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Abstract 

Surrogate models play a vital role in overcoming the computational challenge in designing and 

analyzing nonlinear dynamic systems, especially in the presence of uncertainty. This paper 

presents a comparative study of different surrogate modeling techniques for nonlinear dynamic 

systems. Four surrogate modeling methods, namely Gaussian process (GP) regression, a long 

short-term memory (LSTM) network, a convolutional neural network (CNN) with LSTM (CNN-

LSTM), and a CNN with bidirectional LSTM (CNN-BLSTM), are studied and compared. All these 

model types can predict future behavior of dynamic systems over long periods based on training 

data from relatively short periods. The multi-dimensional inputs of surrogate models are organized 

in a nonlinear autoregressive exogenous model (NARX) scheme to enable recursive prediction 

over long periods, where current predictions replace inputs from the previous time window. Three 

numerical examples, including one mathematical example and two nonlinear engineering analysis 

models, are used to compare the performance of the four surrogate modeling techniques. The 

results show that the GP-NARX surrogate model tends to have more stable performance than the 

other three deep learning-based methods for the three particular examples studied. The tuning 

effort of GP-NARX is also much lower than its deep learning-based counterparts. 

Keywords: Surrogate modeling; Dynamic system; Data-driven; Time series  
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1. INTRODUCTION 

Modeling of dynamic systems plays a vital role in the analysis, design, health monitoring, and 

control of various dynamic engineering systems, such as chemical processes [1], civil 

infrastructure [2], battery systems [3], and vibratory mechanical systems [4]. A dynamic system 

can be linear or nonlinear. The modeling of nonlinear dynamic systems, in general, is more 

complicated than that of linear systems. 

In order to describe the complex nonlinear behaviors of dynamic systems, various approaches 

have been developed for different types of systems using analytical methods or sophisticated 

computer simulations. Analytical models obtained through theoretical modeling based on 

simplification and assumptions, usually have a low requirement on the computational effort. 

However, the prediction accuracy is usually sacrificed due to model simplifications [5]. With the 

development of high-performance computing and advanced computational methods, high-fidelity 

computer simulations are becoming more common in the design and analysis of various dynamic 

systems. They play an essential role in the design of reliable complex nonlinear engineering 

systems, such as hypersonic aircraft [6], off-road vehicles [7], and large civil infrastructure [8]. 

While the sophisticated computer simulation models significantly increase the prediction accuracy, 

the required computational effort is also drastically increased, which poses challenges to the 

associated analysis, design, model updating (e.g., a digital twin), and model predictive control [9].  

Aims to overcome the computational challenges introduced by the sophisticated computer 

simulation models, surrogate models constructed using machine learning (ML) techniques are 

usually used to substitute the original computer simulation models or experiments. As data-driven 

techniques, surrogate models construct a model of the original model by establishing a relationship 

between inputs and outputs of the complex dynamic system based on data. It provides a promising 
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way of efficiently predicting the nonlinear dynamic behavior of various systems without 

sacrificing accuracy. It also allows for forecasting the nonlinear dynamic behavior in a reasonable 

time horizon in the future based on a certain amount of historical data. Due to these advantages of 

dynamic surrogate models, their applications can be seen in not only engineering design, but also 

many other fields where dynamic predictive models play an essential role, including disease 

transmission modeling [10], medical and environmental science [11], among others.  

In the past decades, various surrogate modeling techniques have been developed to model 

nonlinear dynamic behavior. According to the fundamental differences in the modeling forms, the 

current approaches can be classified into two groups, namely input-output models and state-space 

models [12]. For surrogate models in input-output forms, they are constructed by directly 

describing the relationship between the inputs and outputs based on observation data [12]. For 

state-space models, the surrogate models are represented in state-space forms [12]. The state-space 

model-based methods can be further classified into two categories: linear state-space models and 

nonlinear state-space models. Various mature techniques have been developed for the learning of 

linear state-space models in the field of dynamic system identification [13]. For the learning of 

nonlinear state-space models, it usually requires a nonlinear transformation of a vector of past 

input/output samples to a state vector [14]. Due to the importance of state-space models in control, 

numerous approaches have been developed in recent years using machine learning and/or 

optimization-based methods to learn nonlinear state-space models. For instance, Masti and 

Bemporad developed an autoencoder-based approach for the learning of nonlinear state-space 

models [15]; Deshmukh and Allison proposed a derivative function-based surrogate modeling 

method to learn the nonlinear state-space models [16]; Gedon et al. proposed a deep state space 

model method for learning of nonlinear temporal models in the state-space form [17] , and an 



6 
LA-UR-21-31231 Approved for public release; distribution is unlimited 

 

optimization-based approach is suggested in [18] for system identification of nonlinear state-space 

models. Both the input-output form and state-space form of surrogate models are widely used in 

the analysis and modeling of nonlinear dynamic systems. They have their own advantages and 

disadvantages. The input-output form of surrogate models does not require an explicit definition 

of a Markovian state or any information about the internal states. It is applicable to any type of 

dynamic systems with different complexities since it directly builds a function for the inputs and 

outputs. The disadvantage of the input-output form of surrogate models is that the order of the 

model is high due to the number of lags required to capture the relationship between inputs and 

outputs [18]. The nonlinear state-space form of surrogate models usually has a lower order (i.e. 

lower number of inputs) and is more efficient than its input-output counterparts. But it typically 

requires the definition of internal states and the surrogate modeling methods are much more 

complicated to implement in practice [18].  

This paper focuses on surrogate models of nonlinear dynamic systems in the input-output form. 

In the past decades, a large group of methods have been developed for the modeling of dynamic 

systems in this form. For instance, autoregressive integrated moving average (ARIMA) [19] has 

gained considerable attention due to its predictive capability for time series models. ARIMA is 

derived from the autoregressive models (AR) [20], moving average models (MA) [21], and the 

autoregressive moving average models (ARMA) [22]. In general, the main limitation of these 

model classes is their imposed linear regression on past history and their deficiency in accounting 

for other input variables other than time. The nonlinear autoregressive model with exogenous input 

(NARX) models, which can overcome these limitations,  have been proposed in the dynamics field 

based on artificial neural networks (ANN) [23] and Gaussian process regression (GP) [24]. For 

example, one approach is the surrogate model with nonlinear function approximation, like ANN, 
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support vector regression [25], kernel support vector machine [26], and the other one is tree-based 

ensemble learning algorithm [27], such as decision tree [28] and random forest [28, 29]. In recent 

years, ANN with the robust nonlinear function such as multi-layer perceptron (MLP) network [30] 

has been extensively used in nonlinear dynamic predictive models for various applications. 

However, the lack of dependencies between inputs in the sequence processing affects the accuracy 

in long-term sequence prediction tasks. In contrast, GP models conquer the problems mentioned 

above and provide more accurate predictions in the NARX scheme. In the new era of deep learning 

(DL), various approaches have been proposed recently to construct surrogate models of nonlinear 

dynamic systems. DL surrogate models include, but are not limited to, recurrent neural network 

(RNN) [31], long short-term memory (LSTM) which is a type of RNN [32], convolutional neural 

network (CNN) [33], and hybrid structures that combines different deep neural networks [34]. 

Even though the methods as mentioned earlier have shown good performance in different 

applications, there is no generic surrogate modeling method that is applicable to all nonlinear 

dynamic systems and across different domains. Selecting an appropriate surrogate modeling 

method for a specific nonlinear dynamic system remains an issue that needs to be addressed. With 

a focus on data-driven approaches, this paper performs a comprehensive comparative study of 

different surrogate modeling methods under the NARX scheme to investigate the predictive 

capability of different methods. Four widely used approaches, namely GP-NARX, LSTM, CNN-

LSTM, and CNN with bidirectional LSTM (CNN-BLSTM), are extensively compared using three 

numerical examples to investigate the advantages and disadvantages of different approaches. The 

three examples include a simple mathematical model, a duffing oscillator model, and a Bouc-Wen 

model. It is expected that the finding from this research will provide guidance and reference for 
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the selection of surrogate models to reduce the computational effort in building predictive models 

for the design and analysis of nonlinear dynamic systems. 

The remainder of this paper is organized as follows. Section 2 presents a generalized 

description of nonlinear dynamic models. Section 3 introduces surrogate models studied in this 

paper. Section 4 presents the comparative studies of different surrogate models. Finally, Section 5 

summarizes the results and draws conclusions. 

 

2.  BACKGROUND  

This section first presents the generalized dynamic predictive models in the NARX form. Then, 

various forecasting strategies, including one-step or multi-step methods, are briefly discussed.  

 

2.1 Nonlinear Dynamic Predictive Model 

A generalized nonlinear dynamic predictive model is defined as 

 ( ), ,i i iy f x θ = +  (1) 

where iy  is the output at time step it , ( )f   is a nonlinear mapping from the regression vector ix  

to the output space, θ  is an s-dimensional parameter vector included in ( )f  , the noise i  is used 

to account for the fact that the output iy  will not in practice be a deterministic function of past 

data. The regression vector ix  may be rewritten as [24] 

 ( )1 1 2, , , , , , , ,i i i i q i i i pu u u y y yx  − − − − −=  (2) 

where ,  1, 2, ,i jy j p− =  are the delayed samples of the measured output signal at time steps 

1 2, , ,i i i pt t t− − −
, , 1,2, ,i ku k q− =  are the delayed samples of the measured input signal at time 

steps 
1 2, , ,i i i qt t t− − −

, iu  is the measured input value at the current time step, ( )   is a nonlinear 
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mapping from the measured input and output values to the regression vector, and p  and q  are the 

number of lags in the inputs and outputs, respectively. 

According to the choice of regressors, current nonlinear dynamic predictive models in Eq. (1) 

can be classified into six main categories: (1) nonlinear finite impulse response (NFIR) models, 

which use only delayed input values i ku −  as regressors and are always stable due to the 

deterministic input values [35]; (2) NARX models, which use both delayed output signals 
i jy −

 

and input signals i ku −  as regressors and are also called series-parallel models [36]; (3) nonlinear 

output error (NOE) models, which use the estimation ˆ
i jy −

 of output value 
i jy −

 and input signals 

i ku −  as regressors [37]; (4) nonlinear autoregressive and moving average model with exogenous 

input (NARMAX) models, which use 
i jy −

, i ku − , and prediction error as regressors [38]; (5) 

nonlinear Box-Jenkins (NBJ) models [39]; and (6) nonlinear state-space models [18]. 

 

2.2 Predictive Model Forecast Strategies 

In order to obtain accurate prediction of future of nonlinear dynamic behavior, various 

strategies have been developed to build dynamic predictive models. According to the number of 

future prediction time step(s), the current strategies can be classified into two groups: one-step 

approach and multi-step approach. The one-step approach predicts only the next time step of a 

time series, while the multi-step approach may predict any number of forward time steps. In 

general, the multi-step prediction approach is more likely to be adopted due to its capability of 

providing longer-term predictions, especially for reliability analysis/prognostics purposes. 

The traditional direct multi-step forecasting is usually replaced by recursive strategies for 

multi-step forecasting to improve the prediction accuracy over a long-time horizon. The 
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forecasting models with recursive strategy, in general, are better than the direct multi-step 

forecasting in terms of prediction accuracy and stability [40]. However, to overcome the limitation 

of error accumulation, some new techniques have been developed by integrating different types of 

dynamic models, such as multiple output strategies for multi-step forecasting [41] and the direct-

recursive hybrid methods [42]. In what follows, we briefly review four classical multi-step time 

series forecasting methods. 

2.2.1 Direct multi-step forecast strategy 

The direct multi-step strategy considers a single-output model as follows [43] 

 
1 2

ˆ ( , , , , , ),i h i i i i py f y y yu θ− − −=  (3) 

where 
1[ , , , ]i i i i qu u uu − −= , ˆ

iy  is the predicted output at time step it , ( ),  1, 2, ,hf h H =  is the 

h-th single-output model from a total of H  number of models, ,  1, 2, ,i jy j p− =  are the 

measured output signals at time steps ,  1, 2, ,i jt j p− = , and p  is the number of time lags, as 

mentioned above. Through Eq. (3), predictions of maximally H  time steps are obtained by 

combining predictions from each single-output model. For example, to obtain the prediction of the 

following two steps 1it +  and 2it + , we may develop one model for forecasting at 1it +  and a separate 

model for forecasting at 2it +  as 

 
1 1 1 1 1

2 2 2 1 2

ˆ ( , , , , , ),

ˆ ( , , , , , ).

i i i i i p

i i i i i p

y f y y y

y f y y y

u θ

u θ

+ + − − +

+ + + − +

=

=
 (4) 

The drawback of the direct multi-step forecast strategy in Eq. (3) is that the H  independent 

models result in predictions 1 2
ˆ ˆ ˆ, , ,i i i Hy y y+ + +  without statistical dependencies. It is more 

complicated than the recursive strategy and requires more computational time because of the 

required number of predictive models.  
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2.2.2 Recursive multi-step forecast strategy 

The recursive multi-step forecast strategy learns a one-step model multiple times, where the 

prediction of the previous time step will be considered as one of the inputs at the next time step as 

follows [43] 

 
1 1 1 1

2 2 1 1 2

ˆ ( , , ,..., , ),

ˆ ˆ( , , , ,..., , ),

i i i i i p

i i i i i i p

y f y y y

y f y y y y

u θ

u θ

+ + − − +

+ + + − − +

=

=
 (5) 

where ,  0,1, , 1i jy j p− = −  are the samples of the measured output signal at time step 

,  0,1, , 1i jt j p− = − . In Eq. (5), in order to predict the next two time steps 1it +  and 2it + , the 

recursive multi-step strategy develops a one-step forecasting model ( )f   at time step 1it +  and then 

uses it iteratively by adding the 1
ˆ

iy +  into the input vector for the next forecast at 2it + . 

The recursive multi-step forecast strategy eliminates limitations of the direct multi-step 

forecast method. However, the estimation error will accumulate over time since the predicted 

values are used as inputs instead of the actual ones. The error accumulation would generally 

degrade the accuracy and amplify the uncertainty with the size of the prediction time horizon.  

2.2.3 Direct-recursive hybrid strategies  

The direct-recursive hybrid strategies combine the underlying principles of direct and recursive 

forecasting strategies. When this strategy is employed, the high-dimensional data may be 

considered as input variables. With the proper optimization algorithm, redundant information can 

be deleted to avoid overfitting problems. Based on both direct and recursive strategies, it can 

diminish dynamic system loss [29]. This strategy expands the input variables by replacing the true 

values with predicted ones using the recursive strategy, and it generates separate models with 

distinctive time horizons similar to the direct strategy. Thus, this method overcomes the 

shortcomings of the previous two strategies by avoiding error accumulation and maintaining the 
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dependency of each estimated output. It is worth mentioning that this technique requires higher 

fidelity analysis and complex formulations because it demands the embedding size to be different 

for the whole range of prediction horizons. The hybrid strategy can be described as follows [43] 

 
1 1 1 1 1

2 2 2 1 2

ˆ ( , , ,..., , ),

ˆ ˆ( , , ,..., , ),

i i i i i p

i i i i i p

y f y y y

y f y y y

u θ

u θ

+ + − − +

+ + + − +

=

=
 (6) 

where ,  0,1, , 1i jy j p− = −  are samples of the measured output signal at a time step 
i jt − , 1

ˆ
iy +  and 

2
ˆ

iy +  are the predictions at time step 1it +  and 2it + , 1( )f   and 2 ( )f   are separate predictive models.  

2.2.4 Multiple output strategy 

When the prediction of a time horizon that is longer than that of training data is considered, 

one-step output mapping may ignore the dependency between future predictions (e.g., between 

1
ˆ

iy +  and 2
ˆ

iy + ) and degrade the prediction accuracy. Therefore, multiple output strategy has the 

potential to overcome this drawback. The multiple output strategy trains one emulator to predict 

the forecast sequence in a single surrogate model [43].  The multiple output model is given by 

  1 2 1 2 1 1
ˆ ˆ ˆ,  , , ( , , , , ,  , ,  , ),i i i r i i i r i i i py y y f y y yu u u θ+ + + + + + − − +=  (7) 

where 1 2
ˆ ˆ ˆ,  , ,i i i ry y y+ + +  are the predictions at time step 1 2,  , ,i i i rt t t+ + + , and r  is the total number 

of predicted time steps. Practical applications show that multi-output models are complex and do 

not have enough flexibility since the stochastic dependency behavior must be learned. 

 

3. SURROGATE MODELING FOR NONLINEAR DYNAMIC SYSTEMS 

This section first discusses the generation of training data for surrogate modeling of nonlinear 

dynamic systems. Following that, we briefly review four surrogate modeling techniques for 

nonlinear dynamic systems, including GP-NARX, LSTM, CNN-LSTM, and CNN-BLSTM.  
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3.1 Training Data Generation for Surrogate Modeling of Nonlinear Dynamic Systems 

After considering the benefits of different forecasting strategies and nonlinear dynamic structures, 

this paper investigates dynamic surrogate modeling for long-term prediction using recursive multi-

step forecasting strategy based on short-term training data. The dynamic output is characterized 

by the controllable inputs and multi-step outputs of previous time steps and iterated by the single-

period prediction result. All data in this paper are collected synthetically through simulations for 

verification and validation purpose. This paper uses the uniform time steps in the predictive model 

and controllable inputs. However, the time step sizes are different for different case studies.  

Fig. 1 shows an overview of surrogate modeling for nonlinear dynamic systems. As shown in 

this figure, there are five main steps, namely: (a) generation of input training data, which generates 

training data for dynamic system model parameters and excitations; (b) training data collection, 

which obtains data of output based on simulations of dynamic systems; (c) data preprocessing, 

which processes the data into the format that is needed for the training of various surrogate models; 

(d) surrogate modeling training using the processed data; and (e) prediction and validation, which 

uses the trained surrogate model for prediction under new conditions and excitations. Next, we 

briefly explain the first three steps, and following that, we will discuss the training of various 

surrogate models in Secs. 3.2 through 3.5.  

-------------------------------- 

Place Figure 1 here 

-------------------------------- 

As shown in Fig. 1, training data generation is essential in training surrogate models for 

nonlinear dynamic systems. This paper first generates   training samples for model parameters 
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θ  using Latin Hypercube sampling (LHS) [44]. Let the generated training samples be 

, 1, 2, ,i iθ = , where iθ  represents the i-th training sample. Then, for each sample iθ , as shown 

in Fig. 1(b), we obtain a time-series response 
, , 1, 2, ,i j iy j N=  with controllable time-series 

inputs 
, , 1, 2, ,i j iu j N= , in which iN  is the length of the controllable input excitations of the i-

th training sample.  

After that, we process the data of inputs and outputs into training data for surrogate modeling 

by following the NARX scheme as follows (i.e., Fig. 1(c)) 

 

(1) (1)

( ) 1

( ) ( )

, 1 , 1 , 1

, 2 , 2 , 2( ) ( ) ( ) 1( ) ( )

,, ,

, ,

where

, ,

  

T T

i i

ii i

N p q s N

i p i p i i p

i p i p i i pN p p q s N pi i

i Ni N i N i

y

y

y

z y

Z Y

z y

u y θ

u y θ
z y

u y θ

 

 + + 

+ + +

+ + +−  + + − 

   
   

=  =    
   
   

   
   
   =  = 
   
   
     

1

, , , 1 , 1

1

, , 1 , 2 ,

1, ,

[ , , , ] ,

[ , , , ] , 1, ,

q

i p m i m p i m p i m p q

p

i p m i m p i m p i m i

i

u u u

y y y m N p

u

y





+ + + − + + −



+ + − + −

 =

= 

=  = −  (8) 

in which 
1

( )T i

i

N N p


=

= −  is the total number of training points and s  is the number of 

dimensions of θ . 

The above-generated training data are then used to train various surrogate models for the 

nonlinear dynamic system in Secs. 3.2 through 3.5. Fig. 2 presents a single-step univariate dynamic 

predictive model schematic after the surrogate modeling (i.e., Fig. 1(e)). As indicated in this figure, 

the emulator predicts the future values; meanwhile, observed values were replaced by forecasting 

from the last period. Thus, for example, 2
ˆ

iy + is the predicted output in the second iteration 
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2 2 1, 3 1 , 2 2
ˆ ˆ( ( , , , , , ) )i i i i q i i i p iy f u u u y y y v+ + + − + + − + += + , and the first iteration output 1

ˆ
iy +  is in place 

of 1iy + . All the controllable inputs switch from the actual values to the estimated ones with the 

incremental recursive scheme. Meanwhile, predictions are iterated in the recursive procedure with 

input variables to address error accumulation to a certain extent.  

Next, we will briefly review the four types of surrogate modeling techniques studied in this 

comparative paper, including GP-NARX, LSTM, CNN-LSTM, and CNN-BLSTM. 

-------------------------------- 

Place Figure 2 here 

-------------------------------- 

3.2  GP-NARX 

3.1.1 Brief review of GP-NARX 

As discussed above, a NARX model can be represented as 

 
( )

1 1 2

, ,

, , , , , , , ,

i i i

i i i i q i i i p

y f

u u u y y y

x θ

x



− − − − −

= +

 =  

 (9) 

where 2(0, )i vN   is the white Gaussian noise following a normal distribution with zero mean 

and standard deviation v , p  and q  are respectively the lags in the output and input values. 

Since the nonlinear mapping function ( )f   is usually a simulation model that requires 

substantial computational effort to evaluate, the direct application of the NARX model to dynamic 

system analysis, design, and control is computationally prohibitive. To address the computational 

challenge, ( )f   can be substituted with a computationally "cheaper" surrogate model. In the GP-

NARX surrogate model, the probabilistic and nonparametric Gaussian process (GP) model is 

employed to approximate the nonlinear mapping function ( )f  .  
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The response over the prediction space is assumed to be a Gaussian process in the GP model 

with the mean function ( ), where [ , ] p q sm z z x θ
+ +=   and covariance function ( , )k z z  given by 

 
 

( )( )

( ) ( ) ,

( , ) ( ) ( ) ( ) ( ) .

m f

k f m f m

z z

z z z z z z

=

  = − −  

 (10) 

For measured input matrix 
( )(1) ( ), , T

T
N p q sm

Z z z
 + + =   , where ( )i

z  is the i-th input vector 

at the certain discrete time step of TN  discrete time steps, we can have the prior GP for function 

( )f Z  as  

 ( )2( ) , ,
Tf f n Nf Z m Σ I+  (11) 

where 
fm  is the mean vector and 

fΣ  is the covariance matrix obtained by evaluating Eq. (10) for 

all input Z , 2

n  is the variance of white noise i , 
TNI  is an T TN N  unit matrix. We can generally 

have 
fm 0  , especially when we have no prior information. After observing the measured output 

data of Z , i.e.  ( , )Z y= , where 1, , , ,
T

T

i Ny y yy  =   , the posterior distribution of function 

( )f z  given measured data  and hyperparameters   is given by 

 
( | , ( ), ) ( ( ) | )

( ( ) | , , ) ,
( | , )

L f p f
p f

p

y Z z z
z Z y

y Z

 
 =


 (12) 

where ( | , ( ), )L fy Z z   is the likelihood, ( ( ) | )p f z   is the prior given hyperparameters  , 

( | , )p y Z   is the evidence, and ( ( ) | , , )p f z Z y   is the posterior distribution over ( )f z .  

The implementation of Bayesian inference in Eq. (12) may be analytically intractable due to 

the evaluation of multiple integrals; one can estimate the hyperparameters   by maximizing the 

marginal likelihood [45]. After estimating the hyperparameters  , for any unobserved input *
z , 

we have the following joint distribution. 
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 (13) 

where *( , )K Z z  is a covariance vector between *
z  and input vector Z .  

By transforming the joint distribution to Gaussian condition distribution * *( | , , )p y z  , we 

can obtain the following mean and variance prediction for *
z  

 
( )

( )

1
* * T 2

1
* * * * * T 2 *

( ) ( , ) ,

cov( , ) ( , ) ( , ) ( , ).

T

T

f n N

f n N

m

k

z K Z z Σ I y

z z z z K Z z Σ I K Z z





−

−

= +

= − +

 (14) 

After the GP model is constructed, the GP-NARX model is written as 

 
( )

( )

1 1 2

1 1 1 1 1 1

ˆ , , , , , , , , ,

ˆ ˆ, , , , , , , , .

i GP i i i q i i i p i

i GP i i i q i i i p i

y f u u u y y y

y f u u u y y y

θ

θ





− − − − −

+ + − + − − + +

= +

= +
 (15) 

3.1.2 Sub-sampling for GP-NARX construction with a large volume of data 

For high-rate time series/dynamic systems, a large volume of training data will be collected 

using Eq. (8). This will drastically increase the computational effort for both the training and 

prediction of the GP-NARX model. Aiming to address this challenge for GP-NARX surrogate 

modeling, this paper proposes a sub-selection method based on the max-min algorithm [46, 47]. 

In the max-min method, training points are selected by maximizing the minimum distance between 

a new point and all currently available training points as 

 
2

max{min[ ]},
t

t

new
z Z z

z z z


= −   (16) 

where t
z  denotes all currently available training points and 

2
 is the l2-norm of a vector. Thus, 

this algorithm allows us to evenly fill the design domain with a small number of representative 

points of the original training data.  
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In order to sub-select SN  samples from the TN  available samples given in Eq. (8), we first 

randomly select inN  samples and denote the selected inN  samples as 
1 2[ , , , ]

in

t t t t

Nz z z z=  , where 

t

jz  is the j-th selected point. To sub-select the other S inN N−  samples from the T inN N−  available 

samples, we first compute the minimum distances between samples in t
z  and samples in Z  (i.e., 

Eq. (8)) as follows 

  
2

min ( ) , 1, 2, , ,t

k j T in
j

l k k N Nz z= − = −   (17) 

where ( )kz  is the k-th sample in Z . 

With the minimum distances obtained from Eq. (17), the index of a new sample is then 

identified as 

 
* arg max{ }.k

k

i l=   (18) 

Based on the identified index, the new sample is then added to the selected training samples 

t
z . This process continues iteratively until SN  samples are sub-selected. Using the sub-selected 

samples, a GP-NARX surrogate model can be trained by following Eqs. (10) through (14). 

 

3.3  Long Short-Term Memory (LSTM) 

Recently, deep neural networks (DNNs), such as LSTM and CNN, have emerged as new 

modeling methods of temporal or sequential characteristics. It has been widely applied in various 

domains, such as product searching [48], advertising [49], image recognition [50], etc.  

Even though LSTM, CNN-LSTM, and CNN-BLSTM belong to different types of RNNs, they 

resemble a mapping feedforward neural network using similar algorithms. For different databases, 

the models have different hyperparameters and weights in different layers. This paper employs a 
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many-to-one RNN for prediction. Fig. 3 below shows an example of a many-to-one RNN with one 

hidden layer. In this figure, ( )a wx b= + , where w and b are weights, ( )   is the activation 

function (i.e., sigmoid function in this example). 
1 2[ , , , ]

TNx x x  are inputs to the input layer and 

ŷ  is the output of the output layer. As mentioned above, this paper will investigate various 

methods to construct accurate surrogate models for nonlinear dynamic systems. In the following, 

we will briefly introduce the LSTM method, which is one of the commonly used variants of RNN. 

LSTM, as a variant of RNN, is widely used for solving classification and regression problems, 

such as PM2.5 prediction [51] and traffic flow prediction [52]. It not only performs well in 

capturing short-term data dependencies for prediction, but also adequately account for the explicit 

dependence of multiple outputs over the long-time horizon. Comparing with the traditional RNN, 

LSTM overcomes the shortcoming of insufficient long-term dependence in RNN due to the 

exploding gradient resulting from gradient propagation. Fig.4 shows the structure of an LSTM cell. 

As shown in this figure, in each LSTM cell, there are an input gate, a forget gate, and an output 

gate. The forget gate determines the information whether it should be got rid of; the input gate 

determines the new information, which consists of actual observed values after iterations by a 

dynamic model; and the output gate decides the values to the next neuron will be computed using 

the activation function. 

-------------------------------- 

Place Figures 3 and 4 here 

-------------------------------- 

The standard LSTM architecture comprises multiple hidden layers, which consist of input 

layers and output layers. For more complex LSTM models, it can add more layers such as dropout 

layers which can reduce the computational time. Furthermore, specific LSTM layers contain a 
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series of LSTM cells, and each cell has its algorithm. In an LSTM network, it designs time step t 

(t=1, 2, …, n, where n is the number of time steps) and network layer L (L=1, 2, …, LN , where 

LN  is the number of LSTM layers). Let us denote, at time step it , the input gate, forget gate, and 

output gate as , ,i ii f and io , respectively, ih  as a hidden layer output and ic  as the memory cell 

state.  The relationships among the above variables are given as follows: 

 1( ),i xi i hi i ii W I W h b −= + +  (19) 

 
1( ),i xf i hf i ff W z W h b −= + +  (20) 

 1( ),i xo i ho i oo W z W h b −= + +  (21) 

 1
ˆ ( ),i xc i hc i cc tanh W z W h b−= + +  (22) 

 1
ˆ ,i i i i ic f c i c−=  +   (23) 

 tanh( ),i i ih o c=   (24) 

where   represents the element-wise process operation (Hadamard product), tanh represents the 

hyperbolic tangent function, W with two subtitles matrixes are weights between two gates, W
is 

the weight with different gates, b  is the bias vector, where { , }X h =  and { , , , }f i c o = . For 

example, ( )l

hfW represents the l-th layer of LSTM's weight matrices equaling to the input vector ih  

within the forget gate if ; ( )l

fb denotes the l-th layer of LSTM's bias vector corresponding to the 

forget gate. 

For the first step, in Eq. (20), the input data 
1{ , }l l

i iz h −
 goes through the forget gate (σ sigmoid 

function), and it discharges a vector with the value of 0 and 1 to determine the latter information. 

It forgets the value 
1

l

ic −
 when the vector value is 0, while passing 

1

l

ic −
 value when the vector value 

is 1. Then the next step determines what information can be added to îc  by using the hyperbolic 
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tangent function in Eq. (22). Afterward, in Eq. (23) the elementwise Hadamard product function 

combines îc  and ii  to update the new memory state outputs l

ic . Lastly, this single LSTM cell’s 

outputs l

ih  can be obtained through Eq. (24) using the Hadamard product function with updated 

memory outputs l

ic  (scaled within value between -1 and 1) and output gate results l

io .  

Fig. 5 depicts a three-layer LSTM architecture. In the three layers of Fig. 5, the input states are 

denoted as 
1 2[ , ,..., ,..., ]

Tj Nz x x x x= , and the output is ŷ , where m is the total number of input or 

output datasets. p1, p2, p3 are respectively the neural number of layers one, two, and three. In each 

LSTM layer, LSTM cell output  ,l l

i ic h  passes through pl nodes according to the LSTM cell 

algorithms, and output l

iy  equals the l-th hidden state response l

ih , which is transferred to the next 

LSTM layer for the input state. Finally, the fully connected (FC) layer connects the LSTM and 

output layers to obtain output features. 

-------------------------------- 

Place Figure 5 here 

-------------------------------- 

Besides, the dropout layers can be added after each RNN layer to reduce the training time and 

avoid overfitting. The main idea of the dropout is to exclude input and nodes with a certain 

probability randomly. Fig. 6 (a) and (b) illustrate a standard neural network and the network after 

dropout. 

-------------------------------- 

Place Figure 6 here 

-------------------------------- 
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3.4 Convolutional Neural Network Combined with Long Short-Term Memory (CNN-LSTM) 

CNN-LSTM is a hybrid model combines two different deep learning models, which integrates 

large data features and even spatial data structures with more than two dimensions. CNN is 

designed to perform sequential predictions using inputs like pictures and videos which cannot 

directly be modeled by the standard LSTM [53]. In CNN-LSTM, the jointly constructed model by 

CNN and LSTM works in three steps to perform dynamic surrogate modeling. For CNN, it can 

extract features of dynamic models. Then features collected by CNN are transferred to the 

following layers, such as LSTM layers or deeper LSTM network for bidirectional feature learning 

(BLSTM) in the forward and backward directions. Then the dense layer is used to represent the 

features and transfer them to the prediction layer. 

Unlike the standard RNN, CNNs are constructed with neurons like LSTM neurons that can 

capture the features through learnable biases and weights. As shown in Fig. 7, the difference 

between CNN with traditional ANN is that the input of CNN can be three dimensions: width, 

height, and depth, which are widely used when images are inputs. In this paper, CNN transfers the 

inputs from one dimension into two or three dimensions to get a higher prediction accuracy. 

Moreover, the final output layer of CNN will reduce the multiple vectors into a single vector, all 

the temporal features of the dynamic models can be preserved for the following neural networks 

(i.e., LSTM).  

 

-------------------------------- 

Place Figure 7 here 

-------------------------------- 
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Fig. 8 shows an example of a CNN-LSTM architecture. The input state for the model is 

1 ( )p q s
Z

 + +  . O filters  1 2, ,..., OW W W are implemented in convolution operations. The process 

of convolution learning is written as 

 1 2( *{ , ,..., } ),O cWL W W W bZ= +  (25) 

where WL is the feature map setting in the convolutional layer,  is the activation function (ReLU 

function with max (0, x)), cb  is the bias of the convolutional layer, * represents the convolutional 

operation.  

Then all the collected convolutional features maps 1WL   (through  time steps) are 

transferred into LSTM layers, which has been discussed in Sec. 3.3. As shown in Fig. 8, a CNN 

model is adopted for feature extraction in the first half part, while an LSTM model is adopted for 

prediction in the other half part with the extracted dataset from the CNN layers as inputs. Through 

this hybrid structure, the prediction for the current step will be added into the observed values as 

part of the following control input according to the recursive prediction scheme discussed in Sec. 

2 to perform long-term prediction for the future time steps.  

-------------------------------- 

Place Figure 8 here 

-------------------------------- 

 

3.5  CNN-Bidirectional Long Short-Term Memory (CNN-BLSTM) 

Bidirectional long short-term memory (BLSTM) is an extension of traditional LSTM. Instead of 

having only one forward direction like LSTM, it establishes two training directions, as shown in 

Fig. 9, where one is in the input order, and the other one is in a reversed order of the initial one. 
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Fig. 10 illustrates the structure of CNN-BLSTM. The only difference between CNN-LSTM 

and CNN-BLSTM is to replace LSTM with bidirectional LSTM. In this paper, two bidirectional 

LSTM layers are stacked together to get the hidden gate output as below: 

 
1 1

1 1

1 1 1 1

( ( , ), ( , )), 1
,

( ( , ), ( , )), 2

l l

t tl

t l l l l

t t t t

WL h WL h l
h

h h h h l

  

  

− −

− −

− − − +

 =
= 

=

 (26) 

where l

th is the hidden gate output of the l-th bidirectional response at the time step t, h is forward 

direction of bidirectional layer, h is backward direction of bidirectional layer,   is the LSTM cell 

(from Eq.(16) to (21)), and  is the function of combined forward ( h ) and backward ( h ) direction 

calculation sequences.  

-------------------------------- 

Place Figures 9 and 10 here 

-------------------------------- 

The surrogate model constructed using CNN-BLSTM is similar to that from CNN-LSTM. 

 

3.6 Summary of Models and Implementation Procedure 

In this paper, all the above four models are implemented in Python environment. For GP-

NARX, the model is developed based on Scikit-learn package. For LSTM, CNN-LSTM, and 

CNN-BLSTM, the models are implemented using Tensorflow and Keras packages. In the spirit of 

the “Occam’s Razor” principle, when presented with competing models that perform with similar 

predictive power, the ‘optimal’ model should be the one with the least complexity, by some 

measure, which we interpret to mean tunable parameters for the purposes of this study. To this end, 

we summarize the tunable parameters, advantages, and disadvantages of GP-NARX and deep 

learning-based models in Table 1 for the selection of models. 
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-------------------------------- 

Place Table 1 here 

--------------------------------   

Next, we will use three numerical examples to perform a comprehensive comparative study of 

the aforementioned surrogate modeling techniques. 

 

4. Comparative Studies 

Three examples are used in this section to compare the performance of different surrogate 

modeling methods. The first one is a mathematical example with a two-step lag input and a one-

step-ahead prediction. The second one is a duffing oscillator model. The last one is the Bouc-Wen 

nonlinear dynamic model. The exemplar complexity increases from Example 1 to Example 3. 

In the past decades, various approaches have been developed to check the accuracy of dynamic 

model prediction, such as mean square error (MSE), correlation and median [54], probabilistic 

error measure using reliability theory [55], and dynamic time warping [56]. Since MSE is the most 

widely used in surrogate modeling, MSE as below is adopted in this paper to measure the 

prediction accuracy of different surrogate modeling methods 

 
2

1

1
ˆ( ) ,

dN

i i

id

MSE y y
N =

= −  (27) 

where dN  is the total number of test data, iy  and ˆ , 1, , ,i dy i N =  are respectively the observed 

and predicted values.  

In addition, the deep learning models (i.e. LSTM, CNN-LSTM, and CNN-BLSTM) in all three 

examples are tuned to achieve the best performance. The dropout rate is tuned in the range of 

[0.001, 0.1] by comparing the performance of four different dropout rates, 0.001, 0.005, 0.01, and 
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0.1. Four different batch sizes (16, 32, 64, and 128) are also compared to determine the best batch 

size for different examples. The performances of LSTM models with different number of layers 

(2, 3, 4, and 5) are also compared in each example to select the best number of layers. The learning 

rate is tuned using 0.0001, 0.001, 0.01, and 0.1. The number of neurons is tuned with 30, 40, 60, 

80, and 100 to select the optimal number of neurons. For the CNN model, two layers are used for 

convolution and pooling. The pooling size for the CNN layer is selected as 2 after comparing the 

performance of three different sizes, namely 2, 3, and 6. Even though the hyperparameters of the 

deep learning models might be different for different problems, the optimal hyperparameters for 

the three studied problems turn out to be the same, which are: dropout rate-0.01, batch size-32, 

number of hidden layers-3, learning rate-0.001, and number of neurons-80. The number of epochs 

is also tuned for each example to ensure the convergence of the loss functions. The required 

tunning effort for the deep learning models in general is much higher than that of GP-NARX. 

 

4.1 Example 1: A Mathematical Example 

A mathematical nonlinear dynamic predictive model is given by   

 
21

2 1

2

cos 0.8sin( ) ,
2

i
i i i i

i

y
y y y v

y

−
− −

−

 
= + + + 

+ 
 (28) 

where iv  is noise and follows the normal distribution 2  (0, )i vv N  , 0.1v = , and iy  is the 

response at the i-th time step. 

As shown in Eq. (28), it is a two-step lag nonlinear dynamic model. Since the input only 

includes outputs from previous time steps, it can be considered as a one-dimensional NARX model. 

In order to compare the performance of the four different surrogate modeling methods, the 

predictive model given in Eq. (28) is assumed to be unknown. Therefore, surrogate models are 
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constructed using training data generated using the predictive model. In this case study, five 

trajectories of time series data are generated using Eq. (28) as the training data. The first two-time 

step responses of the five-time series are respectively [0.6,1.2] , [1.2, 0.6]− , [0, 0] , [ 1.2, 1.2]− − , 

and [ 0.6, 0.6]− . The time series lengths are 20, 50, 50, 30, and 50, respectively. Through the five 

training time series, 195 training samples are obtained. Fig. 11 presents the five-time series training 

data. 

Based on the training data given in Fig. 11, four surrogate models are constructed using GP-

NARX, LSTM, CNN-LSTM, and CNN-BLSTM, respectively, following the methods discussed 

in Sec. 3. Two scenarios, namely with subsampling and without subsampling, are considered to 

compare the performance of different surrogate models. For surrogate modeling with subsampling, 

150 training points are sub-selected from the available data. Since the total number of training data 

is small, it allows us to train the GP-NARX model using all the training data for the scenario 

without subsampling. In order to quantitatively quantify the accuracy of different surrogate models, 

Table 2 gives the MSE comparison of the four surrogate models with subsampling for 14 testing 

cases. Following that, Table 3 lists the MSE comparison for the scenario of surrogate modeling 

without subsampling.  

-------------------------------- 

Place Figure 11 here 

-------------------------------- 

-------------------------------- 

Place Table 2 here 

--------------------------------   
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Comparing the results in Tables 2 and 3, it shows that increasing the number of training data 

in general can increase the accuracy of all four types of surrogate models. Since GP-NARX model 

can be trained using all the training data, we focus on the results in Table 3 for the comparative 

study. The results in Table 3 indicates that GP-NARX has a higher prediction accuracy than the 

RNN models (i.e., LSTM, CNN-LSTM, CNN-BLSTM) in general, when the period of dynamic 

prediction is long. For example, the MSE of GP-NARX prediction is 0.0038 while its counterpart 

of the RNN models is over 0.01 when the prediction period is 200-time steps (i.e., Case 8). When 

the period for prediction is 40-time steps (i.e., Case 1), the MSE of GP-NARX is over 0.03 while 

that of RNN models is less than 0.015, as shown in Table 3.  

Fig. 12 presents the comparison of surrogate model prediction and true response for one testing 

case for the scenario of surrogate modeling without subsampling.  Following that, Fig. 13 gives 

the corresponding prediction errors of the four surrogate models for the testing case. The results 

plotted in Figs. 12 and 13 show that the predictive model constructed using LSTM has the highest 

prediction accuracy for this particular testing case.  

-------------------------------- 

Place Table 3 here 

--------------------------------   

It can be concluded from this particular mathematical example that the GP-NARX constructed 

based on the time series given in Fig. 11 is more suitable than RNN models for the prediction of 

long periods. On the other hand, RNN models, including LSTM, CNN-LSTM, and CNN-BLSTM 

models, are more suitable for predictions that have a similar data shape or distribution as the 

training data. For instance, the lengths of the training time series are between 20 to 50, and the 

RNN models have a higher prediction accuracy than GP-NARX when the number of prediction 
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time steps is close to that range. In addition, the results in Table 3 show that the prediction 

capability of RNN models is more robust than that of GP-NARX for this particular example, which 

is manifested as a lower average MSE value and a more stable performance. 

-------------------------------- 

Place Figure 12 here 

-------------------------------- 

-------------------------------- 

Place Figure 13 here 

--------------------------------   

 

4.2 Example 2: An Asymmetric Duffing Oscillator  

An asymmetric duffing oscillator is adopted from Ref. [24] as our second example. It is a 

nonlinear second-order differential equation used to model certain damped and driven oscillator, 

which exhibits chaotic behavior and describes the dynamics of a point mass in a double well 

potential [57].  The equations of motion are given by   

 

2 3

2 3

2

( )

( ),

, (0, ),i obs i i i v

y cy ky k y k y u t

y y v v N





+ + + + =

= +
 (29) 

in which ( )u t  is the input excitation given by 

 ( ) ( ) ( )( )( ) ( ) ( ) ,3 2 2 1 2u t a cos bt sin b t a cos bt sin bt=  + + + +  + +  (30) 

where 62 10v
−=  ,  =1, c=10, k=2×104, k2=107, and k3=5×109. For demonstration purpose, a, b, 

and c are treated as controllable model parameters that can be changed for different experiments, 

and thus we have θ [ , , ]a b c= . 
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In order to generate training data for the surrogate models, we first generate 60 training data 

for θ with a lower bound θL {2,0.1,0.1}  and an upper bound θU {25,10,15}  using the Latin 

Hypercube sampling method, and we have   = 60 in Eq. (8). The range of θ is only used for 

demonstration purpose in this paper. In probabilistic analysis or design of nonlinear dynamic 

systems, the range needs to be determined according to distributions of θ. For each training dataset 

of θ, excitations of u(t) are generated after adding noise to Eq. (30) based on the values of a and b. 

The length of each u(t) is around 2000, and therefore we have { |1200 2500}i i iN n n=   ,

1, 2, , 60i =  in Eq. (29). For each excitation and training data of c, we solve Eq. (29) using the 

fourth-order fixed-step Runge-Kutta algorithm and obtain the responses of y. Fig. 14 shows one 

example of the 60 training excitations corresponding responses of y. 

-------------------------------- 

Place Figure 14 here 

--------------------------------   

Through cross-validation and after comparing the performance of surrogate models with 

different numbers of lag ranging from 5 to 15, it is found that a time lag of nine for both input 

excitation u(t) and output y(t) gives the best prediction accuracy in surrogate modeling for all four 

types of surrogate models. We, therefore, have p=9 and q=9. Following the procedure discussed 

in Sec. 3.1, we obtain training data for surrogate modeling. Through the 60 training time series, 

100211 training samples are obtained. The large volume of training data makes the training of GP-

NARX computationally very challenging. We, therefore, perform subsampling of the training data 

using the approach discussed in Sec. 3.1.2. From the subsampling, 900 training data are sub-

selected for the training of GP-NARX while maintaining the space-filling property. Fig. 16 shows 

a comparison between the sub-selected samples and the original samples for two dimensions of 
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the training data (i.e., u1 v.s. y1 and u3 v.s. y3). As shown in this figure, the subsampling method can 

well-maintain the space-filling property while reducing the number of training data.  

-------------------------------- 

Place Figure 15 here 

--------------------------------   

The sub-selected training data are used to train GP-NARX, LSTM, CNN-LSTM, and CNN-

BLSTM models. Additionally, another set of LSTM, CNN-LSTM, and CNN-BLSTM models are 

trained using all the training data. We therefore have one GP-NARX model trained based on 

subsampling, two sets of LSTM, CNN-LSTM, and CNN-BLSTM models respectively trained with 

and without subsampling. After training the surrogate models, we randomly generate eight samples 

for θ = [a, b, c] according to the lower and upper bounds. Based on that, eight random input 

excitations are obtained using Eq. (30). We then assume that the original dynamic model is 

unknown and compare predictions of surrogate models with responses of the original dynamic 

model for the eight testing datasets. Since the results of LSTM, CNN-LSTM, and CNN-BLSTM 

models with subsampling are much worse than that of deep learning models without subsampling, 

GP-NARX with subsampling is directly compared with LSTM, CNN-LSTM, and CNN-BLSTM 

models trained using all available training data. Table 4 gives the MSE comparison of the four 

surrogate models for all eight testing cases. The average MSE for these eight-test datasets is 

2.29×10-08 for GP-NARX, the best among the four studied surrogate models. In addition, the deep 

learning models (LSTM, CNN-LSTM, and CNN-BLSTM) have similar performances. Thus, the 

results in Table 4 show that GP-NARX has a higher prediction accuracy than the other methods 

for this particular example. In addition, GP-NARX has a stable performance when the data changes 

drastically over long periods.  
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-------------------------------- 

Place Table 4 here 

--------------------------------   

Figs.16 presents the comparison of predictions and the true responses for one of the eight 

testing cases. Following that, Fig.17 shows the corresponding kernel density estimates of error 

distribution for the four surrogate models. The results in Figs. 16 and 17 show that the predictive 

model constructed using GP-NARX has the highest prediction accuracy for this testing case (i.e. 

Case 1 in Table 4).  

----------------------------------- 

Place Figures 16 and 17 here 

-----------------------------------   

 

4.3 Example 3: The Bouc-Wen Model 

In structural engineering, many nonlinear inelastic material behaviors are of interest in 

structures such as reinforced concrete, steel, base isolation systems, damping devices, etc [58]The 

Bouc-Wen model, proposed by [59, 60],  and extended by [61], is used in this work as the third 

example due to its flexibility to capture the behavior of many inelastic material models by just 

changing its tunable parameters.  

There are different variants of the Bouc-Wen model. However, the model and notation shown 

in [62] have been adopted in this work. To describe this model, consider the single degree of 

freedom (SDOF) system: 

 ( ) ( ) ( ( ), ( )) ( ),

( )

x t x t F x t x t t

F t

  + + =   (31) 
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where x(t), ( )x t , ( )x t  are the displacement, velocity, and acceleration response of the SDOF 

system, respectively. Also,  ,  , and ( )t  represent the mass, damping coefficient, and 

excitation force, respectively. The term ( )F t  is the restoring force, which according to the Bouc-

Wen Model, can be expressed as follows: 

 ( ) ( ) (1 ) ( ),i iF t k u t k z t = + −   (32) 

where   denotes the ratio between the post-yield stiffness and the pre-yield stiffness (i.e. ik ) and 

( )z t  denotes a non-observable hysteretic displacement. As noted, Eq (32) is modeled as the sum 

of a linear and a nonlinear function.  

The nonlinear function is obtained by solving the following nonlinear differential equation 

 
1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,z t x t x t z t z t x t z t
 

 
−

= − −   (33) 

which may be solved by using iterative methods to approximate its solution. The variables  ,   

and   are the Bouc-Wen tunable parameters that are used to model several different materials. For 

more details on applying the Bouc-Wen Model to an MDOF, the reader can refer to [4]. For this 

work, these values are set as constants. Fig. 18 shows an example of input excitation and 

corresponding dynamic responses for a two-story building nonlinear dynamic system. 

In this example, we first generate 100 random excitations as the training time series. Based on 

the training excitations, 29011 training samples are obtained. Using the subsampling approach 

discussed in Sec. 3.1.2, 2000 training data are sub-selected. Similar as that in Example 2, a GP-

NARX model is trained using the sub-selected training data and two sets of LSTM, CNN-LSTM, 

and CNN-BLSTM models are respectively trained with the sub-selected data and with all available 

training data. The performance of LSTM, CNN-LSTM, and CNN-BLSTM models trained with 

subsampling is also much worse than that trained with all available data. We therefore also only 
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compare GP-NARX trained using sub-selected data with deep learning models trained using all 

available data.  

----------------------------------- 

Place Figure 18 here 

-----------------------------------   

Tables 5 and 6 give the MSE comparison of the four surrogate models for all eight testing cases 

for the drifts of degree of freedom (DOF) 1 and 2. The average MSE of GP-NARX for the eight 

test datasets is 0.011 and 0.017 respectively for the drifts of the two DOFs. It implies that GP-

NARX is the best among the four studied surrogate models for this particular example based on 

this group of training data. In addition, LSTM has the best performance for test case 1 while GP-

NARX has a better overall performance than the other methods.  

-------------------------------- 

Place Tables 5 and 6 here 

--------------------------------   

Fig. 19 gives the random input excitation of a case study that is used to verify the accuracy of 

various surrogate models. Following that, Figs. 20 and 21 present the comparison of surrogate 

model prediction and the true response (i.e., force-displacement hysteresis) for the testing case (i.e., 

Case 4 in Tables 3 and 4). Figs. 22-25 show the comparison of drifts from surrogate model 

prediction and the true response. To more intuitive compare the accuracy of different methods, Fig. 

26 depicts the prediction error distributions of drifts for the four surrogate models. 

----------------------------------- 

Place Figures 19-26 here 

-----------------------------------   
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The results in Figs. 20 through 26 show that the predictive model constructed using GP-NARX 

has the highest prediction accuracy for this particular testing case. Amongst the three deep learning 

methods, LSTM has the best performance while CNN-LSTM and CNN-BLSTM show similar 

performances.  

 

5. Discussion and conclusion 

This paper performs a comparative study for surrogate modeling of nonlinear dynamic systems 

using four types of surrogate models, namely GP-NARX, LSTM, CNN-LSTM, and CNN-

BLSTM. The performances of different surrogate models for multistep-ahead prediction are 

compared using three examples. The results show that (1) GP-NARX in general performs better 

than the other three types of surrogate modeling methods for the three particular examples; (2) the 

performance of GP-NARX is also relatively more robust than the other methods; (3) for some 

cases, deep learning-based surrogate modeling methods (i.e., LSTM, CNN-LSTM, and CNN-

BLSTM) perform better than GP-NARX. But the required tuning effort of deep learning-based 

methods is higher than that of GP-NARX; (4) deep learning-based surrogate modeling methods 

are more suitable for prediction that has a data shape which is similar as the training datasets; and 

(5) all the studied surrogate modeling methods can perform long-term multi-step prediction based 

on training data of short periods. It also demonstrates the promising potential of various machine 

learning methods for surrogate modeling of nonlinear dynamic systems. 

Even though deep learning methods are becoming more and more popular in many fields, they 

do not provide a universal solution to all problems. For instance, deep learning-based methods are 

better than the conventional GP-NARX for several testing cases in the first example. But GP-

NARX in general performs better than deep learning-based methods in the second and third 
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examples. It is not suggested to substitute conventional machine learning methods with deep 

learning methods for surrogate modeling in various engineering applications without detailed 

investigations. It is therefore suggested that for problems that can be solved using conventional 

methods such as GP-NARX, following the “Occam’s Razor” principle, we should employ such a 

method, since the required tuning effort of conventional methods is much lower. Deep learning 

methods (i.e., LSTM, CNN-LSTM, and CNN-BLSTM) have a significant advantage over GP-

NARX in dealing with big data, such as videos, images, and high-dimensional data. Even for big 

data problems, GP-NARX method is still worth investigating after using dimension reduction 

techniques, such as autoencoder, or using subsampling method as what been discussed in this 

paper. The guidance of choosing surrogate models is to always start from the classical GP-NARX 

models whenever it is applicable, since it tends to be more robust and easier to tune than deep 

learning methods. In some situations, deep learning models can be used in conjunction with GP-

NARX to improve the predictive capability. For instance, a CNN model can be used to reduce the 

high-dimensional problems into low-dimensional ones in the latent space, within which GP-

NARX models can be employed to capture of temporal variability over time.  

This paper only compared the performance of various surrogate modeling methods for 

deterministic predictions. Since the confidence of dynamic prediction is usually of interest to 

decision makers, the capability of various methods in providing probabilistic prediction is worth 

investigating in future. In addition, the quality of surrogate models is affected by the data used for 

training, how to collect the most effective data for training surrogate models of nonlinear dynamic 

systems is also a very interesting research topic to be further studied. 
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Table 1 Summary of tunable parameters and features of different model classes 

Model Tunable Parameters Interpretability Dataset size 

GP-NARX Covariance function, likelihood 

covariance noise, and number of lags 

Easy to interpret Computational 

complexity is O(n³) 

LSTM, CNN-

LSTM, CNN-

BLSTM 

Number of layers, number of 

neurons, batch size, number of 

epochs, dropout ratio, activation 

function, weight decay ratio, and 

number of lags 

Ongoing 

research topic to 

develop 

interpretable 

models 

Can handle “big 

data”/very large 

datasets 

 

 

Table 2 MSE comparison of GP-NARX, LSTM, CNN-LSTM, and CNN-BLSTM (Surrogate 

modeling with subsampling) 

Case  Data 

Dimension 

GP-NARX LSTM CNN-LSTM CNN-BLSTM BEST 

1 (40,2) 0.15142 0.02912 0.02915 0.02147 0.02147 

2 (70,2) 0.00620 0.01923 0.01288 0.01113 0.00620 

3 (66,2) 0.02138 0.01661 0.01479 0.01278 0.01278 

4 (80,2) 0.09544 0.01809 0.01409 0.01303 0.01303 

5 (30,2) 0.01953 0.02891 0.01390 0.01288 0.01288 

6 (190,2) 0.00344 0.01414 0.01486 0.01359 0.00344 

7 (150,2) 0.01348 0.00885 0.01007 0.00923 0.00885 

8 (200,2) 0.01510 0.01208 0.01358 0.01309 0.01208 

9 (150,2) 0.00694 0.01402 0.01628 0.01513 0.00694 

10 (300,2) 0.00321 0.01367 0.01317 0.01270 0.00321 

11 (50,2) 0.01329 0.01227 0.01510 0.01516 0.01227 

12 (30,2) 0.00588 0.01020 0.01003 0.00781 0.00588 

13 (45,2) 0.24415 0.04063 0.03120 0.01823 0.01823 

14 (60,2) 0.00668 0.01395 0.01108 0.01012 0.00668 

Average (104,2) 0.04330 0.01798 0.01573 0.01331 0.01331 
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Table 3 MSE comparison of GP-NARX, LSTM, CNN-LSTM, and CNN-BLSTM (Surrogate 

modeling using all available data without subsampling) 

Case  Data 

Dimension 

GP-NARX LSTM CNN-LSTM CNN-BLSTM BEST 

1 (40,2) 0.0354 0.0094 0.0162 0.0110 0.0094 

2 (70,2) 0.0200 0.0096 0.0130 0.0092 0.0092 

3 (66,2) 0.0222 0.0112 0.0128 0.0118 0.0112 

4 (80,2) 0.0231 0.0115 0.0145 0.0100 0.0100 

5 (30,2) 0.0071 0.0104 0.0120 0.0120 0.0071 

6 (190,2) 0.0116 0.0127 0.0145 0.0120 0.0116 

7 (150,2) 0.0106 0.0139 0.0156 0.0125 0.0106 

8 (200,2) 0.0038 0.0145 0.0136 0.0122 0.0038 

9 (150,2) 0.0123 0.0118 0.0141 0.0111 0.0111 

10 (300,2) 0.0076 0.0118 0.0144 0.0103 0.0076 

11 (50,2) 0.0047 0.0104 0.0144 0.0090 0.0047 

12 (30,2) 0.0520 0.0156 0.0197 0.0140 0.0140 

13 (45,2) 0.0870 0.0105 0.0104 0.0086 0.0086 

14 (60,2) 0.0273 0.0083 0.0125 0.0081 0.0081 

Average (104,2) 0.0232 0.0115 0.0141 0.0108 0.0108 

 

Table 4 Comparison of GP-NARX, LSTM, CNN-LSTM, and CNN-BLSTM for Example 2 

Case  Data 

Dimension 

  MSE (×10-8)   

GP-NARX*  LSTM CNN-LSTM CNN-BLSTM  BEST 

1 (3000,9,3) 1.29 28.3 9.59 18.3 1.29 

2 (2500,9,3) 0.31 22.5 5.02 12.5 0.31 

3 (2700,9,3) 3.44 31.8 10.6 32.6 3.44 

4 (2000,9,3) 2.27 45.8 10.4 32.3 2.27 

5 (3100,9,3) 2.75 42.7 10.4 36.3 2.75 

6 (1800,9,3) 2.69 44.5 10.1 32.2 2.69 

7 (1900,9,3) 2.68 44.9 11.5 32.1 2.68 

8 (2100,9,3) 2.93 42.5 10.1 34.7 2.93 

Average (2750,9,3) 2.29 37.9 9.7 28.9 2.29 

* Note that GP-NARX is trained based on subsampling.  
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Table 5 MSE comparison of the four surrogate modeling methods for Drift of DOF1 

Case  Data 

Dimension 

GP-NARX LSTM CNN-LSTM CNN-BLSTM BEST 

1 (520,2) 0.025 0.015 0.178 0.160 0.015 

2 (455,2) 0.022 0.023 0.079 0.085 0.022 

3 (470,2) 0.007 0.027 0.116 0.124 0.007 

4 (438,2) 0.006 0.021 0.074 0.107 0.006 

5 (289,2) 0.009 0.010 0.070 0.071 0.009 

6 (407,2) 0.005 0.013 0.085 0.103 0.005 

7 (518,2) 0.006 0.013 0.089 0.110 0.006 

8 (393,2) 0.008 0.029 0.060 0.049 0.008 

Average (436,2) 0.011 0.019 0.094 0.101 0.011 

 

 

Table 6 MSE comparison of the four surrogate modeling methods for Drift of DOF2 

Case  Data 

Dimension 

GP-

NARX 

LSTM CNN-LSTM CNN-BLSTM BEST 

1 (520,2) 0.031 0.013 0.110 0.169 0.013 

2 (455,2) 0.034 0.060 0.259 0.207 0.034 

3 (470,2) 0.016 0.084 0.151 0.168 0.016 

4 (438,2) 0.012 0.067 0.121 0.130 0.012 

5 (289,2) 0.014 0.020 0.209 0.194 0.014 

6 (407,2) 0.010 0.012 0.073 0.108 0.010 

7 (518,2) 0.012 0.022 0.124 0.120 0.012 

8 (393,2) 0.006 0.023 0.075 0.228 0.006 

Average (436,2) 0.017 0.038 0.140 0.166 0.017 
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Fig. 1 Overview of surrogate modeling for nonlinear dynamic systems 

 

 

Fig. 2 Schematic of recursive single-step prediction for a univariate dynamic predictive model 
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Fig. 3 Many-to-one recurrent neural network 

 

 

Fig. 4 Diagram of an LSTM cell 

 
Fig. 5 A three-layers LSTM architecture 
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Fig. 6 Illustration of dropout in LSTM 

 

Fig. 7 ConvNet Architecture 

 
 

Fig. 8 CNN-LSTM architecture 



52 
LA-UR-21-31231 Approved for public release; distribution is unlimited 

 

 

Fig. 9 Architecture of bidirectional LSTM 

 

 

Fig. 10 Illustration of CNN-BLSTM architecture 
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Fig. 11 Five time-series training data 
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Fig. 12 Comparison of prediction and true response for Case 1 for GP-NARX, LSTM, CNN-

LSTM, and CNN-BLSTM 

 

   
Fig. 13 Comparison of prediction errors for the case given in Fig.12 
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Fig. 14 An example of training excitation and corresponding dynamic response 

 

 

 

 

 
Fig. 15 A comparison of sub-selected training data and the original training data 
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Fig. 16 Comparison of prediction and true response for Case 1 for GP-NARX, LSTM, CNN-

LSTM, and CNN-BLSTM 

 

 

 
Fig. 17 Comparison of prediction error distribution for a testing case 

 

  

GP-NARX LSTM 

CNN-LSTM CNN-BLSTM 
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Fig. 18 An example of random excitation and corresponding dynamic responses 
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Fig. 19 Comparison of prediction and true response of a testing case for GP-NARX, LSTM, 

CNN-LSTM, and CNN-BLSTM 

 

 

 

 

 
Fig. 20 Comparison of prediction and true response of a testing case for GP-NARX, LSTM, 

CNN-LSTM, and CNN-BLSTM (force-displacement hysteresis of story 1) 
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Fig. 21 Comparison of prediction and true response of a testing case for GP-NARX, LSTM, 

CNN-LSTM, and CNN-BLSTM (force-displacement hysteresis of story 2) 

 

 
Fig. 22 Comparison of prediction and true response of drifts for GP-NARX 

 

 
Fig. 23 Comparison of prediction and true response of drifts for LSTM 
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Fig. 24 Comparison of prediction and true response of drifts for CNN-LSTM 

 

 
Fig. 25 Comparison of prediction and true response of drifts for CNN-BLSTM 

 

 

 

Fig.26 Comparison of probability density functions of prediction errors for a testing case 

 




