
UC San Diego
UC San Diego Previously Published Works

Title
Quantifying Gaze Behavior During Real-World Interactions Using Automated Object, Face, 
and Fixation Detection

Permalink
https://escholarship.org/uc/item/5tt7z1qp

Journal
IEEE Transactions on Cognitive and Developmental Systems, 10(4)

ISSN
2379-8920

Authors
Chukoskie, Leanne
Guo, Shengyao
Ho, Eric
et al.

Publication Date
2018-12-01

DOI
10.1109/tcds.2018.2821566
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5tt7z1qp
https://escholarship.org/uc/item/5tt7z1qp#author
https://escholarship.org
http://www.cdlib.org/


IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 10, NO. 4, DECEMBER 2018 1143

Quantifying Gaze Behavior During Real-World
Interactions Using Automated Object,

Face, and Fixation Detection
Leanne Chukoskie, Shengyao Guo, Eric Ho, Yalun Zheng, Qiming Chen, Vivian Meng, John Cao,

Nikhita Devgan, Si Wu, and Pamela C. Cosman , Fellow, IEEE

Abstract—As technologies develop for acquiring gaze behavior
in real world social settings, robust methods are needed that min-
imize the time required for a trained observer to code behaviors.
We record gaze behavior from a subject wearing eye-tracking
glasses during a naturalistic interaction with three other people,
with multiple objects that are referred to or manipulated dur-
ing the interaction. The resulting gaze-in-world video from each
interaction can be manually coded for different behaviors, but
this is extremely time-consuming and requires trained behavioral
coders. Instead, we use a neural network to detect objects, and
a Viola–Jones framework with feature tracking to detect faces.
The time sequence of gazes landing within the object/face bound-
ing boxes is processed for run lengths to determine “looks,” and
we discuss optimization of run length parameters. Algorithm
performance is compared against an expert holistic ground
truth.

Index Terms—Computer vision, eye-tracking, face detection,
gaze behavior.

I. INTRODUCTION

THE EMERGENCE and refinement of social commu-
nicative skills is a rich area of cognitive developmental

research, but one that is currently lacking in objective assess-
ments of real-world behavior that includes gaze, speech, and
gesture. Gaze behavior is especially important during devel-
opment. Shared or joint attention provides a means by which
adults name objects in the child’s field of view [1]. As such,
joint attention is an important aspect of language development,
especially word learning [2]–[4]. Gaze behavior in children
with autism spectrum disorder (ASD) is atypical in terms of
social looking behavior, joint attention to objects, as well as the
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basic timing and accuracy of each gaze shift [5]. Recent studies
report that 1 in 45 individuals is diagnosed with ASD [6].
Disordered visual orienting is among the earliest signs of ASD
identified in prospective studies of infant siblings [7] and it
persists across the lifespan [5]. Humans use gaze as one of
the earliest ways to learn about the world. Any deficit in this
foundational skill compounds, leading to functional difficul-
ties in learning as well as social domains. Difficulty shifting
gaze to detect and respond to these behaviors will lead to a
lower comprehension of the nuanced details available in each
social interaction. Although several different therapies have
been designed to address social interaction [8]–[10], methods
of assessing the success of these therapies have been limited.

The outcomes of social communication therapies must be
evaluated objectively within and across individuals to deter-
mine clinical efficacy. They are typically measured by parent
questionnaire or expert observation, both of which provide
valuable information, but both of which are subjective, may
be insensitive to small changes, and are susceptible to respon-
der bias and placebo effect. Other outcome measures such as
pencil and paper or computer assessments of face or emo-
tion recognition are objective, but measure only a subset
of the skills required for real-world social communication.
These measures are also a poor proxy for actual social
interaction. These deficits impact both research and clinical
practice.

The recent development of affordable glasses-based eye
trackers has facilitated the examination of gaze behavior.
The glasses worn by the subject contain two cameras, an
eye-tracking camera typically located below the eye, and a
world-view camera typically mounted above the eyebrows on
the glasses frame. The glasses fuse a calibrated point of gaze,
measured by the eye-tracking camera, with the world view.
For images displayed on computer screens, many studies have
used eye-tracking to examine what portions of the images
ASD children attend to [11]–[15]. Eye-tracking glasses can
be used during dynamic social interactions, instead of sim-
ply on computer screens. The quantification of interactions
during real-world activities remains challenging. Analysis of
the resulting gaze-in-world video can be done manually, but
labeling and annotating all the relevant events in a 30-min
video takes many hours. Computer vision and machine learn-
ing tools can provide fast and objective labels for use in
quantifying gaze behavior. In addition to the uses in ASD
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and other social or communication-related disorders, quantifi-
cation of gaze for a seated subject in a social interaction can be
useful for evaluating a student’s engagement with educational
material or a consumer’s engagement with an advertisement.
This technology can also be used for training in various kinds
of occupations that involve conversational interactions, such as
instructors, police interviewers, TSA agents, passport officers,
and psychologists.

Here, we report on a system that uses eye-tracking glasses
to record gaze behavior in real-world social interactions. The
system detects objects and faces in the scene, and processes
these sequences together with the gaze position to determine
“looks.” The results are compared to the laborious manual cod-
ing. The closest past work to ours is [16] and [17], which also
involves social interactions and eye-tracking glasses. Their
setup is different, as in their work the investigator wears the
eye-tracking glasses rather than the subject, and can avoid
excessive motion blur and maintain both steady depth and ori-
entation (the child’s face does not go into and out of the scene).
They do not aim at object detection, and have only one face to
detect. Because our naturalistic setup experiences a number of
frame-level detection failures, our algorithm compensates for
these using filtering to bridge gaps in detections. Also the goal
in [16] and [17] is different, as they aim to detect eye con-
tact events rather than looks (extended inspections of regions).
Other related past work is [18] and [19] which combined auto-
matic tracking of areas of interest [20] with manual curation
by human coders to ensure high detection accuracy.

The rest of this paper is organized as follows. The system
operation including methods for detecting faces, objects, and
looks is described in Section II, while creation of ground truth
(GT) and calibration issues are in Section III. We define eval-
uation metrics and provide results in Section IV, and conclude
in Section V.

II. DETECTING OBJECTS, FACES, AND LOOKS

A. System Overview and Data Collection

Fig. 1 presents an overview. The Pupil Labs eye-tracking
glasses (Pupil Pro) produce video frames (24-bit color, 720 ×
1280, 60 Hz) from the world-view camera and gaze position
data at 120 Hz from the eye camera. Gaze data is downsam-
pled to the video frame rate. World-view frames are input to
object and face detection modules, whose outputs are sets of
bounding boxes. The binary sequence of “hits” and “misses”
(corresponding to gaze position inside/outside of the bounding
box) is run length filtered to determine looks to an object or
face. The lighter gray rectangles depict the formation of the
two types of GT. In one approach, humans mark bounding
boxes for each object/face in each frame, without gaze posi-
tion. Boxes and gaze position are then run length filtered to
determine looks, called GT-B looks. In the second approach
(GT-E looks), an expert neuroscientist directly labels looks
by reviewing the video with superimposed gaze position in a
holistic way that would be used in clinical practice.

Data were collected to simulate a structured social conver-
sation in a small room with a table and chairs. Each 2.5–3 min
interaction began with three undergraduate women (two seated

Fig. 1. Overview of the algorithm and GT formation. B-box stands for a
bounding box, GT-B and GT-E are the two types of GT for looks, and TPR
and FPR are true/false positive rates.

Fig. 2. Objects to be detected: photograph, top, and shark (shown on
turntable).

and one standing) across from the participant wearing the
gaze glasses. There were five different participants who wore
the glasses, all female, and all neurotypical undergraduates,
resulting in five videos. After about 15 s, the standing person
leaves the room with the glasses wearer following her depar-
ture. The remaining three women proceed to play a card game
(Taboo) intermixed with looking at each object (frame, shark,
and top), and the two faces. The conversation is natural, with
laughter. There is a considerable amount of head turning and
leaning forward to play cards. Although the glasses wearer is
instructed to avoid large, abrupt movements and does not stand
up during the interaction, the conversation and interaction pro-
ceed naturally otherwise. During the last 30 s, the woman who
had previously exited returns to stand behind the two seated
participants. The glasses wearer is instructed to look at the
person returning to the room.

B. Object and Face Detection

Object detection uses Faster R-CNN [21]. While there are
other convolutional neural net approaches to object detec-
tion (e.g., [22]) Faster R-CNN is convenient and has good
performance. The three objects to be detected are a photo-
graph, a top, and a toy shark (Fig. 2) Training images were
collected using world-view frames at different distances and
elevation and rotation angles, including occlusions and defor-
mations (for the squeezable shark). In total, there were 15 000
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(a) (b)

Fig. 3. (a) Minimum enclosing rectangle for a shark image. (b) Test image
with manual GT bounding boxes drawn.

training images. A minimum enclosing rectangle [Fig. 3(a)]
was manually placed around each object to serve as the GT
during training. We make use of pretrained weights from
VGG-16 [23]. We trained each model with 50 000 iterations
with a base learning rate of 0.001 and momentum of 0.9.
We fine-tuned the models using additional world-view frames.
Performance was gauged by the intersection over union (IoU)
of the bounding boxes from human labelers and Faster R-CNN
outputs.

Face detection and tracking (Fig. 4), executes Viola–Jones
face detection [24] once for each video frame, followed by
the main function block (which consists of Shi–Tomasi cor-
ner detection, eigenfeature tracking with optical flow, tracking
points averaging, and adjustment and reinitialization upon fail-
ure). The main function block is executed M times for each
frame, where M (determined manually) is the number of faces
appearing in the video. The Viola–Jones output is a set of
bounding boxes that may contain faces. At the start (and again
on tracking failure) the Viola–Jones output requires human
intervention to select and label a bounding box containing a
face. After selection, the corner detection module is triggered,
and the tracking loop is engaged. We expect in future work
to use a neural net approach such as [25] and [26] to face
detection, although unlike the object detection which deploys
the same objects during each test session, the face detection
algorithm may have different faces in the room in different
test sessions.

The Shi–Tomasi corner detector extracts features and scores
them [27] using eigenvalues of a characteristic matrix based
on image derivatives. The optical flow of each extracted eigen-
feature is calculated to track it [28]. The average position of
all the trackers is checked against Viola–Jones face boxes
for the next frame. If at least 30% of the tracked points
are not lost, and if the average tracker position is inside
a face box, that is considered a tracking success and the
face box is output; the algorithm then continues the track-
ing loop to the next frame (or moves to a different face if
there is another face being tracked). Trackers will continue
to function even without a valid detected area and will select
the first detected area when available. If 70% of the feature
points are lost, or if the average tracker position is not inside
any detected face boxes, it is considered a tracking failure.
The system then requires human intervention to relocate the
face locations, and the algorithm automatically reinitializes the
trackers. In a 3-min video consisting of approximately 10 000

frames, there are typically 20–30 reinitializations required
(person has to click on the correct face box). The reini-
tialization typically happens because the subject turns her
head and the face exits the field of view, needing reini-
tialization when it comes back into view, or because the
face in the view gets temporarily occluded (e.g., by a hand
or object).

C. Definition and Determination of “Look”

Human gaze behavior is typically composed of steady inter-
vals of fixation interposed with fast reorienting movements
called saccades. When examined coarsely (granularity of about
2 degrees of visual angle for the viewer), the periods of steady
fixation can last between about 200 ms and several seconds
depending on the task and level of detail of the object being
fixated. At a finer scale, gaze behavior shows a similar pat-
tern of steady fixation and interposed micro-saccades, typically
defined as fast orienting movements of less than 1 degree
of visual angle. Upon even closer inspection the periods of
apparently steady fixation are composed of ocular drift and
ocular tremor. Essentially, the eye is constantly moving, as a
completely stabilized retinal image fades quickly. The visual
system is built to respond to contrast, not stasis. For these rea-
sons, the usual terms associated with the physiology of gaze
behavior are not terribly helpful for describing the more cogni-
tive concept of an extended inspection of an object or region.
Such an inspection typically involves an aggregated series of
fixations and small reorienting saccades or microsaccades. We
call this a look; it is defined not in physiological terms, but
instead with reference to the object or region under examina-
tion. For example, we might usefully describe a look to a face,
but might employ a finer scale look to the right eye, when that
level of analysis is appropriate.

The object and face detection modules produce bounding
boxes around objects and faces in the video frames. For any
single object (or face), if the algorithm produces a bounding
box in frame i for that object, and if the gaze position is
within that bounding box, that frame is considered a hit for
that object. Otherwise, it is a miss. The hit sequences for each
object/face are run length filtered to determine looks. A run
of at least T1 hits is needed to declare a look, and the first
hit position is the start of the look. With a run of T2 misses
in a row, the look is considered terminated, and the last hit
position is the end frame of the look. The choice of T1 and
T2 is discussed in Sections III-C and IV.

III. GROUND TRUTH

GT represents a determination of the true presence of faces
and objects and the number and length of looks. GT serves as
the basis for evaluating the algorithm results.

A. Ground Truth for Bounding Boxes

GT for face and object bounding boxes was established
by manually placing tight axis-aligned enclosing rectangles
around each face and object in the image. The protocol for
drawing a face box was that the right and left limits should
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Fig. 4. Block diagram of the face detection module.

include the ears if visible, while the upper limit is at the per-
son’s hairline and the lower limit is at the bottom of the chin.
An example of manual GT bounding boxes is in Fig. 3(b). A
face is not boxed if the face is turned more than 90◦ away
from the camera. A small number of faces were not boxed in
the manual GT because the subject wearing the eye-tracking
glasses turned his or her head rapidly, so the world-view
frames had excessive motion blur [e.g., Fig. 5(a)]. It is possi-
ble, however, for the algorithm to detect a face even though it
is turned more than 90◦ or is blurry; such cases would count
as false positives since they are not marked in the GT. So the
results are slightly conservative on false positives.

For drawing bounding boxes for the top and photograph,
the box contains all of the object in the picture, and is drawn
only if 50% or more of the object is judged to be present. For
the shark object, a box was drawn if 50% or more is present
and both eyes are present.

B. Ground Truth for Looks

In one GT approach, an eye-tracking expert determined
the GT for looks based on her experience with clinical gaze
data, by directly viewing the world-view video with the gaze
position dot superimposed on the scene [Fig. 5(b)]. The dot
consists of a central red dot (indicating the best position esti-
mate from the eye-tracking glasses) surrounded by a larger
green dot (indicating the glasses’ estimate of gaze position
uncertainty). The expert does not use explicit bounding boxes,
but determines holistically, as in clinical or experimental prac-
tice, what the subject is looking at. This approach is inherently
inferential, and therefore subject to a number of biases. For
example, the user may consider that a set of frames corre-
sponds to a single look to a face, despite a short temporal gap
in the presence of the gaze dot on the face that may be due
to the subject blinking, the subject shifting their head posi-
tion and producing motion blur, or a reduction in calibration
accuracy because of the glasses being jiggled on the subject’s
head. Indeed, it may happen in practice that the expert notices
a calibration error because the gaze dot is consistently slightly
low, and so marks a section as a look to an object because
they know the subject “intended to look at the object” even

(a) (b)

Fig. 5. (a) Example of a motion-blurred image that is not given bounding
boxes. (b) Test image with the gaze dot superimposed on the world view.

though the gaze dot is off. Our videos were calibrated, so this
level of subjectivity was not present in the expert GT (called
GT-E), but some level of subjective expert judgment is inher-
ent in this process. It is useful to include this type of GT since
it is what is actually used currently in analyzing social gaze
behavior.

The other type of GT for looks, referred to as GT-B, uses
the manual bounding boxes. As shown in Fig. 1, GT-B is
established by putting the gaze position and manually derived
bounding boxes for objects/faces through the same run length
filtering used on the automatically derived bounding boxes.

C. Entry and Exit Parameters

One approach to choosing entry and exit parameters T1 and
T2 is based on physiology and eye behavior. At 60 frames/s,
five frames represents 83 ms, a reasonable lower bound dura-
tion of a single fixation (period of gaze stability between
the fast orienting saccadic eye movements). Typically, a fix-
ation duration is about 200–300 ms in standard experimental
studies with controlled target appearance and standard screen
refresh rates [29]. However, we are measuring gaze behavior
in the real world. Human observers typically plan sequences
of saccades, especially when scanning a complex object [30]
and for those sequences, the fixation duration can be quite
short. Depending on task demands and the subject’s level
of focus, fixations can also be quite long, approaching 2 s.
Physiologically speaking, the fixation need only be long
enough for the visual system to extract relevant information in
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high resolution detail before moving to a new spot to examine.
Data from visual psychophysics demonstrates that image detail
can be resolved with a presentation of only 50 ms, followed
by an immediate mask to prevent the use of after images [5].
Given this approximate lower bound, the T1 value could be
even lower than five frames, however in practice, we do not
typically see fixations this brief. From the eye physiology point
of view, the T2 exit parameter needs to be long enough to
bridge a blink.

The selection of T1 and T2 based solely on eye physiology
does not connect to our definition of looks as extended inspec-
tions, and also ignores the fact that the detection problem is
difficult due to occlusions, object deformability, rapid turning
of the subject’s head, and other reasons. A second approach to
choosing these parameters is based on making the algorithm
mimic the behavior of the expert neuroscientist, which is the
approach we present in Section IV.

D. Camera Calibration and Accuracy Issues

Calibration ensures that the gaze position in the world-view
scene corresponds to what the subject is looking at. The cali-
bration markers were bullseye-style markers about 3 inches in
diameter. The subject wears the glasses and looks steadily at
the target. The markers are detected by the Pupil Capture cal-
ibration code (using the Manual Marker Calibration method
in Pupil Capture) and were moved sequentially through at
least nine points in the calibration plane (approximately at
the seated position of the experimenters, 1 m from the sub-
ject). The nine points were placed at three vertical levels and
three horizontal positions to approximate a grid. This method
was used so that we can calibrate a large space in which agents
and objects that are part of the social conversation could be
reliably detected. Once the calibration routine is completed,
we validate it by asking the subject to look at different parts
in the scene and confirm that the gaze point represented in
Pupil Capture is where the subject reports looking.

Accuracy Issues: The world view camera mounted on the
glasses captures the world in the direction the head is fac-
ing. Typically, the eyes look forward, and so the gaze position
is rarely at the extreme edges of the world view scene. Gaze
location data show that the eyes spend less than 5% of the time
looking at the area that is within 20% of the edge of the field
of view. Furthermore, when the eyes do shift to the side, the
glasses have greater gaze position uncertainty. The confidence
score for gaze location reported by the Pupil Pro is 98.6% for
gazes to the central 10% of the world-view scene, and this
sinks to 89.8% confidence for gazes to the outer 10% portion
of the scene. For these reasons, bounding boxes that touch
the scene border (meaning the object is cut off by the border)
are ignored in the performance evaluation. That is, if the GT
bounding box coincides with one generated by the algorithm,
the performance evaluation does not count this as a true pos-
itive. If the algorithm does not output a bounding box for an
object at the border, it is not penalized as a false negative.

IV. RESULTS

For a given face or object (e.g., the shark) we first evalu-
ate bounding boxes. We compute for each frame the area of

TABLE I
AVERAGE RESULTS ACROSS FIVE VIDEOS COMPARING THE ALGORITHM

AGAINST GT-B, WHERE BOTH USE T1 = 5 AND T2 = 17. DEN =
NUMBER OF FRAMES IN THE DENOMINATOR OF (1) ENTERING INTO

THE ACCURACY COMPUTATION FOR EACH FACE AND OBJECT

intersection divided by the area of union (IoU) of the algo-
rithmic and manual bounding boxes for that object. The IoU
values are averaged over frames, and over five videos, and
reported in Table I (last column).

Evaluating the algorithm above the level of bounding boxes,
one must choose run length parameters for the filtering. To do
this, we examine the accuracy between the algorithm results
and GT-E as a function of run length entry and exit parameters
T1 and T2.

Frame i represents a true positive event for a look to face 1
if frame i is part of a look to that face according to GT and
frame i is also part of a look to that face in the algorithm
output. Recall that for frame i to be part of a look to a face
does not require that the gaze is within the face bounding box
for frame i, or even that the face was detected in that frame. If
the face was detected and the gaze was inside its bounding box
for earlier and later frames, and frame i is part of a sufficiently
short gap, then frame i can still be considered part of the look.

A standard definition of accuracy is A = (TP + TN)/(TP +
FP+TN+FN) where TP is the number of true positive events,
FP is the number of false positive events, FN is the num-
ber of false negative events (when a frame is part of a look
according to GT but the algorithm does not mark it) and TN
represents the number of true negative events (where neither
GT nor the algorithm considers a look to be occurring in a
given frame). False positive rate and false negative rate are
defined as FPR = FP/(FP + TP) and FNR = FN/(TP + FN).
Since the subject is often not looking at any of the objects
or faces, TN is large, and including it in both the numera-
tor and denominator obscures trends. So we use the definition
of accuracy

A = TP/(TP + FP + FN). (1)

Fig. 6 shows heat maps in which the color shows the accu-
racy of results relative to GT-E when using run length entry
and exit parameters given by the values on the x- and y-axes.
The top heat map is for the accuracy between GT-E and GT-B.
The highest accuracy achieved is 71.2% when (T1, T2) =
(1,17). From Fig. 6(a), we see that the accuracy is generally
high for small values of the entry parameter and relatively
large values of the exit parameter (e.g., 16–18). The second
heatmap in Fig. 6 shows the accuracy between GT-E and the
algorithm (with automatic object/face detection and run length
filtering). Here, the highest accuracy is 65.1% which occurs
when T1 = 1 and T2 = 16.
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Fig. 6. Heat maps showing accuracy as a function of run length entry (T1) and
exit (T2) parameters between GT-E and GT-B (top) and GT-E and algorithm
(bottom).

To understand the heatmap result, consider first the exit
parameter T2. Suppose the expert neuroscientist observes that
the subject gazes at a face, and the face turns away momen-
tarily, and turns back. The expert judges the gaze remains on
the face the entire time, a look that spans 100 frames. The
algorithm gets 30 frames but loses track when the face turns.
The face gets reacquired by the Viola–Jones detection module
after a gap of 16 frames. With small values of T2 < 16, this
would be considered by the algorithm as two distinct looks
with a gap in between. A large value of T2 = 16 bridges the
gap; the entire set of frames, including the gap frames, con-
stitute one long look, making for good agreement (many true
positives) with GT-E. In short, choosing T2 somewhat larger
than the physiologic causes (e.g., blinks) alone would suggest
allows the run length filtering to compensate both for blinks,
motion blur, and other deficiencies in the detection modules.

For the entry parameter T1, the value which maximizes the
accuracy is 1, meaning a single hit frame should be considered
the start of a look. This is smaller than fixation data would
suggest. When the algorithm finds a single frame that has a
gaze dot in the bounding box, if there are no further hit frames
within a distance of T2, then this is very unlikely to correspond
to a look in GT-E. Yet the accuracy penalty from calling this

TABLE II
AVERAGE RESULTS ACROSS FIVE VIDEOS, FOR THE COMPARISON

OF THE ALGORITHM AND GT-E, WHERE THE ALGORITHM

USES PARAMETERS T1 = 5 AND T2 = 17

a look is small, since it is a single false positive frame. On
the other hand, if there are other hit frames within a distance
of T2 then the algorithm with T1 = 1 will declare the start
of the look and will bridge the gap to the later frames, so
all those frames get declared to be part of the look. If this
look was marked by the expert in GT-E, then many frames
become true positives. In other words, taking small values of
T1 = 1 will cause more frames overall to be declared part
of looks, increasing both false positives and true positives.
In general, the false positive frames will incur little accuracy
penalty because they will occur as individual frames, but the
true positive frames will usually be part of a larger look event,
thereby producing an overall increase in accuracy.

Based on the second heatmap, we choose to use T1 = 5
and T2 = 17, as these values give nearly the same accuracy
(65.0%) as the best parameter set, and using T1 = 5 rather
than 1 is close to what would be selected based on physiologic
considerations for a fixation. In general, the parameters could
be selected based on the application and the need to prioritize
either FPR or FNR. It is significant that both the algorithm and
the student ground truth GT-B have similar filtering parame-
ters for maximizing accuracy relative to GT-E, and that the
accuracy of 71.2% for GT-B is not vastly higher than the best
accuracy of 65.1% for the algorithm. This means that even
the manual bounding boxes of GT-B often fail to capture the
decisions arising in the holistic expert ground truth GT-E, and
further improvements will be needed in processing above the
level of individual frames or small groups of frames.

Using (T1, T2) = (5,17) for the algorithm and for GT-B,
the values for algorithm accuracy, FPR, and FNR for each
object/face, averaged across videos, are in Table I (relative to
GT-B) and in Table II (relative to GT-E). Sample results for
faces in one video appear in Fig. 7, and for objects are in
Fig. 8.

A. Discussion

The faces are labeled 1–3 from left to right, and the mid-
dle face (face 2) is usually farther back in the scene. We see
that the average IoU values for faces 1 and 3 are very similar
(79.55 and 80.77) but the average IoU is worse for face 2. The
accuracy results for looks to faces 1 and 3 are also better than
those for face 2. The face 2 participant is the one who leaves
the room and returns later, and the glasses-wearer is instructed
to look at the person returning to the room. The accuracy is
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Fig. 7. Example of algorithm results and both GTs for three faces in one video. The x-axis shows the frame number. The y-axis shows, from top to bottom,
GT-E, algorithm looks, and GT-B for faces.

Fig. 8. Example of algorithm results and both GTs for objects in one video. The x-axis shows the frame number. The y-axis shows, from top to bottom,
GT-E, Algorithm results, and GT-B for objects.

lower for face 2 both because of the movement of the partic-
ipant returning to the room and the changing distance from
the glasses-wearer, which means the gaze position calibration
is not as accurate for this person.

Among the three objects, the average IoU values are sim-
ilar for the shark and the photograph (78.27 and 77.16) and
the value is lower for the top (69.32) likely because the top
is a much smaller object. Of the objects, the photograph has
a high FPR. This is driven by the fact that the photograph
framing colors (red, black, and white) are common cloth-
ing colors worn by the participants, and the photograph itself
shows faces, causing nonphotograph items to be detected as
photographs, or causing the algorithm’s photograph bounding
box to be drawn too large. With the exception of the pho-
tograph, the accuracy rates for looks are all higher than the
IoU measures of bounding box accuracy, suggesting that lack
of precision in the bounding boxes can to some degree be
compensated for by the run length filtering.

Comparing results between Tables I and II, we see that FPR
values are generally similar, whereas FNR values are generally
2 to 4 times higher in Table II than in Table I. Table I compares
the algorithm (automatic frame-level detection) against GT-B

(manual frame-level bounding boxes), where they both use
the same run length filtering. By contrast, Table II compares
the algorithm against the holistic GT-E. The fact that there
are higher FNR values in Table II means that the expert, in
declaring looks, is able to ignore many gaps which come from
occlusions, motion blur, blinking and the like, where both the
algorithm and GT-B miss frames. The discrepancy is largest
for the photograph, possibly because it hangs on the back wall
so is the farthest away of all the faces/objects in the scene.

Accuracy results differed substantially among the five par-
ticipants, with overall accuracy ranging from 46% to 81%. The
differences are driven by large differences in the amount of
time individual participants chose to look at particular faces
and objects. For example, one subject spends about the same
amount of time looking at face 1 as at face 2 (notwithstanding
the fact that face 1 is in the room the entire time, whereas the
face 2 participant leaves and comes back), whereas another
subject spends more than four times as much time looking at
face 1 as at face 2. Face 2 has lower detection accuracy overall
because it is usually farther back in the scene, so the amount
of time spent looking at face 2 matters to the overall accuracy
of a participant. Similar large differences were found in the
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time spent looking at specific objects. This points to the need
to restrict the set of test objects involved in the interaction to
ones that have similar high detection rates, so that the amount
of time the subject chooses to look at one compared to another
will not have a dramatic effect on the overall accuracy.

A different approach to computing algorithm accuracy could
use whole look events, rather than frames within looks, as
the basis for correctness. Consider the case where GT-E
reports a single long look of 50 frames in the first 100
frames. Suppose the algorithm detects that same look exactly,
and also three isolated single frames as being looks. In a
frame-based approach to counting correctness, the false pos-
itive rate is 3/(50 + 3) = 5.7%, whereas in a look-based
approach to counting correctness, the false positive rate would
be 3/(1 + 3) = 75%. In examining the results in Fig. 7, we
see that the photograph has five entire “look events” in the
GT but six in the algorithm, leading to an FPR of 0.17 if one
counts entire look events. However the FPR is different if one
counts at the frame level, since several of the look events have
extra FP frames at the leading edge of the event. Whether or
not it is desirable to count FP and FN events at the level of
entire look events or at the level of frames, or indeed whether
some completely different metrics are needed, will depend on
the application. The best choice of parameters T1 and T2 will
depend on whether one is optimizing a frame-based accuracy
or is using a whole-look-based approach.

B. Comparison With Order Statistic Filters

For comparison with run length filtering, we implemented
order statistic filters of various lengths. When filtering the jth
element in a sequence with an order statistic filter of (odd)
length n, the jth element along with the (n − 1)/2 preceding
elements and the (n − 1)/2 subsequent elements are arranged
in ascending order of magnitude: X(1) ≤ X(2) ≤ · · · ≤ X(n),
and the filter output X(i) is called the ith-order statistic. Order
statistic filters include the min (i = 1), max (i = n), and
median (i = (n + 1)/2) filters. For binary data, order statistic
filters essentially set a threshold for the number of hits needed
in the filter window in order to declare the output a hit. Fig. 9
shows a heatmap of the accuracy from (1) between GT-E and
the algorithm (where algorithm detections are filtered with the
order statistic filter). The x-axis represents filter length (odd
values) and the y-axis shows the order. The highest accuracy
is 60.5%, achieved with filter length 13 and order 8 [note that
(length, order) = (13, 7) is a median filter]. This best filter is
slightly biased toward converting a 0 (miss) into a 1 (hit). In
general, the heatmap shows a band of bright yellow positions
(highest accuracy values) which tend to be the median filters or
filters with orders slightly higher than the median filters. The
highest accuracy is 60.5%, which is lower than the best of the
run length filters. The better performance of run length filtering
is likely due to detection misses tending to occur in runs (from
blinking, head movement, etc.) and hits also tending to occur
in runs (due to periods of fixation with little movement).

C. Consideration of Different Applications

There are research, educational, and clinical applications
for which it would be useful to have a system that can

Fig. 9. Heat map showing accuracy, as a function of filter parameters,
between GT-E and the algorithm, where detection results are filtered with
various order statistic filters. Filter length is on the x-axis (odd values only)
and order is on the y-axis.

automatically identify looks to faces and objects as part of
a real-world interaction. These applications vary in their spa-
tial and temporal demands in terms of what constitutes a look,
which has a bearing on the values of T1 and T2 and on other
aspects of the system.

Consider a child reading a middle school science textbook.
One might want to identify when the student is reading the
columns of text, approximately at what point in that text the
student jumps to a figure box, how long the student spends in
the figure box and where the student’s gaze goes after the box
(ideally back to the point in the text where she left off). Since
the primary interest is in mapping gaze onto the textbook, we
would want to optimize the spatial accuracy of looks within
the book (and not worry about the background). We would
not be as concerned about temporal precision in this case. It
is useful to know that the child spent about 3.2 s reviewing
the figure, but it is not necessary to know that she entered it
on frame 80 and left on frame 272. In a clinical example, an
adolescent with ASD might wear the gaze glasses and engage
in a conversation and a game with two other people. We could
identify all looks to faces and quickly calculate the proportion
of time spent looking at faces during the interaction as a whole,
a potentially useful measure in a social evaluation. For cases
such as these where overall time spent looking at a face or
object is important but not the number or precise onset of
looks, the T1 and T2 parameters can be set to the values which
optimize the accuracy with GT-E for that task.

It may also be useful to know the number of separate looks.
If the child looks back and forth ten times between the text and
the figure box, it may be a sign that the figure is confusing or
has insufficient labeling. When counting the number of looks
is the primary goal, the choice of T1 and T2 using GT-E would
use the count as the optimization goal.

Taking the clinical example further, the adolescent and two
research assistants might all wear gaze glasses and the data
streams are synchronized. One might like to know how quickly
after one assistant turns to the other does the adolescent also
turn to look at the assistant. The latency to orient to a social
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cue is a useful part of a social evaluation since slow orienting
behavior can result in missed information. However, whenever
we intend to calculate latency, the temporal precision in the
onset and offset of a look matters a great deal.

These various applications with various requirements sug-
gest that the algorithm parameters can usefully be tailored
for different scenarios. For cases where the spatial preci-
sion is important, a restricted region of interest (e.g., the
textbook) can be precisely calibrated. Also, allowing some
padding region outside the algorithm bounding box for where
the gaze location counts as a hit, or conversely, tightening
up the region which counts as a hit might allow for greater
accuracy optimization between the algorithm and GT-E.

V. CONCLUSION

This project brings together multiple different technologies
to enhance our understanding of gaze behavior in real-world
situations. Currently, the use of real-world eye-tracking is
limited because the first-to-market glasses-based eye-trackers
were expensive, and the resulting gaze-in-world data was dif-
ficult to analyze in any automated or semi-automated way.
The open source model offered by Pupil Labs has made
glasses-based eye-tracking both affordable and customizable.
The system developments described here allow us to auto-
mate the count and duration estimate of looks to faces and
objects during a social interaction. Because of the prevalence
of ASD and its social interaction challenges, together with
the subjectivity and difficulty in current methods for assessing
the success of therapeutic efforts, investing in objective and
quantitative social outcome measures can be useful to measure
efficacy of social therapies.

One contribution of this paper is the system integration
involving both face and object detection in the context of
naturalistic social interactions with varied motion of the sub-
ject and other participants. But the main contribution is the
approach to determining looks, involving a run length algo-
rithm whose parameters are set by optimizing a suitable
definition of agreement between the algorithm looks and an
expert ground truth. The definition of agreement can be mod-
ified depending on the application. The detection accuracy of
our modules is already sufficiently high for many clinical or
educational evaluation purposes, and superior detection algo-
rithms could be substituted in a modular way for the current
methods, retaining the optimized run length approach to deter-
mining looks as a postprocessing method after any detection
algorithm.

Our long-term goal is to develop a system using gaze glasses
and analytic software to assess change in social and commu-
nicative behavior in individuals at a range of ages and levels
of function. We plan to improve the accuracy of the system
through a series of practical changes: switching to objects that
are more easily distinguishable, comparing neural net face
detection approaches against the current Viola–Jones-based
approach, and using glasses that track both eyes. Extending
functionality, we plan to include methods for automated sound
and voice detection as well as gesture detection. Steps include
identifying instances in time (trigger points) from which one
might want to calculate latencies. Audio triggers might include

a knock on the door, the onset of speech in general, or when
a participant’s name is spoken. Visually identifiable trigger
points include pointing movements, head turns, and other
gestures.
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