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RESEARCH ARTICLE Open Access

Long-term perturbation of the peripheral
immune system months after SARS-CoV-2
infection
Feargal J. Ryan1†, Christopher M. Hope2,3†, Makutiro G. Masavuli4†, Miriam A. Lynn1†, Zelalem A. Mekonnen4,
Arthur Eng Lip Yeow4, Pablo Garcia-Valtanen4, Zahraa Al-Delfi4, Jason Gummow5, Catherine Ferguson6,
Stephanie O’Connor7, Benjamin A. J. Reddi7, Pravin Hissaria6, David Shaw6, Chuan Kok-Lim6,8,
Jonathan M. Gleadle9,10, Michael R. Beard11, Simon C. Barry2,3*†, Branka Grubor-Bauk4*† and David J. Lynn1,10*†

Abstract

Background: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a highly infectious respiratory virus
which is responsible for the coronavirus disease 2019 (COVID-19) pandemic. It is increasingly clear that recovered
individuals, even those who had mild COVID-19, can suffer from persistent symptoms for many months after
infection, a condition referred to as “long COVID”, post-acute sequelae of COVID-19 (PASC), post-acute COVID-19
syndrome, or post COVID-19 condition. However, despite the plethora of research on COVID-19, relatively little is
known about the molecular underpinnings of these long-term effects.

Methods: We have undertaken an integrated analysis of immune responses in blood at a transcriptional, cellular,
and serological level at 12, 16, and 24 weeks post-infection (wpi) in 69 patients recovering from mild, moderate,
severe, or critical COVID-19 in comparison to healthy uninfected controls. Twenty-one of these patients were
referred to a long COVID clinic and > 50% reported ongoing symptoms more than 6 months post-infection.
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Results: Anti-Spike and anti-RBD IgG responses were largely stable up to 24 wpi and correlated with disease
severity. Deep immunophenotyping revealed significant differences in multiple innate (NK cells, LD neutrophils,
CXCR3+ monocytes) and adaptive immune populations (T helper, T follicular helper, and regulatory T cells) in
convalescent individuals compared to healthy controls, which were most strongly evident at 12 and 16 wpi. RNA
sequencing revealed significant perturbations to gene expression in COVID-19 convalescents until at least 6 months
post-infection. We also uncovered significant differences in the transcriptome at 24 wpi of convalescents who were
referred to a long COVID clinic compared to those who were not.

Conclusions: Variation in the rate of recovery from infection at a cellular and transcriptional level may explain the
persistence of symptoms associated with long COVID in some individuals.

Keywords: SARS-CoV-2, COVID-19, Immunity, RNA-Seq, T cell, Antibody responses, Convalescent patients,
Immunophenotyping, Long COVID, Post-acute sequelae of COVID-19 (PASC), Post COVID-19 condition, Infection

Background
Coronavirus disease 2019 (COVID-19) is caused by the se-
vere acute respiratory syndrome coronavirus 2 (SARS-
CoV-2), a highly infectious respiratory virus responsible
for the ongoing global pandemic. COVID-19 usually pre-
sents as an asymptomatic or mild to moderate respiratory
infection in previously healthy individuals with symptoms
that include fever, cough, headache, fatigue, myalgia, diar-
rhoea, and anosmia [1, 2]. However, in older individuals
or in those with prior co-morbidities such as obesity or
cardiovascular disease, COVID-19 can quickly develop
into a severe and life-threatening disease requiring urgent
intensive care support. While the death toll from COVID-
19 has been devastating (> 4.8 million as of 5 October
2021 according to the Johns Hopkins University Corona-
virus Resource Center [3]), the vast majority of those in-
fected fortunately do recover, with case fatality rates in
most countries falling below 3%. It is now increasingly
clear, however, that recovered individuals, even those who
had mild COVID-19, can suffer from persistent symptoms
for many months after infection [4], which is commonly
referred to as long COVID. For example, a cohort study of
COVID-19 patients (median age 57) discharged from hos-
pital in Wuhan, China, 6 months prior, reported that 63%
of patients presented with fatigue or muscle weakness,
23% sleep difficulties, and 23% anxiety or depression [5].
Individuals who were previously severely ill during their
hospital stay have ongoing impaired pulmonary function
and abnormal chest imaging. Similar reports continue to
pour in from around the world [6–11]. While the majority
of these reports involve patients who were hospitalised
with COVID-19, persistent, albeit milder and less-
frequent, symptoms have also been reported in non-
hospitalised individuals months after recovery [12]. These
reports resemble similar post-infectious syndromes after
other infections, such as Ebola [13] and SARS-CoV-1 [14],
and suggest that there may be a long-lasting dysregulation
of the immune response in individuals recovering from
COVID-19.

Flow cytometric analysis of peripheral blood samples
collected from convalescents in the USA (median 29
days post-infection) has revealed altered frequencies of
innate and adaptive immune cell populations including
CD4+ and CD8+ T cell activation and exhaustion marker
expression in recovered individuals [15]. A similar study
in Singapore (median 34 days post-infection) found in-
creased levels of circulating endothelial cells and effector
T cells in those recovering from active disease [16].
Single-cell RNA sequencing (scRNA-Seq) of peripheral
blood mononuclear cells (PMBC) from a small (n = 10)
cohort of patients that were 7–14 days post-recovery also
found an increased ratio of classical CD14+ monocytes
with high inflammatory gene expression, decreased
CD4+ and CD8+ T cells, and significantly increased
plasma B cells [17]. scRNA-Seq profiling of PBMC gene
expression in a larger cohort of recovering individuals
(n = 95) found those with severe disease (n = 36) had
decreased plasmacytoid dendritic cells (pDCs) and in-
creased levels of proliferative effector memory CD8+

T cells, relative to healthy controls [18]. A potential
limitation of this study, however, was that samples
from recovered individuals were not collected at uni-
form timepoints during recovery, instead samples
were collected between 9 and 126 days post-infection
(on average 44.5 days). Longitudinal profiling of the
transcriptome of PBMC collected from individuals (n
= 18) during treatment, convalescence, and recovery
phases of infection (up to 10 weeks post-infection) re-
vealed that relative to acute disease, recovery from
COVID-19 was marked by decreased expression of
genes involved in the interferon response, humoral
immunity, and increased signatures indicative of T
cell activation and differentiation [19]. However, these
responses were not compared with healthy controls.
Another recent study longitudinally profiled immune
cell populations and the blood transcriptome in > 200
SARS-CoV-2-infected patients over 12 weeks from
symptom onset to recovery [20]. They compared the
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blood transcriptome in 2-time bins (0–24 and 25–48 days
from symptom onset) and found substantial changes rela-
tive to uninfected controls in immune cell populations and
increased expression of genes involved in immunometabo-
lism and inflammation, which persisted after infection.
Here, we have performed anti-receptor-binding domain

(RBD) and anti-Spike serology, comprehensive multi-
parameter immunophenotyping, and transcriptome-wide
RNA sequencing on blood collected from individuals recov-
ering from mild/moderate or severe/critical COVID-19 at
12, 16, and 24 weeks after their first positive SARS-CoV-2
PCR test, as well as age-matched healthy controls (HCs).
Our analyses reveal robust but heterogenous humoral im-
munity in convalescents until at least 6months post-
infection. Deep immunophenotyping highlighted profound
changes in immune cell populations in COVID-19 conva-
lescents compared with HCs, particularly at 12 and 16
weeks post-infection (wpi). Furthermore, RNA sequencing
revealed significant changes in whole blood gene expression
for up to 24 wpi, even in individuals that had mild disease
without hospitalisation. Significant differences in gene ex-
pression were also identified at 24 wpi in convalescent indi-
viduals who were referred to a long COVID clinic
compared to those who were not. These data suggest that
SARS-CoV-2 infection leads to persistent changes to the
peripheral immune system long after the infection is
cleared, which has important potential implications for un-
derstanding symptoms associated with long COVID. These
changes to the peripheral immune system could have impli-
cations for how individuals recovering from infection re-
spond to vaccination or other challenges encountered in
this period and persistent immune activation may also ex-
acerbate other chronic conditions.

Methods
Patient recruitment
Study participants were recruited via the Central Adelaide
Health Network (CALHN). The study was performed in
accordance with the ethical principles consistent with the
latest version of the Declaration of Helsinki (version For-
taleza 2013) and Good Clinical Practice (GCP) and ac-
cording to the National Health and Medical Research
Council (NHMRC) Guidelines for Research published in
the National Statement on the Ethical Conduct in Human
Research (2007; updated 2018). The protocol was ap-
proved by CALHN Human Research Ethics Committee,
Adelaide, Australia (Approval No. 13050). Inclusion cri-
teria were PCR-confirmed SARS-CoV-2 infection from
nasopharyngeal swabs (which occurred in March & April
of 2020 for all participants), the ability to attend study
follow-up visits, and voluntary informed consent. The
study size was determined in a pragmatic fashion by op-
portunistically recruiting as many participants as possible.
A total of 69 COVID-19 convalescent individuals (35

male, 36 female) representing a range of prior mild, mod-
erate, severe, and critical COVID-19 cases were recruited
(Table S1). COVID-19 disease severity was scored as per
NIH descriptors [21] where 5 = “asymptomatic”, 4 =
“mild”, 3 = “moderate”, 2 = “severe”, and 1 = “critical”
(Table S1). Blood samples were collected from convales-
cents at 12, 16, and 24 weeks (± 14 days) post the date of
their initial PCR-positive test. Participation at each time-
point was determined by availability to attend follow-up
sample collection clinics. Convalescent patients were re-
quested to complete a retrospective questionnaire detail-
ing self-reported symptoms related to long COVID at
each of the sampling timepoints in this study (Additional
file 10). The survey was administered at approximately 18
months (mean 70.4 weeks, min 61 weeks, max 74 weeks)
post-infection. Additionally, we obtained clinical data indi-
cating which convalescent individuals were referred to a
long COVID clinic run by the South Australian State
health service (SA Health). The long COVID clinic pro-
vides a pathway of care focused on comprehensive clinical
care, psychological support, and rehabilitation to patients
living with long-term sequelae of COVID-19 disease.
Patients were offered referral to this clinic at their
18-month study visit, as the clinic was only estab-
lished around that time. Clinical assessments from
this clinic are ongoing. Healthy controls (n = 14) in
the same ranges of age and sex as the COVID-19
convalescent cohort were also recruited. Healthy con-
trols had no respiratory disease, no positive COVID-
19 PCR test in 2020/21, no known significant sys-
temic diseases, and negative anti-Spike and anti-RBD
serology. Blood (54 ml/individual) was collected in
serum separator (acid citrate dextrose (ACD)) tubes
or ethylenediaminetetraacetic acid (EDTA) tubes and
processed for serum, peripheral blood mononuclear
cells (PBMCs), and plasma isolation. 2.5 mL of blood
for RNA sequencing was collected into PAXgene®
tubes (762165 BD, North Ryde, Australia) and stored
at − 80 °C until processing. C-reactive protein (CRP)
titres were assayed by a National Association of Test-
ing Authorities Australia-certified commercial path-
ology service (SA Pathology, Adelaide, Australia).

SARS-CoV-2 PCR testing
Extraction of RNA was achieved from nasopharyngeal
swabs using the Automated MagMAX nucleic acid ex-
traction protocol (Thermo Fisher) and RNA subjected to
a one-step qRT-PCR using a Roche light cycler LC408II
using cycle conditions described by Corman et al. [22].

SARS-CoV-2 protein purification and ELISA
Prefusion SARS-CoV-2 ectodomain (isolate WHU1,
residues1-1208) with HexaPro mutations [23] (kindly
provided by Adam Wheatley) and SARS-Cov-2 receptor-
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binding domain (RBD) with C-terminal His-tag [24] (resi-
dues 319-541; kindly provided by Florian Krammer) were
overexpressed in Expi293 cells and purified by Ni-NTA af-
finity and size-exclusion chromatography. Recombinant
proteins were analysed via a standard SDS-PAGE gel to
check protein integrity. Gels were stained with Comassie
Blue (Invitrogen) for 2 h and de-stained in distilled water
overnight. MaxiSorp 96-well plates were coated overnight
at 4 °C with 5 μg/mL of recombinant RBD or S proteins.
After blocking with 5% w/v skim milk in 0.05% Tween-20/
PBS (PBST) at room temperature, serially diluted (heat
inactivated) sera were added and incubated for 2 h at room
temperature. Plates were washed 4 times with 0.05% PBST
and secondary antibodies added. Secondary antibodies were
diluted in 5% skim milk in PBST as follows: Goat anti-
Human IgG (H + L) Secondary Antibody, HRP (1:30,000;
Invitrogen); Mouse Anti-Human IgG1 Fc-HRP (1:5000,
Southern Biotech), Mouse Anti-Human IgG3 Hinge-HRP
(1:5000; Southern Biotech); goat anti-human IgM HRP (1:
5000; Sigma): anti-human IgA HRP antibody (1:5000;
Sigma) and incubated for 1 hour at room temperature.
Plates were developed with 1-Step™ Ultra TMB Substrate
(Thermo Fisher) and stopped with 2M sulphuric acid. OD
readings were read at 450 nm on a Synergy HTX Multi-
Mode Microplate Reader. AUC calculation was performed
using Prism GraphPad, where the X-axis is half log10 of
sera dilution against OD450 on Y-axis.

PBMC isolation
Post plasma centrifugation, the white blood cell pack
was harvested, pooled into 1 × 50 ml falcon tube, diluted
in 2% FCS/PBS up to 35 ml and overlayed onto 15ml
Ficoll, centrifuged for 20 min, 1000×g, RT, no brake. The
PBMC were isolated, washed in 2% FCS/PBS, centri-
fuged at 480×g for 10 min at RT, PBMC resuspended in
50ml 2% FCS/PBS, manually counted using trypan blue
exclusion assay. For deep immunophenotyping 2 × 106

cells were plated across 4 wells (5 × 105 per well) of a
96-well plate. The 50-ml tube was then spun at 300×g
for 10 min, the pellet was resuspended in ½ volume of
FCS with ½ volume of 20% DMSO/80% FCS added
dropwise to final cell concentration of 1 × 107 per ml.
The samples were stored 800 μL–1.8 ml per vial placed
in a CoolCell at − 80 °C. The frozen PBMC tubes were
transferred to liquid nitrogen for long-term storage
within 1–7 days.

Flow cytometry staining
The 96-well plate was centrifuged at 300×g for 4 min,
the plate was inverted on paper towel, and the PBMC
pellets were stained with 30 μL of 1 of 3 master-mixes of
antibodies (lineage, 15 color; memory, 8 color; T helper/
Treg, 14 color) for 20 min RT, in dark, which included a
co-stain of BD LIVE/DEAD fixable dye (stained at 1:

1000). The stained PBMC were washed with 200 μL of
FACS wash, centrifuged 300×g for 4 min and fixed with
200 μL FACS Fix for 20 min, RT, in dark. Fixed cells
were then centrifuged 300×g for 4 min, washed in
200 μL FACS wash then spun 300×g for 4 min, and re-
suspended in 50 μL FACS wash. The cells were resus-
pended and transferred to tubes before being analysed
using a BD FACS Symphony within 3 days of staining/
fixing.

Flow cytometry data acquisition and analysis
To control for batch effects, the BD FACS symphony
lasers were calibrated with dye conjugated standards
(Cytometer Set &Track beads) run every day. All sam-
ples were acquired with all 28 PMTs recording events.
All PMT voltages were adjusted to unstained negative
control baseline typically log scale 102. Antibodies were
titrated for optimal signal over background so that sin-
gle positive stains sat within log scale 103–105 of desig-
nated PMT. Compensation was set with beads matched
to each panel antibody combination using spectral
compensation using FlowJo Software V10. Exported
FCS files had compensation values adjusted manually
post-acquisition on a file-by-file basis in FCS express
v6. Once compensated, low data quality events were ex-
cluded based upon time acquired (at the sample acqui-
sition start and before sample exhaustion), with further
time exclusion gates based on blockages or unexplained
loss of events for a period of time during acquisition.
Events that were highly positive for LIVE/DEAD stain-
ing were removed from subsequent analysis, to prevent
exclusion of live monocytes, which take up more live/
dead dye per cell than T cells, giving a high back-
ground. Events were gated for FCS-H/A as well as SSC-
H/A linearity, and restricted FSC-W and SSC-W values
for doublet discrimination. Live single cells were then
broadcast on SSC-A / FSC-A plot to determine size
and complexity. Lymphocyte, monocyte, and granulo-
cyte gates were based on physical parameters (unless a
lineage-specific antibody was added). Populations of
cells were expressed as a proportion of the highest
order lineage gate (namely: lymphocytes, monocytes,
and granulocytes). See Additional file 11 for representa-
tive gating strategy. For parameters measured in healthy
controls and COVID-19 samples at 12 weeks, 16 weeks
and 24 weeks, a Wilcoxon rank sum test was used to as-
sess statistical significance with the Benjamini and
Hochberg method employed to correct for multiple
comparisons. Statistical significance was determined as
FDR < 0.05.

RNA extraction and library preparation
RNA extraction and genomic DNA elimination was car-
ried out using the PAXgene® Blood RNA kit (762164,
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Qiagen, Feldbachstrasse, Germany) as per the manufac-
turer’s instructions. Final elution was done into 80 μL
RNase-free water. A further RNA precipitation reaction
was carried out. Briefly, RNA was resuspended 2.5 ×
100% ethanol and 10% sodium acetate and spun at
12,000×g for 30 min at 4 °C. Samples were washed in
75% ethanol. Pellets were air dried and resuspended in
40 μL RNase-free water and total RNA yield was deter-
mined by analysis of samples using a TapeStation (Agi-
lent) and Qubit (Thermo Fisher Scientific, Australia).
Total RNA was converted to strand-specific Illumina
compatible sequencing libraries using the Nugen Univer-
sal Plus Total RNA-Seq library kit from Tecan (Manne-
dorf, Switzerland) as per the manufacturer’s instructions
(MO1523 v2) using 12 cycles of PCR amplification for
the final libraries. An Anydeplete probe mix targeting
both human ribosomal and adult globin transcripts
(HBA1, HBA2, HBB, HBD) was used to deplete these
transcripts. Sequencing of the library pool (2 × 150 bp
paired-end reads) was performed using 2 lanes of an S4
flowcell on an Illumina Novaseq 6000.

RNA-Seq analysis
Sequence read quality was assessed using FastQC ver-
sion 0.11.4 [25] and summarised with MultiQC version
1.8 [26] prior to quality control with Trimmomatic ver-
sion 0.38 [27] with a window size of 4 nucleotides and
an average quality score of 25. Following this, reads
which were < 50 nucleotides after trimming were dis-
carded. Reads that passed all quality control steps were
then aligned to the Human genome (GRCh38 assembly)
using HISAT2 version 2.1.0 [28]. The gene count matrix
was generated with FeatureCounts version 1.5.0-p2 [29]
using the union model with Ensembl version 101 anno-
tation. The count matrix was then imported into R ver-
sion 4.0.3 for further analysis and visualisation in
ggplot2 v2.3.3. Counts were normalised using the
trimmed mean of M values (TMM) method in EdgeR
version 3.32 and represented as counts per million
(cpm) [30]. Prior to multidimensional scaling analysis
and generation of heatmaps, svaseq v3.38 was applied to
remove batch effects and other unwanted sources of
variation in the data [31]. Differential gene expression
analysis was performed using the glmLRT function in
EdgeR adjusting for sex and batch (run) in the model.
Genes with < 3 cpm in at least 15 samples were excluded
from the differential expression analysis. Pathway and
Gene Ontology (GO) overrepresentation analysis was
carried out in R using a hypergeometric test. To assess if
differential gene expression was primarily driven by dif-
ferences in the proportion of any major immune cell
population (i.e. LD granulocytes, LD neutrophils,
CXCR3+ neutrophils, monocytes, lymphocytes, CD56++

NK cells, CD19+ B cells, CD3+ T cells, NKT cells, CD4+

T cells, or CD8+ T cells), we additionally fit the fre-
quency of each population in each individual into the
EdgeR model and reperformed the differential gene ex-
pression and pathway overrepresentation analysis. Gene
Set Enrichment Analysis (GSEA) was carried out using
the camera function in the EdgeR library with the Mo-
lecular Signatures Database (MSigDB) R package
(msigdbr v7.4.1). Blood transcriptional module (BTM)
analysis was carried using a pre-defined set of modules
defined by Li et al. as an alternative to pathway-based
analyses [32]. Gene Set Variation Analysis (GSVA) [33]
was used to calculate a per sample activity score for each
of the modules (excluding unannotated modules labelled
as “TBA”). limma v3.46.0 was used to identify modules
that were differentially active. Pearson correlation ana-
lysis was performed using the Hmisc v4.4-2 package in R
to determine correlations between anti-Spike and anti-
RBD antibody titres, flow cytometry data, and BTM ac-
tivity scores. Correlation networks were exported to
Cytoscape v3.8.1 for visualisation.

Results
To assess the long-term effects of SARS-CoV-2 infection
on the peripheral immune system, blood samples were
collected from 69 recovering/convalescent COVID-19
individuals at 12, 16, and 24 weeks (± 14 days) post-
infection (wpi) (Fig. 1A). Blood samples were also col-
lected from n = 14 seronegative healthy controls (HCs)
with no history of prior SARS-CoV-2 infection. COVID-
19 convalescent individuals were classified according to
the NIH classification of disease severity [21] as mild (n
= 50), moderate (n = 6), severe (n = 7), or critical (n = 6)
(Table S1). All participants were discharged from hos-
pital prior to sample collection (58% of participants were
hospitalised during acute COVID-19). Convalescents
with mild illness spent a median of 1.5 days hospitalised
(min = 0, max = 10), moderate illness 2 days (min = 1,
max = 7), severe illness 12 days (min = 3, max = 16), and
critical illness 13 days (min = 8, max = 82). HCs were
age- and sex-matched with mild/moderate convalescent
individuals; however, as expected based on previous re-
ports, severe/critical convalescent individuals were older
and mostly male (Fig. 1B,C). The presence of post-acute
sequelae of COVID-19 (PASC) was assessed retrospect-
ively through a symptom questionnaire (Additional file
10) which was completed by 83% (n = 57) of the conva-
lescent individuals. Fatigue was the most commonly re-
ported symptom (40.4%) followed by dyspnea (35.1%),
worsened memory/concentration (35.1%), and decreased
muscle strength (33.3%) (Table 1). The prevalence and
type of self-reported symptoms was consistent with long
COVID symptoms reported in other studies [34] and
aligned with which individuals were referred to a dedi-
cated long COVID clinic (n = 21, 30.4% of patients).
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Referral to a long COVID clinic was not significantly as-
sociated with subject age (Wilcox rank sum test, P =
0.1), sex (Fisher’s exact test, P = 0.9), or COVID-19 se-
verity (Fisher’s exact test, P = 0.09). All samples in this
study were collected in South Australia where early and
strict international and interstate border control mea-
sures eliminated community transmission of the virus
during the sample collection period [35]. None of the
participants had received a COVID-19 vaccine at the
time of sample collection. This cohort was therefore

uniquely placed for the assessment of immune responses
in COVID-19 convalescents due a negligible risk of re-
infection or changes to the immune system induced by
vaccination.

COVID-19 convalescents have robust anti-Spike and anti-
RBD antibody responses for at least 6 months post-
infection
Anti-SARS-CoV-2 Spike and receptor-binding domain
(RBD) total IgG, IgG1, IgG3, IgM, and IgA responses

Fig. 1 Anti-Spike and anti-RBD-specific antibodies at 12, 16, and 24 weeks post-infection (w.p.i.). A Blood sample collection timepoints. B Age and
C sex distribution of healthy controls (HC) in comparison to mild/moderate and severe/critical COVID-19 convalescents. D Anti-Spike and E anti-
RBD-specific IgG, IgG1, IgG3, IgM, and IgA titres at 12, 16, and 24 w.p.i. End point titres are reported as area under the curve (AUC). The mean is
denoted by the horizontal black lines. Seronegative samples were assigned a value of 0.1. Red dashed lines represent the mean AUC + 2 SD in
HC for each isotype. F–K Antibody titres subdivided by disease severity. L–M Pearson correlations between anti-Spike and anti-RBD antibody
subclass titres at each timepoint. Statistical significance was assessed in B,F–K using Wilcoxon rank sum tests. ns = non-significant. * P < 0.05, ** P
< 0.01, *** P < 0.001
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were evaluated in convalescent individuals at 12, 16, and
24 wpi (Fig. 1D,E, Table S1). The titres of Spike-specific
IgG were diverse but largely stable over time (Fig. S1A-
C), although there was a trend for anti-Spike IgG1 titres
to decline over time (Fig. S1B). The seropositivity of
Spike-specific serum IgM and IgA gradually diminished
over time (Fig. S1D-E). Overall, the kinetics for anti-
RBD antibodies were similar to those observed for anti-
Spike antibodies (Fig. S1F-J), though anti-RBD IgG3 and
IgM appeared to decline more rapidly than anti-Spike
antibodies. We also compared the levels of anti-Spike
and anti-RBD circulating antibodies between individuals
recovering from mild/moderate versus severe/critical
COVID-19. Anti-Spike total IgG and IgG3 levels at 12,
16, and 24 wpi were significantly higher in severe/critical
convalescents compared to those with previous mild/
moderate disease (Fig. 1F–H). Anti-Spike IgG1 and IgA
levels were significantly higher in severe/critical conva-
lescents at 24 wpi only (Fig. 1H). There was no detect-
able difference in RBD-specific antibody responses
between individuals recovering from mild/moderate or
severe/critical disease at 12 or 16 wpi (Fig. 1I,J). At 24
wpi, severe/critical convalescent individuals maintained
significantly higher anti-RBD IgG, IgG3, and IgM levels
compared to individuals with previous mild/moderate
COVID-19 disease (Fig. 1K). Anti-Spike and anti-RBD
total IgG levels (but not other antibody subclasses) were

significantly correlated at all timepoints (Fig. 1L–N).
Anti-Spike and anti-RBD total IgG1 and IgG3 levels
were significantly correlated at 24 wpi only. In summary,
anti-Spike and anti-RBD antibody titres were generally
positively correlated with COVID-19 disease severity, in
accordance with previous observations [36–38].

Deep immunophenotyping reveals persistent alterations
in immune cell populations in COVID-19 convalescents up
to 24 weeks post-infection
We used a multi-parameter flow cytometry approach to
identify and enumerate ~ 130 different immune cell sub-
populations in PBMC collected from COVID-19 convales-
cent individuals at 12, 16, and 24 wpi and from HCs (Table
S2; Additional file 11). Flow cytometry was performed on
PBMC rather than whole blood to enrich for rarer immune
cell populations and to facilitate comparison with the ma-
jority of other studies assessing immune phenotypes in
COVID-19 patients or convalescents. Our analysis included
deep immunophenotyping of the CD4 and CD8 compart-
ments, interrogating their maturation status, and in the
CD4 compartment, interrogation of T helper (Th) lineage
subsets, T regulatory (Treg) subsets, and T follicular helper
(Tfh) subsets using a combination of chemokine receptor
expression patterns to resolve Th-lineages (Th1, 2, 17, 1/7,
9, 22, 2/22). Immune cell populations were first categorised
into 10 major lineages (Fig. 2A). Each cell type was further

Table 1. The proportion of patients self-reporting long COVID-associated symptoms

Number of Subjects Percent of subjects

General Referred to long COVID clinic 21 30.4

Any reported symptoms? 33 57.9

Non-specific Fatigue 23 40.4

Dyspnoea 20 35.1

Decreased muscle strength 19 33.3

Worsened sleep quality 16 28.1

Palpitations 4 7.0

Dizziness 4 7.0

Hair loss 6 10.5

Neuropsychiatric Anxiety/depression 14 24.6

Worsened memory/concentration 20 35.1

Pain Headache 10 17.5

Chest pain 7 12.3

Joint pain 6 10.5

Myalgia 6 10.5

Oral/pharyngeal Worsened sense of smell/taste 11 19.3

Difficulty swallowing /sore throat 5 8.8

Gastrointestinal Diarrhoea 4 7.0

Nausea 3 5.3

Vomiting 1 1.8
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segregated based on functional marker characteristics in-
cluding activation or maturation status. Differences in these
major lineages, compared with HCs, were most strongly
evident at 12 wpi, but some populations were still signifi-
cantly different at 24 wpi (Fig. 2A–D, Table S2). While
there was significant lymphopenia evident in convalescent
individuals at 12 and 16 wpi (Fig. 2E), CD3+ T cells were
significantly increased at 12 wpi, when expressed either as a
percentage of lymphocytes (Fig. 2F) or as a percentage of
live cells (data not shown). CD19+ B cells were also signifi-
cantly increased at 12 and 16 wpi (Fig. 2G). We also

observed significantly increased CD38+CD27+ memory B
cells at 16 wpi (Fig. 2A). When interrogating CD4+ T cell
maturation, we observed a significant reduction in both the
CD4+ and CD8+ compartments at 12 and 16 wpi (Fig.
2B,C). CD4+ effector memory (EM) pools were significantly
reduced (Fig. 2H), and we also observed a significant reduc-
tion in migratory central memory (CM) CD4+ T cells, de-
fined as CCR7+CD62L−, at all timepoints (Fig. 2I).
The NK cell compartment was also altered in conva-

lescents at 12 and 16 wpi (Fig. 2A–C) with CD56++ NK
cells, for example, significantly elevated at 12 and 16 wpi

Fig. 2 Flow cytometry analysis of major immune cell populations in peripheral blood mononuclear cells (PMBCs) collected from COVID-19
convalescents at 12, 16, and 24 weeks post-infection (w.p.i.) and from healthy controls (HC). A Heatmap representing the frequency of immune
cell populations in HC and in convalescents. Brighter red color represents higher frequency. B–D Volcano plots of immune cell populations at
each timepoint. Horizontal line represents FDR = 0.05. Populations shown in red or blue were significantly (FDR < 0.05) increased or decreased
(fold change > 1.5-fold), respectively, in convalescents. E–M The proportion of selected immune cell populations at 12, 16, and 24 w.p.i.
compared to HC. Statistical significance was assessed using Wilcoxon rank sum tests. P values were adjusted for multiple testing using the
Benjamini-Hochberg method. ns = non-significant. * FDR < 0.05, ** FDR < 0.01, *** FDR < 0.001
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(Fig. 2J). We also observed a significant increase in total
granulocytes at all 3 timepoints post-infection (Fig. 2A–
D), and for low-density (LD) neutrophils at 12 and 16
wpi (Fig. 2K). CXCR3+ LD neutrophils, which are ac-
tively recruited to sites of tissue damage [39], were ele-
vated in convalescents at 12 wpi but returned to baseline
by 16 wpi (Fig. 2A). Interestingly, CD14+CD16+ neutro-
phils were significantly decreased at 12 and 16 wpi (Fig.
2A). While total monocyte proportions were not signifi-
cantly altered, two subsets of tissue-homing CXCR3+

monocytes (HLA-DR+, activated antigen-presenting pro-
inflammatory monocytes and HLA-DR−, regulatory
monocytes) were significantly increased in convalescent
individuals at 12 wpi (Fig. 2L–M). We also investigated
differences in immune cell populations between mild/
moderate and severe/critical convalescents; however,
after correction for multiple testing, there were no statis-
tically significant differences (Table S2), most likely due
to the small sample size of severe/critical convalescent
samples, particularly at 12 wpi.
Next, we assessed correlations between immune cell

populations (at 12, 16, or 24 wpi) and both anti-Spike
and anti-RBD IgG, IgM, and IgA responses at 24 wpi
(Table S3). Significant positive correlations were ob-
served between the frequency of granulocytes, CD16+

NK, and NKT-like cells at 12 wpi and anti-Spike IgG1
and anti-RBD IgG titres at 24 wpi. These data may be
reflective of the correlation between disease severity and
antibody responses. Previous work has suggested an as-
sociation between increased percentage of neutrophils
and lower anti-RBD IgG responses [40], which we did
not detect in our analysis (Table S3). Components of the
CD4 compartment were also significantly associated
with anti-Spike IgG1 and anti-RBD IgG titres at 24 wpi.
For example, there was a positive correlation between
the proportion of CD4+ cells in transition from naïve to
CM, CM, to EM, and activated (HLA-DR+ or CD38+)
CD4+ T cells, and anti-Spike and anti-RBD IgG/G1 titres
at 24 wpi, suggesting each of these CD4 populations
might contribute to robust T cell help. Significant corre-
lations between immune cell populations at 16 and 24
wpi and anti-Spike or anti-RBD antibody responses were
also observed (Table S3).
To interrogate CD4 Th responses in more depth, we

applied a chemokine receptor-based gating strategy to
characterise the Th effector phenotypes in both Th and
Tfh subsets [41, 42]. We also used CD45RO+ and
CD62L+ staining as a marker of T cell memory forma-
tion in the Th subsets. In addition, we applied the same
strategy to T regulatory (Treg) subsets, which are func-
tionally paired with their Th and Tfh counterparts
in vivo [41]. Th and Tfh lineages were categorised into 8
functional subsets (Fig. 3A), and significant differences
were observed for multiple subsets in COVID-19

convalescents (Fig. 3B–D, Table S2). We observed a sig-
nificant decrease in Th9 cells at all timepoints (Fig. 3E).
Th9 cells are implicated in autoimmune pathologies in-
cluding airway damage and are predicted to home to
sites of inflammation including the lung. It is plausible
that decreased proportion in the PBMC reflect homing
to the lung, or transdifferentiating into pathologic Th17
cells [43]. There was also a significant increase in Th2/
22 cells at 16 wpi (Fig. 3A). We observed that while the
proportion of Th17 and Th22 cells was not significantly
different between groups, there was an increased propor-
tion of Th17 and Th22 CM cells at all timepoints (Fig.
3F,G). This may indicate a role for these subsets in re-
covery after viral infection. In addition, there was evi-
dence of increased formation of Th2/22 memory at 12
wpi (Fig. 3H), suggesting establishment of memory fo-
cused on tissue repair [44]. In the Tfh compartment, we
observed significant differences in Tfh1, 9, 22, and 2/22
cells at different timepoints post-infection (Fig. 3A), with
Tfh1 cells significantly elevated in convalescents at 12
and 16 wpi (Fig. 3A).
As with CD8+ and CD4+ effector T cells, Tregs segre-

gate into naïve and mature populations depending on
antigen exposure. While we found no difference in total
Tregs (Table S2), we observed a significant increase in
naïve Tregs at all timepoints post-infection (Fig. 3I), ac-
companied by a significant decrease in CM and EM
Tregs at 12 and 16 wpi, and a significant increase in
TEMRA Tregs (effector memory with acquired
CD45RA) at 12 and 16 wpi (Fig. 3J–L). These data sug-
gest either a block in maturation, or an increase in for-
mation of naïve Treg cells in convalescents. The dual
role of Treg cells in immune suppression and tissue re-
pair suggests the potential for more than one mechan-
ism of action in recovering individuals, so we examined
functionally paired helper lineages in the Treg compart-
ment, as they are likely to respond to the same
pathogen-triggered homing cues as their Th effector
counterparts. We observed a significant decrease in the
proportion of ThR2 Tregs at 12 and 16 wpi, and a sig-
nificant decrease in ThR22 and ThR2/22 Tregs at all
timepoints (Fig. 3M–O), suggesting a block in commit-
ment of these lineages. Finally, we also examined the fol-
licular regulatory T cell lineages (TfhR), as they serve a
similar regulatory role in germinal centres, controlling
Tfh function and B cell help. We observed a significant
decrease in total TfhR at 12 and 16 wpi (Fig. 3P) sug-
gesting that follicular help is less restrained by TfhR in
individuals recovering from COVID-19. Specifically,
TfhR2, 22, and 2/22 subsets were all significantly re-
duced at 12 and 16 wpi but returned to baseline by 24
wpi. This is consistent with the regulatory follicular arm
licencing a Tfhl response early in infection, but later,
skewing to Tfh2/22-driven B cell help in germinal
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centres, both of which are required to drive an effective
B cell response.
We also sought to determine links between T cell help

and antibody responses to COVID-19, given that prim-
ing and durable immunity are underpinned by the inter-
action of T and B cells. To do this, we performed a
correlation analysis between CD4+ T cell subsets at 12,
16, and 24 wpi and antibody responses at 24 wpi (Table
S3). We observed a number of interesting statistically
significant correlations. For example, we observed a sig-
nificant positive correlation between anti-Spike IgG1
levels and both ThR2/22 and TfhR2/22 subsets, suggest-
ing that the effector function of this epithelial tissue-
homing lineage may regulate antibody responses. Similar

correlations between these subsets and anti-RBD IgG re-
sponses were also evident.

Whole blood RNA sequencing reveals significant
perturbations to gene expression in COVID-19
convalescents until at least 6 months post-infection
To assess the potential long-term effects of SARS-CoV-2
infection on the peripheral blood transcriptome, total
RNA sequencing was performed on 138 blood samples
collected from individuals recovering from mild (n =
47), moderate (n = 6), severe (n = 7), or critical (n = 6)
COVID-19 at 12, 16, and 24 wpi (Fig. 1A). RNA sequen-
cing was also performed on blood collected from age-
matched HCs (n = 14) with negative serology for the

Fig. 3 Flow cytometry analysis of T helper (Th), T follicular helper (Tfh), and T regulatory cell (Treg) populations in peripheral blood mononuclear
cells (PMBCs) collected from COVID-19 convalescents at 12, 16, and 24 weeks post-infection (w.p.i.) and from healthy controls (HC). A Heatmap
representing the frequency of immune cell populations in HC and in convalescents. Brighter red color represents higher frequency. B–D Volcano
plots of immune cell populations at each timepoint. Populations shown in red or blue were significantly (FDR < 0.05) increased or decreased (fold
change > 1.5-fold), respectively, in convalescents. E–P The proportion of selected immune cell populations at 12, 16, and 24 w.p.i. compared to
HCs. Statistical significance was assessed using Wilcoxon rank sum Tests. P values were adjusted for multiple testing using the Benjamini-
Hochberg method. ns = non-significant. * FDR < 0.05, ** FDR < 0.01, *** FDR < 0.001
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SARS-CoV-2 Spike and RBD proteins. Approximately 9
billion 2 × 150 bp read pairs (mean 68.2 million per
sample) were sequenced (Table S4).
After adjusting for sex and batch effects, MDS analysis

of the gene expression data revealed a clear separation
between HCs and convalescent individuals at each time-
point (Fig. 4A–C). Consistent with these data, differen-
tial gene expression analysis identified > 950 genes that
were significantly (FDR < 0.05, fold change > 1.25) differ-
entially expressed (738 upregulated genes; 230 downreg-
ulated) in convalescent individuals at 12 wpi compared
to HCs (Fig. 4D, Table S4). Similar results were observed
when only mild/moderate convalescents were included
in the analysis, indicating that differential gene expres-
sion was not driven solely by convalescents recovering
from severe disease. Fewer differentially expressed genes
(DEGs) were identified at 16 and 24 wpi, but there were
still > 250 DEGs identified at 24 wpi (Fig. 4D, Table S4).
Unsupervised hierarchical clustering analysis of DEGs
did not reveal an obvious clustering by disease severity,
suggesting that even individuals with mild COVID-19
have long-lasting changes to their blood transcriptome
(Fig. 4E). There was a tendency for samples from the
earlier timepoints to cluster together, consistent with a
decrease in the number of DEGs over time, but clearly
there was a spectrum in the recovery in gene expression
among convalescent individuals, with some recovering
more quickly (clustering with HCs).
Pathway and Gene Ontology (GO) analysis revealed a

very strong enrichment for pathways related to transcrip-
tion, translation, and ribosome biosynthesis among genes
upregulated in convalescents, at all 3 timepoints (Fig. 4E,F,
Table S4). In many cases, these signatures were predomin-
antly driven by the upregulation of ribosomal RNA
(rRNA) genes. Viral polypeptide synthesis is reliant upon
host ribosomes and many viruses have been reported to
stimulate rRNA synthesis upon infection [45, 46], al-
though both the SARS-CoV-1 and SARS-CoV-2 Nsp1
protein has been shown to act a strong inhibitor of trans-
lation [47, 48]. Interestingly, a recent study has surpris-
ingly shown that rRNA accumulation positively regulates
antiviral innate immune responses against human cyto-
megalovirus infection [49], raising the possibility that the
continued upregulation of rRNAs in individuals recover-
ing from COVID-19 is a cellular defence mechanism.
Consistent with this, the Reactome pathway “innate im-
mune system” was significantly enriched among genes up-
regulated in convalescents (Fig. 4E,F, Table S4). Other
statistically enriched pathways among upregulated genes
included neutrophil degranulation, antimicrobial peptides,
immune system, pathways related to other viral infections,
cell cycle related pathways, and pathways related to the
citric acid (TCA) cycle and respiratory electron transport/
oxidative phosphorylation (Table S4).

Among downregulated genes at 12 and 16 wpi, there
was a strong enrichment for metabolic related pathways
such as oxidative phosphorylation as well as pathways
related to platelet activation, signaling, and aggregation
(Fig. 4G, Table S4). Platelet aggregation has previously
been identified as a marker of severe SARS-CoV-2 infec-
tion [50], so it is interesting that genes involved in this
process appear to be downregulated in recovering indi-
viduals (Fig. S2A, Table S4). Interestingly, we identified
oxidative phosphorylation to be enriched among upregu-
lated genes as well as downregulated genes. Increased
expression of genes involved in oxidative phosphoryl-
ation has recently been reported in another study asses-
sing COVID-19 convalescents [20]. Further examination
of our data revealed that downregulated oxidative phos-
phorylation genes were encoded by the mitochondria,
whereas upregulated ones were nuclear encoded (Fig.
S2B). Differential expression of nuclear versus mito-
chondrially encoded oxidative phosphorylation genes has
been reported in a number of other contexts [51]. Inter-
estingly, given the memory and concentration issues fre-
quently reported by long COVID patients, including in
our study (Table 1), mitochondrial dysfunction in PBMC
has previously been associated with cognitive impair-
ment in other contexts [52]. As mentioned, at 24 wpi
there were considerably fewer DEGs (~ 250) in convales-
cents compared to HCs; consistent with this, only one
pathway, “complement activation”, was identified as be-
ing enriched among genes downregulated at 24 wpi
(Table S4).
Many of the most strongly upregulated genes in

COVID-19 convalescents encoded known biomarkers of
inflammation and innate immunity including S100
calcium-binding protein A8 (S100A8), and high-mobility
group protein 1 (HMGB1), 5-azacytidine induced 2
(AZI2), and granzyme A (GZMA) (Fig. 4H–K). C-
reactive protein (CRP) levels in serum were not, how-
ever, significantly different in convalescents compared to
healthy controls (Fig. S2C). As we performed total RNA
sequencing, we were also able to identify many differen-
tially expressed long non-coding RNAs (Table S4) in-
cluding metastasis-associated lung adenocarcinoma
transcript 1 (MALAT1) (Fig. 4L), which has been found
upregulated in response to flavivirus and SARS-CoV-2
infection [53, 54] and is an important regulator of im-
munity and the cell cycle [55, 56].
As detailed above, flow cytometry analysis revealed

significant changes in the proportion of multiple im-
mune cell populations in convalescent individuals com-
pared with HCs (Figs. 2 and 3). As we performed RNA-
Seq on whole blood samples, it was therefore possible
that the differences we observed in the transcriptome of
recovering individuals simply reflected changes in im-
mune cell populations, rather than differences in gene
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Fig. 4 RNA-Seq was used to profile gene expression in peripheral whole blood samples collected from COVID-19 convalescents at 12, 16, and 24
weeks post-infection (w.p.i.) and from healthy controls (HC). A–C Multidimensional scaling (MDS) analysis of RNA-Seq gene expression data at 12,
16, and 24 w.p.i. compared to HC. D The number of differentially expressed (DE) genes (FDR < 0.05 and fold change > 1.25-fold) identified at each
timepoint. E Heatmap showing the expression of DE genes in each sample. Data were adjusted for sex and batch effects prior to MDS analysis
and visualisation of the heatmap. F–G Selected REACTOME pathways enriched among F upregulated and G downregulated genes at each
timepoint. See Table S4 for all enriched pathways. H–L The expression of selected genes in convalescents at 12, 16, and 24 w.p.i. compared to
HC. Statistical significance comparing all convalescents to HC was assessed in (H–L) using EdgeR. P values were adjusted for multiple testing
using the Benjamini-Hochberg method. ns = non-significant. * FDR < 0.05, ** FDR < 0.01, *** FDR < 0.001
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expression. To assess this, we repeated the differential
expression analysis multiple times, each time adjusting
for changes in a major immune cell population. We
found that accounting for changes in specific immune
cell populations in our differential gene expression ana-
lysis models resulted in a decrease in the number of
genes identified as differentially expressed (mean reduc-
tion in the number of genes with FDR < 0.05 was
50.47%); however, the statistical enrichment of immune,
rRNA processing, cell cycle, and transcription/transla-
tion signatures identified among DEGs was robust to
correction for differences in the proportion of any spe-
cific immune cell populations (Fig. S3, Table S4). These
data indicate that the long-term perturbation of the
blood transcriptome that we observe in convalescents
compared to HCs is not solely explained by changes in
the frequency of any single immune cell population.

Persistent changes in the transcriptome are associated
with post-acute COVID-19 syndrome.
To assess whether differences observed in convalescent
patients were associated with long COVID symptoms,
we compared cellular immunophenotypes and transcrip-
tional responses in convalescent individuals (n = 21) re-
ferred to a “long COVID” clinic compared to those
convalescent individuals who were not (n = 48). Referral
to the clinic was closely aligned with self-reported on-
going symptoms (Fig. 5A) and was not significantly asso-
ciated with disease severity (Fischer’s exact test, P value
= 0.1). Analysis of anti-Spike and anti-RBD antibody ti-
tres found no significant differences between individuals
referred to the clinic and those who were not, indicating
that humoral responses are similar in both groups of
convalescent individuals. Similarly, none of the immune
cell subsets we found to be persistently changed in con-
valescents compared to healthy controls were signifi-
cantly altered in individuals referred to the long COVID
clinic compared to those who were not. Interestingly,
however, there were 446 genes that were significantly
differentially expressed at 24 wpi in convalescent indi-
viduals referred to the long COVID clinic compared to
those who were not (FDR < 0.05 and > 1.25× fold change
(Fig. 5B,C, Table S5). No differentially expressed genes
were identified between convalescent individuals re-
ferred to the long COVID clinic and those who were not
at 12 or 16 wpi (although all convalescent had substan-
tial changes in gene expression compared to HCs at
these timepoints). These data suggest that changes to
the blood transcriptome persist in individuals referred to
a long COVID clinic, whereas they tend to resolve in
convalescent individuals not suffering from long COVID
symptoms.
Genes involved in transcription and translation and

the cell cycle were enriched among genes upregulated in

long COVID convalescents. Furthermore, there was a
very strong enrichment for platelet-related pathways
among downregulated genes (Fig. 5D,E, Table S5). Given
none of the cell types we measured were found to be sig-
nificantly different in long COVID convalescents in our
flow cytometry data, we used the Molecular Signatures
Database (MSigDB) cell type collection to attempt to
identify which cell type(s) drove the observed transcrip-
tional differences. Consistent with our pathway analyses,
we identified a strong downregulation of platelet and
megakaryocyte gene sets among individuals referred to a
long COVID clinic (Fig. 5F, Table S5). Plotting the ex-
pression of well-known platelet genes encoding, for ex-
ample, platelet factor 4 (PF4), platelet glycoprotein IX
(GP9), thrombopoietin receptor (MPL), and coagulation
factor XIII A chain (F13A1) (Fig. 5G–J), confirmed the
downregulation of platelet genes in long COVID pa-
tients. There are a growing number of case reports of
thrombocytopenia in COVID-19 patients [57–59] and
interestingly, given that fatigue is one of the most com-
monly reported side-effects of long COVID, a common
symptom of thrombocytopenia is also fatigue. There are
also numerous case reports of thrombocytopenia after
infection with a range of pathogens, including severe
acute respiratory syndrome coronavirus 1 (SARS-CoV-
1), influenza, and Zika virus [60–62].
Aside from platelet-related signatures, monocyte- and

myeloid-related cells were also significantly enriched
among downregulated genes, whereas CD4+ T cells were
enriched among upregulated genes (Fig. 5F). Interest-
ingly, given the important role of type I interferon (IFN-
I) in COVID-19 [18], we also found decreased expres-
sion of multiple IFN-I-inducible genes including MX1,
OAS3, and OASL (Fig. 5K–M). Of further interest given
the neurological symptoms associated with long COVID
including those reported in our cohort (Table 1), we
found that the expression of S100B, a biomarker of
neurological damage, was significantly increased in pa-
tients referred to a long COVID clinic [63].

Blood transcriptional module analysis highlights variable
rates of recovery in the transcriptome of COVID-19
convalescents and correlations with antibody responses
We next sought to investigate individual-specific tran-
scriptional changes in COVID-19 convalescents using
pre-defined blood transcriptional modules (BTMs) [32].
To do this, we used Gene Set Variation Analysis (GSVA)
[33] to reduce variation captured across > 20,000 genes
in our gene expression data to an “activity score” for 256
BTMs in each individual (Fig. 6A and Table S6). Using
limma, we identified 80 of these BTMs that were differ-
entially active in convalescents (Table S6). The annota-
tion of these BTMs was broadly consistent with our
pathway analysis identifying multiple modules related to
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transcription/translation, the cell cycle and specific im-
mune cell populations, and pathways as being signifi-
cantly enriched in convalescents (Fig. 6A, Table S6).
Interestingly, this analysis highlighted that while the pro-
portion of recovering COVID-19 convalescents with

“healthy-like” BTM activity increased over time (consist-
ent with a recovery to baseline over time), there were
still a subset of convalescents with persistent transcrip-
tional dysregulation at 24 wpi, which was associated with
referral to a long COVID clinic (red and blue modules

Fig. 5 RNA-Seq was used compare gene expression in peripheral whole blood samples collected from COVID-19 convalescents who were
clinically referred to a long COVID clinic and those who were not. A Self-reported long COVID symptoms in convalescent individuals. B Volcano
plot showing genes that were differentially expressed (DE) at 24 wpi in convalescents referred to a long COVID clinic. Horizontal line corresponds
to FDR = 0.05. Positive log2 fold change values correspond to genes with increased expression in those referred to a long COVID clinic relative to
convalescent patients who were not referred. C Heatmap showing the expression of DE genes in each sample at 24 wpi. D Selected REACTOME
pathways enriched among up- and downregulated genes by long COVID clinic referral status. See Table S5 for all enriched pathways. E Heatmap
showing the expression of DE genes in the REACTOME “platelet activation, signaling and degranulation” pathway. F Barplot showing the
enrichment of gene sets from the MSigDB cell type collection. G–N The expression of selected genes at 24 wpi in convalescents referred to a
long COVID clinic and those who were not referred. Statistical significance in G–N was assessed using EdgeR. * FDR < 0.05
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in Fig. 6A). Consistent with this, we identified 48 BTMs
at 24 wpi that were differentially active by long COVID
clinic referral status including multiple platelet, cell
cycle, and immune-related BTMs (Table S6).
Finally, we undertook a systems-level integration of

BTM activity scores, anti-Spike and anti-RBD antibody

data, and flow cytometry data at 12, 16, and 24 wpi (Fig.
6B, Table S6, Additional files 12, 13 and 14). To do this,
we constructed a network of significant correlations be-
tween BTMs, antibody titres, and the frequency of im-
mune cell populations in each individual. Many BTMs,
including those differentially active in convalescents,

Fig. 6 Integrated network analysis of correlations between blood transcriptional modules (BTMs), the frequency of immune cell populations
assessed by flow cytometry and anti-Spike and anti-RBD antibody titres. A Selected BTMs identified to be differentially active in COVID-19
convalescents. Each circle represents the activity of that BTM in a specific convalescent individual. Darker red indicates increased BTM activity
relative to healthy control (HC); darker blue decreased. The size of the circle is proportionate to BTM activity relative to HC. Samples are ordered
on the X-axis by BTM M85 (Platelet activation) activity score. B Network showing Pearson correlations (as edges) between BTMs, immune cell
populations, and serology data. Red and blue edges indicate positive and negative correlations, respectively. BTM-BTM correlations were
determined across all timepoints. Only those with r2 > 0.7 and FDR < 0.05 are shown. Correlations between BTMs, immune cell populations, and
antibody titres were determined at each timepoint. Only those with FDR < 0.05 at a specific timepoint are shown. Node sizes and colours are
scaled relative to HC. Red and blue nodes indicate increased and decreased values, respectively, relative to HC. Grey nodes were not significantly
altered in convalescents. The network was visualised using Cytoscape v3.8.1
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were strongly correlated with each other. For example,
monocyte-, DC-, neutrophil-, and inflammasome-
related BTMs were strongly correlated with each other
and, interestingly, with metabolism-related BTMs (Fig.
6B). DC-related BTMs also correlated with antiviral
and interferon-related BTMs. At 12 wpi, there were
also significant correlations identified between BTMs
and > 30 different immune cell populations. For ex-
ample, the proportion of CD19+ B cells, CD3+ T cells,
and NK cells were strongly correlated with the activity
scores of BTMs independently annotated to be related
to these cell types (Fig. 6B, Table S6). Multiple differ-
ent immune-related BTMs were also strongly posi-
tively correlated with the proportion of Tfh22-like
Tregs at 12 wpi. At 16 wpi, BTMs correlated with
fewer immune cell populations; however, multiple
strong correlations were identified between BTMs and
monocytes, B cells, and lymphocytes at this timepoint.
Similar correlations were also identified at 24 wpi.
Despite the strong correlations between many different
BTMs and immune cell populations, interestingly,
there were relatively few significant correlations be-
tween immune cell populations and differentially ac-
tive BTMs, particularly at 16 and 24 wpi. These data
suggest that the majority of differentially active BTMs
we observed in convalescent individuals are not ex-
plained by differences in the frequency of immune cell
populations in these individuals. For example, oxida-
tive phosphorylation-related BTMs were differentially
active at all timepoints; however, these BTMs were not
significantly correlated with any immune cell popula-
tion. Anti-Spike and/or anti-RBD antibody titres were
also significantly correlated with BTMs at 16 and 24
wpi, but not 12 wpi (Fig. 6B, Table S6). Many of the
BTMs that were correlated with antibody titres were
downregulated in convalescents. For example, two
platelet activation BTMs (M32.0 and M32.1) were sig-
nificantly correlated with anti-Spike IgM responses at
16 wpi, while multiple cell adhesion-related BTMs
were significantly negatively correlated with anti-Spike
IgG responses at 24 wpi. We also identified multiple
different immune cell populations that correlated with
antibody titres at each timepoint. These relationships
were particularly evident at 24 wpi. For example, the
proportion of LD granulocytes, CD16+ NK cells, and
CCR7−CD62L+ transitional memory T cells were sig-
nificantly positively correlated with anti-Spike and
anti-RBD IgG titres at 24 wpi. In summary, our inte-
grated network analysis reveals a complex interplay of
relationships between circulating immune cell popula-
tions, transcriptional dysregulation, and humoral im-
mune responses in COVID-19 convalescent patients
and provides a resource for further exploration and in-
vestigation of these relationships.

Discussion
Recovery from SARS-CoV-2 infection is frequently asso-
ciated with persistent symptoms months after infection
including fatigue, muscle weakness, sleep impairment,
and anxiety or depression [4, 5, 64]. These data suggest
ongoing immune dysregulation in COVID-19 convales-
cents which has been supported by several recent studies
profiling the immune system in individuals recovering
from COVID-19 using multi-parameter flow cytometry,
bulk and single-cell transcriptomics, and other ap-
proaches [15, 16, 65–70]. Our study extends on these re-
cently published studies, which have mostly assessed
immune responses at 2–12 weeks post-infection. Here,
we report an integrated analysis of immune responses at
a transcriptional, cellular, and serological level, in indi-
viduals recovering from mild/moderate or severe/critical
COVID-19 at 12, 16, and 24 weeks post-infection, in
comparison to age-matched HCs.
Anti-Spike and anti-RBD serology data demonstrated

heterogeneity of antibody responses to SARS-CoV-2
consistent with previously published reports showing
long-lasting IgG and IgG1 antibody responses to at least
6 months post-infection which were correlated with dis-
ease severity [36, 71, 72]. Our cohort is particularly well-
suited to the assessment of the durability of antibody re-
sponses due to the negligible risks of re-infection in
South Australia where, due to strict border restrictions
and public health measures, community transmission
was eliminated during the sample collection period. Des-
pite the anticipated decay in IgA and IgM [73–75], a
large percentage of convalescents remained seropositive
for both RBD- and Spike-specific Ig (all isotypes) for the
duration of the study. This decay was less pronounced at
24 wpi in the severe COVID-19 convalescents compared
to the mild cohort, with significant differences in RBD-
specific IgM and IgG3 isotypes between the two groups.
Recently, declining levels of SARS-CoV-2 Spike-specific
IgM in mild COVID-19 convalescents were found to
strongly correlate with serum virus neutralisation activity
[76], findings that were further confirmed in experi-
ments with purified IgM fractions and IgM-depleted sera
from similar patients [40, 77]. In COVID-19 convales-
cents, IgM, similarly to IgG1, preferentially targets the
S1 domain of the Spike protein [78], the region that con-
tains the RBD and N-terminus domains and the target
of most neutralising antibodies and regions of high
interest for developing passive immunotherapies to deal
with new SARS-CoV-2 variants of concern [79]. Con-
versely, less abundant SARS-CoV-2-specific IgG3 targets
the S2 domain more efficiently [78], which suggests that
its ability to neutralise the virus is, by comparison, re-
duced. Yet, S2 contains the sequences that allow SARS-
CoV-2 membrane fusion with the cell host membrane, a
key step in virus entry [2]. In fact, the ability of
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antibodies targeting S2 regions involved in membrane
fusion to block Spike protein-mediated cell-cell fusion
has been confirmed experimentally [80]. In the future, it
will be necessary to elucidate the particular roles of IgM
and IgG3 in neutralising SARS-CoV-2 but, perhaps too,
blocking virus infection by other mechanisms such as
blockade of membrane fusogenic regions of the Spike
protein. This will provide further insights into the over-
all importance of specific Ig isotypes in determining dis-
ease severity and outcomes.
In addition to our serological analysis of COVID-19

convalescents, we extensively and longitudinally profiled
immune cell populations in the same individuals using a
multi-panel approach that enabled the identification and
enumeration of ~ 130 different sub-populations including
deep phenotyping of the CD4 and CD8 compartments.
Differences in immune cell populations compared with
HCs were most strongly evident at 12 wpi, but some pop-
ulations were still significantly different at 24 wpi. CD56++

NK cells, granulocytes, LD neutrophils, and tissue-homing
CXCR3+ monocytes were significantly increased in conva-
lescents at 12 wpi. Many of these changes persisted until
at least 16 or 24 weeks. Consistent with our data, in-
creased NK cells [65] and granulocytes [68] have been re-
ported in other cohorts of convalescents and scRNA-Seq
has revealed that increased non-classical monocytes are
associated with more severe disease during active infection
[81]. In contrast to our study, a study of 109 Austrian con-
valescents at 10 weeks post-infection did not find neutro-
phils, monocytes, CD3+ T cells, CD56+ NK cells, or
CD19+ B cells to be significantly different in convalescents
[68]. Other studies have also reported significant decreases
in the frequencies of invariant NKT and NKT-like cells
[66], which we and others [20] did not observe.
Several previous studies have reported that T and B

cell activation/exhaustion markers remain elevated fol-
lowing SARS-CoV-2 infection [15]. Furthermore, CD4+

and CD8+ EM T cells have been reported to be signifi-
cantly higher in convalescents at 10 wpi [68]. Consistent
with reports in active infection and convalescence [15],
convalescent individuals in our study had lymphopenia
until at least 16 wpi; however, CD3+ T cells were signifi-
cantly increased at 12 wpi. We also observed signifi-
cantly increased CD19+ B cells at 12 and 16 wpi and
CD38+CD27+ memory B cells at 16 wpi in convales-
cents. Recent studies have shown that increased activa-
tion and exhaustion of memory B cells observed during
COVID-19 correlates with CD4+ T cell functions [82],
and consistent with this, we observed reduced CD4+ EM
cell proportions in COVID-19 convalescents at 12 wpi.
We were particularly interested in the role of regulatory
T cells (Tregs) in COVID-19, as there have been con-
flicting reports of Tregs being either increased or de-
creased in convalescents. Significantly increased Foxp3+

Tregs were observed in 49 convalescents from Wuhan at
~ 112 days post-recovery [66]; however, another study
observed that CD25+Foxp3+ Tregs were significantly re-
duced 10 weeks after COVID-19 [68]. A more recent
study has also reported that Tregs in severe COVID-19
patients have a distinct transcriptional signature with
similarities to tumour-infiltrating Tregs, which persist in
convalescent patients [83]. We observed no significant
difference in the total (CD4+CD25+CD127low) Treg pool
at any timepoint, but when we interrogated Tregs for
their memory/maturation status, we observed that the
naïve and TEMRA Treg proportions were significantly
increased at 12 and 16 wpi, while EM and CM Tregs
were significantly reduced, mirroring a similar reduction
in the proportion of CD4+ EM and CM pools at 12 and
16 wpi. Interestingly, a number of the Th lineage subsets
including Th2, Th22, Th2/22, and Th17 had increased
proportions of CM vs EM, revealing subtle skewing of
the Th memory formation. The expansion of naïve Tregs
could be an attempt to restore the balance in the Treg
pool in the face of both inflammation and tissue damage,
which is supported by emerging evidence of a dual role
for Tregs in suppressing immune responses and promot-
ing tissue repair [84]. Increased TEMRA Tregs, which
are often associated with exhaustion, but are in fact a
poly-functional effector Treg population with character-
istics of cytotoxic cells, migratory T cells, and tissue re-
pair cells [85, 86], further suggest a competition between
classical immune suppression and tissue repair by these
cells in response to tissue damage in COVID-19
convalescents.
Each Th subset has a paired regulatory subset [41],

and this includes Tfh subsets, as B cell help in germinal
centres also requires regulation in the steady state [87].
In a stereotypical antiviral immune response, Th1 cells
migrate to sites of viral infection to establish an adaptive
response, and regulatory cells co-migrate to limit
chronic inflammation once the pathogen levels decline;
however, there is an emerging function of tissue-resident
Treg cells in tissue repair [84, 88]. We did not observe
increased Th1 cells, but we did observe a reduction of
Th9 cells potentially suggesting a diversion of Th9 cells
to other sites. We also observed that the maturation of
Th pools was enhanced in both Th17 and Th22 subsets,
where CM marker proportions were increased at all
timepoints post-infection. This may suggest that epithe-
lial homing and tissue damage trigger activation and
form part of the COVID-19 T cell recall response. It is
intriguing that the Treg partners of these lineages, in-
cluding ThR2, ThR22, and ThR2/22 were all significantly
reduced over the same time course post-infection, sug-
gesting that the signal recruiting Th cells to tissue loca-
tions are persistent long after COVID infection. A
similar imbalance in follicular help vs follicular
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regulation was also observed, whereby Tfh1 and Tfh2/22
cells were significantly elevated post COVID-19, but
total TfhR, TfhR2, TfhR22, and TfhR2/22 cells were re-
duced. Other studies have demonstrated that CXCR5+

Tfh populations are significantly elevated in individuals
recovering from COVID-19 and correlate with robust
humoral immunity [89]; however, this previous study
did not analyse the regulatory arm in this compartment.
Another previous study has reported a decline in Tfh
cells at 4 months post-infection [74]. Interestingly, an-
other previous study has suggested that germinal centre
formation is impaired in acute infection [90]. This previ-
ous study was based on the analysis of post-mortem
lymph nodes and spleen in patients that succumbed to
SARS-CoV-2 infection, whereas, in our study, we have
assessed antibody responses in convalescent survivors,
who clearly have strong humoral responses. Our data
would suggest germinal centre formation is sufficient in
convalescents.
In addition to immunophenotyping by flow cytometry,

we performed RNA sequencing of total RNA from 138
blood samples collected from convalescent individuals at
12, 16, and 24 wpi, as well as HCs. To our knowledge,
no other study has profiled transcriptome-wide changes
in COVID-19 convalescents for such a long period post-
infection. We found that the blood transcriptome of
convalescents was significantly perturbed compared to
HCs, with the largest numbers of DEGs being identified
at 12 wpi. Transcriptional dysregulation persisted until
at least 24 weeks. There was a very strong enrichment
for pathways and BTMs related to transcription, transla-
tion, and ribosome biosynthesis among genes upregulated
in recovering individuals, at all 3 timepoints. Many viruses
upregulate rRNA synthesis during infection [42, 43], but
why rRNA gene expression remains upregulated months
after infection is currently unknown. Other statistically
enriched pathways among upregulated genes included
neutrophil degranulation, antimicrobial peptides, immune
system, and pathways related to other viral infections.
These data suggest ongoing inflammatory responses and
immune dysregulation in COVID-19 convalescents
weeks-to-months after infection. Consistent with these
data, neutrophil degranulation has reported to be signifi-
cantly upregulated in active infection [91, 92], suggesting
that certain signatures of active infection persist well into
convalescence. We also found evidence for dysregulated
expression of genes involved in oxidative phosphorylation,
a signature which has also been identified in one other re-
cent study of convalescents to occur irrespective of
whether elevated inflammatory markers persist or not
[20], but whose functional significance is currently un-
known. Interestingly, mitochondrial dysfunction in PBMC
has previously been associated with cognitive impairment
in other contexts [52]. This warrants further investigation

given the frequent reports of cognitive issues in long
COVID sufferers.
While some changes in gene expression were associ-

ated with variation in specific immune cell populations
between individuals, differences in gene expression were
not solely explained by changes in the frequency of any
single immune cell population. A patient-specific ana-
lysis of the gene expression activity of pre-annotated
BTMs enabled a more thorough assessment of the vari-
ation in gene expression responses. There was a broad
spectrum in the recovery of gene expression responses
in both mild/moderate and severe/critical convalescents.
Variation in the rate of recovery from infection at a cel-
lular and transcriptional level may explain the persist-
ence of symptoms, such as fatigue, associated with long
COVID in some convalescent individuals. We observed
a strong association between our transcriptional signa-
ture of convalescence and referral to a dedicated long
COVID clinic. While the majority of convalescent indi-
viduals in this cohort returned to a transcriptional base-
line by 24 wpi, those referred to a long COVID clinic
did not. More than 400 genes were identified to be dif-
ferentially expressed in those convalescent individuals
referred to a long COVID clinic compared to those con-
valescents who were not. Interestingly, these differences
were only evident at 24 wpi, suggesting that while tran-
scriptional dysregulation in many convalescents begins
to resolve around 6months post-infection, it persists in
those individuals suffering from long COVID symptoms.
Of particular interest given known associations with

symptoms such as fatigue, we identified several tran-
scriptional signatures among long COVID convalescents
that suggested a mild thrombocytopenia. There was, for
example, a very strong enrichment for platelet-related
pathways among downregulated genes and cell type en-
richment analysis revealed a strong downregulation of
platelet and megakaryocyte gene sets among individuals
referred to a long COVID clinic. Consistent with our
data, there are reports of thrombocytopenia in COVID-
19 patients [57–59]. Furthermore, SARS-CoV2-2 infec-
tion has also been shown to induce changes in platelet
gene expression and function [93, 94]. Unfortunately, we
did not measure platelet levels in these individuals, so
this is something that requires further assessment in fu-
ture studies. Interestingly, a link between gene expres-
sion in peripheral blood and fatigue following infectious
mononucleosis has been previously reported [95], with
at least some of the same genes differentially expressed
in COVID-19 convalescents. These data may point to-
wards common mechanisms regulating long COVID and
post-viral infection fatigue more generally. Finally, we
also uncovered significant inverse correlations between
dysregulated BTMs and anti-Spike and anti-RBD anti-
body responses suggesting that prolonged transcriptional
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dysregulation may be associated with reduced antibody re-
sponses with potential consequences for the durability of
protective immunity. Further work is now needed to as-
sess whether dysregulated immunity following COVID-19
has implications for responses to other infections, vaccin-
ation, or in the management of chronic diseases.
While our study provides a high-resolution, multi-level

insight into the immune dysregulation experienced post
COVID-19, we recognise that our study also has some
important limitations. While comparable to or larger
than most other studies to date, the sample size is still
relatively limited, particularly in the case of patients with
more severe disease. This is particularly important given
the apparently highly heterogenous recovery in immune
dysregulation over time. Further larger studies will be
needed to more fully assess differences due to disease se-
verity, treatment, and other confounders and validate
that the observed transcriptional changes are reflected at
the protein level. Other single-cell approaches may also
provide further resolution of the immune dysregulation
experienced by convalescents and the transcriptional sig-
natures we find associated with long COVID. We chose
to perform the high-resolution immunophenotyping on
freshly isolated PBMC in order to enrich for the rare
lymphocyte subsets that are functionally important but
not found in large number in whole blood, and this has
some limitations when calculating the proportion of all
cells found in the blood. Similarly, there are known
biases introduced due to the removal of mature granulo-
cytes from whole blood. Importantly, this is an approach
that has also been successfully applied to other pub-
lished COVID-19 cohort studies [20, 65]). It is important
to acknowledge the limitations associated with examin-
ation of cell proportions versus absolute cell counts, spe-
cifically that a lowered proportion does not always
equate to a lowered absolute cell count. With regard to
presenting the data as absolute cell counts or proportion
of a reference cell pool, we selected a proportion analysis
to reflect changes in the balance between multiple rare
but clinically important lymphocyte subsets using pa-
rameters such as maturation status or homing potential.
In addition, we have normalised the staining protocols
to a fixed PBMC count (5 × 105) at input for each sam-
ple, to minimise batch effects or donor cell count differ-
ences, ensuring the data are comparable between
multiple donors over multiple time points.
While our flow cytometry analyses enabled the assess-

ment of ~ 130 parameters, it did not include markers for
dendritic cells (DC), which have been found to be al-
tered in COVID-19 convalescents in previous studies
[96]. Our BTM analysis, however, supports the dysregu-
lation of DC populations in convalescents. Finally, while
we assessed the relationships between immune dysregu-
lation and anti-Spike and anti-RBD antibody responses,

we did not assess T cell immunity in our study [97, 98].
Further studies should also assess the effects of SARS-
CoV-2 variants on long-term immune dysregulation in
convalescents and comparative studies assessing differ-
ences between post-infectious immune dysregulation fol-
lowing SARS-CoV-2 infection in comparison to other
infections would be highly beneficial. Due to the global
impact of the pandemic, multiple protocols for separat-
ing and analysing the immune compartment have been
used in multiple studies, and we acknowledge the limita-
tion that in order to directly compare data between mul-
tiple cohorts, an international clinical protocol would
need to be established with standardised cohort clinical
inclusion criteria, standardised cell isolation and flow cy-
tometry protocols, and standardised data analysis.

Conclusions
In conclusion, this study found persistent changes to the
peripheral immune system of SARS-CoV-2 convales-
cents until at least 6 months post-infection and identi-
fied a subset of these changes that were associated with
long COVID. These changes to the peripheral immune
system could have implications for how individuals re-
covering from SARS-CoV-2 infection respond to other
infections encountered in this period and persistent im-
mune activation may also exacerbate other chronic
conditions.
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Additional file 1: Figure S1: Stability of anti-Spike and anti-RBD anti-
body titres over time. (A-E) Anti-Spike and (F-J) anti-RBD IgG, IgG1, IgG3,
IgM and IgA titres plotted as a function of time. End point titres are re-
ported as log10 area under the curve (AUC). The blue line represents the
line of best fit from a linear regression analysis. The shaded areas repre-
sent the 95% confidence interval. The P value shown is from the linear re-
gression. Red dashed lines represent the mean AUC + 2 SD in healthy
controls for each isotype.

Additional file 2: Figure S2: Expression of genes in two pathways
identified as downregulated in COVID-19 convalescents and healthy con-
trols. (A) Reactome pathway R-HSA-76002 “Platelet activation, signaling
and aggregation” and (B) KEGG pathway hsa00190 “Oxidative phosphor-
ylation”. Oxidative phosphorylation genes are sub-divided into nuclear
and mitochondrially encoded, with the same x axis order of samples in
each panel. Only differentially expressed genes (FDR < 0.05 and fold
change > 1.25-fold) within each pathway are shown. (C) Serum CRP
levels in samples collected from healthy controls (HC) and COVID-19 con-
valescent individuals at 12, 16 and 24 weeks post infection.

Additional file 3: Figure S3: Adjusting for differences in immune cell
populations. We repeated the differential expression analysis multiple
times, each time adjusting for differences in the frequency of major
immune cell populations among individuals. Each panel shows the
enrichment of selected pathways (same as those shown in Fig. 4F)
among genes identified as being significantly up-regulated in each ana-
lysis (FDR < 0.05 and fold change > 1.25-fold). None = no immune cell
population adjustment.

Additional file 4: Table S1. Subject meta-data, and antibody titres for
COVID-19 convalescents and healthy controls.
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Additional file 5: Table S2. Flow cytometry data showing the fold-
change and FDR values for each immune cell population in COVID-19
convalescents compared to healthy controls.

Additional file 6: Table S3. Pearson correlations between the
frequency of immune cell populations at 12, 16, and 24 weeks post-
infection (wpi) and anti-Spike and anti-RBD antibody responses.

Additional file 7: Table S4. RNAseq sample statistics, differentially
expressed genes (DEGs), pathway analyses, and adjusting for immune cell
populations.

Additional file 8: Table S5. Differentially expressed genes and
pathways at 24 weeks post infection in convalescent individuals that
were clinically referred to a dedicated long COVID clinic, compared to
those convalescent individuals who were not.

Additional file 9: Table S6. BTM and correlation analysis.

Additional file 10. Symptom questionnaire sent to patients to assess
presence of long COVID associated symptoms.

Additional file 11. Flow cytometry gating strategy.

Additional file 12. Correlation network at 12-weeks post infection in
Simple Interaction Format. The first column is a source node, second the
spearman correlation coefficient and third the target node. File related to
Fig. 6B.

Additional file 13. Correlation network at 16-weeks post infection in
Simple Interaction Format. The first column is a source node, second the
spearman correlation coefficient and third the target node. File related to
Fig. 6B.

Additional file 14. Correlation network at 24-weeks post infection in
Simple Interaction Format. The first column is a source node, second the
spearman correlation coefficient and third the target node. File related to
Fig. 6B.
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