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Abstract

Single nucleotide polymorphism (SNP) set analysis aggregates both common and rare variants and 

tests for association between phenotype(s) of interest and a set. However, multiple SNP-sets, such 

as genes, pathways, or sliding windows are usually investigated across the whole genome in which 

all groups are tested separately, followed by multiple testing adjustments. We propose a novel 

method to prioritize SNP-sets in a joint multivariate variance component model. Each SNP-set 

corresponds to a variance component (or kernel), and model selection is achieved by incorporating 

either convex or nonconvex penalties. The uniqueness of this variance component selection 

framework, which we call VCSEL, is that it naturally encompasses multivariate traits (VCSEL-

M) and SNP-set-treatment or -environment interactions (VCSEL-I). We devise an optimization 

algorithm scalable to many variance components, based on the majorization-minimization (MM) 

principle. Simulation studies demonstrate the superiority of our methods in model selection 

performance, as measured by the area under the precision-recall (PR) curve, compared to the 

commonly used marginal testing and group penalization methods. Finally, we apply our methods 

to a real pharmacogenomics study and a real whole exome sequencing study. Some top ranked 

genes by VCSEL are detected as insignificant by the marginal test methods which emphasizes 

formal inference of individual genes with a strict significance threshold. This provides alternative 

insights for biologists to prioritize follow-up studies and develop polygenic risk score models.
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1. Introduction.

The limited success of genome-wide association studies (GWAS) has diverted attention 

away from common genetic variants, usually denoted by minor allele frequency (MAF) 

> 0.05. Instead, rare variants (MAF ≤ 0.05) are believed to play an important role in 

elucidating many common diseases and complex traits (Bansal et al. (2010), Bodmer and 

Bonilla (2008), Gibson (2012), Gudmundsson et al. (2012), Lee et al. (2014), Manolio et 

al. (2009), Rivas et al. (2011), Zuk et al. (2014)). Although association test for common 

variants in a GWAS analysis is often conducted one variant at a time, this approach results 

in low statistical power in rare-variant association studies, due to their prevalence and 

extremely low frequency (Li and Leal (2008), Madsen and Browning (2009), Zuk et al. 

(2014)). As a remedy, many have proposed single nucleotide polymorphism (SNP) set 

analysis, also known as gene set, pathway, or region-based analysis (Dering et al. (2011), 

Wu et al. (2010)). In these analyses, variants are binned into a biologically relevant unit, 

such as a gene, pathway, or sliding window, and tested for association with complex traits. 

Compared to the classical single-variant-based approach, SNP-set analysis enjoys increased 

power, as it reduces multiple comparison burden and aggregates weak signals (Rivas and 

Moutsianas (2015)).

In addition to the high polygenicity, influenced by a large number of genetic variants with 

small effects, many complex traits are inherently multi-phenotypic. For example, blood 

pressure is evaluated by both systolic and diastolic pressure measurements. Obesity is 

determined not only by body mass index but also by waist circumference and body fat 

percentage. As one indicator may reveal one susceptibility gene over other indicators, it 

is important to jointly analyze multiple phenotype data in the analysis (Suo et al. (2013)). 

In addition, GWAS have unveiled that many loci affect more than one trait or disease, 

a phenomenon known as pleiotropy (Sivakumaran et al. (2011), Solovieff et al. (2013)). 

Testing one phenotype at a time, albeit simple and intuitive, fails to exploit the underlying 

shared genetic architecture of multiple phenotypes, and is also subject to multiple testing 

penalties. On the other hand, multitrait analyses can increase statistical power to detect 

association and provide important insights into pathways that certain traits or diseases share 

(Hackinger and Zeggini (2017), Suo et al. (2013)).

A plethora of marginal test based methods are available to detect associations of a SNP-set 

with multiple traits which are termed cross-phenotype associations. For example, Maity, 

Sullivan and Tzeng (2012); Lee et al. (2017); Wu and Pankow (2016); Broadaway et al. 

(2016); Zhan et al. (2017); Dutta et al. (2019) take region-based approaches in which 

variants are grouped based on prespecified criteria and tested for cross-phenotype effects. 

Notably, Multi-SKAT (Dutta et al. (2019)) provides a general mixed-effect model-based 

framework for joint analysis of multiple continuous phenotypes, unlike most methods 

that make specific assumptions about the effects of the variants on multiple phenotypes. 

However, to our best knowledge, no existing methods investigate sets of genetic variants 

simultaneously.

Here, we propose a method for jointly modeling multiple SNP-sets and selecting groups that 

are relevant to multiple traits while adjusting for covariates. Suppose we have observations 
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from n individuals with d continuous phenotypes, represented by n × d matrix and m 
SNP-sets. Multivariate response model with n × d response matrix Y  and n × p covariate 

matrix X assumes a multivariate normal model

vecY N vec(XB), Σ1 ⊗ V 1 + ⋯ + Σm ⊗ V m + Σ0 ⊗ In , (1)

where B is the unknown p × d fixed effects parameters matrix, Σi are unknown d × d positive 

semidefinite variance component matrices, and V i are known n × n kernel matrices for 

genotypes. The vec Y  operator in (1) creates an nd × 1 vector from a matrix Y  by stacking its 

column vectors, and ⊗ indicates Kronecker product.

As our interest lies in estimating variance components, we adopt the restricted (or residual) 

maximum likelihood estimation (REML) approach (Harville (1977), Khuri and Sahai 

(1985), Patterson and Thompson (1971), Robinson (1987), Searle, Casella and McCulloch 

(1992), Thompson (1962)). In the notation of (1), REML first projects Y  to the null space of 

X and then estimates variance components based on the projected responses. If the columns 

of the matrix A span the null space of XT and AT A = I, then REML estimates parameter Σ = 

(Σ0, Σ1, …, Σm) by maximizing the log-likelihood of the redefined response matrix Y = ATY
whose distribution is as follows:

vecY N 0, Σ1 ⊗ V 1 + ⋯ + Σm ⊗ V m + Σ0 ⊗ In − p , (2)

where V i = ATV iA, i = 1, … , m. Note that fixed effects have been eliminated.

As there are no closed-form expressions for the REML, we rely on numerical techniques. 

There are several iterative optimization methods for finding MLE and REML, including 

Newton’s method (Lindstrom and Bates (1988)), Fisher’s scoring algorithm, and the 

expectation-maximization (EM) algorithm (Dempster, Laird and Rubin (1977), Laird and 

Ware (1982), Laird, Lange and Stram (1987), Lindstrom and Bates (1988), Bates and 

Pinheiro (1998)). Despite their respective advantages, they suffer from either numerical 

instability, high computational cost, or slow convergence. Zhou et al. (2019) address this 

issue with a minorization-maximization (MM) algorithm that is simple to implement and 

numerically efficient. Zhai et al. (2018) implements an MM algorithm for penalizing 

variance components in microbiome data analysis, but it is limited to lasso penalty and a 

univariate response. The recent paper (Schaid et al. (2020)) applies a similar method as Zhai 

et al. (2018) to the genetic association setting but still restricted to the univariate response 

setting.

Since SNPs within a gene/pathway/moving window are treated as a unit, this can be 

considered a group selection problem with each set being a group and SNP being a variable. 

Several methods have been proposed to take advantage of grouping structures in variables. 

Group lasso method (Bakin (1999), Yuan and Lin (2006)) allows group selection by either 

including or excluding all variables in the group in the model. Bi-level selection or sparse 

group method (Breheny and Huang (2009), Huang et al. (2009), Simon et al. (2013), Zhou et 

al. (2010)) enables both groupwise and within group sparsity. However, these approaches are 
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designed for selecting mean or fixed effects, hence inappropriate when genetic effects are 

modeled as random effects.

There exists a considerable body of literature on random effect selection. Lin (1997) 

proposes score tests to detect the significance of individual variance components. To select 

important random effects, each component is tested separately, followed by some stepwise 

procedures. Chen and Dunson (2003), Bondell, Krishna and Ghosh (2010), Fan and Li 

(2012), and Peng and Lu (2012) consider random effect selection for longitudinal models 

where observations are divided into independent subjects with a vector of random effects 

corresponding to each subject. The vectors of random effect are independent and identically 

distributed with a covariance matrix which could be a function of one variance component. 

For these methods, selecting important random effects is essentially limited to within 

one variance component, as it removes rows or columns of covariance matrix or selects 

components within random effect vectors. No existing method performs a simultaneous 

selection of random effects at group level to our best knowledge.

Our contributions herein are three-fold. First is developing a novel penalization method for 

group selection where each group is treated as random effects. Our second contribution is 

that we devise a general MM-based optimization framework that incorporates both convex 

and nonconvex penalties into variance component models and applies to the analysis of 

univariate and multivariate traits, respectively. Lastly, we outline an algorithm to incorporate 

SNP-set-by-treatment or SNP-set-by-environment interaction terms in a univariate trait 

variance component model, motivated by pharmacogenomic studies.

The remainder of this paper is organized as follows: Section 2 introduces the multivariate 

response variance component model. In Section 3 we present the VCSEL algorithm that 

selects variance components in the realm of multivariate response (VCSEL-M). Section 4 

extends the algorithm to incorporate interaction terms (VCSEL-I) for a univariate response 

model. We illustrate the performance of our methods with simulation studies in Section 5 for 

VCSEL-M and VCSEL-I methods and defer the details for the univariate response VCSEL 

methods to the Supplementary Material (Kim et al. (2021)). In Section 6 the proposed 

methods are applied to two real datasets—a U.K.-biobank whole exome sequencing study 

data and a pharmacogenomic study data. We conclude the paper with a discussion and future 

research directions in Section 7.

2. Multivariate response variance component model.

Consider the model (2) where V1, …, Vm are known positive semidefinite matrices. Here, 

Vi is a genotype kernel matrix for the ith variance component. Different choices of kernels 

can be readily incorporated in Vi. As defined in Dutta et al. (2019), one popular choice 

would be GiW iW iGi
T  where Gi is a genotype matrix corresponding to ith SNP group and 

Wi = diag(w1, …, wq) contains the weights of q variants in Gi. It corresponds to SKAT 

and implies that the effects of SNPs in ith SNP-set are independent. Another choice is 

GiW i11T W iGi
T  which corresponds to the Burden test and implies that the effects of SNPs in 

ith SNP set are in the same direction. Note that 1 denotes a vector of ones. In our simulation 
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studies and real data analysis, we adopt the SKAT genotype kernel and/or the Burden test 

genotype kernel.

We denote the overall covariance matrix in the model by Ω, that is,

Ω(Σ) = Σ1 ⊗ V 1 + ⋯ + Σm ⊗ V m + Σ0 ⊗ In − p,

and assume it to be positive definite. To find estimates of Σ = (Σ0, Σ1, …, Σm), we take a 

penalization approach by minimizing the penalized negative log-likelihood function

−L Σ0, Σ1, …, Σm + ∑
i = 1

m
Pλ tr Σi = 1

2lndetΩ + 1
2 vecY TΩ−1vecY

+ ∑
i = 1

m
Pλ tr Σi ,

(3)

where Pλ is a penalty term imposing sparsity on variance components for a given tuning 

parameter λ. Below, we derive iterative procedures for lasso (Tibshirani (1996)) and 

minimax concave penalty (MCP) (Zhang (2010)); only a slight modification is needed to 

accommodate other penalty functions. In practice, we normalize Vi to have unit Frobenius 

norm to put the kernel matrices on the equal footing in penalty because the varying number 

of variants involved in each Vi leads to higher magnitude for sets with a large number of 

variants compared to those with a small number of variants.

While Vi measures genetic similarity between subjects in the ith SNP group and is 

assumed fully known, it is worthwhile noting that no assumptions have been made about 

Σi which resides in the phenotype space and reflects how effect sizes of each variant on 

each phenotype are correlated. Different choices of Σi have been proposed in Dutta et 

al. (2019). If one does have a priori knowledge about phenotype structure, the algorithm 

simplifies to the univariate case. For example, if effect sizes of each variant in a SNP-set 

on different phenotypes are assumed homogeneous, we may write Σi = σi21d1d
T , where 

σi2 is a scalar-valued ith variance component and 1d is a d × 1 vector of 1’s. Then, 

Ω = ∑i = 1
m σi2 1d1d

T ⊗ V i + σ0
2 1d1d

T ⊗ In − p , where σ0
2 is a scalar-valued residual variance 

component. Since 1d1d
T ⊗ V i  is a known covariance matrix for ith group, the problem 

amounts to estimating σi2, i = 0, 1, …, m.

3. Estimation algorithm.

The MM principle involves majorizing the objective function f(θ) by a surrogate function 

g(θ | θ(t)) around the current iterate θ(t) of a search (Hunter and Lange (2004), Lange 

(2016), Lange, Hunter and Yang (2000)). The superscript t indicates the iteration number. 

Majorization is defined by the following two conditions:

f θ(t) = g θ(t) ∣ θ(t) ,
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f(θ) ≤ g θ ∣ θ(t) , θ ≠ θ(t) .

In other words, the surface θ ↦ g(θ | θ(t)) lies above the surface θ ↦ f(θ) and is tangent 

to it at the point θ = θ(t). Construction of the majorizing function g(θ | θ(t)) constitutes the 

first M of the MM algorithm. The second M of the algorithm minimizes the surrogate g(θ | 

θ(t)) rather than f(θ). If θ(t+1) denotes the minimizer of g(θ | θ(t)), then this action forces the 

descent property f(θ(t+1)) ≤ f(θ(t)). This fact follows from the inequalities:

f θ(t + 1) ≤ g θ(t + 1) ∣ θ(t) ≤ g θ(t) ∣ θ(t) = f θ(t) ,

reflecting the definition of θ(t+1) and the tangency condition. Monotonicity of MM iterates 

obliterates the need for line search and lends itself to the remarkable numerical stability of 

the MM algorithm.

We derive a majorizing function of the penalized loss function (3) by working on its three 

individual terms separately. For the penalty term we first specialize to the lasso penalty then 

indicate the generalizations to other penalties:

1. Log-determinant term. The concavity of the map X ↦ ln det X and the 

supporting hyperplane inequality establish the majorization

lndetΩ(t) + tr Ω−(t) Ω − Ω(t) ≥ lndetΩ . (4)

2. Quadratic form term. When Vi for all i are positive definite, hence invertible, 

convexity of the matrix function (X, Y) ↦ XT Y−1 X where Y ≻ 0 implies

Ω(t)Ω−1Ω(t) = m 1
m ∑

i = 0

m
Σi

(t) ⊗ V i
1
m ∑

i = 0

m
Σi ⊗ V i

−1
1
m ∑

i = 0

m
Σi

(t) ⊗ V i

⪯m ∑
i = 0

m 1
m Σi

(t) ⊗ V i Σi ⊗ V i
−1 Σi

(t) ⊗ V i

= ∑
i = 0

m
Σi

(t)Σi
−1Σi

(t) ⊗ V i,

(5)

or, equivalently,

Ω−1⪯Ω−(t) ∑
i = 0

m
Σi

(t)Σi
−1Σi

(t) ⊗ V i Ω−(t) . (6)

For symmetric matrices A and B, A ⪯ B means B − A is positive semidefinite. 

The equality (5) follows from the identities (A ⊗ B)−1 = A−1 ⊗ B−1 and (A ⊗ B) 

(C ⊗ D) = (AC) ⊗ (BD). The nonsingularity assumption on Vi can be relaxed by 

substituting Vϵ,i = Vi + ϵIn for Vi and sending ϵ to 0.

3. Lasso penalty term. The majorization on the lasso penalty
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trΣi
(t) + 1

2 trΣi
(t) trΣi − trΣi

(t) ≥ trΣi (7)

follows from the concavity of the map x x and the support hyperplane 

inequality. Merging (4), (6), and (7) generates the overall majorizing function

g Σ ∣ Σ(t) = 1
2 ∑

i = 0

m
tr Ω−(t) Σi ⊗ V i

+ vecR(t) T Σi
(t)Σi

−1Σi
(t) ⊗ V i vecR(t)

+ 1
2 ∑

i = 1

m λ
trΣi

(t) trΣi + c(t),

(8)

where vec R(t) = Ω−(t) vec(Y) with R(t) being a matrix of size n × d and c(t) is a 

constant impertinent to the parameters Σi. Parameters Σi are nicely separated in 

(8), so we only need to minimize m individual functions

gi
(t) Σi = 1

2 tr Ω−(t) Σi ⊗ V i + tr R(t)TV iR(t)Σi
(t)Σi

−1Σi
(t) + λ

trΣi
(t) trΣi

= 1
2 tr Ω−(t) Σi ⊗ V i + tr Σi

(t)R(t)TV iR(t)Σi
(t)Σi

−1 + λ
trΣi

(t) trΣi

(9)

to update Σi. The first equation follows from the Kronecker identities (vec A)T 

vec B = tr(AT B) and vec (C D E) = (ET ⊗ C) vec(D). The first trace in the 

second equation of (9) is linear in Σi with the coefficient of entry (Σi)jk equal to

tr Ωjk
−(t)V i = 1nT V i ⊙ Ωjk

−(t) 1n,

where Ωjk
−(t) is the (j, k)th n × n block of Ω−(t) and ⊙ is the Hadamard 

(elementwise) product. The matrix Mi of these coefficients can be written as

Mi = Id ⊗ 1n
T 1d1d

T ⊗ V i ⊙ Ω−(t) Id ⊗ 1n .

Setting the derivative of (9) to zeros yields the stationarity condition

Mi + λ
trΣi

(t)Id = Σi
−1Σi

(t)R(t)TV iR(t)Σi
(t)Σi

−1, (10)

which is a Riccati equation admitting the explicit solution,

Σi
(t + 1) = Li

−(t)T Li
(t)T Σi

(t)R(t)TV iR(t)Σi
(t) Li

(t) 1/2
Li

−(t),
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in terms of the Cholesky factor Li
(t) of the matrix on the left-hand side of (10).

Algorithm 1 summarizes the MM algorithm for lasso penalized multivariate variance 

components model (VCSEL-M-lasso). Each iteration computes m + 1 Cholesky 

factorizations and symmetric square roots of d × d positive semidefinite matrices. In most 

applications, d is a small number. Our convergence criteria are based on the change in 

objective function (3) (the penalized negative log-likelihood function) values. The procedure 

is repeated until the relative change in the objective function value is less than a tolerance 

value (10−6 × [|objective function value at the current iterate | + 1] by default). For tuning 

parameters we first locate the tuning parameter λ value, after which all the variance 

component estimates turn zero, which we denote the maximum λ. Then, we create a 

solution path using a set number of equidistant tuning parameter values from 0 to the 

maximum λ.

Nonconvex penalties reduce the bias by applying less shrinkage to the large nonzero 

components. As an example, we illustrate with the MCP. An extra tuning parameter γ > 

1 controls the concavity of the penalty. In our case, where tr Σi  is nonnegative, MCP is 

defined as

Pγ tr Σi ; λ =
λ tr Σi − tr Σi

2γ  if  tr Σi ≤ γλ,

1
2γλ2  if  tr Σi > γλ .

(11)

MCP converges to lasso penalty, as γ → ∞. Derivation of the majorization for MCP 

is described in detail in the Supplementary Material S.1 (Kim et al. (2021)). Algorithm 

2 summarizes the MM algorithm for MCP penalized multivariate response variance 

component model (VCSEL-M-MCP).

4. Interaction model.

Genomic differences among people place some individuals at grave risk of harm from 

certain medications while others may benefit from the same drug. For that reason, detecting 

those genetic variants that contribute to variability in treatment responses is the main 

objective in pharmacogenetic (PGx) studies. Several methods have been proposed to test the 

interaction effect or jointly test the genetic main effect and the interaction effect (Broadaway 

et al. (2015), Chen, Meigs and Dupuis (2014), Yang et al. (2019), Zhang et al. (2020), 
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Zhao et al. (2019)). However, they are limited to testing a single SNP-set. Hence, in this 

section we illustrate the VCSEL method that incorporates interaction terms between gene 

and treatment in the univariate response setting (d = 1).

If there are m genes under consideration, we have 2m + 1 variance components in total, 

including the residual variance component, because each gene is associated with two 

variance components, one for the gene itself and the other for the interaction between gene 

and treatment. For the ith SNP-set, σi1 and σi2 denote the genetic effect and interaction 

effect variance components, respectively. Let Gi be the corresponding genotype matrix 

and T = diag(t1, …, tn) be a diagonal matrix, where ti ∈ {0, 1} indicates treatment 

status. Then, linear weighted kernels associated with σi1 and σi2 are V i1 = GiW iGi
T  and 

V i2 = T GiW iGi
TT T , respectively. The matrix Wi = diag(w1, …, wq) contains the weights 

of the q variants in the ith SNP-set. We remind readers that linear weighted kernels can 

be readily replaced by other choices of kernels. Note that T matrices are not limited to 

binary values. For example, one can swap diagonal entries in T matrix with environmental 

variable values which are often continuous. Simulation studies 5.2 demonstrate this option 

of continuous values.

For a given response vector y, the penalized log-likelihood, augmented by group penalty on 

two variance components of each gene, can be written as

f(σ) = 1
2logdetΩ(σ) + 1

2yT[Ω(σ)]−1y + ∑
i = 1

m
Pλ σi1, σi2 , (12)

where Ω(σ) = ∑i = 1
m σi1

2 V i1 + σi2
2 V i2 + σ0

2In and σ = σ0, σi1, σi2, i = 1, …, m  collects all 2m 

+ 1 variance components. We introduce two routes to constructing interaction models: (1) 

include/exclude main effects and interaction term together as a pair (VCSEL-I) and (2) 

enforce hierarchy restriction that only allows interaction term into the model when the 

corresponding main effect is included (VCSEL-Ih).
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4.1. All-in/all-out (VCSEL-I).

Often in the discovery phase, genetic main effect and gene-treatment interaction effect are 

jointly tested. This approach examines the association between the trait of interest and 

genetic marker while accounting for gene-treatment interaction. To majorize the group lasso 

penalty on a pair of variance components, we apply the support hyperplane inequality to the 

concave map x x

Pλ σi1, σi2 = λ σi1
2 + σi2

2 ≤ λ
2

σi1
2 + σi2

2

σi1
(t)2 + σi2

(t)2 + c(t),

where c(t) is an irrelevant constant. Combining with the univariate case of inequalities (4) 

and (6), the surrogate function, given t th iterate σ(t), is

g σ ∣ σ(t) = ∑
i = 1

m
∑

j = 1

2 σij2

2 tr Ω−(t)V ij + 1
2

σij
4(t)

σij2
yTΩ−(t)V ijΩ−(t)y + λ

σij2

2 σi1
(t)2 + σi2

(t)2

+
σ0

2

2 tr Ω−(t) + 1
2

σ0
4(t)

σ0
2 yTΩ−2(t)y .

Then, the update σij
(t + 1) for i = 1, …, m and j = 1, 2 is

σij
(t + 1) = σij

(t) yTΩ−(t)V ijΩ−(t)y

tr Ω−(t)V ij + λ/ σi1
(t)2 + σi2

(t)2

1/4

.

Algorithm 3 summarizes the VCSEL algorithm for the all-in/all-out interaction with 

lasso penalty (VCSEL-I-lasso). A similar algorithm for MCP penalty (VCSEL-I-MCP) is 

summarised in Supplementary Material S.2 (Kim et al. (2021)).

4.2. Hierarchical interactions (VCSEL-Ih).

In the confirmation phase of gene-drug testing, interest lies in detecting gene-treatment 

interaction. Choi, Li and Zhu (2010) argue that for easier interpretability, interaction terms 

should be included, only if all corresponding main effects are in the model. We integrate this 

idea by assuming interaction effect variance component to be a constant multiple of genetic 

effect counterpart, that is, σi2
2 = γiσi1

2 . Whenever the variance component for ith gene σi1 is 

equal to 0, the interaction variance component σi2 is automatically set to 0. Following Choi, 
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Li and Zhu (2010), we penalize both variance component σi1 and interaction parameter γi. 

Then, our objective function with lasso penalty becomes

f(σ) = 1
2logdet Ω + 1

2yTΩ−1y + λ1 ∑
i = 1

m
σi1 + λ2 ∑

i = 1

m
γi,

where Ω = ∑i = 1
m σi1

2 V i1 + σi2
2 V i2 + σ0

2I = ∑i = 1
m σi1

2 V i1 + γiσi1
2 V i2 + σ0

2I. Both λ1 and λ2 

are tuning parameters controlling the strength of the penalty terms.

The already familiar majorizations (4), (6), and (7) yields the surrogate function

g σ ∣ σ(t) = ∑
i = 1

m σi1
2

2 tr Ω−(t)V i1 +
γiσi1

2

2 tr Ω−(t)V i2 + 1
2

σi1
4(t)

σi1
2 yTΩ−(t)V i1Ω−(t)y

+ 1
2

γi
2(t)σi1

4(t)

γiσi1
2 yTΩ−(t)V i2Ω−(t)y +

λ1
2σi1

(t)σi1
2 + λ2γi

+
σ0

2

2 tr Ω−(t) + 1
2

σ0
4(t)

σ0
2 yTΩ−2(t)y .

We adopt the block update strategy to decrease the objective value of g(σ | σ(t)). Given 

γi = γi
(t), we update σi1 by

σi1
2(t + 1) = σi1

2(t) yTΩ−(t)V i1Ω−(t)y + γi
(t)yTΩ−(t)V i2Ω−(t)y

tr Ω−(t)V i1 + γi
(t)tr Ω−(t)V i2 + λ1/σi1

(t) , i = 1, …, m .

Given σi1 = σi1
(t + 1), we first update the covariance matrix

Ω(t) = ∑
i = 1

m
σi1

2(t + 1)V i1 + γi
(t)σi1

2(t + 1)V i2 + σ0
2(t + 1)I,

then update the ith interaction parameter by

γi
(t + 1) = γi

(t) yTΩ−(t)V i2Ω−(t)y

tr Ω−(t)V i2 + 2λ2/σi1
2(t + 1) .

Summary of the algorithm for this hierarchical interaction selection method with lasso 

penalty (VCSEL-Ih-lasso) is left to Supplementary Material S.2 (Kim et al. (2021)).

5. Simulation studies.

We conduct simulation studies to examine the selection performance of the proposed 

methods. We compare with R packages Multi-SKAT (Dutta et al. (2019)) and rareGE (Chen, 
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Meigs and Dupuis (2014)) for multivariate response and interaction model, respectively. 

Both Multi-SKAT and rareGE are marginal approaches that test one SNP-set at a time 

and make a formal inference. This contrasts with our method that encompasses multiple 

SNP-sets in a joint model and provides rankings. For readers interested in the results on a 

univariate response, we summarize the results in Supplementary Material S.4 (Kim et al. 

(2021)) in which we compare the selection performance of VCSEL to the group lasso. The 

group lasso is a group selection method designed for selecting fixed effects. Interestingly, 

the proposed penalized variance component model outperforms group lasso, even when the 

data is generated from a fixed effects model, not to mention under a variance component 

model (see Supplementary Material S.4 (Kim et al. (2021))).

Both the lasso and MCP penalties are demonstrated for multivariate trait and interaction 

models. Unless otherwise specified, γ = 2.0 is used for the MCP penalty. We use the area 

under precision-recall curve (auPRC) to evaluate performance. Similar to receiver operator 

characteristic (ROC) curves, precision-recall (PR) curves (recall on the x-axis and precision 

on the y-axis) illustrate the tradeoff between precision and recall for varying cutoff values 

(Manning and Schütze (1999), Raghavan, Bollmann and Jung (1989)). Precision is defined 

as the number of true positives over the total number of declared positives, while recall is 

defined as the number of true positives over the number of true positives plus the number 

of false negatives. A PR curve closer to the upper-right corner, which corresponds to 100% 

precision and 100% recall, generally represents a better classifier. Since we want to take the 

influence of all cutoff values into account, we report auPRC which is an aggregate measure 

of performance across all tuning parameter values and has a range of [0, 1]. An auPRC 

close to 1 indicates that the classifier returns accurate results (high precision) and most of all 

positive results (high recall).

Although ROC curves are the most popular metric for binary classifiers, PR curves are 

more suitable when the class distribution is highly skewed, usually negative instances out-

numbering positive instances (Davis and Goadrich (2006), Saito and Rehmsmeier (2015)). 

In fact, PR curves have been cited as an alternative in unbalanced datasets (Bunescu et al. 

(2005), Craven and Bockhorst (2005), Davis et al. (2005), Goadrich, Oliphant and Shavlik 

(2004), Kok and Domingos (2005), Singla and Domingos (2005)). As we expect the number 

of positive variance components to be greatly exceeded by that of zero variance components, 

we deem auPRC to be an appropriate metric.

For the marginal testing methods—Multi-SKAT and rareGE—we calculate the auPRC by 

ranking all genes by their p-values and assuming that each gene enters the solution path 

from the smallest to largest. For example, the gene with the smallest p-value enters the 

solution path first, and the gene with the largest value would be the last one to enter the 

solution path.

For a sample of size n, we form genotype matrix G by randomly pairing 2n haplotypes 

drawn from a haplotype pool (SKAT.haplotypes in the SKAT R-package). The genotype 

values in matrix G are coded as 0, 1, and 2, representing the number of minor alleles while 

an additive genetic model is assumed. Assuming that there are m SNP-sets, we partition G 
into m submatrices of prespecified window length
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G = G1 G2 ⋯ ∣ Gm ,

where Gi ∈ ℝn × qi, i = 1, …, m, represents the ith SNP-set.

We fix the number of positive variance components, excluding the residual variance 

component, to be five. We calculate each auPRC over 100 tuning parameter values and 

report the average auPRCs along with their standard errors across 20 replicates.

5.1. Simulation studies for multiple traits.

Here, we compare selection performance of Algorithm 1 and MultiSKAT (Dutta et al. 

(2019)) package in R. We generate three phenotypes (n = 2000, d = 3) from the following:

vec(Y ) = vec(XB) + LΩϵ, ϵ N 0, Ind , (13)

where LΩ is the lower triangular Cholesky factor of Ω = ∑i = 1
m Σi ⊗ V i + Σ0 ⊗ 1

nIn. 

Depending on the genotype kernel, Vi equals to 1
GiW iW iGiT F

GiW iW iGi
T  (SKAT genotype 

kernel) or 1
GiW i11TW iGiT F

GiW i11TW iGi
T  (b test genotype kernel), where Wi is diagonal 

matrix whose entry equals to the weights wk = Beta(MAFk; 1,25) with MAFk being the 

minor allele frequency of the kth genetic variant (Wu et al. (2011)). We use this weight 

since it is the default version in MultiSKAT package. We set X to be a n × 1 matrix of 1 s 

and B to be a 1 × d matrix of 0.5 s. For nonzero variance components Σi, we incorporate 

two structures proposed in Dutta et al. (2019). The first choice is Σi = 1d1d
T  which implies 

that effect sizes of a variant on d different phenotypes are homogeneous, hence, it is called 

homogeneous kernel. The second structure is Σi = Id, also known as heterogeneous kernel, 

which assumes that effect sizes of a variant on different phenotypes are heterogeneous 

or independent. Nonzero variance component matrices are spread across all m groups to 

create a scenario of low linkage disequilibrium (LD) between causal SNP-sets or variance 

components,

Σi =

1d1d
T  or Id  if i = 1, 10, 20, 30, 40(m = 40),

 if i = 1, 25, 50, 75, 100(m = 100),
Id  if i = 0,
0  else. 

In this case, causal genes or signal variance components are dispersed, hence, there is 

little correlation among causal genes. One notable difference between VCSEL-M and Multi-

SKAT is that Multi-SKAT does not estimate Σi while VCSEL-M estimates Σi. In fact, 

Multi-SKAT requires one to provide phenotype kernel structure, which is Σi in our notation, 

for testing association between a SNP-set and multiple phenotypes. In our simulations we 

supply the ground truth Σi, whether it be 1d1d
T  or Id, when calling Multi-SKAT, hence giving 

an advantage to the Multi-SKAT method.
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Figure 1 and Table 1 describe simulation results. Overall, our methods perform as well 

as Multi-SKAT, if not better. Despite having the ground truth Σi as an input argument, 

Multi-SKAT does not perform well when phenotype kernel has a homogeneous structure, as 

seen in the left panel of Figure 1.

5.2. Simulation studies for interaction models.

Here, we compare selection performance of Algorithm 3 (VCSEL-I-lasso), Algorithm S.2.1 

in Supplementary Material S.2 (Kim et al. (2021)) (VCSEL-I-MCP), and rareGE (Chen, 

Meigs and Dupuis (2014)) package in R. We generate a phenotype from

y = Xβ + LΩϵ, ϵ N 0, In ,

where n = 500. Here, covariate matrix X is a 500 × 3 matrix whose first column is a vector 

of 1’s, second column is generated from N(50, 52), and third column from N(25, 42) which 

mimic covariate matrix in simulation studies of Chen, Meigs and Dupuis (2014). LΩ is the 

lower triangular Cholesky factor of Ω = ∑j = 1
2 ∑i = 1

m σij2 V ij +
σ0

2

nIn. Following the default 

option of rareGE package, we set

V i1 = 1
GiW iGiT F

GiW iGiT ,

V i2 = 1
EGiW iGiTEi F

EGiW iGiTE,

where Wi diagonal matrix whose entry equals to to the commonly used weights 

wk = Beta MAFk; 1, 25  with MAFk being the MAF of the kth genetic variant (Wu et al. 

(2011)). E is a diagonal matrix whose entries coincide with that of the second column in X. 

Gi is a submatrix of genotype matrix we form from haplotypes data in the SKAT R-package, 

as explained in the beginning of Section 5. We restrict Gi to only include SNPs with MAF 

less than 0.05 for fair comparison with rareGE method. This constraint leads to the number 

of SNPs ranging from 18 to 51 with a median of 33 for groups with window length of five 

kb and that ranging from three to 29 with a median of 13 for groups with window length 

of two kb. We set the effect strength of nonzero variance components to be 2.236. Two 

scenarios are simulated. The first is low LD setting,

σi1 = σi2 =

2.236 i = 1, 11, 20, 30, 40(m = 40),
i = 1, 26, 50, 75, 100(m = 100),

1.0 i = 0,
0.0  else. 

(14)

The second is high LD setting, where the first five variance components are set to be 

nonzero,
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σi1 = σi2 =
2.236 i = 1, 2, 3, 4, 5,
1.0 i = 0,
0.0  else.

(15)

In Supplementary Material S.5 (Kim et al. 2021)), we quantify the correlations between 

SNP-sets in these high/low LD settings via the canonical correlation analysis. The true fixed 

effects parameter values are set to be β = (0.5, 0.1, 0.05)T.

As seen in Figure 2, VCSEL-I method is competitive against rareGE. The outperformance 

of VCSEL-I method is more dramatic under the low LD scenario, probably because the 

marginal test rareGE is not able to jointly model the multiple SNP-sets.

6. Real data analysis.

To test the multivariate response model, we apply our methods to the genetic data from 

the U.K. Biobank exome sequencing study (Sudlow et al. (2015)). By doing so, we aim 

to identify genes associated with two quantitative lipid traits, high-density lipoprotein 

cholesterol (HDL-C) and low-density lipoprotein cholesterol (LDL-C). For the analysis 

we only use measurements from the initial assessment visit. We regress each phenotype 

separately on age, age2, sex, and the top five principal components and inverse normal 

transform respective residuals. The transformed residuals are used as our response variables. 

For our samples we extract selfreported white British individuals (data field 21000: Ethnic 

background) with no genetic kinship to other participants (data field 22021: Genetic kinship 

to other participants) and without any medication for cholesterol, blood pressure, diabetes, 

or exogenous hormones at baseline (data field 6153 and 6177: Medication for cholesterol, 

blood pressure, diabetes, or take exogenous hormones). After removing individuals with 

missing values, we have 18,020 samples and genotype information of 8,959,608 variants, 

which are grouped into 26,395 genes, based on the annotation information from SnpEff 

software (Cingolani et al. (2012)) with GRCh38 human reference genome. We then remove 

monoallelic variants, common variants with MAF > 0.05, variants in sex chromosome from 

the analysis. Finally, we have the data of 18,020 individuals and genotype information 

of 4,312,036 low-frequency/rare (MAF ≤ 0.05) variants in 25,460 genes with at least 

three of those variants in each gene. Because the number of genes is too large, we first 

screen 25,460 genes down to 200 genes, according to their p-values, from Multi-SKAT 

omnibus approach that combines results across three pre-specified phenotype kernels 

(homogeneous, heterogeneous, and phenotype covariance kernels). Then, we carry out a 

penalized estimation of the 200 variance components in the joint model (1) using the 

burden test genotype kernel. This is akin to the sure independence screening strategy by Fan 

and Lv (2008) which entails large-scale screening accompanied by moderate-scale variable 

selection. Genes are ranked according to the order they appear in the solution path. Figure 3 

illustrates the solution paths obtained from VCSEL-M-lasso and VCSEL-M-MCP methods 

along with their corresponding lists of the top 10 genes in the order they appear in the 

solution path. Table 2 lists the top 10 genes together with their marginal p-values from 

Multi-SKAT. Most genes that are highly ranked by VCSEL methods—PCSK9, PVR, LPL, 

APOC3, CELSR2, LIPG, CD300LG, and APOB in the top 10 list—have their marginal test 
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p-values under the false discovery rate (FDR) < 5% threshold and/or are known to play 

a role in modulating lipid levels (Abifadel et al. (2009), Benn et al. (2005), Cohen et al. 

(2005), Heid et al. (2008), Holmen et al. (2014), Lange et al. (2014), Surakka et al. (2015), 

Tachmazidou et al. (2013), Wallace et al. (2008)). VCSEL methods identify genes that are 

not deemed significant by marginal testing but have association evidence in the literature. 

HAPLN4 has been shown significant association with LDL-C and total cholesterol levels 

(Southam et al. (2017)) and APOC4 with HDL-C, LDL-C (Hoffmann et al. (2018), Wojcik 

et al. (2019)).

Next, we apply our methods to the GWAS of Ezetimibe response in IMPROVE-IT 

(IM-Proved Reduction of Outcomes: Vytroin Efficacy International Trial), which is a 

phase 3b, multicenter, double-blind, randomized study, to establish the clinical benefit 

and safety of Vytorin (Ezetimibe/Simvastatin tablet) vs. Simvastatin monotherapy in high-

risk subjects (Cannon et al. (2015)). In this PGx study using IMPROVE-IT clinical 

data, we are interested in discovering genes associated with: (1) the efficacy of Vytorin 

treatment for 2808 European patients who receive a greater benefit compared with the 

Simvastatin monotherapy and (2) the joint efficacy of Ezetimibe/Simvastatin treatment and 

the Simvastatin monotherapy treatment for 5661 European patients. The endpoint for this 

gene-based variance component selection analysis is LDL-C fold-change at one-month. 

The standard GWAS quality control and SNP imputation are conducted. We focus on the 

low frequency variants (0.01 ≤ MAF ≤ 0.05) after imputation (with imputation quality 

scores r2 > 0.5) and putatively functional variants with consequences as nonsynonymous, 

splice-site, non-sense, and frameshift variants annotated from the GEMINI software (Paila 

et al. (2013)). Missing genotypes are imputed by their column mean. In total, there are 

208,123 low frequency variants in 2572 genes with at least two low frequency variants in 

each gene. The covariate matrix includes age, gender, prior lipid lowering therapy, early 

acute coronary syndrome (ACS) trial, high risk ACS diagnosis, and the top five principal 

components calculated from the GWAS data to adjust for population structure. Because the 

number of genes is too large, we first screen the 2572 genes down to 200 genes according 

to their marginal p-values from SKAT-O (Lee, Wu and Lin (2012)) for the analysis of 

Vytorin treatment effect and the other 200 genes according to their marginal p-values from 

the composite kernel association test (CKAT) (Zhang et al. (2020)) for the analysis of 

Ezetimibe/Simvastatin treatment and the Simvastatin monotherapy treatment joint effects. 

Then, we analyze the two sets of the 200 genes by penalized estimation of the 200 variance 

components respectively.

Figure 4 illustrates the solution paths from VCSEL-I-lasso and VCSEL-I-MCP methods 

along with their corresponding lists of the top 10 genes in the order they appear in 

the solution path for the analysis of Ezetimibe/Simvastatin treatment and the Simvastatin 

monotherapy treatment joint effects. The top five genes selected by the VCSEL-I-lasso 

method are TTN, MUC16, CBLC, APOB, and TNXB, and those selected by the 

VCSEL-I-MCP method are MUC16, CBLC, APOB, TNXB, and OSBPL6. CBLC and 

TNXB are selected by both methods and have been shown to associate with statins 

response in literature. More specifically, similar as the BCAM gene, CBLC gene, close to 

BCAM gene, has been shown to associate with the response to statins (LDL-C change) 

and multiple nondrug-response LDL-C related traits as well (Deshmukh et al. (2012), 
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Postmus et al. (2014); Supplementary Material Table S.10). In addition, TNXB gene also 

shows a significant association with the nondrug-response LDL-C trait in the literature 

(Supplementary Material Table S.10). We defer the analysis results for studying the efficacy 

of Vytorian treatment to Supplementary Material S.6 (Kim et al. (2021)).

The above analyses demonstrate that VCSEL methods can provide well-known and 

potentially new association evidence between genes and the drug response LDL-C in the 

IMPROVE-IT PGx study and the lipid phenotypes in the UK.. Biobank whole exome 

sequencing study. More work is needed to further interpret both top-ranked genes with some 

association evidence and without any literature support to identify causal genes.

7. Discussion.

This article provides a variance component selection framework for identifying SNP-sets 

associated with quantitative traits, particularly for multivariate traits, and SNP-set-treatment 

interactions. Simulation studies and real data analyses have testified to the competitiveness 

of the proposed methods, compared to the traditional marginal tests.

Additionally, our methods can adjust for sample relatedness by augmenting the model with a 

kinship matrix. More precisely, borrowing the notation of (2), the model becomes

vecY N 0, Σ1 ⊗ V 1 + ⋯ + Σm ⊗ V m + Σg ⊗ Φ + Σ0 ⊗ In − p ,

where Φ is the kinship matrix and Σg is a matrix describing the shared heritability between 

the phenotypes. Along with the residual variance component Σ0, coheritability variance 

component Σg would remain in the model without any regularization.

While chiefly motivated by association testing in genetics, we envision the analysis to be 

applicable beyond genetics. For instance, in random effects ANOVA with many factors, each 

represented by a variance component, one may wish to select factors that are relevant to the 

response. This ANOVA scenario has been alluded in Supplementary Material S.4 (Kim et al. 

(2021)).

There are some limitations to the proposed methods. First, it is difficult to conduct formal 

inference on the selected SNP-sets. Second, it does not apply to biobank-scale data. We 

recommend this method for datasets of size up to n × d = 50,000, where n is the number 

of samples and d is the number of traits. This is because VCSEL methods involve inverting 

the covariance matrix Ω in each iteration, which is computationally expensive. Additionally, 

we do not suggest jointly fitting all 20,000–25,000 genes in the human genome using our 

method. We recommend that the number of genes is reduced before fitting the model by the 

sure independence screening strategy which has been extensively studied and investigated 

(Fan and Lv (2008)).

In this paper we focus on the ranking of genes and report the overall selection performance 

by auPRC. In practice, the tuning parameters can be chosen according to the extended 

Bayesian information criteria (Chen and Chen (2008)). Future research should entail post-
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selection inference and investigation of the algorithms’ theoretical properties and address 

limitations mentioned above.

8. Implementation.

All our methods are implemented in the open source, high-performance technical computer 

language Julia (Bezanson et al. (2017)), and the software is freely available at https://

github.com/juhkim111/VCSEL.jl.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
The auPRCs of VCSEL-M-lasso, VCSEL-M-MCP, and Multi-SKAT under 40 and 100 

genes and different genotype kernels for models with six nonzero variance components and 

three simulated traits (d = 3), using haplotype data from the SKAT R-package. The left and 

right panels assume Σi = 1d1d
T  and Σi = Id, respectively, for nonzero variance components.
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Fig. 2. 
The auPRCs of VCSEL-I-lasso, VCSEL-I-MCP, and rareGE under 40 and 100 genes 

for models with six nonzero variance components, using haplotype data from the SKAT 

R-package. True variance component values in the left panel mimic low LD scenario (14) 

while those in the right panel mimic high LD scenario (15).
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Fig. 3. 
Solution paths of VCSEL-M-lasso (left) and VCSEL-M-MCP (right) methods in the 

analysis of 200 genes and two lipid measurements (HDL-C, LDL-C). The y-axis is shown 

on the logarithmic scale to make lines easily distinguishable.
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Fig. 4. 
Solution paths of VCSEL-I-lasso (left) and VCSEL-I-MCP (right) methods in the analysis 

of 200 genes and the LDL-C response of all the patients receiving the Vytorin (Ezetimibe/

Simvastatin tablet) treatment and Simvastatin monotherapy in the IMPROVE-IT PGx study. 

The y-axis is shown on the logarithmic scale to make lines easily distinguishable.

Kim et al. Page 26

Ann Appl Stat. Author manuscript; available in PMC 2022 February 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Kim et al. Page 27

Table 1

The auPRCs of VCSEL-M-lasso, VCSEL-M-MCP, and Multi-SKAT across varying size and number of genes, 

using SKAT.haplotypes data from the SKAT R-package. In parentheses are standard deviation/ no. replicates

Genotype kernel Phenotype kernel No. genes VCSEL-M-lasso VCSEL-M-MCP MultiSKAT

GiW i1qi1qi
T W iGi

T
 (Burden) Σi = 1d1d

T 100 (2kb/gene) 0.82 (0.019) 0.82 (0.020) 0.52 (0.032)

40 (5kb/gene) 0.82 (0.020) 0.82 (0.021) 0.48 (0.034)

Σi = Id 100 (2kb/gene) 0.84 (0.021) 0.84 (0.021) 0.65 (0.035)

40 (5kb/gene) 0.87 (0.012) 0.88 (0.012) 0.63 (0.029)

GiW iIqiW iGi
T

 (SKAT) Σi = 1d1d
T 100 (2kb/gene) 0.86 (0.017) 0.86 (0.017) 0.48 (0.041)

40 (5kb/gene) 0.87 (0.018) 0.87 (0.018) 0.42 (0.030)

Σi = Id 100 (2kb/gene) 0.88 (0.008) 0.88 (0.009) 0.62 (0.031)

40 (5kb/gene) 0.90 (0.005) 0.90 (0.005) 0.48 (0.038)
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Table 2

Top genes selected by the lasso and MCP penalized variance component model are tallied with their marginal 

p-values from the Multi-SKAT omnibus test in an association study of 200 genes and bivariate trait: HDL-C 

and LDL-C

Lasso Rank MCP Rank Gene Marginal p-value # Variants

1 1 PCSK9 3.37 × 10−20 353

2 2 PVR 3.56 × 10−20 111

3 4 LPL 5.73 × 10−18 198

4 3 APOC3 2.04 × 10−7 61

5 5 CELSR2 4.05 × 10−13 986

6 6 LIPG 2.36 × 10−13 225

7 7 CD300LG 6.56 × 10−10 189

8 9 HAPLN4 2.86 × 10−3 141

9 8 APOB 5.33 × 10−11 947

10 10 CATIP-AS1 2.81 × 10−3 16

11 11 APOC4 1.34 × 10−4 74
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