find a

solution. This poor running time performance is unacceptable in data centers where

new VM requests continually come in, and the problem state is constantly varying.

In contrast, the running time of the GA algorithm is lower than the OSG and remains

constant when the MNL exceeds 25. After migrating 25 VMs, the GA algorithm can

no longer find any more VMs that can lower the FR.

The dynamic nature of VM allocation and deallocation can affect FR perfor-

mance if the migration plan is based on the current VM-PM mapping and solved
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after 50 minutes. We quantify the performance reduction from two aspects. First,

we measure the percentage of failed VMs during the VM Rescheduling stage, where

a VM is considered a failure if it cannot be found, or there are not enough available

resources to migrate it from the source to the destination PM. Second, we measure the

reduction in FR percentage, which is calculated by comparing the initial FR and final

FR after migrating all 50 VMs using MIP’s solution. The top subfigure in Figure 5.5

shows the failed VM percentage, and the bottom subfigure shows the FR reduction

percentage.

We can see from the figures that the VM Rescheduling can successfully schedule

all 50 VMs, and the FR performance is 93.14% between the initial and final FR after

migrating all the 50 VMs at VM generation speed 0/min, meaning no VM changes.

However, the percentage of failed VMs increases, and the FR performance decreases

as the VM changes speed rises. If the VM changes speed exceeds 40/min, there is

no successful VM migration, and no performance gain, rendering the migration plan

useless. The green dash lines show the initial and final FR if the MIP can run in 1s,

we can see that the dynamic of VM allocation and deallocation has no effect on the

FR performance. So, the running time of VM rescheduling algorithm should meet

the one-second guarantee.

Limitations of the Current Methods. From the above experiment results, we

see that the MIP solver has the scalability challenge due to its intensive computation

overhead. Therefore, the greedy algorithm is currently used in data centers to achieve

fast FR decrease. However, its FR performance can be stuck into a local optimal

since it is focused on one VM at each step, without considering future steps. To

reduce the execution time of MIP solvers, some current methods rely on estimating

feasible solutions using proprietary heuristic methods and then using branch-and-cut

techniques [148, 149] to identify optimal solutions. The hand-tuned heuristics are

based on human expertise to overcome the scalability challenge. The heuristics aim

to prune the search space to make the problem tractable. Yet, they all rely on human

expertise and operational experience. It is a tedious, time-consuming iterative process

even for experts. Even worse, such a process has to be done and tuned for every VM

rescheduling problem as there are no universal heuristics for all scenarios.
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5.4 Design of VMR2L

5.4.1 VM Rescheduling as an RL Problem

Under the Markov Decision Process (MDP) framework, at each time step t, the

scheduling agent selects an action At = a, given the current state St = s, based on

its policy πθ. More specifically, the agent’s action is to select a VM and a PM, by

which it reschedules the selected VM from its source PM to the chosen destination

PM. T is the state transition function defined as T : S × A → S, which maps the

current state to the next state given an action. The episode terminates if the selected

VM cannot find a suitable PM or the number of actions taken reaches a pre-defined

threshold. The latter is consistent with the requirement upon deployment that each

rescheduling comes at a cost and we may only move the VMs around for a limited

number of steps. Notably, in this problem, T is deterministic as the environment has

no aleatoric uncertainties. In other words, we can directly simulate the next state

and the change in FR given the current state and action taken by the agent. Thus,

we build a cheap simulator so that our agent learns by interacting with the simulator

instead of with the real environment. Given the above design, we now formalize the

state, action, and reward of VMR2L ’s RL framework.

State Representation. The state is what the DRL agent takes as input at each

rescheduling step. The state representation includes 1) PM features - 8 in total: the

first four features are the remaining CPU resources on NUMA 0 and NUMA 1, as well

as the remaining memory resources on NUMA 0 and NUMA 1. The other features

are manually designed, which are the FR and the fragment size of each NUMA. The

last four features allow the agent to directly access the internal fragment information.

2) VM features - 14 in total: the first four features are the requested CPU and

memory resources of NUMA 0 and NUMA 1, and the last two are designed to be the

fragment sizes of NUMA 0 and NUMA 1. We also include the 8 features from its

source PM to better incorporate the locality information of each VM. Note that if

a single NUMA is requested, we use zeros as placeholders for the other NUMA. For

training efficiency, we scale each feature dimension with min-max normalization.

Action Representation. The DRL agent interacts with the environment via

actions. The action at each step can be represented as a 2-tuple (k, i), where k ∈ V
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and i ∈ P . Specifically, the action is to reschedule a VM k from its source PM to a

destination PM i. Note that the source PM can be retrieved once we select k, so we

do not include it in the action space.

Reward Representation. Reward represents the immediate evaluation of the

rescheduling effect for each action under a certain state. The goal of VM rescheduling

is to minimize the FR across all PMs. While in principle we could return the FR

of all PMs as a single final reward to the agent after finishing an entire episode, it

corresponds to a form of sparse reward and it is known to be difficult for training

[150], as the action at each step only contributes marginally to the change in the

overall FR. Instead, we propose to generate dense rewards and use the change in FR

on the source PM and the destination PM as an intermediate reward at each step.

As such, the range of the reward is naturally scaled down to a [−2, 2] range, which

we further normalize by dividing with a constant c (c=4 in our case)2. Equation

5.8 calculates the fragment size on each NUMA, and Equation 5.9 shows fragment

changes for the source PM and destination PM.

Si =
1∑

j=0

(
Ũi,j%X

)
÷ c, (5.8)

R = (Sbefore, src − Safter, src) + (Sbefore, dest − Safter, dest), (5.9)

where Sbefore,· and Safter,· show the fragment changes before and after this selected

VM leaves (enters) the source (destination) PM. Recall that we focus on X = 16 in

this paper.

5.4.2 A Two-Stage Framework

When the RL agent takes action (k, i), meaning to reschedule a VM k from its

source PM to a destination PM i, PM i might not have enough available CPU or

memory to host VM k. In addition to resource constraints, in practical scenarios,

we must consider additional constraints to ensure service stability. For example, a

critical application might request for several VMs to be hosted across different PMs,

which can be enforced in the form of a hard anti-affinity constraint.

Off-the-shelf RL models impose such hard constraints typically by invoking a

2It is a common practice to use reward scaling to get better results for deep RL [151].
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Figure 5.8: The two-stage RL agent.

Figure 5.9: VM actor with sparse local-attention capturing tree-level features.

heavy penalty if an illegal action is chosen, or by directly setting the probabilities for

all illegal actions to be zero. Heavy penalties can result in gradient instability and

thus lead to an inferior convergence rate. On the other hand, as the size of the action

space is O(V · P), masking all illegal actions is overly time-consuming and fails to

meet the latency requirement.

To better accommodate a variety of constraints, we leverage the characteristics

of the VM rescheduling problem and design a two-stage framework that allows the

action tuple to be generated sequentially. As shown in Figure 5.8, in Stage 1, the VM

actor selects the VM candidate to be rescheduled. Once a candidate VM is selected,

we can efficiently mask out all the PMs that cannot host the candidate VM and then

proceed to Stage 2, where the PM actor selects an appropriate destination PM from

the remaining PMs. Additionally, when we select a VM to reschedule, a considerable

portion of the PMs cannot meet its resource requirements. The exploration of RL

agent on these PMs inevitably hinders the learning process. The proposed frame-

work can effectively reduce the large action space and thus mitigate the exploration

challenge.
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5.4.3 Feature Extraction with Sparse Attention

Scalability. To make effective rescheduling decisions, DRLIC must extract

meaningful representations of the state observation, which include features of each

individual PM and VM as well as their affiliations. As Figure 5.3 implies, the number

of VMs can vary drastically even in the same data center. This implies that the size

of the features at each time step is also highly dynamic. To encode these features,

one option is to concatenate features from all VMs and PMs into a long vector.

However, this approach cannot handle an arbitrary number of VMs as neural networks

usually require fixed-sized inputs, and it also requires a model with a large number

of parameters that would be difficult to train.

Instead, we propose to share two small embedding networks across all VMs and

PMs — one to process each PM’s features and another one to process each VM’s

features. As such, the number of weight parameters is independent of the num-

ber of machines in the system. This is achieved via an attention-based transformer

models [152] but tailored for rescheduling. Transformers have demonstrated strong

performances in Natural Language Processing [153, 154, 155, 156], Computer Vision

[157, 158, 159], as well as combinatorial optimization, such as in vector bin-packing

[160, 161]. However, compared to bin-packing, there is a notable difference in VM

rescheduling: we must choose from a set of VMs that have already been assigned to

PMs.

Tree-level Features. Consider a PM with 2 CPUs left. It contains a VM with

4 CPUs and another VM with 2 CPUs. Suppose a second PM has a fragment size of

8 while hosting a VM with 8 CPUs. In order to minimize the total 16-core fragments,

an ideal approach would be to first remove the two VMs with 2 and 4 CPUs from

the first PM, and then reassign the VM with 8 CPUs from the second PM to the

first PM. However, if we merely include the source PM’s features in each of the VM’s

features and feed them into the vanilla transformer model, there will not be sufficient

information for the two actors to take the above actions. Instead, each VM must also

be aware of the other VMs that are hosted on the same PM, which is not possible

in the vanilla transformer model. In fact, each PM can be viewed as a tree of depth

one, where the PM acts as the root node and the VMs it hosts act as the leaf nodes.
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In order to allow every VM to recognize which other VMs are hosted on the same

PM, we propose to include an additional stage of sparse local-attention within each

PM tree, i.e., we only allow PMs and VMs to attend to each other if and only if they

belong to the same tree.

5.5 Implementation

RL algorithm and Neural Network Architecture We implement VMR2L based

on the CleanRL framework [162] using PPO as the backbone [62]. VMR2L contains

about 8.5K lines of Python code. The overall framework is implemented using Py-

Torch [163]. As the model can be trained end-to-end, it does not require manual

feature engineering and can learn statistically what is important from the features.

On the other hand, domain experts can inject prior knowledge into VMR2L in the

form of heuristic models through knowledge distillation. Additionally, the number of

model parameters is independent of the number of VMs or PMs, allowing it to scale

to large data centers.

VM Rescheduling Simulator. While DRL can be very powerful, its main

drawback is the amount of training data required [164]. In light of this, we design

a simulator for the VM rescheduling task. The simulator follows the OpenAI Gym

environments [165] including specific file hierarchy and function abstractions. Given

an existing VM-PM mapping and a rescheduling action, we can directly simulate the

change in FR caused by the action. Thus, during training, VMR2L only needs to

interact with the simulator instead of with the real environment, which drastically

lowers the amount of real-world data required to train the agent.

Experiment Setup. Experiments are done on a Linux server with 8 CPUs

(Intel Xeon E5) and 1 GPU (NVIDIA RTX 3090). The training time for knowledge

distillation, VMR2L with sparse attention, and VMR2L without sparse attention is

2h, 92h, and 48h, respectively. We sample 8 trajectories for VMR2L and report the

best result. We report the average over 3-5 runs with different random seeds.
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5.6 Evaluation

5.6.1 Simulator and Datasets

While DRL can be very powerful, its main drawback is the amount of training

data required [164, 111]. In light of this, we design a simulator for the VM rescheduling

task. The simulator follows the OpenAI Gym environments [165] including specific

file hierarchy and function abstractions. Given an existing VM-PM mapping and a

rescheduling action, we can directly calculate the change in FR caused by the action.

Thus, during training, VMR2L only needs to interact with the simulator instead of

with the real environment, which drastically lowers the amount of real-world data

required to train the agent.

As for the datasets, we have two seed initial mappings from an industry-scaled

real cloud data center – one medium dataset with 2089 VMs and 280 PMs, and one

large dataset with 4546 VMs and 1176 PMs. Note that the RL agent must be able

to generalize to VM-PM mappings unseen during training and a dynamic number of

VMs at deployment time. To better evaluate the agent’s performance under various

initial mappings, we generate 4400 initial mappings with different numbers of VMs

for both the medium and the large datasets. Each mapping is generated by removing

the existing VMs on each PM and randomly scheduling some of them to any PM that

can fit them. We generate three versions of the middle dataset with low, middle, and

high workloads (different remaining CPU resources). We leverage 4000 datasets for

training, 200 datasets for both validation and test. Both the simulator and datasets

are available to the research community.

5.6.2 Existing Baseline Algorithms

Existing baselines can be summarized into six categories: heuristics (e.g., greedy,

α-VBPP), optimization algorithms (e.g., MIP), approximate algorithms (e.g., POP),

search-based algorithms (e.g., MCTS), deep learning-based (e.g., Decima), and hybrid

methods (e.g., NeuPlan). We compare with at least one representative algorithm from

each category.

MIP Algorithm: introduced in Section 5.3.2.

Greedy Algorithm: introduced in Section 5.3.2.
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Figure 5.10: Fragment Rate Performance.

Vector Bin Packing Problem (α-VBPP): We generalize the VBPP [130] algo-

rithm for initial scheduling to rescheduling. We first divide the entire episode into

MNL/α stages. During each stage, we greedily remove α number of VMs that lead

to the most fragments, and then apply VBPP to treat them as incoming VMs. We

carefully tune α (10 in our case) to achieve the best FR reduction.

Partitioned Optimization Problems (POP) [146]: It solves the optimization

problem formulated in Section 5.3.2 by splitting the problem into subproblems (each

containing a subset of VMs and PMs) and coalescing the resulting sub-rescheduling

solution into a global rescheduling solution for all VMs.

Monte-Carlo Tree Search (MCTS) [134]: As traditional search based methods

need to perform multiple rollouts during inference time to achieve a good performance,

we use DDTS [134] to prune the search space.

Decima [124]: Decima uses a graph neural network to encode the VM and PM

information and trains using deep RL. Decima balances the size of the action space

and the number of actions required by decomposing VM rescheduling decisions into

a two-dimensional action, which outputs i) the VM that needs to migrate, and ii) an

upper number of PM subsets to choose as the destination.

NeuPlan [90]: In the first stage, an RL agent takes in the problem as a graph and

generates the first few VM migrations to prune the search space. In the second stage,

it uses a MIP solver for the remaining MNLs. A relax factor β (30 in our case) is

used to control the size of the MNL space to be explored by MIP.

5.6.3 Overall Performance

Figure 5.10 and Figure 5.11 shows the FR and running time of all methods. The

absolute numbers of Figure 5.10 and Figure 5.11 are listed in Table 5.2.
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Figure 5.11: Inference Time

Table 5.2: Fragment Rate & Solution Time(s)

Method MNL=10 MNL=20 MNL=30 MNL=40 MNL=50

FR Time FR Time FR Time FR Time FR Time

GA 0.485 0.18 0.420 0.24 0.390 0.23 0.387 0.22 0.387 0.24

POP 0.555 0.57 0.468 1.90 0.468 1.93 0.399 2.07 0.345 1.94

Decima 0.515 0.12 0.487 0.24 0.470 0.36 0.456 0.48 0.448 0.60

NeuPlan 0.485 18.06 0.417 35.70 0.396 35.31 0.372 35.20 0.358 34.80

RLVMR 0.485 0.04 0.419 0.08 0.369 0.12 0.332 0.16 0.295 0.20

MIP 0.485 17.06 0.417 35.70 0.361 680 0.322 1380 0.287 3033

Fragment Rate. The results in Figure 5.10 reveal that VMR2L can achieve +14.48%,

+17.60%, +22.37%, +23.71%, 23.84%, and +34.17% performance gain when com-

pared to POP, NeuPlan, MCTS, GA, α-VBPP and Decima respectively, when the

task is to perform 50 migrations on the medium dataset. Notably, VMR2L is merely

2.67% behind the optimal MIP solution (0.2953 vs. 0.2859). It is worth noting that

the performance gap between VMR2L and the near-optimal MIP does not increase

with more MNLs.

Although α-VBPP can reduce FR with more MNL, its performance is inferior to

that of GA. This is because α-VBPP only removes the α worst VMs for each stage

based on a single timestep, failing to consider future opportunities to replace them

back and achieve even higher FR reduction. POP fails to achieve a good performance

since it still relies on MIPs to solve each subproblem. To meet the second-level latency

requirement, we must divide the problem into many subproblems, causing its solutions

to be only locally optimal. On the other hand, Decima reduces the huge action space

by limiting the PM actor to only select from a subset of PMs, but the subsampling
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of PMs is completely random, as opposed to our solution. While MCTS with DDTS

uses neural networks to prune the search space, it still requires a significant number

of rollouts to achieve stable performance. Lastly, NeuPlan is able to achieve a low

FR, since it solves a large subproblem entirely with MIP. We implement NeuPlan as

follows: if MNL is less than 20 steps, MIP is used to solve the optimization problem.

If MNL is larger than 20, the first 20 VMs are migrated by MIP and the remaining

VMs will be handled by RL. Notice that NeuPlan’s FR is higher than VMR2L after

MNL = 20, since after this step NeuPlan relies entirely on its RL agent, which fails

to learn a good policy given such a huge state and action space.

Inference Time. From Figure 5.11, we can see that the solution time of GA, α-

VBPP, Decima and VMR2L is less than OSG. VMR2L can generate one trajectory

within 0.15s when MNL = 50. In comparison, MIP requires 50.55 minutes to provide

the optimal solution. The running time of POP can be adjusted by setting how many

subproblems to divide into. To meet the latency requirement of the VM rescheduling

task, we set this number to 16 so POP can deliver a solution within 1.94s. Both GA

and α-VBPP are greedy algorithms and can provide the solution within 1s. Decima

requires 0.45s, which is at a roughly same scale as VMR2L, since both use end-to-end

deep RL. Lastly, NeuPlan takes 34.8s to yield the final solution since it still needs

MIP to solve 20 steps.

5.6.4 Scalability to the Large Dataset

We conduct experiments on a large dataset with 4546 VMs and 1176 PMs to

analyze the scalability of VMR2L. Fig. 5.12 shows the FR and time performance of

different baseline methods with the MNL from 50 to 200. The MIP is not included

in this experiment since we cannot get a solution within 50 minutes. As it turns

out, VMR2L again achieves better performance than the baselines on both FR and

solution time.

From the left subfigure in Fig. 5.12, we can see that VMR2L can achieve average

2.01%, 2.08%, 6.14% and 7.87% and max 2.34%, 5.15%, 8.6%, and 10.5% performance

gain compared with POP, GA, NeuPlan, and Decima respectively. Decima and Ne-

uPlan both cannot achieve good FR performance on such a large dataset. NeuPlan

mostly relies on RL’s solution since MIP cannot work with MNL larger than 20. GA
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Figure 5.12: Fragment rate and inference time between different methods on the
large dataset.

gradually stops reducing FR after 100 steps. POP and VMR2L continue to reduce

FR even at MNL 200. POP achieves worse FR than GA before 100 and better FRs

for larger MNLs.

The right subfigure in Fig. 5.12 shows the running time to generate a migration

solution with MNL set from 50 to 200. GA, POP, Decima, NeuPlan, and VMR2L

can generate a solution within 4.91s, 14.53s, 1.125s, 37.23s, and 0.375s on average.

GA increases the time when MNL is less than 150. GA calculates the score of all the

VMs and PMs as a metric to evaluate their migration value. The calculation time

increases with the number of VMs and PMs. POP costs more time with a bigger

MNL. VMR2L increases time linearly from MNL 50 to 200. For VMR2L, the neural

network inference time will only increase minimally with the number of PMs and

VMs. Decima needs three times than VMR2L since the GNN needs to encode the

VM-PM information. NeuPlan needs MIP to solve 20 MNL.

5.6.5 Different Service Objectives

VMR2L’s flexibility enables it to learn different policies depending on the high-

level objective. We now consider a new objective: given FR goals, we would like to

minimize the number of migrations needed to reach the FR goals. As seen in Fig.

5.13, the top subfigure displays the used MNL, while the bottom subfigure shows the

FR, both sharing the x-axis with the FR goals. In general, as the FR goal decreases,

GA requires significantly more migration steps than both MIP and VMR2L. Note

that none of the three methods can achieve the FR goal of 0.25, since the optimal
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FR is 0.2859 at MNL 50. To summarize, the used MNLs of GA, VMR2L, and MIP

increase with lower FR goals. Across all FR goals, MIP and VMR2L achieve 14.77%

and 11.11% less MNL than GA, respectively. VMR2L performs similarly to MIP,

with a difference of only 3.66%, but with a millisecond-level inference time. On the

other hand, GA is stuck at a FR goal of 0.4 since it only optimizes for the next-step

performance, instead of the long-term performance.

5.6.6 Generalizing to Different MNLs

In practice, the required migration number limit (MNL) can constantly vary due

to changing business requirements such as target fragment rates. We show that we

can readily achieve good performance by only training one VMR2L agent with MNL

= 50, and deploying it for MNLs = {10, 20, 30, 40, 50}. For comparison, we train a

separate VMR2L agent for each MNL, which we denote as VMR2L SEP. As shown in

Fig. 5.14, VMR2L performs only marginally worse than VMR2L SEP with an average

FR performance gap of 1.16%. This suggests that the VMR2L agent trained with

a large MNL can be readily applied to the tasks with smaller MNLs. It avoids the

overhead of maintaining a separate VMR2L agent for each MNL.

5.7 Conclusion

Compared to conventional bin-packing applications, VM rescheduling presents

unique challenges due to the expanding size of data centers. It needs to handle many
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VMs while meeting a strict inference speed requirement. To this end, we introduce

VMR2L, a tailored deep RL solution featuring a two-stage framework for diverse

service constraints and a sparse attention module for better feature extractions. We

hope that our released datasets and RL environment will support future research in

this area.



Chapter 6

Conclusions

In this body of work, we have made significant advancements in the optimiza-

tion of cyber-physical systems, a realm that presents complex and evolving chal-

lenges. Our approach, grounded in deep reinforcement learning, has enabled us to

design innovative systems across various applications. For instance, in HVAC control,

we have prioritized minimizing energy consumption while ensuring human comfort.

Similarly, our irrigation control systems are tailored to reduce water usage without

compromising plant health. Another notable contribution is our two-stage DRL agent

framework in data centers, which efficiently balances rescheduling performance with

solution speed in complex environments.

Addressing the substantial data training requirements that are inherent in deep

reinforcement learning, our research introduces a groundbreaking model-based re-

inforcement learning method. This approach has significantly reduced the training

duration, cutting it down from an overwhelming five years to a mere 183 days. This

reduction in training time is not just a quantitative improvement but a qualitative

leap in the field of machine learning, enabling more agile and responsive system de-

velopment. Furthermore, we have innovatively tackled the challenge of managing big

action state space in VM rescheduling. Our two-stage VM rescheduling pipeline is a

demonstration to this effort. The first stage of this pipeline involves selecting a VM

for migration and masking out unsuitable physical machines (PMs) due to constraints

such as insufficient CPU resources or VM affinity. The second stage is focused on

choosing the optimal PM to host the selected VM. This method effectively narrows

down the action space and enhances solution time performance significantly.

116
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Finally, the effectiveness of these innovations has been rigorously validated through

extensive testing against competitive baseline strategies in both real-life deployments

and simulated scenarios. The results from these tests have been unequivocal. They

demonstrate that our techniques not only yield substantial reductions in system en-

ergy and water consumption but also improve the solution times for VM rescheduling

in data centers. More importantly, these advancements have significantly enhanced

the quality of service. By elevating human comfort and plant health, and achieving

near-optimal levels of efficiency comparable to mixed integer programming in data

centers, our work sets a new benchmark in the field.

Overall, the contributions of this research are not only diverse in their application

but also profound in their impact, setting new precedents in the optimization of cyber-

physical systems.
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