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Abstract: Scientific computing heavily relies on data shared by the community, especially in 1

distributed data-intensive applications. This research focuses on predicting slow connections that 2

create bottlenecks in distributed workflows. In this study, we analyze network traffic logs collected 3

between January 2021 and August 2022 at National Energy Research Scientific Computing Center 4

(NERSC). Based on the observed patterns, we define a set of features mostly based on history 5

for identifying low-performing data transfers. Typically, there are far fewer slow connections on 6

well-maintained network, which creates a difficulty in learning to identify these abnormally slow 7

connections from the normal ones. To address the class imbalance challenge, we devise several 8

stratified sampling techniques and study how they affect the machine learning approaches. Our tests 9

show that a relatively simple technique that under-sample the normal cases to balance the number of 10

samples in two classes (normal and slow) is very effective for model training. This model predicts 11

slow connections with an F1 score of 0.926. 12

Keywords: network transfer, slow connection, prediction, machine learning, scientific computing 13

1. Introduction 14

Scientific applications from climate modeling [1], bioinformatics [2], particle physics [3] 15

and so on often require a large amount of data from geographically dispersed sites. For 16

instance, a Large Hadron Collider (LHC) experiment produces petabyte-scale data and 17

distributes it to 160 computing facilities around the world [4]. There are thousands of 18

physicists making uses of some portions of this data collection to conduct their research. 19

Such distributed scientific workflows rely heavily on networking infrastructure for moving 20

their data. Scientists could usually receive their data files in a timely manner with the 21

currently deployed software and hardware [3–7], however, occasionally some of these data 22

movements are much slower than expected. This work aims to investigate whether such 23

slow data transfers could be predicted before the start of the data request. Having such 24

information would allow the data management system to make alternative arrangements 25

and improve the overall effectiveness of the data infrastructure. 26

There has been considerable amount of work on monitoring and analyzing network 27

performance [8–10], however, much less attention has been given to the understanding and 28

predicting of low-performing communications. However, such slow data transfers could 29

easily become the bottlenecks of a large distributed workflow [4,11,12]. In this study, we 30

explore various properties of slow connections using a set of network traffic logs from a 31
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scientific computing facility (NERSC1) and developed a prediction mechanism to identify 32

unexpectedly low-performing data transfers. 33

We start with a nearly two-year’s worth of network traffic monitoring data produced 34

by tstat [13]. The traffic logs are from dedicated data transfer nodes (DTNs) for moving 35

the large amounts of data needed for mission critical scientific applications [14]. This study 36

expands on the workshop report [12] as follows: (1) The previous work only use data 37

records from one of the DTNs at NERSC (dtn01) and only covered five months time, from 38

January–May, 2021, while this study is based on an extensive dataset collected from all four 39

public DTNs covering nearly two-year’s time (from January 2021 to August 2022); (2) This 40

work systematically addresses the issue of far fewer slow transfers than normal ones by 41

defining a set of sampling strategies for mitigating the class imbalance concern; (3) This 42

work also explores advanced ways of defining what should be considered as slow transfers, 43

which includes a non-static threshold defined as a function of transfer size, to consider the 44

correlation between the size and network throughput. 45

By exploring features from the network monitoring data, we are able to device an 46

effective decision tree-based classification techniques to identify slow transfers before the 47

start of the transfer. Overall, the key contributions of this work include: 48

• We present a set of stratified sampling techniques to address the challenge introduced 49

by the fact that are far fewer slow transfers than normal ones. The best sampling 50

approach allows us to achieve an F1 score of 0.926 for predicting under-performing 51

transfers. 52

• We devise a strategy to capture the network state by utilizing information from recently 53

completed file transfers.2 We define a set of features engineered from the most recent 54

transfer from the same subnet as the transfers from a similar location and host may 55

show similar behaviors. 56

• This study utilizes a large amount of network monitoring data from an active scientific 57

computing facility. This larger data collection allows us to explore different sampling 58

strategies, different definitions of slow traffic, as well showing the relative importance 59

of the individual features. 60

This paper is organized as follows. Section 2 provides the description of the data (tstat) 61

in this study and introduce our exploratory data analysis that provides the understanding 62

of the nature of data transfers in scientific facilities. In Section 3, we present our prediction 63

methodology with feature engineering, learning algorithms employed, and sampling strate- 64

gies used for optimizing models, and we report the experimental results and observations 65

with the experimental setting in Section 4. Finally, a summary of the previous work closely 66

related to our study is provided in Section 5, and we will conclude our presentation with 67

future directions in Section 6. 68

2. Data Description and Exploration 69

This section provides key observations made from our exploratory data analysis 70

performed for better understanding of the characteristics of data transfers measured in the 71

tstat format. 72

2.1. Description of tstat data 73

Simply, tstat3 is a logging tool for network traffic flows. This tool is deployed on 74

the data transfer nodes (DTN) at NERSC. Since the DTNs are dedicated to moving data 75

files among the different computing facilities, each of the tstat flows corresponds to a file 76

transfer. 77

1 https://www.nersc.gov/
2 Even though this was a key technique used previously in [12], we feel it is still worthwhile to draw attention

to it because it is an effective approach that could be effectively used in many application scenarios.
3 http://tstat.tlc.polito.it/measure.shtml
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Viewed as a data table, the tstat dataset has 116 columns each corresponds to some 78

feature about the TCP flow and each row is about a network flow. The features recorded 79

include communication activities with the address information, such as source IP address, 80

destination IP address, the number of bytes transmitted in payload, the number of retrans- 81

missions, start time, flow duration, minimum/maximum/average round trip time (RTT), 82

etc. These are the basic information we would use for our predictions. However, it is 83

important to note that most of these values should not be available before the start of the 84

transfer. In fact, we only know about the IP addresses and the number of bytes in the file in 85

the prediction time. With limited known information, a major challenge of this study is to 86

define new features to predict network performance for individual transfers. 87

The second challenge when analyzing the tstat data is that what we assumed as 88

unusually slow is a very small fraction of the total number of observed network flows. This 89

challenge is common to many two-class classification problems with a significant difference 90

between the majority class and the minority class in the notion of their quantity [15,16]. 91

Machine learning models generally have a hard time to learn about the minority class when 92

there exist a significant imbalance in the dataset. 93

To ensure that our model can generalize well to new data, we perform a train-test-split. 94

For this particular study, we use all the data collected in 2021 as the training set, and all 95

the data from 2022 as the testing set. Given the large number of data transfers recorded (as 96

shown in Table 1), we use subsets of data records from both training data and testing data 97

to maintain the time needed for training and testing reasonably modest. 98

2.2. High-level observations about data transfers 99

In our previous study [12], we only have accesses to tstat records during the first 100

five months of 2021 on DTN01. For this study, we have access to a much larger data set 101

covering a time period from January 2021 through August 2022. Furthermore, the data 102

collect includes tstat logs on all four DTNs. Therefore, the data collection used for this 103

study not only have many more data records, but also have more variety of file transfers. 104

For scientific workflows, the relatively large file transfers experiencing low network 105

performance creates long delays. Thus, our work focus on network flows that are relatively 106

large in size. Specifically, we consider the performance of file transfers where the file sizes 107

are larger than 1× 106 bytes (denoted as 1 MB), which is also helpful for eliminating control 108

channels used for exchanging file exchange commands. Figure 1a shows the distribution 109

of transfer size in a log scale, while Figure 1b provides the distribution of throughput. 110

Table 1 has the counts of the number of these large transfers vs. the overall total number of 111

transfers. From these total counts, we see that the total number of transfers are within a 112

factor of two among four DTNs, while the number of large transfers differ considerably. 113

In detail, DTN02 carries about 40 million large transfers, while the total number of 114

large transfers by all four DTNs is less than 41 million. That is, DTN02 carried about 97.6% 115

of the large transfers. This is due to a number of large physics projects have set up their 116

automated data management tools to use this particular DTN. Because these automated 117

data transfers are also between large computing facilities that carefully monitor their 118

storage and network performance, these file transfers also enjoy good transfer throughput 119

as will be shown in the next section. 120

In our previous study with data transfer involving DTN01, we found most of the 121

slow transfers are from IP addresses that are infrequently used, often appearing only once 122

or a small number of times [12]. These occasional uses might involve a personal laptop 123

in a work-from-home scenario, or a user in an internet cafe. It is unlikely that such use 124

cases would become the dominant mode of operation for large scientific collaborations. 125

Instead, we focus on eight Class C network addresses that transfer data to NERSC most 126

frequently, as those involved in the automated transfers at DNT02. These eight Class C IPv4 127

networks are from four institutions: ‘Imperial College’, ‘SLAC’, ‘Fermi Lab’, and ‘CERN’, 128
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Table 1. Number of file transfers to be studied: “Large transfers” for transfers with size > 106bytes
and “Total transfers” for the number of network flows recorded by tstat. The column of “Ratio”
contains the ratio between large transfers and total transfers.

DTN Large transfers Total transfers Ratio
DTN01 737,498 172,657,723 0.43%
DTN02 39,917,258 163,310,125 24.43%
DTN03 137,272 86,034,525 0.16%
DTN04 101,119 72,204,065 0.14%

Total 40,893,147 494,206,438 8.3%

(a) Transfer size (bytes) (b) Transfer throughput (bps)
Figure 1. Histograms of file sizes and transfer throughput of data transfers to NERSC (size > 1MB)

from three countries: England, Switzerland, and United States.4 Note that these frequently 129

used sites are well-managed, and thus, the data transfers suffer from low performance 130

less frequently, which increases the imbalance between normal and slow transfers, which 131

signals the necessity of tackling the class imbalance concern in our prediction study. 132

Another observation from Table 1 is that the number records to be studied is quite 133

large, which imposes heavy computational costs in the analysis process. We keep down 134

the computation cost for learning and testing by performing these tasks on a sample of the 135

training and testing data. 136

2.3. Data cleaning and statistics about tstat data 137

To prepare the data for our prediction effort, we first filter the data records to keep 138

only those with file size larger than 1 × 106 bytes (1MB). Additionally, we filter by the 139

minimum round trip time (RTT) and only keep those with minimum RTT greater than 140

1ms in the data clean-up process, based on the assumption that those transfers are local 141

communications or inadequately recorded. 142

We then extract several crucial features not present in the recording produced by tstat. 143

The first feature extracted is the transfer throughput computed as the ratio of transfer size 144

and transfer duration. By convention, we report this as bits per second (bps). Another 145

useful feature is the country code. Since we analyze the tstat data measured at NERSC, 146

one end of every data transfer is always NERSC. We look up the country where the other 147

end of the transfer is. This is done through a lookup on GeoIP2 database. 148

Intuitively, the size of transfer would impact the data access performance. Figure 149

2a shows how throughput distributes across different file sizes. Broadly, the throughput 150

appears to be positively correlated with the file size. In the figure, we colored the data 151

points by countries, where only the top three countries are shown to avoid cluttering. We 152

can see that the fastest transfers (≥ 1Gbps) are primarily from the United States, which 153

is intuitive because of the closer physical distance (to NERSC) and higher bandwidth 154

4 The eight Class C IPv4 addresses are: 146.179.234, 146.179.232, 146.179.233, 134.79.138, 131.225.69, 128.142.209,
128.142.33, 128.142.52, where the 1st three are from Imperial College and the last three are from CERN.
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(a) Whole transfers (b) Slow transfers only
Figure 2. Scatter plot of throughput against transfer size (colored by country): (a) Larger transfers
typically achieve higher throughput; (b) Slowest transfers achieve only a few Kbps (103 bps), although
the networking hardware is capable of servicing greater than 10Gbps (1010 bps).

(a) Throughput vs. minimum RTT (b) Throughput vs. retx
Figure 3. Throughput plotted against the minimum RTT and the retransmission rate (retx). Only show
three countries with the most transfers. Note that Fig. 5 only shows transfers with retransmission
rate greater than 0.01. Larger retransmission rates have noticeable impact on the throughput.

offered by the Energy Science network (ESnet5) backbone. Figure 2b closely focuses on 155

slow transfers with less than 106 bps throughput. In this case, we see that the slowest 156

transfers are nearly six orders of magnitude slower than the hardware limit (> 10Gbps). 157

Therefore, it is worthwhile to study these slow transfers and to find alternative options to 158

avoid such extremely poor performance. 159

Another important feature that affects data transfer throughput is round-trip time 160

(RTT). Figure 3a shows a scatter plot of throughput again the minimum RTT. This plot 161

shows distinctive vertical stripes due to many transfers from the same computer sites (with 162

the same minimum RTT) but having very different throughput ranges. Within the United 163

States, there are two clear stripes, one around 10ms RTT, which is within the San Francisco 164

Bay Area, and the other around 60ms which is the RTT for communicating with sites on 165

the East Coast of the United States. The minimum RTT from NERSC to European countries 166

are between 130 and 200 ms. Overall, we expect higher RTT leading to lower throughput, 167

5 https://www.es.net/
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which is true; however, many other factors could impact the actual throughput, which 168

explains the wide throughput range. In the tstat measurement, it records four feature 169

related to RTT, minimum, maximum, mean, and standard deviation. Among these four, 170

our observation shows that the minimum RTT has the highest correlation with throughput, 171

with a coefficient of -0.18. 172

When a network packet is determined to be lost, the data transfer system will re- 173

transmit the packet. A high rate of retransmission is an indication that the networking 174

system is not functioning properly. We define retransmission rate as the ratio between 175

retransmitted bytes and the total bytes transferred in the tstat record. From our data 176

collection, we see no clear correction between throughput and retransmission rate when 177

retransmission rate is less than 0.01. Figure 5 shows a scatter plot of throughput against 178

retransmission rate, where we could see a visible trend. The correlation coefficient between 179

throughput and retransmission rate in log-log scale is -0.412. The trend line shown in the 180

figure suggests that on average throughput is proportional to retx−0.52. 181

The details of individual features defined in this study will be described in Section 3.3. 182

After data cleaning and filtering based on different features, we obtain a dataset size of 183

over 24 million instances, which are transfers from major transfer sites with relatively large 184

transfer sizes and round-trip times. 185

3. Prediction Methodology 186

Once a data transfer is completed, we could compute the throughput, which tells us 187

whether the transfer was slow or not. We aim to make this prediction at the start of the 188

transfer. If we could make this prediction reliably, then we could use the prediction to 189

make alternative arranges when a data transfer is expected to slow. As indicated earlier, 190

however, we are facing at least two challenges in this prediction task. There is a significant 191

class imbalance since the slow transfers are rare events. In this work, we explore a number 192

of different stratified sampling techniques to address this class imbalance problem. The 193

second challenge is a lack of information at the start of the file transfer. To address this 194

challenge, we look into the recently complete file transfers from the same site. 195

3.1. Defining “slow” transfers 196

In our work, we need to come up with a definition of “slow" transfers. We define slow 197

transfers based on the throughput information (bps). A simple choice might be to define a 198

firm threshold. For example, we can declare all transfers whose throughput is less than 199

1 × 106 bps as slow, while all other transfers as non-slow (“normal”). This is the choice 200

used in our initial work [12]. We will continue to use this choice but also attempt to explore 201

alternative options, as described next. There are about 9,000 transfers slower than 106 bps, 202

which is 0.037% of all transfers used in modeling. 203

In addition to the static threshold (e.g., 1Mbps), we consider an alternative threshold
defined as a function of file size. In fact, TCP throughput has a high correlation with the file
size transferred [17]. From Figure 2a, we see a clear positive correlation between throughput
and file size. In later tests, we a wide gap between normal transfers and slow transfer (after
stratified sampling), which suggests that we might be able to draw a power-law line in
Figure 2a to better separate“slow" and “normal” transfers JK: No verb between we and a
wide. From our empirical study, we observe that the following boundary line appears to be
the simplest (where tput is throughput):

tput = 103 × size1/2 (1)

3.2. Sampling Strategies 204

Given fewer than four slow transfers out of one thousand non-slow ones, it is hard for 205

learning methods to extract a model for the slow transfers [15,16]. One classic strategy to 206

deal with the class imbalance issue is the reliance on stratified sampling that produces a 207

balanced dataset among different classes. In our case, we have two classes of events need 208
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Table 2. Sampling strategies for organizing training and testing sets

Feature Collection Description

train1 2021 uniform random sample from population (non-stratified)
train2 2021 keep the entire slow transfers and randomly sample the same number of normal

transfers
train3 2021 keep the entire slow transfers and sample normal transfers progressively for each

bin (so as to have more samples near the decision boundary)
train4 2021 keep the entire slow transfers and sample normal transfers with a fixed number for

each bin

test1 2022 uniform random sample from population (non-stratified)
test2 2022 keep the entire slow transfers and randomly sample the same number of normal

transfers
test3 2022 keep the entire slow transfers and sample normal transfers progressively for each

bin (having more samples near the decision boundary)

(a) Distribution of train1 (b) Distribution of train2

(c) Distribution of train3 (d) Distribution of train4
Figure 4. Distribution of throughput with different sampling strategies (Threshold=1Mbps): train1 is
based on the uniform random sample while the other three training sets are resulted from different
stratified methods that keep the slow vs. normal classes in a balanced manner.

to be identified: slow vs. normal (non-slow). A straightforward approach would be to 209

define two strata, one for slow transfers and the other for normal transfers. Within each 210

stratum, we may choose a different sampling method. Since there are a large number of 211

normal transfers, we may further divide them into more strata, for example, dividing them 212

into a set of bins across the throughput space. 213

Additionally, applying a sampling technique is beneficial for managing the compu- 214

tational cost. To make training complete in a reasonable amount of computing time, we 215

use a fraction of the training data (from 2021) and the testing data (from 2022). We have 216

experimented with a number of different sampling techniques. We next introduce four of 217

them that are representative of different considerations (also summarized in Table 2): 218

• Baseline (train1/test1): The baseline method is uniform random sampling of the 219

41 million transfers with large files. Following this sampling method, we sample 220

10,000 transfers from each of training and testing period, and named the two subsets 221

as train1 and test1. Figure 4a shows a histogram of train1 subset. Note that this 222
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Table 3. Features extracted from recently completed transfers to represent the network state for our
prediction model

Feature Description
prev_tput Latest throughput measured between the same src/dst networks (“a.b.c.0”)
prev_size Latest transfer size (in bytes) between the same src/dst networks (“a.b.c.0”)
size_ratio Ratio between the latest transfer size (prev_size) vs. current transfer size
prev_durat Latest transfer duration (in msec) between the same src/dst networks (“a.b.c.0”)
prev_min_rtt Latest minimum RTT between the same src/dst networks (“a.b.c.0”)
prev_rtt Latest average RTT between the same src/dst networks (“a.b.c.0”)
prev_max_rtt Latest maximum RTT between the same src/dst networks (“a.b.c.0”)
prev_retx_rate Latest retransmission rate between the same src/dst networks (“a.b.c.0”)
time_gap Time gap between latest vs. current transfers between the same src/dst networks (“a.b.c.0”)

subsample does not address the class imbalance problem. In particular, the test1 223

contains only three instances of slow transfers with throughput less than 106 bps. 224

• Stratified 2 (train2/test2): To address class imbalance problem, all of our stratified 225

sampling keeps all slow transfers and select different samples from the normal trans- 226

fers. Since there are 8,986 slow transfers, the total number of normal transfers selected 227

is also 8,986. The simplest method to select the normal transfers is to uniformly sample 228

them. This approach of selecting data records from the training data (from year 2021) 229

is named train2 and the similarly select subset from year 2022 is named test2. The 230

distribution of train2 is shown in Figure 4b. From this figure, we see a clear gap 231

between 106 and 107 bps. Training with this data set might not be able to learn that 232

the actual decision boundary is at 106 bps. On the other hand, test results on test2 233

might be very good since there are fewer data samples near the decision boundary to 234

challenge the classifier. 235

• Stratified 3 (train3/test3): To put more data samples near the decision boundary of 236

106 bps, we employ another stratified sampling on the normal transfers. Specifically, 237

we divide the normal transfers into bins based on the logarithm of their throughput. 238

This binning choice was selected after experimenting with a number of different 239

approaches. Since the concern with train2 is that there might not be a sufficient 240

number of samples near the decision boundary, our choice here is to place more 241

samples near the decision boundary. To choose from the normal transfers, we select a 242

number of samples from a bin that is inversely proportional to its lower bin boundary, 243

which samples significantly more normal transfers with lower throughput than those 244

with higher throughput. The subset of data thus selected from the training data (from 245

year 2021) is named train3, similarly, we also created test3 from the testing data from 246

year 2022. The histogram of the train3 is shown in Figure 4c. With this distribution, 247

we anticipate the training task would lead to a more precise model because there are 248

more points near the decision boundary. This fact would also make testing on test3 249

to have lower performance because the test case near the decision boundary would be 250

challenging for the classifier. 251

• Stratified 4 (train4): Another stratified sampling strategy we examine selects the 252

same number of records from each of the logarithmic bins for normal transfers, while 253

keeping the entire slow transfers, which produces a training sample named train4. 254

The resulting distribution is shown in Figure 4d. 255

3.3. Extracting network states from recently completed transfers 256

Among the features tstat collects, only transfer size and IP addresses are known at 257

the start of a file transfer. From our earlier exploration, we found that these two features 258

are not sufficient to predict the transfer throughput accurately. To make effective predic- 259

tions, we created features derived from recently completed transfers. From the previous 260

exploration of the tstat data, we see that features like file size, transfer duration, RTT, and 261

retransmission rate are highly influential to the final transfer throughput. These features 262

from the most recently completed transfer involving the same source-destination pair could 263

be used as a proxy to represent the network state for the current transfer. 264
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For such information, freshness would be critical for its usefulness. To make it easier 265

to find past information for our prediction task, we relax the matching of source and 266

destination as long as the first three octets of the IPv4 address, i.e., the two IP addresses 267

are in the same Class C network. For example, the four SNDs have IPv4 addresses in 268

the same Class C network, thus for the purpose of locating a recently completed transfer, 269

they are regarded as equivalent. Similarly, if we are looking recently completed transfer 270

for a remote host with IPv4 address A.B.C.D1, we look for all completed transfers from 271

remote hosts whose IPv4 address starting with A.B.C and then select the one that has 272

completed most recently. Among the large scientific data centers, their DTNs generally are 273

on the same Class C network and have typically uniform hardware configuration as well 274

as same accesses to the same storage system at the backend. Therefore, it is reasonable to 275

regard the hosts on the same Class C network as identical (at least in scientific facilities). 276

This assumption may not always be satisfied, but it appears to provide somewhat useful 277

information for our prediction task. 278

We also include the ratio between the current transfer size and the previous transfer 279

size as a feature, which can be helpful in measuring the difference between the current 280

and previous transfers. Additionally, we record the time difference between the recently 281

completed transfer and the current transfer as a feature. The intuition here is that the larger 282

the time difference the less similar the two transfers might be. Table 3 shows a summary of 283

all features we extract from the recently completed transfers. 284

Before actually using the data records for training and testing, we apply a normal- 285

ization that translates all numerical values to be between 0 and 1 (for learning purposes). 286

Additionally, tstat captures source and destination address in IPv4. Since one side of the 287

communication is always a NERSC DTN (because the transfer log comes NERSC), we only 288

keep some information about the remote host. In fact, the only information we keep about 289

remote host is which country the IP address is register in GeoIP2 database. In the final data 290

table used for training and testing, only the three most frequently occurring countries are 291

kept (United States, Switzerland, and United Kingdom), which includes eight computing 292

sites mentioned in Section 2.2. 293

3.4. Prediction Algorithms 294

After setting up all the features and labels, we build binary classification models to 295

predict the low-performance transfers. The training and testing data include features size, 296

country, as well as those computed from recently complete transfers given in Table 3. 297

We explored several classification models, including decision trees, random forests, 298

and Extreme Gradient Boosting (XGBoost). Tree-based models were particularly effective, 299

because we have relatively a small number of features in the data and we allow the decision 300

tree algorithm to explore all possible combinations of features by shrinking the training set 301

size using sampling (described in Section 3.2. We began with the decision tree model and 302

found that it performed the best. Details of the evaluation will be discussed in Section 4. 303

The random forests method combines multiple decision trees by bagging, training 304

each tree on a different sample of the dataset. The final prediction is the majority vote 305

of all the trees. We expected that XGBoost would outperform the decision tree model, 306

as it is one of the most effective supervised learning methods [18]. It builds trees on the 307

residual of the previous fitted tree. We observed that our approach with a decision tree with 308

a well-crafted set of chosen features outperforms the ensemble-based methods (random 309

forests and XGBoost), as will be discussed in the next section. 310

4. Evaluation 311

In this section, we share the evaluation results with the experimental setting and our 312

observations and findings made from the extensive experiments. 313
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Table 4. Testing results for all 12 train-test combinations ordered by F1 scores. If test1 only contains
three "positive" cases, how do we get an accuracy of 0.999?

Train-Test pair F1 score Accuracy Precision Recall

train2-test2 0.926 0.925 0.921 0.931
train4-test2 0.907 0.907 0.905 0.908
train3-test2 0.885 0.888 0.914 0.857
train1-test2 0.875 0.888 0.988 0.785
train2-test3 0.709 0.590 0.550 0.996
train3-test3 0.682 0.533 0.518 0.998
train4-test3 0.682 0.533 0.518 0.998
train1-test1 0.566 0.999 0.778 0.444
train4-test1 0.415 0.998 0.303 0.659
train3-test1 0.340 0.998 0.285 0.421
train1-test3 0.252 0.559 0.845 0.148
train2-test1 0.234 0.995 0.145 0.603

4.1. Experimental Setting 314

To build our classification model, we used a dataset from all DTNs, which consists of 315

over 40 million network streams (file transfers with file size > 1MB) and 116 features. I 316

don’t believe we are using all 116 raw features from tstat. More importantly, 116 features 317

is too many to build all possible decision trees. It might be more useful to mention how 318

many actual features are used for model training. Recall that we use transfers in 2021 for 319

training and transfers in 2022 as testing, more in Section 2.1. 320

To measure the prediction performance, we basically refer to the conventional confu- 321

sion matrix for binary classification, consisting of TP (True Positive), FP (False Positive), 322

FN (False Negative), and TN (True Negative). Intuitively, the fraction of slow connections 323

is small, while the majority of connections would perform normally. Hence, reporting 324

the simple accuracy measure may misguide the audience. We measure the prediction 325

performance using F1 score, a harmonic mean of Precision = TP
TP+FP and Recall = TP

TP+FN . The 326

metric of F1 score is defined as: F1 score = 2 × Precision×Recall
Precision+Recall . A greater F1 score indicates 327

a better performance in prediction. 328

4.2. Best model performance 329

To address the class imbalance problem in our attempt to predict slow file transfers, 330

we have designed four different stratified sampling techniques in Section 3.2. To evaluate 331

their effectiveness, we trained with all combinations of training and testing sets shown 332

in Table 2. We primarily utilize the try-all decision tree method, which had previously 333

demonstrated the best performance during the first phase of our research [12]. 334

In Table 4, we present the results sorted by F1 score, which is the primary performance 335

metric used throughout our study. Even though it is not meaningful to compare the F1 336

scores of different testing sets directly, the results from Table 4 suggest test2 might be a 337

better test set than test3, which is in turn better than test1. Overall, the best performance 338

training and testing combination achieved an F1 score of 0.926, which is considerably 339

higher value than the naive combination of train1-test1. This indicates that the stratified 340

samples are effective in addressing the class imbalance problem. 341

The test set test1 is a uniform random sample of the whole data set. It has low F1 342

scores because of a lack of slow events – recall that there are only three slow transfers out 343

of 10,000 data records in test1, see Section 3.2. The more complex stratified sampling 344

techniques were designed to address this class imbalance problem. It appears that the 345

combinations with test1 always achieves high accuracy measures. Anything could be said 346

here? 347

We include test3 in our analysis because it presents a challenging test for our model, 348

as most of the data records fall close to the classification threshold, which is where most of 349
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(a) scatter plot (b) Histogram
Figure 5. Prediction results of the train2-test2 pair. The misclassificiation appears primarily as
counting some normal transfers as slow ones (orange color showing i nthe middle of blue).

the misclassifications occur. With test3, all recall values are nearly 100% while all precision 350

values are about 50%, which suggests that trained models are effectively declaring all 351

testing samples to be "Positive" (i.e., slow transfers). We speculate that the normal cases in 352

test3 are too close to the slow cases for the decision tree models to differentiate. 353

The four top-performing combinations in Table 4 are with test2, which suggests 354

test2 to be more well balanced. Since test2 has the same distribution as train2 in 355

Figure 4, we see a large gap in the histogram between 106 and 107 bps. This gap allows 356

a classifier to make mistakes while still classifying most of the test set correctly, therefore 357

achieving a good F1 score. By construction, test2 and train2 follow the same relatively 358

straightforward stratified sampling, using only two strata: one for slow transfers and one 359

for normal transfers. They both keep all records from the minority class (i.e., slow transfers) 360

and select a matching number of samples from the majority class through random uniform 361

sampling. This approach minimizes the changes to the distribution of the majority class. 362

For the remaining of this study, we chose to use test2 for further analyses. 363

Next, we examine the top-performance training samples in more detail. The best 364

performing model is trained with train2 and a scatter plot of the testing results is shown 365

in Figure 5a.Each dot in this figure represents a transfer in test2, with slow transfers in 366

orange and normal transfers in blue. The green solid line indicates the the true threshold 367

(106 bps). Misclassifications occur when an orange dot is placed above the line or a blue 368

dot is below the line. The overall prediction accuracy is high, especially for slow transfers. 369

However, there are many false positives far above the threshold indicated by the green line. 370

Figure 5b shows two histograms using the same colors as in Figure 5a, with density plot 371

provides a clearer view of where the misclassifications occur. It is somewhat surprising 372

to see the orange curve having a peak below the blue peak that is far from the decision 373

boundary of 106 bps. 374

Figure 6 shows the prediction results of the train4-test2 pair. The scatter plot 375

(Figure 6a) shows that misclassified cases are primarily near the green line (representing 376

106 bps decision boundary). We observe that almost all normal transfers smaller than 107
377

bytes are misclassified, while larger file transfers are predicted correctly. This observation 378

is also verified by the histograms of the two predicted classes in Figure 6b. Normally, we 379

expect the misclassification to happen near the decision boundary and designed train3 380

and train4 to have more training cases near the decision boundary. Since test results in 381

Figure 6 match with this expectation, we say these to stratified sampling strategies are 382

behaving well. Overall, we say that train4 have more training cases far away from the 383

decision boundary than train3. The fact that training with train4 achieves higher F1 384
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(a) scatter plot (b) histogram
Figure 6. Prediction results of the train4-test2 pair. More misclassification cases are near the 106

bps decision boundary than training with train2 shown in Figure 5.
Table 5. The features that appear most frequently in the top three best performing decision trees
trained from all four training data sets and tested with test2.

Feature Number of occurrence
prev_tput 12
country 10
size_ratio 9
prev_retx_rate 7
pre_rtt_min 6
prev_rtt_max 6

score than training with train3 suggest that having those training cases far away from the 385

decision boundary is important. 386

4.3. Impact of features 387

As mentioned in the previous section, the testing using the most simple stratified 388

sampling performs the best. We next conduct a feature importance study in ways similar to 389

our previous study. We count the number of occurrence of features in the top-performing 390

decision tree models. This time we decide to include the top three combinations from the 391

train-test pairs that use test2 as the testing set (shown in Table 4). 392

The top five features and their counts are shown in Table 5. It is unsurprising that 393

prev_tput occurs in all 12 top models. It is surprising that the feature size does not 394

appear on this list while it was shown to be the more important one based on traffic 395

from DTN01 [12]. The size information does show up in size_ratio as the third most 396

influential feature in Table 5. We believe this change in feature importance to be due to 397

differences among the types of file transfers on different DTNs. Furthermore, this analysis 398

focuses on data transfers from popular sites that are more likely to be well-tuned; while in 399

the earlier study [12], we have observed many slow transfers associated with large RTT 400

values and infrequently used IP addresses, which points to uncommon workflows on 401

no-so-well-tuned network connections. 402

In addition to the decision trees, we also trained our sampled data on a random forest 403

model. Due to the relatively small number of features used, the decision tree training 404

process is able all possible feature combinations for decision tree, thus we do not expect 405

the random forest models to achieve higher performance. The random forest model with 406

all features available achieves an F1 score of 0.82, which is indeed lower 0.926 achieved 407

with the decision tree model. However, a random forest has a useful function of feature 408

importance that automatically calculates the rank of individual features by the model itself. 409

The bar chart in Figure 7 displays the importance of each feature in sorted order. As we 410

encoded the country feature using one-hot encoding, it is displayed as United Kingdom, 411
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Figure 7. Top features from random forests

Figure 8. Scatter plot of throughput vs. transfer size: Blue dots are classified as normal transfers,
orange dots are classified as slow transfers, and the green line given by Equation 1 is the actual
decision boundary used in training. Note that the both axes are log-scaled.

Switzerland, and United States. The top features are consistent with what we obtained 412

from the decision tree model, with prev_tput and country being the two most important 413

features in both lists. The size-related feature and RTT-related features also have high 414

importance. 415

We used the top features we derived to train an XGBoost model. Similar to the 416

previous study, it has a performance closer to decision tree but is less efficient and accurate. 417

It has F1 score of 0.879. 418

4.4. Alternative threshold setting 419

Thus far, the training cases are created with a simple static threshold of 106 bps, while 420

the typical transfer throughput grows with transfer size. After examining Figure 5a and 421

Figure 6a, we propose to test a new decision boundary defined by Equation 1. 422

For files of 1MB, this decision criteria still classifies those transfers less 1 Mbps as 423

slow. However as file sizes grow, the maximum speed of a slow transfer would increase 424

gradually. For a file size of 10GB, those transfers that are slower than 100Mbps would be 425

classified as slow. From our data collection, this creates more slow transfer events. There 426

are close to 93 thousand slow transfers, 10 times more than under the 1Mbps threshold 427

setting. In our stratified sampling, we correspondingly increase the number of sample 428

we take from the normal transfers. This increased training sample size might increase the 429

effectiveness of the classification model. We created a training and testing set using basic 430

stratified sampling with slow and normal as the only two strata. We kept all the data points 431

from slow transfers and sampled 93 thousand transfers from normal transfers. The best F1 432

score we achieved with this threshold so far is 0.88, but we have not fully explored the best 433

way to predict transfer performance based on this threshold. 434
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Figure 8 shows that this threshold significantly improves our ability to control false 435

positives, but more false negatives occur. This model may be the best choice if minimizing 436

false positives is the main concern, but we can still improve its performance by addressing 437

the clear patterns observed in the false negatives. 438

5. Related Work 439

Monitoring network traffic is one of the essential tasks in network operations and 440

management for detecting anomalous events and estimating network performance. In 441

scientific computing, traffic monitoring is also significantly crucial for supporting ever- 442

increasing data-intensive scientific exploration and computing. In particular, identifying 443

elephant flows has been a critical problem as the flows consume significant amounts of 444

network capacity. A study in [19] introduced an algorithm estimating the traffic volume of 445

individual flows, which is used to detect elephant flows’ total byte count. The authors define 446

two hash tables recording a counter representing the volume of the flow with the associated 447

flow ID from the packet trace, which is then used to detect elephant flows showing a 448

pre-defined threshold. In [20], the authors tackled the problem of the classification between 449

elephant (large transfer) flows and mice (small) flows. This previous study takes an 450

unsupervised learning approach and the presented clustering scheme (based on Gaussian 451

Mixture Model) produces two clusters (one for elephant flows and the other for mice flows) 452

from the NetFlow data. While highly important to identify elephant flows, our study 453

focuses on predicting slow connections that significantly impact data-intensive scientific 454

applications. 455

There have been several studies analyzing tstat data. In [21], the authors presented a 456

classification mechanism to detect the low throughput time intervals. The classification 457

mechanism consists of two phases, the first phase assigning binary classification labels 458

for each time window (either anomalous or not), and the second phase performing ac- 459

tual classification by constructing a supervised learning model using the assigned label 460

information. Another study in [22] performed the evaluation of deep learning models, 461

including Multilayer perceptron (MLP), Convolutional Neural Network (CNN), Gated 462

Recurrent Unit (GRU), and Long Short-Term Memory (LSTM), in order to predict network 463

performance (aggregated throughput) for each time interval. While these studies focused 464

on analyzing tstat data based on time windows, our study focuses on the connection-level 465

prediction. 466

Sampling is widely considered for dealing with the concerns of class imbalance and 467

scalable analysis in machine learning [23]. Sampling strategies may have significant impacts 468

on performance given the fact that not all samples are equally important [24,25]. Previous 469

studies in [26–28] considered utilizing sampling strategies (including stratified sampling) 470

for mitigating the impact of the imbalance between malicious traffic (minority) vs. normal 471

traffic (majority) in network intrusion/anomaly detection. Sampling has also been consid- 472

ered in the Internet of Things (IoT) setting for class imbalance in anomaly detection [29] and 473

data fusion reducing data redundancy in the sensed data [30]. In this study, we investigated 474

a set of sampling strategies for improving classification performance, including bell-shaped 475

sampling and bin-based sampling for the problem of network performance prediction. 476

6. Conclusions and Future Directions 477

This study explores tstat logs collected on data transfer nodes at NERSC. A key 478

objective is to use such information to prediction slow file transfers before the start of the 479

operation. Our exploration of the network measurement data reveals several a number of 480

features correlated with transfer throughput. However, most of them are only available 481

after the transfer. To make a prediction before the start of the transfer, we defined a set of 482

new features based on the more recently completed transfer between the same source and 483

destination networks. 484

The second challenge we need to overcome is the significant imbalance between 485

the normal transfers and the abnormally slow transfers. To overcome this challenge, we 486
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devised a number of stratified sampling techniques. Our tests showed that one of the 487

stratified sampling techniques was able to significant outperform a naive approach without 488

stratification. The best model trained on a stratified sample was able to achieve a F1 score of 489

0.926, while without stratification, the same F1 score was only 0.566. This best-performing 490

stratified sampling consists of only two strata: one for each of the two classes considered. It 491

keeps all records from the minority class and randomly select the same number of cases 492

from the majority class to create a balanced training and testing sets. 493

For future work, we are interested in further exploring options for stratified sampling, 494

more advanced learning techniques for model creating, and more feature engineering 495

approaches that make better uses of the recently completed transfers. 496
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