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Abstract

Numerical Investigations of Many-Body Localization and non-Fermi Liquids

by

Katharine Sarah Hyatt

We begin with an introduction to some of the important numerical tools in the field

of condensed matter theory: exact diagonalization, quantum Monte Carlo, and tensor

network algorithms. We also introduce interesting problems to which they can be ap-

plied, including holographic duals (for tensor networks), many-body localization, and

thermalization.

We explore, using the previously discussed quantum Monte Carlo methods, a model

of itinerant interacting fermions with relevance to the mysterious pseudogap phase of

the cuprate high temperature superconductors. We provide tentative evidence for a

non-Fermi liquid phase believed to support a violation of area law entanglement scaling.

We hope to settle numerical questions about this work in furtherance of the goal of

incorporating it into a future publication.

We then explore the stability of a system predisposed towards localization coupled to

a system of similar size which would, on its own, thermalize. The stability of localized

systems interacting with environmental baths is both experimentally relevant and theo-

retically interesting, and we explore a large parameter space using exact diagonalization
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techniques. We find that for a small set of parameters, localization may survive the

presence of a similarly sized bath, but the tendency of the bath to delocalize the entire

system is difficult to overcome. We also investigate the dynamics of these coupled sys-

tems, making connections with previous theoretical studies. This work is adapted from

previously published material.

We take steps towards developing a new tensor network technique with which to

study non-equilibrium quantum systems. We develop a disentangling circuit generation

algorithm, drawing on previous algorithms for representing a variety of interesting wave-

functions, which can disentangle generic states without reference to a Hamiltonian. This

is a novel departure from many previous disentangling approaches or tensor network op-

timization algorithms. We apply this technique to well-understood physics in the form of

disordered models of free fermions, detecting an emergent entanglement geometry which

reproduces interesting features of holographic duality. This work is also adapted from a

previous publication.

We then extend these results to the realm of dynamics, investigating the effects of

quantum quenches on the circuits generated by the disentangling algorithm and the role

disorder may play. We find an intriguing connection between disorder strength and the

effective energy density (or effective “temperature”). We also observe two regimes, one as

the system approaches its volume law limit, and another of slowly decaying oscillations

after it has reached the long-time regime of volume law entanglement scaling. We hope

to develop this last set of results into a future publication.
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Chapter 1

Introduction

1.1 Entanglement

One of the most striking features of quantum mechanics that goes beyond classical physics

is the notion of entanglement. In a classical system of more than one body, a constituent

of the whole (for instance, a small subregion) is separable from the rest. One can ob-

tain full information about its configuration without reference to the excluded parts. In

quantum mechanics this is no longer the case - quantum systems have a notion of “en-

tanglement”. Quantum objects can come together to form a whole that is substantially

more than the sum of its parts. In an entangled pair of objects, tracing out one half

necessarily discards information, and only by making measurements on both sub-parts

together can we understand the entire object. A famous example of an entangled pair is
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a Bell state [20]:

|ΨB〉 =
1√
2

(|↑↑〉+ |↓↓〉) (1.1)

This is a wavefunction for two spin 1
2

particles on two sites. The wavefunction |ΨB〉 on

both sites is a pure state. We can construct its density matrix:

ρ̂12 = |ΨB〉 〈ΨB|

=
1

2



1 0 0 1

0 0 0 0

0 0 0 0

1 0 0 1



The trace of a density matrix is always 1 [147]. If we compute Tr ρ̂2 we find it is also

1, because |ΨB〉 is a pure state and we have complete information about it. This is the

diagnostic for whether a density matrix represents a pure (Tr ρ̂2 = 1) or mixed (Tr ρ̂2 < 1)

state.

However, if we trace out one of the sites (say site 2), the resulting description must
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be in terms of a mixed state, which can only be written as a reduced density matrix.

ρ̂1 =
∑
{|ψ2〉}

〈ψ2 | ρ̂ |ψ2〉

=
1

2

 1 0

0 1


Here again the trace is 1, but Tr ρ̂2

1 = 1/2 and so |ΨB〉 is entangled - only the joint

representation over the whole system can be written as a pure state wavefunction. To

quantify the degree of entanglement we can use the entanglement entropy

S(ρ̂) = −Tr ρ̂ log ρ̂ (1.2)

If the matrix ρ̂ has eigenvalues {λ}, S(ρ̂) = −
∑
{λ} λi lnλi. The pure state |ΨB〉 has

entanglement entropy S(|ΨB〉 〈ΨB|) = 0. Pure states always have zero entanglement

entropy. However, the mixed state ρ̂1 has entanglement entropy S(ρ̂1) = ln 2. Thus |ΨB〉

is an entangled pair, where each spin of the pair is entangled with the other.

This is a simple example on a 2-site system, but it is possible to compute entanglement

between larger regions as well: for instance, a small 4-site cluster of a large lattice.

Groundstates with a gap – a non-zero energy difference between the groundstate and

first excited state – are conjectured have an “area law” [225]. In one dimension this has

been proven [74]. The entanglement entropy S(ρ̂A) of a subregion A scales with the size

of the boundary of this region (so that it is constant in one dimension, linear in two

dimensions, etc.). In higher dimension there are examples of area law scaling [8]. This

3



S(ρ̂A)

volume(A)

Figure 1.1: Schematic depiction of an area law scaling (in blue) and a volume law scaling
(in red) of entanglement entropy in a one-dimensional subregion A.

is in contrast to the behavior of (most) highly excited states (see Sec. 1.5 for a notable

exception), which are “volume law” - S(ρ̂A) scales with the size of the subregion (so that

it is linear in one dimension, for example). A qualitative example of both is shown in

Fig. 1.1.

Groundstates may also have violations to the area law, and such states are an active

area of research since they so often host interesting physics. For example, groundstates of

one dimensional critical systems, which are scale invariant, have a logarithmic violation of

the area law [31]. Fermi liquids in two or more dimensions are known to have logarthmic

violations as well [224], and non-Fermi liquids have logarithmic violations different from

4



those of Fermi liquids, which is one way to distinguish the two. This violation allows

us to access very important information which characterizes the theory describing the

system – the central charge [31, 30]. In two or fewer dimensions, we have a complete

classification of conformal field theories, and measuring the central charge allows us to

fingerprint the governing CFT. In higher dimensions the situation is more complex [53].

States with non-trivial topological order also have area law violations. A constant

“topological term” is present in addition to the area law scaling in these states, and

computing this term again functions as a fingerprint for topological order [53].

1.2 Exact Diagonalization

Exact diagonalization (ED) is in some sense the simplest of all numerical approaches to

study quantum systems. For a finite size Hilbert space (or one which has been truncated,

for instance by constraining the maximum occupation number of any site for soft-core

bosons) the Hamiltonian can be represented by a Hermitian matrix. A variety of special-

ized algorithms have been developed to study the spectra of such matrices, owing to their

presence in many areas of research. Some forms of exact diagonalization simply compute

the entire spectrum of a Hermitian matrix, eigenstates and their eigenvalues (energies),

and these results can then be used to study properties of the system (for example, de-

termining if a finite temperature phase transition exists). Others, such as the Krylov

methods discussed below, are useful when only a small portion of all the eigenstates are

of interest or computationally accessible, as is true for large system size.
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As the name implies, exact diagonalization can provide us with the exact eigenstates

of a Hamiltonian. The results are subject to numerical error, but if the method has

converged they should be unbiased and reproduce all the features of the true states we

might calculate analytically. But this comes at the cost of very bad performance at large

system size/for large Hilbert spaces. The largest exact diagonalization studies to date

made extensive use of symmetries (which allow the Hilbert space to be “folded down” and

represented in a smaller format) and were able to reach 42 sites total [34] or, recently, 50

spins [222]. Even in one dimensional systems, this may not be large enough to robustly

generalize to the thermodynamic limit. The situation is even worse in higher dimension.

For models where other algorithms are practical, ED can be a suggestive first step

against which the other methods can be tested (they should agree for the smaller systems

ED can access). It can also illustrate what regions of the explorable parameter space are

likely to be “interesting” in the sense that a phase transition may be present or some

other sort of interesting physics is present (topological states, localized states, etc.).

For some models, algorithms have not yet been developed to efficiently approximate

the interesting states and/or physics. Examples of such models are frequent outside

an equilibrium context, as we will see later in the context of many-body localization.

Developing new techniques beyond ED to simulate these models remains an outstanding

problem in the field of numerical condensed matter physics.
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1.2.1 Krylov Methods

Often, the most interesting eigenstates are those lowest down in the spectrum, the ground-

states and low energy excited states. When the system is at low/zero temperature, these

states are dominant, and interesting many-body quantum effects (superfluidity and long

range magnetic order, to give two examples) are observable. Rather than diagonalizing

the entire spectrum, it is desirable to focus on acquiring these interesting states. Krylov

methods [114] were developed for such problems. The Lanczos method [115] is the most

commonly used of these in physics, although others (such as Jacobi-Davidson [187]) exist

as well.

The Lanczos method works by constructing a restricted subspace of the full Hilbert

space (the Krylov space) by repeated applications of the Hamiltonian to a moving “guess”

vector, eventually driving it to the eigenvector with smallest eigenvalue (lowest energy,

i.e. the groundstate).

For a chosen number of iterations M :

1: Let |φ0〉 ∈ Cn be a normalized initial guess for the eigenvector with smallest eigen-

value.

2: |ϕ′0〉 ← Ĥ |φ0〉

3: a0 ← 〈ϕ′0|φ0〉

4: |ϕ0〉 ← |ϕ′0〉 − a0 |φ0〉

5: for i← 1,M − 1 do

6: bi ←
√
〈ϕi−1|ϕi−1〉

7



7: |φi〉 ← |ϕi−1〉
bi

8: |ϕ′i〉 ← Ĥ |φi〉

9: ai ← 〈ϕ′i|φi〉

10: |ϕi〉 ← |ϕ′i〉 − ai |φi〉 − bi |φi−1〉

11: end for

12: Let V̂ be an N by M matrix such that its i-th column is the vector |φi〉.

13: Let T̂ be a tridiagonal M by M matrix such that T ii ← ai, T
i+1
i ← bi+1, T ii+1 ← bi+1.

All eigenvalues of T̂ are eigenvalues of Ĥ, and if |ψ′〉 is an eigenvector of T̂ then |ψ〉 =

V̂ |ψ′〉 is an eigenvector of Ĥ. The eigenvectors have the same ordering, so that the lowest

energy eigenvector of T̂ will be transformed into the lowest energy eigenvector of Ĥ.

The advantage of this method is that matrix-vector products are much quicker and

less memory intensive to compute than the matrix-matrix operations required for a full

diagonalization. Computing the eigensolution of a symmetric tridiagonal matrix like T̂

is much less expensive than doing so for a generic Hermitian matrix like Ĥ. When the

eigenvectors are converged (which can be checked by comparing their eigenvalues from

iteration to iteration and their overlap between iterations) the procedure is done and

measurements (e.g. correlators) can be made on the eigenvectors.

1.2.2 Shift-and-Invert Approaches

Traditional Krylov methods are very effective when we are interested in the behavior of

a system’s groundstate or low energy excitations. To probe states deep in the band using
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these methods requires first computing all eigenstates with energies below the energy

level of interest, which is both time- and memory-expensive. A technique which can

selectively search for states close in energy to the “target” (e.g. halfway between the

groundstate energy and highest possible energy in a system with bounded Hilbert space)

is desirable.

Consider a target energy σ for a Hamiltonian Ĥ. A natural approach might be to

compute the operator Â2 = (Ĥ − σÎ)2, where Î is the identity, and then apply standard

Krylov methods to this new operator. Â2 has the same eigenvectors as Ĥ, but the

eigenvalues are different. However, this approach is often not numerically tractable:

deep in the band, the level spacing is exponentially small in the system size. This means

that Â2 = (Ĥ − σÎ)2 will have level spacing ∝ exp{−2N}, and as discussed above,

Krylov methods perform better (in terms of time to converge) when the gap between

adjacent energy levels is larger. The choice of operator Â2 works against the strengths of

these methods. Additionally, for large systems, the level spacing may be so suppressed

that even double precision floating point numbers may not have enough precision to

reliably separate two adjacent levels of Â2. In such a situation, we would either need

a new algorithmic approach or need to go to higher floating point precision, which can

have dramatic negative impacts on performance (in addition to the convergence issue

mentioned previously).

Another choice of operator is available: Â−1 =
(
Ĥ − σÎ

)−1

. This forms the basis of

the “shift-and-invert” method for performing exact diagonalization studies where highly
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Â2 = (Ĥ − σI)2 Â−1 = (Ĥ − σI)−1

Figure 1.2: Schematic illustration of the differences in the two operators’ level spacing.
The eigenstate with energy closest to σ before the transformation is shown in black.

excited states are of interest. Unlike Â2, the inversion step in Â−1 transforms very closely

spaced levels into very widely separated levels. This plays to the strength of Krylov

methods, so after Â−1 has been computed, its groundstate (which is the eigenstate of Ĥ

with energy closest to σ) can be relatively easily computed.

This method also has drawbacks. In large scale numerical simulations, Ĥ is usually

represented as a (very) sparse Hermitian matrix or as a function to compute matrix-vector

products on given vectors in the Hilbert space which could be used to construct such a

matrix. But there is no guarantee that Â−1 will be sparse, and indeed sparse matrices

often have dense inverses. Matrix inversion is also a very time-intensive operation.

A commonly applied solution is to use preconditioning [22]. Several preconditioning

algorithms exist, and many used for this purpose attempt to find a matrix N̂ which, for

a sparse matrix M̂ , has a spectrum as close as possible to that of the exact M̂−1 while

having the same sparsity pattern as M̂ . This approach reduces the risk of running out

of memory while still being accurate and precise enough to reliably allow us to target

states deep in the band of a Hamiltonian and also saves time.
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This approach of preconditioner-based inversion and subsequent Krylov method based

extraction of eigenstates can be implemented in parallel (e.g. using MPI) and on dis-

tributed memory systems. As discussed in Chapter 3, pre-written software packages

exist which provide such implementations and can be used to investigate the proper-

ties of highly excited states in physical systems where they are important, such as in

many-body localized phases.

1.3 Monte Carlo Methods

We may want to simulate a zero temperature system using a Monte Carlo technique

in the case that other methods are not suitable. There are many such techniques –

stochastic series expansion [172], diagrammatic Monte Carlo [162], determinantal Monte

Carlo [196, 110, 24], and various worldline methods [218, 161, 80], to give a few examples.

Many of these methods are “Markov chain Monte Carlo” (MCMC), in that they can be

modelled as Markovian processes [72, 133]. Such MCMC methods must have two features:

1. Detailed balance – the weighted transition rate into and out of a configuration

must be the same:

W (c)P (c→ c′) = W (c′)P (c′ → c)

, where P represents the probability of transition. The simplest way to satisfy this

is to require that the transition rate from configuration c1 → c2 is the same as the

transition rate from c2 → c1.
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2. Ergodicity – all configurations are accessible during the simulation. This may be

more difficult to satisfy than it first seems. If the simulation must climb a very

tall, very “steep” energy barrier to move from a metastable configuration into the

groundstate, it may never do so, and therefore not be ergodic, even though the

groundstate is (in theory) accessible [116]. If we are willing to wait “long enough”,

the simulation will eventually reach the true groundstate, but this may be a very

long time.

The stable state of the Markov process should reproduce the equilibrium state of the

physical system being simulated - for example, it should efficiently sample the partition

function Z, with the correct Boltzmann distribution at inverse temperature β. In general,

the detailed balance condition ensures an invariant target distribution like the Boltzmann

distribution exists, while the ergodicity condition ensures this distribution is reachable

in the simulation [204, 135].

MCMC methods have achieved great success simulating many physical systems [173,

134, 75, 52, 112, 71] but in some cases they struggle to achieve ergodicity. Another

family of methods, projector Monte Carlo(s), dispense with restriction (1) in order to get

around the ergodicity problem. First developed several decades ago [97, 100, 25], such

methods have achieved success for interesting physical models [81, 82, 202, 175, 174].

In the following sections, we summarize how this is possible and some of the drawbacks

doing so introduces.
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1.3.1 Diffusion Monte Carlo

In projector Monte Carlo methods we start with a trial wavefunction, |ΨT 〉, a technique

first introduced in Ref. [99]. Then, we apply a projection operator P̂ many times to this

trial state, hopefully driving the system into its groundstate. There are many different

projectors we might apply, and each resulting method has a name:

• P̂N = exp{−βĤ} - Diffusion Monte Carlo

• P̂N =
[
1 + τĤ

]−1

- Green’s Function Monte Carlo

• P̂N = 1− τĤ - Power Monte Carlo

We can simulate in continuous or discrete time. The discrete case is simpler. We can do

a Trotter discretization on the projector, and obtain the projection operator we want to

use:

P̂ =
(

1− dτĤ
)

exp{−βĤ} =
N∏
i=1

P̂ +O(1/N2)

P̂N |ΨT 〉 = |Ψ0〉

This relation holds for large N and small dτ . Repeated applications of P̂ =
(

1− dτĤ
)

will drive the system into its groundstate if we choose to do diffusion Monte Carlo (this

will efficiently sample the partition function).
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Figure 1.3: A schematic diagram of five update steps on 10 walkers performed using a
projector P̂ , with weights accumulating until the posterior distribution describing |Ψ0〉
is reached. w at each step represents the accumulated walker weight since the last
rebalance/initialization of the simulation.
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Note that for large N , P̂N = exp{−βĤ} and therefore dτ ·N = β. If we wish to access

the groundstate then the “effective β” in the simulation must be large. Generally many

projections are applied (see more below for details), with the energy being checked at

each step, until the system has converged into the groundstate. Measurements can then

be performed, while continuing to apply the projection operator so that many samples

can be taken and the error of these measurements is minimized.

How are projector methods different from MCMC methods discussed above? For some

models, especially those with many-particle interactions, achieving ergodicity becomes

very difficult. MCMC lives or dies by its updating scheme and finding one which does

not have a sign problem, is ergodic, and will obey detailed balance is often not possible.

A projector method removes the condition of detailed balance to restore ergodicity, at

the cost of introducing statistical biases discussed in more detail below.

Implementing Projection Operators

When initializing the simulation, one selects a population size Np (which may be fixed, or

may grow or shrink - the fixed case is simpler) and prepares the population of “walkers”

according to the trial wavefunction |ΨT 〉. This trial wavefunction can be obtained a

number of ways - variational Monte Carlo, analytical intuition, DMRG studies in ladders.

It can also be set to be a uniform distribution across the Hilbert space, which avoids

biasing the simulation at the cost of worse performance (statistics will take longer to

converge). Biased or no, each walker is accompanied by a “weight” drawn from the trial

distribution. In the unbiased case, all the weights are 1. The “walker” is a configuration
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(basis element) in the Hilbert space which will be updated, tracing a “walk” through

phase space which can be sampled to compute correlators, Green’s functions, etc.

It is important to note that even in the unbiased case, the initial wavefunction does not

need a representative of every basis element! The principle of Monte Carlo simulations

is that by picking a good updating scheme, we will focus on the configurations which

contribute most to the partition function. So we can draw randomly from configuration

space.

Each walker is updated independently. The projector operation is used to create a

list of possible moves. In the case that P̂ is small enough to represented as a sparse

matrix, this list of moves would simply be the row of P̂ corresponding to the current

configuration. Usually P̂ is too large to be stored in matrix format, so it is instead kept

as a row-generating function which returns a list of possible configurations to move to

(and their matrix elements). To choose a new configuration, a weighted sample is taken

from this new distribution. After the move is chosen, the current configuration is stored

in a “history” of the walk, and the current weight is multiplied by the sum of all the

matrix elements of the possible moves.

If the initial guess is poor and most of the initial walkers are in an unimportant

region of configuration space, some of the walkers will very quickly accumulate far more

weight than others. Even if we choose well, the fact that the weights are multiplied

at each step means they will quickly grow so large that they threaten to overflow their

floating point number representation. To solve this problem we can perform a “population
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rebalance” [11]. If the population size is fixed, we again do a weighted sample among

the accumulated weights so far, keeping a record of the sum of the weights. This record

will be important to correct for statistical issues arising from having a population size

smaller than the Hilbert space size. After the population rebalance, all weights are set

to 1 again and the updates proceed. A rebalance should be done every Nr update steps

for consistency.

1.3.2 Mixed Estimator Error and Forward Walking

To make a measurement of an observable Ô on a groundstate wavefunction |Ψ0〉, basic

quantum mechanics gives us the formula:

〈
Ô
〉

=

〈
Ψ0

∣∣∣ Ô ∣∣∣Ψ0

〉
〈Ψ0 |Ψ0〉

=

∑
|c〉

∑
|c′〉
〈Ψ0 | c〉

〈
c
∣∣∣ Ô ∣∣∣ c′〉 〈c′ |Ψ0〉∑

|c〉
|〈Ψ0 | c〉|2

=

∑
|c〉

∑
|c′〉

〈
ΨT

∣∣∣exp{−βĤ}
∣∣∣ c〉〈c ∣∣∣Ô∣∣∣ c′〉〈c′ ∣∣∣exp{−βĤ}

∣∣∣ΨT

〉
∑
|c〉

∣∣∣〈ΨT

∣∣∣exp{−βĤ}
∣∣∣ c〉∣∣∣2 (1.3)

Consider the state of the simulation walkers at step i of the simulation, corresponding to

effective time τ = i · dτ , at which point it has run for inverse temperature β(τ) “time”

- each carries a configuration |c〉 and a corresponding weight wc(τ) so that |Ψ(τ)〉 =∑
|c〉

w|c〉(τ) |c〉. An intuitive guess for how to compute the expectation value of Ô using
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Figure 1.4: A schematic diagram of four update steps on 10 walkers performed using a
projector P̂ , with weights accumulating. Each w at an update step represents the weight
accumulated so far by the walker since the last rebalance/since the simulation began. A
rebalance is performed, resetting the weights to 1 on the surviving configurations. Note
that some configurations “die out” - for this reason, the total weight W is tracked so that
population bias control can be perfomed. After the rebalance, updates resume until the
posterior distribution describing |Ψ0〉 is reached.
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these w would be to compute a simple weighted average:

〈
Ô
〉
T

=

∑
|c〉

w|c〉(τ)
〈
c
∣∣∣ Ô ∣∣∣ c〉∑

|c〉
w|c〉(τ)

=

∑
|c〉

∑
|c′〉
〈Ψ0 | c〉

〈
c
∣∣∣Ô∣∣∣ c′〉 〈c′ |ΨT 〉∑

|c〉
〈Ψ0 | c〉

=

∑
|c〉

∑
|c′〉

〈
ΨT

∣∣∣ exp{−β(τ)Ĥ}
∣∣∣ c〉〈c ∣∣∣ Ô ∣∣∣ c′〉 〈c′ |ΨT 〉∑

|c〉

〈
ΨT

∣∣∣ exp(−β(τ)Ĥ)
∣∣∣ c〉 (1.4)

If Ô does not commute with Ĥ (and therefore exp{−βĤ}), Eq. (1.4) is not the

same as Eq. (1.3). Effectively, one would be sampling O(c) weighted by |Ψ0(c)| and not

|Ψ0(c)|2. In most cases, correlators of interest do not commute with Ĥ, and the natural

guess of simply doing a weighted average over the walkers will give the “mixed estimator

error” [36]. Note that the energy does not suffer from this error, since Ĥ commutes with

itself. A modification to the averaging scheme in the simulation must be made to correct

for this error. Forward walking is one solution.

In Sec. 1.3.1, the process of updating the walkers at each time step was described.

The history kept of which configurations have been visited along the worldline will be

used to correct the mixed estimator error. Essentially, there is a “missing” exp{−β′Ĥ}

in the 〈. . .〉 expressions in Eq. (1.4). The principle of forward walking is to “walk” in

reverse along the worldline a β′ “far enough” into its history that transforming |c(τ)〉 →
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|c′(τ − β′)〉 recovers a good representation of the groundstate. In general, once the walkers

have converged to a good sample of |Ψ0〉 (which can be checked using their overall energy),

β′ need not be particularly large compared to the overall simulation time.

In the forward walking sampling, each walker marches nf steps backwards into its

configuration history, and uses that historical configuration in the weighted average, but

the weight used should be the current weight (not the weight the walker had “histor-

ically”). It is therefore convenient to make measurements after a rebalance, since all

the walkers will have weight 1. An appropriate number of forward walking steps can be

determined by measuring correlators at each step and walking back through history until

the correlators have converged.

1.3.3 Population Bias Control

During the rebalance, some walkers and their histories may die out and be discarded. This

loss of information can bias the simulation. Population bias control (PBC) is another cor-

rective which can be used to attempt to remove the bias in the correlator statistics [113].

At each rebalance, the sum of all walker weights is stored before each walker’s weight is

reset to 1.

To perform NPBC steps of population bias control, at each rebalance, the total weight
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at rebalance r Wr is multiplied by the weight at the NPBC previous rebalances.

W ′
r =

r∏
i=r−NPBC

Wi

Wi =

Np∑
j=1

w|cj〉(τi)

Then a simple weighted average can be performed across all rebalance measurements.

Again, measuring only at rebalance steps makes the procedure of combining forward

walking and population bias control simpler. A forward walk which “crosses” a pop-

ulation bias control step (for instance, if the walk is longer than the number of steps

between rebalances and NPBC > 0) does not affect this process: the final weight from

population bias control is used with the configuration from the forward walk. No extra

correction in the bias control is necessary no matter the length of the forward walk.

The weighted average across rebalances is a way of importance sampling the configura-

tion space - rebalances after a large total weight has accumulated are more relevant to

the partition function and observables than rebalances where a proportionally smaller

amount accumulates.

In Chapter 2 we apply these Monte Carlo methods to a two dimensional model

of itinerant electrons with a 4-fermion ring exchange term. This model, which is sign

problem free, may support an intriguing non-Fermi liquid phase.
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1.4 Tensor Networks

Despite the many and various successes of quantum Monte Carlo, exact diagonalization,

and other methods, many other interesting questions in condensed matter physics which

could benefit from a numerical approach cannot be tackled by these means. The family

of sign problems – interacting fermions [125], geometrically frustrated spin systems [117]

– drastically handicap a Monte Carlo approach to attack systems such as high-Tc super-

conductors [118].

Although it is possible to find ingenious reweighting schemes [124, 40] to remove the

sign problem, solving it for a general Hamiltonian is known to be NP-hard [207].

Exact diagonalization cannot access large system sizes in dimensions greater than 1,

and Monte Carlo techniques which are not vulnerable to sign problems (like variational

Monte Carlo) are biased and/or have uncontrolled error [205].

Tensor network states are a class of wavefunction ansätze which are unbiased, can

represent states on large (even infinite) systems, and can be exploited by variational

approaches to efficiently search for low lying states [150]. A rank-n tensor is an n dimen-

sional array of numbers. A 2-tensor is a matrix, a 1-tensor is a vector, and a 0-tensor

is a scalar. By computing inner (outer) products over indices in a tensor we can con-

tract (expand) it to different ranks. A tensor network is a graph, with nodes and edges

connecting these nodes. A tensor lives at each node, and is connected to other nodes

(tensors) through edges, which represent indices to be contracted over. Not every edge

has to connect two nodes - “dangling” edges represent contractable indices and can ad-

22



Â B̂

∑
ij

Â∗ijB̂ji

Figure 1.5: Two matrices, Â and B̂, presented as 2-tensors and then multiplied. Each has
two dangling edges (since matrices have two indices) which, when joined up, represent
a matrix multiplication and summation, generating a rank 0 tensor (a scalar). If only
one set of legs were joined, another rank 2 tensor would be the result - this would be a
matrix multiplication.

dress physical qubits. We can think of the nodes in a tensor network as representing

qubits which can be used in a quantum algorithm – a deep connection exists between

tensor network states and quantum circuits [130, 68].

In Fig. 1.5 a cartoon of matrix multiplication in this format is presented.

Tensor networks can be used to encode wavefunctions. A linear combination of vectors

in a Hilbert space is a “tensor network” with rank of the number of sites. It is possible to

write down an infinite number of combinations of tensors and connections between them,

but many of these will be too large to represent on a computer and/or tell us nothing

interesting about the physical states they are supposed to represent.

We should use patterns of TN which can capture most of the information about a

wavefunction in a compact way, so that investigations of large systems which cannot be

accessed using other numerical techniques are possible; which can be efficiently manipu-

lated, so that the TN can easily be optimized to represent certain states or to simulate

dynamics; and which can illuminate important features of certain kinds of states. To elab-
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orate on this last criterion, it is often interesting to know whether a state has correlations

which decay as a power law, or exponentially, and how the wavefunction’s entanglement

between different subregions of the system scales with the size of those subregions or the

size of their boundaries. Useful TN constructions will help us answer these questions. If a

wavefunction can be efficiently simulated by a TN designed for states with exponentially

decaying correlations, that tells us something about the structure of its correlations and,

if it is the eigenstate of a Hamiltonian, that model as well (e.g. it has a gap). Con-

versely, if we need a TN which can capture power-law decaying correlations, or model

a wavefunction that is scale invariant, that tells us something too (maybe the system is

critical).

Some of the most commonly used tensor network states are the matrix product states,

used to great success in 1D and quasi-1D density matrix renormalization group stud-

ies [180]; and MERA, applicable to a variety of wavefunctions, including groundstates

for critical systems, in any dimension [213, 214]. Other structures (like the tree tensor

networks [62, 186]) have also been developed, and this is an active area of research. Re-

cently, tensor networks have been both designed by machine learning approaches [230]

and used with such algorithms to improve their accuracy or enable new applications [194].

1.4.1 Matrix Product States

Over the past two decades, exact diagonalization and quantum Monte Carlo have largely

been supplanted in studies of one dimensional many body quantum systems by the density
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|Ψ〉 =
∑

p0,p1,...,p8

cp0,p1,...,p8 |p0〉 ⊗ |p1〉 ⊗ . . .⊗ |p8〉 ; cp0,p1,...,p8 =
∑

v0,v1,...,v8

Ap0v0A
p1
v0,v1

. . . Ap7v7,v8A
p8
v8

Figure 1.6: MPS composed of tensors Ai representing wavefunction |Ψ〉. The vertical
lines represent physical degrees of freedom (pi in the above formula), the horizontal lines
within the MPS virtual degrees of freedom (vi). If |Ψ〉 has low (high) entanglement, the
bond dimension along these horizontal connections will be small (large) and the MPS
representation will (not) be efficient.

matrix renormalization group (DMRG) [180]. First developed by White et al. [221],

DMRG is a very effective technique to simulate systems with gapped groundstates [179].

DMRG has also been successfully used to study critical systems and states with non-zero

central charge [94, 63, 226]. Unlike quantum Monte Carlo, DMRG never suffers from

sign problems, and unlike exact diagonalization, it can reach very large (even infinite)

system sizes [180].

Although DMRG as originally formulated [221] did not use the language of tensor

network states, these representations turn out to be a very natural way to describe how

the algorithm works and why it succeeds or fails[180]. In DMRG, the wavefunction to be

variationally optimized can be written as a matrix product state (MPS)[180, 132, 151,

168, 51, 131]. The tensor network descriptions and operations can be represented in a

graphical format, as discussed above in Section 1.4. An example is shown in Fig. 1.6.
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The virtual legs on each tensor in the MPS encode correlations between neighboring

sites. To accurately represent these correlations requires a larger matrix on each site if

the wavefunction has high entanglement. The matrix size in this direction is named the

“bond dimension” and if the bond dimension grows too large (the wavefunction is too

highly entangled), the DMRG approach will fail both because storing the wavefunction

representation becomes impossible and time required for the necessary linear algebra for

the optimization procedure grows beyond what is practical [180]. But if the entanglement

is small, the MPS representation is highly efficient, because far fewer parameters are

needed to capture the behavior of |Ψ〉 than if the full Hilbert space representation were

used. MPS can represent any wavefunction given a large enough bond dimension [212],

but is not used for highly entangled (super-area law) states because the representation

is very inefficient. The performance of DMRG scales as χ3, where χ is the MPS bond

dimension, so that accurately simulating highly entangled states becomes infeasible on

current computing hardware [101].

The algorithm works by sweeping left and right across a system (or, in the multi-leg

ladder case, snaking across the vertical legs) [221]. At each step, the ansatz for the state of

interest is optimized with respect to a local operator, called a “matrix product operator”

(MPO) in the tensor network language. This procedure is represented graphically in

Fig. 1.9. Much like a matrix product state, a matrix product operator is formed of

tensors for each degree of freedom on a site with virtual links between sites, shown in

graphic form in Fig. 1.7.
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O0 O1 O2 O3 O4 O5 O6 O7 O8

Figure 1.7: An MPO for a system with 9 sites with open boundary conditions. Each
inner tensor Oi has four “legs”, two physical (vertical) and two virtual (horizontal). The
boundary two have only three since their physical sites only have one bond. The tensor
on each site represents the local Hamiltonian there, describing both interactions on the
site itself (e.g. spin flip operators) and interactions between degrees of freedom on the
site and neighbors.

A Hamiltonian can be written as an MPO, and in this form DMRG optimizes the

ansatz towards the groundstate. In most systems, excited states have volume law entan-

glement and so DMRG cannot be used to extract the entire spectrum [53]. As originally

formulated, only one site would be optimized at each step [221], but it is now common

to optimize two tensors connected by a bond, since this provides some protection from

getting trapped in local energy minima [180].

Other choices of MPO besides the Hamiltonian are possible - recent work [232] has

proposed using a shift-and-invert approach (discussed in Sec. 1.2.2) to construct an MPO

which can be used to target states deep in the many body band in the case those states

are area law/low entanglement (as they can be in systems which are “many body lo-

calized” [19], an exception to the general situation for highly excited states discussed in

Sec. 1.1). Another approach to finding such highly excited eigenstates which are area

law begins with random MPS with structure similar to a state with conserved local in-

tegrals of motion, and optimizes for their overlap with the eigenstate of the Hamiltonian

MPO in a local region, finding states with exponentially decaying “logical qubits” which

the many body localized phase is expected to support [104, 90] (see Sec. 1.5 for a more
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〈
Ψ
∣∣∣ Ô ∣∣∣Ψ〉 =

A0 A1 A2 A3 A4 A5 A6 A7 A8

O0 O1 O2 O3 O4 O5 O6 O7 O8

A0 A1 A2 A3 A4 A5 A6 A7 A8

Figure 1.8: A graphical representation of computing an expectation value for an operator.

complete explanation of these l-bits).

To measure observables (correlation functions, etc.) with an MPS one writes the

operator as an MPO “sandwiched” between two copies of the MPS (see Fig. 1.8) and

traces over all connected lines, effectively performing
〈

Ψ
∣∣∣ Ô ∣∣∣Ψ〉 [180].

From this perspective it is easier to understand why DMRG works so well on some

states and so poorly on others. Systems in one dimension with gapped groundstates have

area law entanglement [74], and in a purely 1D system this means the entanglement does

not grow at all with the size of the subregion being considered. Even in a quasi-1D system,

the perimeter of a subregion grows slowly enough that for states with low entanglement,

an MPS representation will have bond dimension small enough to be feasible to use on

current computing hardware.

Note that although MPS works best in (quasi)-1D systems, because of the particular

area-law structure 1D states can possess, generalizations to higher dimensions exist which

can accurately represent area law states [210].
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A0 A1 A2 A3 B6 B7 B8

O0 O1 O2 O3 O4 O5 O6 O7 O8

A0 A1 A2 A3 B6 B7 B8

A0 A1 A2 A3 A4 B7 B8

O0 O1 O2 O3 O4 O5 O6 O7 O8

A0 A1 A2 A3 A4 B7 B8

|Ψ0〉

A0 A1 A2 A3 A4 A5 A6 A7 A8

Figure 1.9: Sweeping procedure in DMRG. The tensors in the MPS shown with dashed
boundaries are the ones optimized at each iteration step. After many steps (represented
by the zigzag line) the MPS is optimized to the groundstate.
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1.4.2 MERA

The multi-scale entanglement renormalization ansatz (MERA), first proposed by Vi-

dal [213, 214], is another special tensor network ansatz which can efficiently represent

certain wavefunctions in any dimension. Unlike MPS, which is essentially “flat”, a MERA

has a layered structure which is visualized in Fig. 1.10.

As Refs [213, 214] explain, MERA takes advantage of the fact that most interesting

models have local interactions, which constrains their groundstates to have degrees of

freedom which can be decoupled from each other through disentangling. The MERA

combines these disentangling steps with coarse-graining after the degrees of freedom are

decoupled, which imposes a particular structure on the tensor network. This structure

allows changes in “higher” levels to propagate through effective time in an efficient way

because the light-cone of any tensor high in the circuit has bounded growth [56].

The disentanglers in a MERA are unitary quantum gates. They address neighboring

sites, which is not a restriction of tensor networks in general - one can devise other

structures in which connections of any length are possible. Each site in a layer is only

affected by one disentangling unitary at circuit gate depth τ , so that the parallel gate

depth of the layer of disentanglers is 1. The layer after a disentangling layer is composed

of isometries, which take the outputs of the disentanglers and coarse-grain them to 1 site,

similarly to the procedure in block-spin renormalization. Isometries can have a varying

number of inputs - if they take 2 input qubits, the overall MERA is called “binary”, and

if they take 3 input qubits, the MERA is called “ternary”. “MERA” describes a family
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of variational ansätze with very similar structure but which can vary slightly in details.

At the end of the disentangle – coarse-grain – disentangle procedure the lattice will have

been coarse-grained to one remaining tensor. By tracing the bonds backwards through

“time” (the layers of the MERA) the wavefunction on any site can be reconstructed.

The rules for how to construct each layer in the MERA ensure the total number of layers

scales as T ∝ logN where N is the number of sites in the lattice. The proportionality

constant depends on the precise structure of the network [214].

A slight modification allows MERA to represent scale invariant states on systems of

infinite size - critical systems. All isometries are identical tensors w and all disentanglers

are identical tensors u. The MERA has an infinite number of layers with no “cutoff”

tensor t at the top as in the previous figures. The pair (u,w) can be iteratively optimized

to represent the groundstate and from these the central charge of the conformal field

theory corresponding to the lattice theory whose groundstate the MERA represents can

be found [158].

Analogously to MPS, variational optimization algorithms to perform groundstate

search using MERA exist [55]. Because of the greater complexity of MERA, which

gives it is expressive power, numerical work has been limited, although studies of lattice

gauge theories [201] and critical states on boundaries [54] have been performed. The

description has proved useful in analytic studies [2, 109, 41, 199, 211], and widespread

numerical implementations may be forthcoming soon [195].

In the previous section the name “matrix product state” follows naturally from the
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Figure 1.10: Example of a binary finite-depth MERA for a 1D system of 14 sites. At each
higher level, sites are coarse-grained away. This allows the MERA to represent states of
higher entanglement than an MPS can (efficiently) represent. The blue nodes represent
disentangling unitaries, and the green nodes represent isometries, coarse-graining 2 sites
into 1. Note the differing number of output qubits between the two types of node. The
red node at the top of the circuit controls the dimension of the subspace of the Hilbert
space on the physical lattice which this MERA will represent. Each Li represents a
coarse-grained lattice produced as the output of the combined disentanglers/isometries.
Since this MERA is finite depth, it can represent states of finite correlation length.
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Figure 1.11: Causal lightcone for sites 4 and 5 in the MERA example from Fig. 1.10.
This “lightcone” encompasses all tensors higher in the network which can affect the pair.
At each effective time τ , the lightcone only touches 2 tensors at most.
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fact that the MPS is an ansatz for a state involving taking products of 2-tensors (ma-

trices). Similarly, “multi-scale entanglement renormalization ansatz” flows from the fact

that a MERA’s structure suggests a state with different ranges of entanglement: some

short range entangled regions, which are quickly renormalized away in lower layers, and

longer range entangled bonds, which are addressed as the layers are applied. The fact

that MERA can represent states with such entanglement structure and that these rep-

resentations are efficient to generate and manipulate (because of the lightcone structure

seen in Fig. 1.11) enables MERA to handle a greater variety of states than MPS [56].

This entanglement – tensor network structure relationship has important connections to

geometry and holographic duality.

1.4.3 Entanglement and Geometry

In some sense it seems obvious that there is a connection between tensor network states

and geometry, since the previous two sections focus on networks with a pre-imposed

structure and implicitly connect this structure with the kinds of wavefunctions each net-

work family can efficiently describe. Can this relationship be made explicit and connected

with other results about the connection between information and geometrical structure?

The entanglement structure of a state |Ψ〉 generates an “emergent holographic ge-

ometry”. By entanglement structure, we mean whether long range entanglement exists,

what lengths are dominant, etc. In particular we are interested in whether the state has

“area law” entanglement, “volume law” entanglement, or intermediate scaling (as in a
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Figure 1.12: Diagrams of two AdS/CFT correspondences. On the left, a black hole
corresponds to a thermal state of the CFT living on the surface, whose temperature is
controlled by the black hole radius. On the right, a purely AdS bulk corresponds to the
vacuum state of the CFT.

critical system) [35, 216, 95, 31]. States with non-trivial topological order also exhibit a

constant contribution called the topological term [53].

The length scale in the entanglement structure of |Ψ〉 on a d-dimensional lattice is

what generates the d + 1-dimensional “holographic geometry” [56] Holographic duality

forms a dictionary between a quantum field theory in a d + 1-dimensional bulk and

its d dimensional boundary, one aspect of which is this geometrical connection. The

celebrated anti-de Sitter/conformal field theory (AdS/CFT) correspondence conjecture

is an example of such a gauge/gravity duality [86].

In AdS/CFT there is a direct map between the gravity bulk theory (which is time-

dependent) and the surface gauge theory which gives the CFT [86]. The dynamics of

one of the two theories are accessible from the other through the mapping [129]. Some

simple examples are shown in Fig. 1.12. The first principle of the correspondence is that

ZCFT = ZAdS. This statement about the partition functions of the two theories generates

all the specific relationships between transport coefficients and entanglement entropies,
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Figure 1.13: A perturbation to the black hole dies out over time according to its quasi-
normal modes. This is detectable in the surface theory through various transport mea-
surements (represented by the red hot-spot).

since in the non-holographic context we can calculate these quantities directly from Z [86].

Generally one “side” of the duality has a Z which is much easier to calculate and then this

can be run through the map to find quantities much more difficult to calculate without

the use of the duality.

Depending on the limit of strong or weak coupling the map has been used in different

ways. Using a classical gravity theory in the bulk which is well understood allows us

to probe theories on the surface which are difficult to understand using other methods

(for examples see Refs. [93, 153, 73, 85]), forming the sub-field often called AdS/CMT.

Conversely, simpler surface theories may have interesting quantum gravity duals in the

bulk and again the mapping allows us to take statements about the correlations on the

surface theory and rephrase them for the bulk. AdS/CFT duality has also uncovered

new solutions in the bulk which are interesting to high energy theorists [60, 58, 50].

To give an example of the dynamical relationship, we can consider a bulk composed

of a black hole . This maps to a thermal state of the surface CFT, with the surface
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A

V

A

V

Figure 1.14: Minimal bulk volume V (in blue) for surface region (in red) A. This minimal
bulk volume contains the data needed to reconstruct the state of the CFT in A and vice-
versa. The lighter shaded regions are the complement of A and the regions of the AdS
dual outside the minimal surface V .

temperature controlled by the black hole radius [129]. If the black hole is perturbed, it

“rings” like a bell: it supports quasinormal modes [217, 160]. These damped oscillations

eventually die away (like a bell’s music) as the black hole returns to its steady state,

and the damping process is controlled by the black hole and not the features of the

perturbation [84]. In the AdS/CFT duality this damping can be viewed as a process of

thermalization of the surface theory [84]. Additionally, the CFT’s transport properties

(such as ac or dc conductivity, thermal conductivity, etc.) are related by the map to

the response of the black hole’s horizon to perturbations [111], shown schematically in

Fig. 1.13.

Entanglement plays an important role in this mapping. If a correspondence exists

between a surface theory and a bulk theory, and we are interested in a compact region

of the surface (we could equally well consider the bulk here of course), it is natural to

ask how much of the bulk contains the information needed to reproduce the surface

configuration? What shape should the bulk region have?

Ryu & Takanayagi [171] developed a formula to quantify this relationship in the
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time-independent AdS/CFT context. It was later extended to the time-dependent case

by Hubeny et al. [87]. In the time-independent case, shown in Fig. 1.14, a compact

region A on the surface has a minimal bulk surface counterpart which contains all the

information needed to reproduce the state on A.

The volume V is the minimal volume with the same boundary on the surface as A.

Its shape is controlled by the bulk geometry (for instance, bulks with different curvatures

will generate different shapes of V). Black holes have a well-known area law for their

entanglement entropy [76]:

SBH =
Area (horizon)

4GN

(1.5)

And somewhat analogously, the entanglement entropy of the surface region A is ex-

pressible through this minimal surface V :

S(A) =
Area(V)

4Gd+1
N

(1.6)

where GN is Newton’s constant. This demonstrates the important relationship between

entanglement entropy of the surface CFT and the geometrical structure of the AdS

bulk. In Chapter 4 we investigate a similar relationship. Our construction is somewhat

different because we are working with lattice models and these statements are all for

smooth classical manifolds. Additionally, our results are for an integrable free fermion

CFT which may not be generic to 1+1D CFTs because of the integrability.

As shown by Swingle [198], the scale invariant MERA is an expression of aspects of

the AdS/CFT correspondence. The CFT is the physical state, which lives on the surface

of an emergent bulk AdS geometry. The holographic bulk here is the tensor network. The
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Figure 1.15: Geodesic (shown in red) in an MPS between sites 3 and 5. The geodesic
distance has linear scaling with the physical distance.

relationship between correlations in the physical state on the boundary and the geometry

in the bulk is accessible through geodesics. A geodesic is the shortest path between two

locations in a metrizable space (one in which we have some notion of distance). In flat

(Euclidean) space, the shortest path between two points is always a straight line. In

spaces with non-zero curvature, this may no longer be the case. For example, in the

positively curved space of the surface of the Earth, geodesics often take the form of arcs.

Examining the relationship between the surface and bulk shortest distances allows us to

determine the curvature of the bulk in holographic duality. These statements are about

a restricted feature-set of the AdS/CFT map: they do not make any claims (yet) about

dynamics or transport.

In an MPS (or its two-dimensional generalization PEPS), the geodesic length in the

circuit scales linearly with the physical distance between lattice sites [56], and so MPS

has a flat geometry, with zero curvature, as shown in Fig. 1.15. But a MERA, which can

represent states with higher entanglement, may have a geodesic length which scales loga-

rithmically with the physical distance [56] (in part due to the logarithmic layer structure

of the MERA [198]). This is shown in Fig. 1.16.

MERA can represent area law states just as MPS can, and a finite-depth MERA can
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Figure 1.16: Geodesic (shown in red) in a MERA between sites 3 and 12. The geodesic
distance has logarithmic scaling with the physical distance.
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always be converted into an MPS (which might have large bond dimension) [214, 56].

The scale-invariant MERA, representing critical states, replicates the holographic duality

of highly entangled states – hyperbolic geometry. The finite depth MERA, representing

area law states, has the flat geometry of an MPS at long enough distances.

1.5 Many Body Localization and Thermalization

Most quantum many-body systems coupled to a large, continuous bath “thermalize”

with the bath. By this we mean that such a system has no long-term local memory

- a pure state prepared on the system will have its initial local information “washed

out” into non-local observables which cannot be measured [146]. The system equilibrates

with the bath and both settle to the same temperature, described by quantum statistical

mechanics and the canonical ensemble.

What happens in the absence of a bath? An isolated quantum system prepared in

a pure state undergoes unitary time evolution? The system is initially described by the

microcanonical ensemble, but if it is allowed to evolve undisturbed for a long period of

time, will it still “thermalize” so that its local observables match those of the equilibrium

configuration described by the canonical example?

The eigenstate thermalization hypothesis (ETH) was developed to answer these ques-

tions. Consider preparing the isolated quantum system in a pure state |ϕ(t = 0)〉 =∑N
i=1 ci |ψi〉, where {|ψi〉} are the eigenstates of the system’s N × N Hamiltonian and∑N
i=1 c

2
i = 1, ci ∈ C. If one wanted to measure some local (meaning that it involves a
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Figure 1.17: Interacting regions of an isolated quantum system act as baths for each other
to drive the process of thermalization from an initial pure state with local information.
The red lines represent long range resonances forming between regions.

number of sites that does not scale with the system size, e.g. a 2-local operator involves

2 sites) observable Ô at time t, the expectation value would be:

〈
Ô
〉

(t) =
N∑
j=1

N∑
k=1

ckc
∗
j exp{i(Ej − Ek)t}

〈
ψj

∣∣∣ Ô ∣∣∣ψk〉 (1.7)

The eigenstate thermalization hypothesis is that this expectation value approaches a

single value at large t, that its variance as it approaches this value goes to zero, and that

the single final value is the same as would be predicted if the system were coupled to the

bath, and that all of this is true even though the system is isolated [49, 191]. At late times,

the microcanonical and canonical ensembles will give the same answer. The interpretation

is that the system is self-thermalizing, that is, different subregions act as baths for each

other [106], inducing resonances across the system that enable thermalization, as shown

in Fig. 1.17. In this way local information present initially is lost to non-local observables

and a local region of the system has no long-term memory. Detailed numerical studies

of candidate models for ETH suggest that the self-thermalization picture is the right

one [166, 106]. Perfectly isolating a quantum system in an experiment is difficult but in
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cold atom experiments with very weak coupling between the system under investigation

and its surroundings, probing the dynamics of thermalization has been attempted [181,

28, 42, 188]. Recently, superconducting qubits have also emerged as a possible platform

for experiments with isolated many-body quantum systems with disorder, which may

host MBL physics [227]. Experiments similar to work discussed in Chapter 3 have also

been performed, addressing the question of the stability (or lack thereof) of localized

phases interacting with small quantum baths [169].

In the fully thermalized state, the system will have volume law entanglement. If a

system supports thermalization, after a quantum quench occurs which introduces exci-

tations correlations spread ballistically through the system [88, 208, 91], and eventually

the entanglement entropy reaches the value predicted by the thermal density matrix

ρ̂th,A =
[
1/Tr{−ĤA/TA}

]
× exp{−ĤA/TA}, where TA is the effective temperature on

subregion A and ĤA is the Hamiltonian on this subregion.

Systems which thermalize (obey ETH) have three features:

• Eigenstates close in energy have vanishing difference between each eigenstate in

local observables. Stated another way, in a small window of finite energy density,

local observables of eigenstates should be very close between eigenstates in the

window if the system thermalizes.

• The reduced density matrix on a subregion of the system, acquired by tracing out

the components of an energy eigenstate over the complement of that subregion, is

equal to the thermal density matrix on that subregion, predicted by the canonical
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ensemble.

• The value of a local observable of an eigenstate over time is essentially static, with

small (if any) fluctuations, after a certain “pre-thermalization” time.

Most many-body quantum systems undergoing unitary time evolution thermalize in

this manner. Most, but not all: a few interesting exceptions are known. Integrable sys-

tems, which have conserved integrals of motion, do not thermalize [177, 176, 167]. In

2006, another group of exceptions were proposed - the many body localized states [17].

Originally described as a generalization of the famous Anderson model for localization [9],

a many-body localized phase can be found in a model with quenched disorder and interac-

tions (which the Anderson model does not have). Allowing interactions may induce long-

range resonances between particles and enable thermalization – the self-thermalization

where sub-regions act as thermal baths for each other following and washing away local

information into the global observables. However, if interactions are weak enough, a non-

thermal phase may survive [17]. As Basko, Aleiner, and Altshuler (BAA) show in their

seminal work, coupling to a continuous thermal bath (for instance, a crystalline system

with phonons) or interactions strong enough to overpower the effects of disorder can

thermalize the localized phase.In the dynamical picture of the quench discussed above,

correlations (and entanglement) spread sub-diffusively [121, 88]. Another perspective [90]

considers an Ising spin chain subjected to both random transverse and parallel magnetic

fields on each site. The eigenstates of the Hamiltonian in this model form “logical bits”

(l-bits), which are localized [104, 183, 88, 39]. The i-th eigenstate corresponds to set of

44



l-bits, each a localized packet of spin in a small, spatially local region of the chain. These

logical bits emerge in the MBL phase and exist there only, and are not present in the

thermalized phase. For a 1D disordered Ising or XXZ chain (see Eq. (1.5)) of length L

in the localized phase, there are L logical bits, each one Z2 valued.

ĤXXZ = JXX
∑
i

(
σ̂xi σ̂

x
i+1 + σ̂yi σ̂

y
i+1

)
+ JZ

∑
i

σ̂zi σ̂
z
i+1 +

∑
i

hiσ̂
z
i , hi ∈ [−W,W ] (1.8)

Eigenstates which are very close in energy differ in O(L) of their l-bits, so that transitions

between eigenstates are suppressed, since a large fraction of the l-bits would have to flip

to make the transition from one eigenstate to another. This is one way to think about

the concept of Fock space localization – just as hopping of particles is suppressed, so that

the dc transport is zero, so is hopping between eigenstates, even if they are very close

in energy. It also explains one of the ways in which MBL systems violate ETH: since

states close in energy have very different l-bits, their local observables differ substantially.

The values of these l-bits are also stable through time, so that the system cannot have

its subregions act as thermal baths for each other. The l-bits can be constructed by

“dressing” the physical spins with short-range local unitaries, generating a new set of

pseudospin operators:

τ̂x,y,zi = Û σ̂x,y,zi Û † (1.9)

The τ̂ zi are l-bits and are eigenstates of Ĥ. Rewriting the XXZ Hamiltonian in terms of

these pseudospin operators leads to [39]:

ĤLIOM =
∑
i

giτ̂i +
∑
i,j

Jij τ̂
z
i τ̂

z
j +

∑
i,j,k

Jijkτ̂
z
i τ̂

z
j τ̂

z
k + . . . (1.10)
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Figure 1.18: Top: a localized spin chain with l-bit envelopes. Bottom: a delocalized
thermal version of the spin chain with extended band shown.

Where the Jn corresponding to n τ z operators and sites decays exponentially in the

maximum distance between any pair of sites. There is exponentially small overlap be-

tween these {τz} l-bits and the eigenvalues {τz} specify a unique eigenstate of ĤXXZ .

This would be true of any Hamiltonian which supports the MBL phase, including the

generalized André-Aubry models of spinless fermions in a quasiperiodic potential [146].

A schematic of the differences between the localized phase (with l-bits) and the de-

localized one (with extended bands) is shown in Fig. 1.18. In this region of parameter

space the eigenstates exhibit features of localization, in that they are area law and violate

ETH, and this behavior survives to the thermodynamic limit. This construction does

not rely on BAA-style arguments.

Many body localized phases violate the eigenstate similarity condition of ETH. Eigen-

states very close in energy density may have very different local observables over long

time frames. Localized states are area law, even deep in the many-body band [19] where

they have high energy density, which violates the condition of replicating the thermal

density matrix. As an MBL system undergoes unitary time evolution, it “heats up”

46



logarithmically in time to a volume law [184] but the final prefactor on this volume law

is subthermal. In contrast to the ballistic spreading of entanglement in the ETH phase,

in an MBL phase entanglement spreads sub-diffusively [184].

Many-body localization can also be produced in systems with a quasi-periodic poten-

tial, as in the generalized André-Aubry model [92]. MBL in these models is expected to

have a variety of different features from the case of quenched disorder [92].

The stability of MBL is an important area of study with several outstanding questions.

In the original 2006 proposal, the system needed to be perfectly isolated from a continuous

thermal bath (this is the reason phonons cannot be present) [17]. Later work addressed

the situation of a system which would on its own realize the MBL phase coupled to

baths of varying size: a single thermal grain [48, 126], and a bath composed of free

fermions similar in size to the system which would localize [145, 144, 96]. In Chapter 3

we investigate the ability of a system with quenched disorder which would localize were

it isolated to overcome the resonance-inducing effects of a bath and how such a system

evolves in time.

Since ETH is a statement about isolated quantum systems, experimental probes of

thermalization have been difficult. As shown in Chapter 3, a system which would other-

wise tend towards localization is quite easily destabilized towards thermalization even in

the presence of relatively small baths. It is also an open question whether MBL physics

can survive in two or three dimensional systems, which would be easier to access ex-

perimentally [48, 159]. Nevertheless, experiments in cold atoms [182, 28, 27, 42] have
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provided some evidence for the existence of these phases. Devising signatures of localiza-

tion which are accessible experimentally remains a challenge: experiments cannot easily

measure entanglement entropies or level statistics or the variance of operator expecta-

tion values between eigenstates close in energy. Because most solid state systems have

a “reservoir” of phonons, which can function as a continuous thermal bath, it is un-

likely it will be possible to realize MBL physics in the standard solid-based experimental

platforms of condensed matter physics.

1.5.1 The Localization Transition

Unlike other quantum phase transitions, the MBL-ETH transition may involve the entire

spectrum crossing from area-law to volume-law at once. Many body mobility edges, which

would occur if there are parameter regions where all eigenstates below some cutoff energy

are localized and all eigenstates above are delocalized, have been proposed [127, 18], but

there are also arguments against their existence [46]. These “eigenstate transitions” are

a dramatic departure from other cases, where the transition involves the groundstate and

low-lying excitations and high energy excited states are mostly insensitive to the change.

The MBL physics in quasiperiodic models (such as the André-Aubry family) is distinct

from the MBL physics in the quenched disorder context [185, 92, 119]. In the quasiperi-

odic case the rare region/Griffiths effects are not present [92] and the transition between

these MBL phases and the ETH regime is governed by a different universality class than

the similar transition between MBL in quenched disorder models and ETH [105, 119]. A
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variety of questions remain open about the transition(s) between an ETH phase and an

MBL phase. In the quenched disorder case, what role do rare metallic regions play? How

do they grow? Conversely, coming from the thermal side, how do extended, delocalized

bands “freeze” into the localized phase [66]? The structure of entanglement through the

transition, while important, remains poorly understood [69]. Also unresolved is the pos-

sible presence of an intermediate phase which is not fully localized but which also does

not satisfy ETH [146].

1.5.2 Numerical Methods for MBL

The best current numerical approach to the MBL-ETH transition is exact diagonaliza-

tion [4]. Many disorder realizations must be computed to acquire accurate statistics,

and studies have so far been limited to 30 sites or fewer [193]. The shift and invert

method discussed previously is the state of the art exact diagonalization approach to

understanding MBL systems.

Devising quantum Monte Carlo schemes to extract high energy density eigenstates is

very difficult. Generically these states will have nontrivial sign structure, unlike ground-

states, even if the particles in the system are bosons [37]. Using (Ĥ − σÎ)2 to try to

target states in the middle of the band will not help, since one of Ĥ or Ĥ2 will have a

sign problem.

As mentioned in Sec. 1.4.1, the discussion of matrix product states and DMRG,

algorithms exist to target many-body eigenstates deep in the band when the system is
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localized. However, since these methods are MPS-based, the closer to the transition to

a thermal phase they are used the worse their performance. On the thermal side of

the transition, the entire band may be volume law, exactly the situation where these

tensor network approaches struggle most. Thus, to determine how a thermalizing system

undergoes localization will require new numerical methods, which can find and describe

states on both sides of the MBL-ETH transition. In Chapter 4, we discuss preliminary

work in this vein, developing a new algorithm to generate tensor networks for a wide

variety of wavefunctions, making connections to holography (similar to the connections

discussed in Sec. 1.4.3), with an eye towards extending this work to the interacting

(many-body localized) realm.
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Chapter 2

Projector Monte Carlo Study of a

Four Fermion Ring Exachange

Model

Materials, such as cuprates, which exhibit high Tc superconductivity have phase dia-

grams with many common features. Among these features is the presence of a bad metal

phase bordering a region showing pseudogap behavior. The bad metal phase has linear

T resistivity suggesting that it is a non-Fermi liquid (n-FL). To better understand super-

conducting materials, it then behooves us to search for evidence on strange metal phases

in itinerant two-dimensional electronic systems.

A minimal model for cuprates is the one-band Hubbard model. A perturbative expan-

sion of this model results in a number of terms including a hopping term (t), a Heisenberg
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exchange term (J) and ring exchange term (K) suggesting a t− J −K model,

ĤtJK =t
∑
〈i,j〉

ĉ†i ĉj + h.c. + J
∑
〈i,j〉

Ŝi · Ŝj +KĤ�

Ĥ� =
∑
i

ĉ†i+x̂,↑ĉi+x̂+ŷ,↑ĉ
†
i+ŷ,↓ĉi,↓+

ĉ†i+ŷ,↑ĉi+x̂+ŷ,↑ĉ
†
i+x̂,↓ĉi,↓ + h.c.+ ↑↔↓ (2.1)

Figure 2.1: Schematic illustration of Ĥ�.

as a reasonable approximation of the Hubbard model in certain regimes. A similar

Hamiltonian can also be derived from an RPA approximation of the screened Coulomb

interaction in the 2D planes Unfortunately, this Hamiltonian has a fermion sign problem

and although DMRG studies [136] find numerical evidence of a d-wave Bose metal

on two-leg ladders, establishing anything definitive about the two-dimensional limit has

proved difficult. The sign problem arises when t or J is non-zero when K < 0. The

K-only Hamiltonian commutes with the total number of electrons on each row/column

as well as the Sz of the two sub-lattices A and B; therefore, these quantities are conserved
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Figure 2.2: Phase diagram for the fermionic ring-exchange model.

throughout the simulation. All data presented is where the number of electrons are the

same for each row/column and the Sz = 0 on both sub-lattices.

In this work, we report strong numerical evidence for a non-Fermi liquid phase as

the ground state of an itinerant two-dimensional electronic model. In particular, we

consider the K-only model (t = 0, J = 0) showing that it is sign-free (see appendix

XXX) allowing for statistically exact quantum Monte Carlo simulations to be performed

in the two-dimesional limit. We perform Green’s Function Monte Carlo [206] to examine

the phase diagram of the ring-exchange model for spinful fermions. Studying this model

as a function of electron density, we find a strange metal phase which has the properties

of the extremal d-wave local Bose liquid (e-DLBL), originally suggested as a potential

ground state for this model by ref. [142]. Numerically, we find a charge sector which

is an e-DLBL and a spin sector which appears to be weakly antiferromagnetic. The

e-DLBL has been seen as the ground state of a bosonic ring-exchange model [154],[202].

In addition to finding the e-DLBL, we identify densities where the ground state of the

Hamiltonian is a charge density wave (CDW) or phase separates. Fig. 2.2 presents a

summary of our phase diagram.
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2.1 Numerical Methods

We use diffusion Monte Carlo (DMC) (see 1.3.1)), a type of projector quantum Monte

Carlo, to investigate the groundstates of Ĥ� (2.1) and its phase diagram for the fermions,

carrying both spin and charge. DMC, like all projector Monte Carlo algorithms, works by

stochastically applying a propogator (in our case Ĝ = 1̂− τĤ�) to a trial wavefunction,

driving the system to its groundstate at zero temperature. We choose a wavefunction

whose amplitude is constant but whose signs are chosen to correspond to their known

ground state values as our trial state. Projector methods avoid the need to update sec-

tions of a path and so are not affected by the presence of hard-core constraints in the

way that other Monte Carlo methods, such as worldline or stochastic series expansion,

are. The trade-off in this method is that it most naturally samples |Ψ| instead of |Ψ|2; to

resolve this, a forward walking correction [98],[29] is used. We use a parallel implementa-

tion of the fixed population GFMC algorithm, with forward walking 1.3.2 and population

bias control 1.3.3 to control systematic errors.

We performed the simulation with 104 walkers, up to a β of 80, using the C++ STL

MT19937 pseudo-random number generator. We peformed forward walking up to β of 5,

with 600 steps of population bias control.
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2.2 The Charge Sector

We look for various charge-ordered phases using the charge structure factor,

SC(q) =
1

L2

∑
i,j

e{iq·(ri−rj)}
(
〈n̂in̂j〉 − 〈n〉2

)
(2.2)

Where n̂i is the density operator at site i.

At low and high filling (ρ ≤ 1/3, ρ ≥ 2/3) we see phase separation which we can

diagnose in the charge structure factor based on the presence of Bragg peaks at small

wavevector. The SzA = SzB = 0 sector is lowest in energy. These constraints prevent

full phase separation and instead we find ’stripes’ which maximally phase separate the

system under these constraints. This is consistent with previous DMRG studies on two-

leg ladders of the full t− J −K model at ρ = 1/3 which also saw phase separation when

K � t, J [94].

At exactly half filling (ρ = 1/2) we find a (π, π) charge density wave identified by the

Bragg peaks at (±π,±π) in the structure factor, shown in Fig. 2.3. The peaks appear to

persist as the system size grows (shown by the black line in fig. 2.4), suggesting that the

CDW order is the underlying phase in the thermodynamic limit. Notice, though, that

even at half filling there is an unusual cross structure in the rest of the structure factor.

At intermediate filling (1/3 < ρ < 2/3, ρ 6= 1/2), we observe clear signals of the

extremal d-wave Bose liquid phase in the charge sector. These are a) the abscence of

Bragg peaking (no charge ordering), which seems to persist under finite size scaling; and

b) the presence of the singular lines in the charge structure factor which are theoretically

identified with the presence of a Bose surface [154]. Near the Bose surface we expect to
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Figure 2.3: Charge structure factors for L = 12. Top figure shows ρ = 1/2 and lower
figure shows ρ = 7/12.
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Figure 2.4: σ(q) for various L
.

see linear dependence of SC(q) on q. We test for this by examining the slope of SC(q)

at small |q| - we divide SC(q) by the EBL theory result

SeDLBL(q) =4
∣∣∣sin qx

2
sin

qy
2

∣∣∣ (2.3)

If the ratio σ(q) = SC(q)/SeDLBL(q) does not go to zero as |q| → 0, then SC(q) has

linear slope, suggesting the presence of a gapless bosonic phase - the e-DLBL. As the

system size increases, σ(q) does not appear to trend towards zero, as shown in fig.

2.4. The linearity of SC(q) persists to smaller and smaller wavelengths. The specific

prefactor in SeDLBL(q), in this case 4, is not expected to be universal. This explains why

different sized lattices may show peaks of different heights in σ(q). The combination of

the presence of the node-lines and linear behavior of SC(q) is strong evidence for the

presence of the e-DLBL phase in the charge sector, away from half filling.
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Figure 2.5: Finite size scaling for the plaquette structure factor.

2.3 Excluding Valence Bond Order

P̂i =ĉ†i+x̂,↑ĉi+x̂+ŷ,↑ĉ
†
i+ŷ,↓ĉi,↓+

ĉ†i+ŷ,↑ĉi+x̂+ŷ,↑ĉ
†
i+x̂,↓ĉi,↓ + h.c.+ ↑↔↓

SP (q) =
1

L2

∑
i,j

e{iq·(ri−rj)}
〈
P̂ 2
i P̂

2
j

〉

This operator measures whether a plaquette is “hoppable” and its structure factor show

no signs of order, as discussed in appendix xxx and shown in Fig. 2.4. This rules out a

valence bond solid phase. By measuring correlator P̂i and examining its structure factor

we can exclude the presence of a bond solid. Similar to the spins, if there is order present

it will be at q = (±π, 0) or q = (0,±π) (since the hopping must occur in the x̂ or ŷ

direction from site i). For half filling, the order parameter plotted in Fig. 2.5 does not
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tend to zero because it is “carried along” by the CDW order, but in the more interesting

regime where the e-DLBL is expected we see that the plaquette structure factor trends

to zero - there is no bond order. Similarly, for two site operators

B̂x,i =ĉ†i+x̂,↑ĉi,↑ + hc+ ↑↔↓

B̂y,i =ĉ†i+ŷ,↑ĉi,↑ + hc+ ↑↔↓

SB,x(q) =
1

L2

∑
i,j

e{iq·(ri−rj)}
〈
B̂2
x,iB̂

2
x,j

〉
SB,y(q) =

1

L2

∑
i,j

e{iq·(ri−rj)}
〈
B̂2
y,iB̂

2
y,j

〉

We can perform a similar analysis, where we see:

2.4 The Spin Sector

Having established the properties of the charge sector, we can then consider the spin

sector. There is no evidence of any ordering in the spin structure factor. In particular,

the peaks at (±π, 0) and (0,±π) at various system sizes stay constant (see fig. xxx).

The values of SS(±π,±π) are directly related to the differences between SzA and SzB, the

total Sz quantum numbers on sublattices A and B respectively, which are conserved in

our simulation. Finite size scaling analysis, shown in Fig. 2.4, suggests that the system

is not antiferromagnetically ordered away from half filling. We have also ruled out the
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Figure 2.6: Finite size scaling for the bond structure factors.
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possibility of a valence bond solid by measuring relevant correlators.

It appears that the spin structure factor has weak Bragg peaks at (±π, 0) and (0,±π)

- a signature of antiferromagnetism.

2.5 d-wave Bose Liquids

A wealth of experimental data suggests that the groundstate(s) of the high Tc cuprates

in the pseudogap phase are described by non-Fermi liquids with gapless modes, no bro-

ken symmetries and no condensation. Near the transition to the superconducting state

ARPES suggests that vortices bind together, but since the system is not superconduct-

ing these vortices cannot be condensed. d-wave correlated Bose liquids, also called “Bose

metals”, are a class of critical quantum fluids of uncondensed pairs of vortices/holons.

First developed by [142], these states can be described using “doubly-slaved” electrons.
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The electrons are broken down into a fermionic spinon f and bosonic chargon b, and

further writing the chargon as a product of two spinless fermions d1 and d2.

Figure 2.8: Schematic illustration of the parton wavefunctions. The full electron wave-

function |Ψ〉 is a product of these four Slater determinants.

d1 (d2) preferentially hops vertically (horizontally). The Fermi surfaces of each of d1,

d2 are therefore ovoids, which may be closed (the d-wave Bose liquid - DBL) or open to

the edge of the Brillouin zone (the d-wave local Bose liquid - DLBL), shown in Fig. 2.8.

The width of the ovoids is controlled by the filling fraction if t 6= 0. The exciton Bose

liquid, first proposed by Paramekanti et. al.[154], is analagous to an extremal limit of

the DLBL. If t, J → 0, the Fermi surfaces collapse onto the qx = 0, qy = 0 lines. There

are two gapless node-lines for the boson b. The EBL and eDLBL phases are expected to

be unstable to a (π, π) charge density wave at half filling if only nearest-neighbour ring

exchange is present - Umklapp terms destroy the liquid[202]. At low density (ρ < 1/3),

the system is expected to phase separate into “stripes” of CDW and vacuum. Since the

Hamiltonian preserves the number of particles per row and column, the system cannot
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fully phase separate. In this region the Hilbert space is highly sectorized because the

stripes cannot move coherently. In the intermediate region, 1/3 < ρ < 1/2, whether the

EBL is stable at large system size was unclear[202]. For the spinful fermions the K1 only

model is the only one which is sign free. For the bosons it is possible to stabilize the EBL

by including next-nearest-neighbour ring exchange terms, on a 2× 1 or 1× 2 plaquette.

This also may allow the emergence of a VBS phase at half filling. The addition of even a

tiny t hopping will introduce a sign problem and most likely destroy the EBL, but a state

in the broader class of DLBL wavefunctions is still possible and likely for small enough

t/K.

2.6 Extensions to Larger Systems

Beyond L = 12 it becomes difficult to overcome the statistical limitations of the DMC

approach using currently available. There are several contributing causes:

• Correlators along the forward walk length must converge for a specific simulation

τ . This requires comparing many forward walking steps, each of which is very

expensive to compute correlations for.

• Population bias correction for the correlators should converge in both the number

of walkers and in the number of population bias corrected steps. This requires

checking multiple population bias correction step counts for very large population

sizes, which is numerically difficult for large L.
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These difficulties can be mitigated by choosing a smaller τ time slice, but this then

requires running the simulation much longer so that the walkers can converge into the

groundstate. As such, testing that measurements are reliable for a specific choice of τ ,

forward walking steps, population size, and population bias correction steps is extremely

computationally intensive. Although we have performed simulations for L = 14, 16, which

are suggestive of the presence of the e-DLBL phase, it was not possible to definitively state

whether the above convergences were robust. This would be worthwhile to investigate in

future work.

2.7 Conclusions

We have established the presence of the EBL phase in the charge sector up to lattice

sizes 12× 12. Finite size scaling analysis suggests the e-DLBL phase may be stable away

from half filling to the thermodynamic limit. In the spin sector we detect signatures

of weak anti-ferromagnetic ordering. It would be interesting to be able to measure the

“box correlators” of [142],[202] to probe the length of the excitons in the EBL, but in

our framework this is not possible.
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Chapter 3

Many-body localization in the

presence of a small bath

3.1 Introduction

While it has become clear in recent years that the eigenstate thermalization hypoth-

esis (ETH) [49, 191] provides the correct picture for the emergence of quantum sta-

tistical mechanics in broad classes of closed quantum systems [166], the phenomenon

of many-body localization (MBL) [9, 18, 17, 67] has appeared as a scenario where

quantum statistical mechanics is robustly violated. By now, overwhelming numeri-

cal [149, 208, 152, 16, 91, 19, 107, 127], analytical [90] and experimental [108, 181, 188, 26]

evidence has been amassed that a many-body localized phase exists in strong disorder

and for finite-strength interactions (for a recent review, see Ref. [146]). The violation of
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ETH most prominently manifests itself in an area law for the entanglement entropy in

highly excited eigenstates [19]: unique to an MBL system, the entanglement entropy of

a region scales only with the size of the boundary of that region in almost all states of

the many-body energy spectrum. Other key properties of MBL phases include a discrete

local spectrum and vanishing conductivity [18, 17], a logarithmic growth of entanglement

entropy [208, 16, 184], and a complete set of local integrals of motion that describe the

entire many-body spectrum [89, 183].

The description of many-body localization generally assumes a system that, in the

limit of vanishing electron-electron interactions, becomes an Anderson insulator in which

all single-particle states are localized. The eigenstates of a many-body localized system

are connected to the eigenstates of the Anderson insulator by a finite-depth local unitary

transformation [19]. Recent work [123, 138, 220] has raised the question of whether MBL

can also exist in a system where in the non-interacting limit, a critical single-particle en-

ergy, the mobility edge, separates localized and delocalized states. In one dimension, this

can be achieved in certain types of quasi-disordered systems, and it is a generic scenario

in higher dimensions. For a particular incommensurate potential, Ref. [123] found three

regimes: a many-body localized phase; an ergodic phase; and an intermediate phase that

exhibits volume-law entanglement scaling but violates eigenstate thermalization in a more

subtle way by having a large eigenstate-to-eigenstate variance of the expectation value of

local operators even in narrow energy windows. These regimes are separated by many-

body mobility edges, i.e. critical energy densities separating localized from delocalized
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Figure 3.1: Schematic illustration of our setup. Here, the disorder potential only acts on
the lower chain of the ladder (α = 0), whereas the fermions in the upper chain are affected
by the disorder only through the interactions. The fermions, indicated as red dots, hop
along each chain, and interact only through a repulsive density-density interaction on
each rung.

states in the many-body spectrum. The existence of such many-body mobility edges has

been suggested based on both analytical [18, 17] and numerical [107, 127] observations;

however, recent work has raised concerns about the stability of such a scenario [46].

A closely related question concerns the stability of many-body localization in open

quantum systems, i.e. when coupled to bath degrees of freedom. Usually a bath is taken

to be very large and the backaction of the system onto the bath is neglected. In this

case (as well as in the presence of dissipation [122, 59]), one expects that the effects of

many-body localization will be destroyed, although there is evidence for a crossover into

a regime where some signatures of localization persist [145, 66, 96]. However, one can

also consider the case where the number of degrees of freedom in the system and the

bath is comparable and the backaction may be important. In this case, the interesting

possibility arises that the backaction of the MBL system may be strong enough to induce

localization in the bath [144]. The results of Ref. [123] may be interpreted as evidence

for such a scenario.

In this chapter, we investigate these questions by numerically and analytically study-
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ing a model for spinless fermions on a ladder, as sketched in Fig. 3.1. We introduce

an uncorrelated disorder potential on one chain of the ladder, while keeping the other

chain translationally invariant, and forbid hopping between the chains such that in the

non-interacting limit, the chains are completely decoupled. We then introduce a local

density-density interaction on each rung. With interactions, two sharply distinct scenar-

ios appear: in one, the energy transport through the clean chain is sufficient to trigger

delocalization of the entire system. In the other scenario, the localized fermions – through

the density-density interaction – act as effective disorder potential for the fermions in the

clean chain, inducing their localization. To distinguish these two scenarios, we will con-

sider the entanglement entropy of highly excited eigenstates as well as the time evolution

of the entanglement entropy. We find that in our model, both scenarios can be real-

ized depending on the parameters of the system. We will comment on other possible

intermediate scenarios at the end.

Our model is closely related to the model of Ref. [229], where the disorder potential

is absent but the hopping strength in the two chains is vastly different and interactions

between the chains are very strong. This model was studied in the context of dynamical

effects akin to many-body localization in systems without explicit translational symmetry

breaking in the Hamiltonian [178, 79, 47] (see also [70]), but where the initial conditions

break translational symmetry. It was observed that the time evolution starting from

random product state configurations exhibits slow dynamics at an intermediate time

scale, yet relaxes at the longest time scales, consistent with with the formation of a
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“quasi many-body localized” (qMBL) regime. Furthermore, the system shows a diverging

susceptibility towards spin glass ordering upon introducing disorder. Our results are

complementary in that we consider the case of strong disorder and weak interactions,

and focus primarily on eigenstate rather than dynamical properties. We discuss the

relationship between the models in more detail towards the end of Section 3.4.

It should also be noted that we focus purely on the one-dimensional case since in higher

dimensions, localization of the entire system is very unlikely to occur. In particular, in

three dimensions, there is no possibility of an interesting backaction of the localized states

on the extended ones at weak interactions since perturbative disorder is irrelevant, i.e.

the localization length is infinite up to finite value of V . In two dimensions, disorder is

only marginally relevant, and actually tends to be driven irrelevant in the presence of

interactions [120].

The remainder of this chapter is structured as follows: In Sec. 3.2, we describe the

model, our diagnostics and the numerical approach in more detail. In Sec. 3.3, we discuss

a perturbative analysis of the interchain coupling. In Sec. 3.4, we describe our numerical

results, and conclude in Sec. 3.5.

3.2 Model and numerical approach

The Hamiltonian for the system is (see Fig. 3.1)

Ĥ =−
∑
α

tα

L∑
i=1

(
ĉ†α,iĉα,i+1 + h.c.

)
+

L∑
i=1

win̂d,i + V

L∑
i=1

n̂d,in̂c,i. (3.1)
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Here, c†α,i creates a fermion on the upper, clean (α = c) or lower, disordered (α = d)

layer. The local potential wi, acting only on the α = d fermions in the lower layer, is

drawn uniformly from the range [−W,W ]. V is a density-density interaction between

the two chains. Each chain has length L such that the total number of sites in 2L. Note

that the particle number on each chain is separately conserved, reducing the size of the

many-body Hilbert space. For even L, we choose each chain to be half-filled.

While the model is phrased here in terms of a ladder, it is equivalent to a system of

two different flavors of fermions where only one flavor experiences the disorder potential.

Such a description may be applicable to experiments on cold atoms which use different

types of atom (non-convertible fermions), or different states of the same atom. We also

note that since hopping between the chains is forbidden, the model can be mapped to a

local model of hard-core bosons or spins by means of a Jordan-Wigner transformation.

Since it is also possible to apply the Jordan-Wigner transformation to only one chain

of the ladder, the model is related to spin and charge degrees of freedom in a Hubbard

chain.

In Eq. (3.1), we have not included interactions between fermions on the same chain.

We have confirmed numerically that adding a repulsive nearest-neighbor interaction be-

tween fermions on the order of the interlayer coupling or weaker on the same chain does

not qualitatively affect the results. We have also verified that making the strength of the

inter-chain interaction random does not affect the results.

We solve for highly excited eigenstates of Eq. (3.1) in the middle of the many-body
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spectrum using the shift-and-invert method (discussed previously in the Introduction),

which solves for low-lying states of

Â−1 =
(
Ĥ − λI

)−1

(3.2)

where λ is a target energy. This approach was first used in the context of many-body

localization in Ref. [127]. We use the implementation of SLEPc [78] & PETSc [13, 14, 6,

7], and rely on its direct LU solver and MUMPS. The LU factorization is used as a direct

solver to perform the inversion after shifting. Once the inverse has been computed, the

Lanczos method [115] can be used to target low-lying states of shift-and-inverted matrix.

These states are the ones closest in energy to the target λ. We average over 250 eigenstates

for 500 disorder realizations each for system sizes L = 6 and L = 8. For L = 10, we

only compute eigenstates for 50 disorder realizations. Finally, for a few data points we

simulated up to L = 12, where we obtained 150 states each for 100 disorder realizations.

We choose the target energy λ = V L/4, which is close to the center of the many-body

spectrum. For small systems, we have verified through a full diagonalization of Ĥ that

the states thus obtained are representative of the “infinite-temperature” ensemble.

3.2.1 Eigenstate entanglement

The eigenstate thermalization hypothesis [49, 191, 166] suggests that in an eigenstate of

a generic quantum system H at a finite energy density ε above the ground state, the

reduced density matrix ρA for some region A will be close to a Gibbs state of the same

Hamiltonian at some inverse temperature β(ε), ρA ≈ exp(−βHA) [64]. Among many
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(a)

Sd Sc Sb

(b)

Figure 3.2: (a) Different entanglement cuts considered in this chapter. Here, the empty
circles denote sites in the disordered chain, while filled circles denote sites in the clean
chain. From left to right, we denote these entropy cuts as Sd, Sc, Sb. (b) Schematic
behavior of the entanglement entropy. Left panel: decoupled case (V = 0), where Sb =
Sd + Sc. Right panel: Interacting case (V 6= 0).

other things, this implies that the entropy S(ρA) = −Tr ρA log ρA will exhibit a volume

law, S(ρA) = sth(ε)vol(A). In the center of the many-body energy band, where β → 0,

one expects that the entropy density is close to its maximal value as given by the density

of degrees of freedom.

One of the defining features of many-body localization is that this volume-law scaling

is robustly violated [19]. Indeed, the excited eigenstates of an MBL system exhibit an

area law [53]: the bipartite entanglement entropy between some region A and the rest of

the system is found to scale only with the area of the boundary separating the regions. In
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d dimensions, this leads to the scaling S ∼ Ld−1, as opposed to the volume law S ∼ Ld

that is expected for generic systems that obey eigenstate thermalization. Eigenstate

entanglement has subsequently been used as powerful criterion to identify many-body

localized phases [19, 107, 127].

We use eigenstate entanglement as diagnostic of whether the system described by

Eq. (3.1) delocalizes or localizes. On a coarse level, distinguishing between a volume law

and an area law allows us to determine whether the system is localized or not. Beyond

this, if we find that the system exhibits a volume law, we can consider the entropy

density to determine whether all microscopic degrees of freedom participate or whether

some degrees of freedom remain localized.

Specifically, we consider the entanglement cuts illustrated in the top panels of Fig. 3.2.

The cuts correspond to a contiguous block of sites in the clean (disordered) chain, which

we label as Sc (Sd), as well as a cut that contains both chains, labeled as Sb. In the

generic case where the two chains are coupled, an area law will only appear in Sb, since

for the other cuts the area of the boundary scales with the volume of the block. However,

in the non-interacting case V = 0 where the two chains are completely decoupled, the

entropy of each of the chains separately can provide valuable insights.

The bottom panels of Fig. 3.2 schematically illustrate the behavior of the various

entropy cuts. The lower left panel shows the case of decoupled, non-interacting chains

(V = 0): the delocalized fermions in the clean layer contribute a volume law, Sc = sthL

where sth ≈ log 2 is the thermal entropy density of a single layer at infinite temperature.
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The localized layer, on the other hand, exhibits a volume law only for blocks smaller

than the localization length ξloc [69] and saturates to a constant beyond that. The total

entropy, Sb = Sd + Sc, thus shows a volume law with prefactor 2sth for l < ξloc, and

crosses over to a volume law with a reduced prefactor sth for l > ξloc.

In the interacting case, the two scenarios discussed above are localization and delo-

calization of the entire system. These are illustrated in the lower right panel of Fig. 3.2:

If the system becomes fully localized on some scale ξ′, the entanglement entropy for the

joint system Sb will exhibit an area law for l > ξ′ (note that while the figure shows the

case ξ′ = ξloc, this need not necessarily be the case). If, on the other hand, the system

fully delocalizes, the entropy will show a volume law with prefactor 2sth for all scales.

Thus, in either scenario a strong signature appears in the eigenstate entanglement: the

entropy either becomes constant, or the coefficient of the volume law doubles.

3.3 Perturbative analysis of interchain coupling

We expect that the eventual fate of the localization or thermalization of the ladder

rests on the outcome of a competition between the tendency for the disordered chain to

localize the states on the clean chain and the ability of the states in the clean chain to

act as a thermalizing bath for the disordered chain. Before turning to direct numerical

simulations, we consider the limit of weak interactions, V � td, tc, where we can work

perturbatively in V near the decoupled chain limit to estimate which of these effects is

more important.
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For V = 0, the clean chain has no randomness and exhibits extended single-particle

eigenstates. With V 6= 0, however, if the disordered chain remains localized, the random

distribution of charges 〈n̄d,i〉 in a given eigenstate produces an effective disorder potential

µi ≈ V 〈nd,i〉 in the clean chain. Due to the one-dimensional nature of the system, even

an infinitesimally weak random potential will produce localization. In the case of weak

interactions and thus weak disorder, localization occurs via quantum interference, and

we can perturbatively estimate (using Fermi’s golden rule) the localization length in the

clean chain to be ξV ≈ t2c/(V
2 δn2

d), where δn2
d ≈ ρd(1 − ρd) and ρd is the mean density

of particles in the disordered chain.

As a technical aside, this treatment amounts to a Hartree-type approximation of the

inter-chain interaction to obtain an effective disorder potential µi = V 〈nd,i〉 for the clean

chain. Note that Fock-type exchange self-energies are zero in this model where particle

number in each chain is separately conserved. Next, we will perturbatively incorporate

interactions using the Hartree-dressed Green functions.

In the absence of this tendency towards localization, energy can propagate along the

disordered chain mediated by resonant interactions with states in the clean chain. We

can perturbatively estimate whether such resonant interactions can persist in spite of

the tendency towards developing a finite localization length ξV in the clean chain. The

typical level spacing for particle-hole excitations in the clean chain is:

δ(2) ≈ 1

Λc (νcξV )2 ≈
V 4

t3c
(3.3)
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where νc ≈ 1/tc and Λc ≈ tc are the single-particle density of states and bandwidth,

respectively. For strong disorder (W � td), the single-particle states of the disordered

chain are well-localized with characteristic localization length ξd ≈ [log (W/td)]
−1. In

this case, the simplest interchain interaction process is for a particle-hole excitation of

two overlapping localized orbitals in the disordered chain to excite a particle-hole pair in

two orbitals of the clean chain that reside within distance ξV of those in the clean chain.

For concreteness let us label a fixed pair of orbitals in the disordered chain by a, b,

whose wave functions have the schematic form φa,b ≈ 1√
ξd
e−|x−xa,b|/2ξd , and similarly

denote two orbitals in the other chain by α and β respectively with wave functions

φα,β ≈ 1√
ξV
e−|x−xα,β |/2ξV . Then, for |xa − xb| < ξd, and |xα,β − xa| < ξV the matrix

element for the interchain interaction among these orbitals is roughly:

Γ(a,b);α,β ≈ V

∫
dx φ∗α(x)φβ(x)φ∗a(x)φb(x) (3.4)

≈ V

ξV
≈ V 3

t2c
(3.5)

Fixing our attention on a specific pair of orbitals in the disordered chain, the number of

such transitions that are resonantly connected by matrix element Γ is of order Nres ≈ Γ
δ
≈

tc
V

, which is large for weak interactions, and in fact diverges in the limit of V → 0. This

divergence strongly suggests that, for weak interactions, the tendency for randomness in

the disordered chain to localize states in the clean chain is insufficient to prevent it from

acting as a bath for the disordered chain. The full system thus thermalizes in this limit

on a timescale set by the magnitude of the matrix element Γ.
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Figure 3.3: Entropy for three different cuts for a ladder of length L = 10 with t0 = tc = 1
and W = 4. The different cuts are illustrated in the top panels of Fig. 3.2. Error bars
are comparable to the marker size.

To address the fate of thermalization in this ladder beyond these perturbative con-

siderations, we now turn to microscopically exact numerical simulations.

3.4 Numerical results

3.4.1 Equipotent hopping

We first consider the case of equal hopping strength in the clean and disordered layer,

td = tc = 1. In Fig. 3.3, we show the behavior of different entropy cuts in this case for
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Figure 3.4: Left panel: Entropy Sb at the center of the system as a function of interlayer
coupling V , for different system sizes and disorder strength W = 4. We observe that
the increase of the entropy due to adding weak interactions sharpens as the system size
increases. Right panel: Entropy Sb(L/2) for different V as a function of system size.
The slope corresponds to the entropy density, which is observed to increase drastically
as interactions are increased, compatible with all degrees of freedom contributing to the
entropy.
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a system with a total of 2L = 20 sites and disorder strength W = 4. We first explore

the results in the non-interacting case, V = 0. Here, we observe a volume law for Sc

(left-most panel), while the disordered system exhibits a saturation of the entanglement

entropy Sd for l & 3 (center panel). Note that for V = 0, Sd(l) = Sd(L − l) (and

similarly for Sc), which is not true for V 6= 0. By identifying the saturation point of the

entropy for Sd, we can read off that the localization length for W = 4 is ξloc ≈ 3. The

right-most panel shows the joint entropy Sb, which for V = 0 is simply the sum of the

two contributions and is therefore dominated by the volume law in the clean chain.

As we turn on interactions between the two layers (V > 0), we observe that the

entanglement entropy for each cut increases dramatically. For the entropy cuts isolating

each chain, this is expected as the boundary between the two chains begins to contribute

to the entanglement entropy. However, we note that in the limit of strong enough in-

teractions, the entropies Sd and Sc become approximately equal, indicating that there

is no distinction between the two chains. Considering the joint entropy, we find that

the entropy at the center of the system approximately doubles from Sb(L/2) ≈ 2.8 to

Sb(L/2) ≈ 5.8. This is consistent with a volume law contribution from both chains.

The maximum measured value at the center of the system is close to the upper bound

Sb(L/2) ≈ 6.9; the discrepancy can be attributed to finite-size corrections. These results

are strongly suggestive of delocalization of the entire system for V > 0.

To further investigate this, we consider the cut at the center of the system, Sb(L/2),

for various system sizes and interaction strengths as shown in Fig. 3.4. In the left panel,
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we have rescaled the entropy by the system size to convert to an entropy density. We

observe that the entanglement increases rapidly as interactions are turned on for each

system size. The increase sharpens as the system size is increased, indicating that at

least in this parameter regime the entire system delocalizes for infinitesimal interaction

strength V in the thermodynamic limit. For small system sizes, the entropy decreases for

very large interactions, but this effect does not appear to persist to larger system sizes.

In the right panel, we analyze the finite-size dependence of the entropy at the center of

the system, which clearly exhibits a volume-law scaling. The coefficient of the volume

law increases rapidly as interactions are turned on.

3.4.2 Narrow-bandwidth bath

While the results of the previous section confirm that the system tends to delocalize,

as suggested by the considerations in Sec. 3.3, it may still be possible to change the

parameters of the system in such a way as to enhance the tendency towards localization.

We focus here on the effect of tuning the hopping strength in the clean layer, tc. By

reducing this hopping strength, we can reduce the bandwidth of the delocalized degrees

of freedom, which reduces the amount of energy the bath can absorb. This regime was

previously studied in Ref. [66]. Clearly, in a limit where tc � δE, where δE is the mean

level spacing of many-body energy levels, the system will not delocalize; however, this

requires an exponentially small bandwidth tc ∼ 2−L. In a more physical regime, where

δE � tc � td and tc � W , one may still expect that the bath is inefficient at delocalizing
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Figure 3.5: Entropy Sb(L/2) for a center cut of the system for various disorder strengths
W and hopping in the clean chain, tc. As disorder is increased and the hopping tc reduced,
we observe a crossover from a regime where interactions tend to increase entropy to a
regime where interactions decrease entropy, i.e. drive the system towards localization.
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Figure 3.6: Maximum entropy Sb for various L and interlayer couplings V , allowing
the hopping strength to vary. For very large interlayer coupling, the system appears to
localize at small hopping in the clean chain.
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the system because its bandwidth is small compared to the energy mismatch of nearby

fermion states in the disordered system, which is of order W ; however, higher-order

resonances may invalidate this simple picture.

Our numerical results are summarized in Figs. 3.5 and 3.6. In Fig. 3.5, we show the

entropy at the center of the system as a function of interaction strength V for three

different strength of the disorder and several values of the hopping in the clean chain tc,

while keeping td = 1. For slightly reduced values of tc, such as tc = 0.5, we find behavior

that is very similar to the case tc = td = 1. However, for strongly reduced hopping of

tc = 0.1 and sufficiently strong disorder, the entropy does not increase rapidly – as was

seen in the left panel of Fig. 3.4 – but rather remains constant, or even decreases in

the case of strong disorder W = 8. This implies that as interactions are turned on, the

system tends towards localization rather than delocalization.

To explore whether this is a robust effect that persists to the thermodynamic limit, we

examine how this behavior depends on the system size over the limited range available

to our exact numerics. In Fig. 3.6, we show the entropy at the center of the system

versus system sizes, for an array of hopping strengths tc ∈ [0.1, 0.5] (keeping td = 1) and

disorder strengths W = 2, 4, 8. For weak disorder (W = 2, top row), we observe that

interactions suppress the entropy for small systems and tc ≤ 0.25, but for sufficiently

large systems the behavior changes and the entropy of the interacting system exceeds

that of the decoupled chains and the coefficient of the volume becomes comparable to

that in the case tc = td. The scale at which this crossover takes place depends on the
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choice of W and tc, and appears to shift to larger and larger systems as W is increased

and tc reduced. For example, for W = 4 and tc = 0.1 (leftmost panel of the middle row)

the crossover scale appears to be slightly larger than the system sizes available to us. We

note that such an upturn of the entropy seems at odds with the results put forward in

Ref. [69], which argued that ∂2S(`)/∂`2 ≤ 0, where S(`) is the entropy of a contiguous

block of ` sites in a system of total size L. However, this result only holds for ` � L,

whereas here we have the case ` = L/2 and therefore no clear separation between the

two scales ` and L.

Finally, to examine the case of strong disorder (W = 8), small bath bandwidth

(tc < 0.2) and strong interactions further, we have performed simulations for up to

L = 12 (i.e. 24 sites); our results are shown in Fig. 3.7. Although the entropy increases

slightly with system size, it remains strongly suppressed over the entire range of system

sizes available to our simulations. Nevertheless, given the finite-size crossover behavior

observed away from this limit, we cannot rule out delocalization of the system on a very

long length scale.

3.4.3 Time evolution

To obtain further insights into the putative localized regime at strong disorder and weak

bath hopping and to connect our results to those of Ref. [229], we repeat some of the

numerical experiments performed there in the presence of weak disorder. To this end,

we prepare the system in a randomly chosen product state, evolve under the Hamil-
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Figure 3.7: Maximum entropy Sb for system sizes up to L = 24. Here, V = 4 and W = 8.
Note the drastically different scale on the vertical axis compared to Fig. 3.6.

tonian (3.1) (where, following [229], we from here forward impose periodic boundary

conditions), and compute the entropy Sb at the center of the system as a function of

time T . We average the results over different initial states, and in the case of W > 0

also over 10 different disorder realizations. For each case, we smooth the data by taking

the maximum over 6 adjacent time samples. We note that these results are obtained

for much stronger interaction V and much smaller tc than the results reported in the

previous sections.

Our results are shown in Fig. 3.8. Here, the parameters for the upper panel match

those of Ref. [229], in particular tc = 0.001, td = 1, and the disorder-free case W =

0 exactly matches the data presented there. Upon adding even a very weak disorder

potential, the evolution of the entropy for large time scales – beyond the equilibration

of local degrees of freedom on a scale 1/td – changes drastically: the slow divergence of

the entropy at very large times that is observed in the quasi-MBL phase, and associated
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Figure 3.8: Time evolution of the entanglement entropy Sb(L/2) for V = 10 and 2L = 16
total sites. The top panel shows data for tc = 0.001, corresponding to Fig. 2 of Ref. [229],
while the bottom panel shows tc = 0.1 for comparison to Fig. 3.6.
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with a slow relaxation of the system at all length scales, appears completely suppressed

in the case of a weakly disordered system. Furthermore, the entropy saturates to a far

sub-thermal value for both L = 4 (not shown) and L = 8 even for the weakest disorder

potential W = 0.01. These results are consistent with the observation of a many-body

localized regime in this limit in the entanglement entropy of highly excited eigenstates,

and is also consistent with the observation of a divergent susceptibility to spin glass

ordering in Ref. [229].

Increasing the hopping in the clean chain to tc = 0.1 (bottom panel of Fig. 3.8),

we find that a weak disorder potential suppresses the saturation entropy only slightly,

while a sufficiently strong potential in the disordered chain is still able to suppress the

entropy for both chains. While a finite critical disorder strength necessary to drive the

system into the MBL phase appears at odds with a quasi-MBL regime in the clean limit,

our numerical observation may also be due to a large localization length compared to

the available system sizes. In either interpretation, these results are consistent with the

observation of a possible MBL phase in a similar parameter regime in the entropy of

eigenstates, see Fig. 3.6.

3.5 Conclusion

We have proposed a system of spinless fermions on a ladder, where one chain of the

ladder is translationally invariant while the other experiences a disorder potential. This

system can serve as a prototypical example to study many-body localization effects in
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a system where in the limit of vanishing interactions, localized and delocalized degrees

of freedom coexist. Equivalently, the system allows us to study the effect of coupling a

small bath to a many-body localized system. Exploiting the large degree of tunability

of the model, we have found that while in most of the phase diagram the system tends

towards delocalization, a many-body localized regime – and thus localization of the bath

through induced disorder from the MBL system – may appear in a regime where the

bandwidth of the bath is small compared to the disorder strength.

In the entanglement of eigenstates, this localization of the entire system is heralded by

a decreasing entanglement entropy as a function of the interaction strength. Attempting

to extrapolate to larger systems, we find a broad regime of parameters where the trend of

suppression of the entropy by interactions reverses for larger system sizes, and the system

tends towards delocalization as the system size is increased. By taking the hopping in the

clean chain very small and the disorder very strong, we obtain a regime where the entropy

remains small for all system sizes accessible to our numerics; however, we cannot answer

in the affirmative whether we obtain a genuine many-body localized phase of both chains,

or rather a regime where the crossover to delocalization takes place at an extraordinarily

large system scale. Turning to the time evolution of the entropy starting from random

initial product states, a strong suppression of the saturation entropy is observed in a

similar parameter regime, providing further support for a many-body localized phase.

Finally, we comment on the intermediate non-ergodic yet delocalized phase observed

in Ref. [123] in a window of many-body energy densities between a localized regime at
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low energies, and a fully ergodic delocalized regime at high energies. Since the crossover

regime in the problem considered here is parametrically very large, reliably observing such

a regime appears very challenging and has not been attempted systematically. However,

we point out that tuning into such a regime as a function of energy is less natural in

the model considered here, since in the single-particle limit localized and delocalized

states coexist at all energies, whereas in the model of Ref. [123] the energy density can

be understood as tuning the relative number of localized and delocalized orbitals in the

non-interacting limit. A more natural parameter to replicate the phase diagram in our

model would thus be the relative filling of the clean and disordered chains. However,

given the small range of system sizes available to us, changing the average inter-particle

distance is likely to incur larger finite-size corrections.
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Chapter 4

Extracting entanglement geometry

from quantum states

4.1 Introduction

Tensor networks have proven to be a powerful and universal tool to describe quantum

states. Originating as variational ansatz states for low-dimensional quantum systems,

they have become a common language between condensed matter and quantum infor-

mation theory. More recently, the realization that some key properties of holographic

dualities [200, 197, 129, 223, 3] are reproduced in certain classes of tensor network

states (TNS) [198, 56] has led to new connections to quantum gravity. In particu-

lar, many questions about holographic dualities appear more tractable in TN mod-

els [164, 21, 141, 155, 15, 137, 45, 77, 228, 102, 163]. The study of the geometry of
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TN states underlies these developments. Here, the physical legs of the network represent

the boundary of some emergent “holographic” space that is occupied by the TN. While in

networks such as matrix-product states (MPS) [57, 221, 151] and projected entangled-pair

states (PEPS) [65, 148, 210] this space just reflects the physical geometry, other networks

– such as the multi-scale entanglement renormalization ansatz (MERA) [213, 214] – can

have non-trivial geometry in this space [56]. We will refer to this geometry as “entangle-

ment geometry”.

In this chapter, we investigate whether this entanglement geometry can be extracted

from a given quantum state without pre-imposing a particular structure on the TN [33].

We first describe a greedy, iterative algorithm that, given a quantum state, finds a 2-

local unitary circuit that transforms this state into an unentangled (product) state (see

Fig. 4.1). Such circuits, composed from unitary operators acting on two sites (which are

not necessarily spatially close to each other), can be viewed as a particular class of TNS

where the tensors are the unitary operators that form the circuit.

We then develop a framework for analyzing the geometry of these circuits. First,

we introduce a locally computable notion of distance between two points in the circuit,

thus inducing a geometry in the bulk. We then focus on a particular property of this

geometry, the length of geodesics (shortest paths through the circuit) between physical

(boundary) sites. A similar quantity has been previously discussed as a diagnostic of

geometry in tensor networks [56], and reveals similar information as the minimal spanning

surface in the celebrated Ryu-Takayanagi (RT) formula for the entanglement entropy in
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AdS/CFT [171, 170]. Crucially, our definition takes into account the strength of each

local tensor, and thus allows us to numerically compute an appropriate length without

imposing additional restrictions on the tensors [155] or a priori knowledge of the emergent

geometry.

Applying these techniques to many-particle quantum states, we observe three regimes:

(i) a flat (zero curvature) two-dimensional geometry, (ii) a hyperbolic two-dimensional

geometry, and (iii) a geometry where the geodesic distance between all points is equal,

which corresponds to zero (fractal) dimension. We first observe these in eigenstates of

non-interacting fermions in a disorder potential. For low-energy eigenstates with weak

disorder, we find a hyperbolic geometry and thus recover key aspects of the AdS/CFT

duality [200, 197, 129, 223, 3]. Going beyond eigenstates, we study a quench from the

localized to the delocalized regime, i.e. the evolution of a localized initial state under a

Hamiltonian with vanishing disorder potential. In this case, the geodesics reveal detailed

information about the deformation of the emergent geometry, which progresses from flat

geometry (i) to zero-dimensional (iii). This process reproduces certain aspects of previous

holographic analyses of quantum quenches [87, 1, 190].

In a complementary approach 4.6, we also examine the nature of emergent light cones

in the unitary network. In the case of critical systems, these are found to exhibit features

of scale invariance. In the cases of localized and thermal states, the light cones reveal

that the entanglement is fully encoded in local and global operators, respectively.
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|0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉

|ψ〉

Figure 4.1: Example of a two-local unitary circuit, where each unitary acts only on the
two qubits that are at its ends. The thick red line indicates a geodesic between the 5th
and 9th qubit (from the left), following a path through the circuit as given by Fig. 4.2.

4.2 Disentangling algorithm

Our algorithm for finding a unitary disentangling circuit is in many ways inspired by the

strong-disorder renormalization group [128, 61]. However, there are two crucial differ-

ences. First, instead of acting on the Hamiltonian, the algorithm acts on a particular

state. Second, rather than on the energetically strongest bond, at each step the algo-

rithm works on the most strongly entangled pair of sites. The algorithm has two desirable

properties. First, it works for a broad class of input states, including states that have

area law and volume law entanglement. This comes at the cost of generating circuits

that cannot in general be contracted in polynomial time. Second, each iteration of the

iterative algorithm is completely determined by the output of the previous iteration; we

thus avoid solving the challenging non-linear optimization problems that are usually en-

countered when optimizing a tensor network. Similar algorithms have been put forward

in Refs. [38, 102].

We take as input a quantum state |ψ〉 on a lattice L. We denote as ρij the reduced
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density matrix on sites i, j ∈ L, ρij = TrL\{i,j} |ψ〉〈ψ|, and as ρi the reduced density

matrix on site i, ρi = TrL\{i} |ψ〉〈ψ|, and S(ρ) = −Tr ρ log ρ. The algorithm proceeds as

follows:

(i) Calculate the mutual information between all pairs of sites, I(i : j) = I(ρij) ≡
S(ρi) +S(ρj)−S(ρij), and find the pair (i, j) with the largest mutual information. If all

I(i : j) are below some predefined threshold ε, terminate. (ii) Find the unitary matrix Ûij
that acts only on sites i and j and maximally reduces the amount of mutual information
between these sites, i.e. solve minÛij I(ÛijρijÛ

†
ij). (iii) Set |ψ〉 ← Ûij|ψ〉, and return to

step 1.

Details of the algorithm, in particular step (ii), can be found in Section 4.7. For an

exact representation of a many-body state in a Hilbert space of dimension dimH, one

iteration of the above algorithm can be carried out with computational cost O(L dimH)

1. For a system of non-interacting fermions, however, the algorithm can be completely

expressed in terms of the correlation matrix Cij = 〈ĉ†i ĉj〉 [215, 156, 157]. Given the initial

correlation matrix, the algorithm can be performed in O(L) operations per iteration,

where L is the number of fermionic modes. In all cases, a single iteration of the algorithm

can be performed as fast or faster than finding the eigenstates. The number of iterations

required to converge to an unentangled state depends heavily on the input state: for

weakly entangled states, convergence is fast, while for states with large entanglement,

such as completely random quantum states, convergence can be very slow. Furthermore,

the algorithm is not straightforwardly applicable to certain specific classes of states (see,

e.g., the perfect tensors of Ref. [155]). We numerically explore convergence for some

1Note that while the first iteration is carried out in O(L2 dimH) time, all subsequent iterations can
be carried out in O(LdimH) time, as only quantities involving the transformed sites i and j must be
recalculated.

96



relevant cases in Section 4.7.4.

The algorithm ultimately constructs a unitary circuit Û = Û
(τ)
iτ jτ

. . . Û
(2)
i2j2
Û

(1)
i1j1

acting

on the initial state |Ψ〉, where Û
(τ)
iτ jτ

is the unitary obtained in the τ ’th step. The number

of execution steps corresponds to the number of unitaries comprising the circuit. The

circuit is 2-local in the sense that each unitary acts on two sites, but it is not local in the

lattice geometry because the two sites i and j may be arbitrarily far apart. Furthermore,

this circuit is not unique: an ambiguity arises since the unitary can always be followed

by a swap of the two sites or a single-site unitary while keeping the mutual information

the same 4.7.

4.3 Emergent geometry of unitary circuits

A powerful way to probe the geometry of the unitary network is to measure the length

of “geodesics”, i.e. the shortest paths connecting two physical sites on the boundary of

the circuit through the bulk of the circuit (see Fig. 4.1). The crucial ingredient for a

numerical analysis of the unitary circuits is an appropriate notion of length for a path

in the circuit which incorporates the strength of each unitary operator. It is obvious

that a careful definition of this quantity is necessary: If, for example, one were simply

to count the number of unitaries traversed in connecting two sites, one would – for a

sufficiently deep circuit – always find a length of 1, since eventually all pairs of sites will

be directly connected by a unitary. However, deep in the circuit the unitaries are very

close to the identity, and therefore do not mediate correlations between the two sites. It
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Figure 4.2: Left panel: Labeling of the input and output indices on a unitary operator.
Right panel: Local graph corresponding to the unitary operator, with weights labeled on
the internal edges.

is also desirable for the definition of length to be invariant under trivial deformations of

the circuit, such as introducing additional swap, identity, or single-qubit gates. Finally,

the distance measure should be computable locally and not rely on any global features

of the graph.

Our definition of length builds on a local connection between geodesic length and

correlations [164]. We construct a weighted, undirected graph as illustrated in Fig. 4.2:

The vertices of the graph are the indices of the unitary operators. Edges connecting

different operators have weight 0, while the internal edges connecting different indices

of the unitary have lengths dab as labeled in the right-hand side of Fig. 4.2. To define

dab, we interpret the unitary as a wavefunction on four qubits and set dab = − log[I(a :

b)/(2 log 2)], where I(a : b) is the mutual information between qubits a and b of the

normalized wavefunction. Unitarity dictates d12 = d34 = ∞: these two lengths are not

included in the graph. Entanglement monogamy [43, 203] implies that if d24 = 0 (d14 = 0),

d13 (d23) must also vanish and d14 (d24) must be infinite. Given this weighted, undirected

graph, the minimal distance between two vertices is computable using standard graph

algorithms.

To develop some intuition for this quantity, consider the length of a path in well-
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known TNS such as MPS/PEPS and MERA [56]. Assuming that each tensor in such

a network has roughly equal strength, we can for now simply take the length to be the

number of tensors that a path between two points traverses. For an MPS or PEPS, the

length of the geodesic is then simply the physical distance between the sites, indicative of

a flat entanglement geometry. In contrast, the length of a geodesic in a MERA scales only

logarithmically with the physical distance, since the path is shorter when moving through

the bulk of the TN [56]; this is a signature of a hyperbolic entanglement geometry.

It is important to contrast the geodesics considered here with the minimal surfaces

in the RT formula for the holographic entanglement entropy. In the standard translation

to TNS, such a minimal surface is given by the minimal number of bonds that need

to be cut in order to completely separate two regions of physical sites. A minimal

surface in this sense can be defined for any TN, and always yields an upper bound to

the entanglement entropy between the two regions 2. While in some cases these minimal

surfaces also take the form of geodesics [155], they are distinct from the geodesics as

defined in this manuscript, which connect pairs of sites rather than separate regions

of sites. The difference is most easily seen in a MPS: while our geodesics are linear

in the physical distance, the minimal separating surface is constant, since at most two

bonds need to be cut to separate the TN. While our definition is more natural in the

context of unitary circuits, they are complementary to each other, and both reveal similar

information when appropriately interpreted.

It is important to recognize that while our distance measure locally is connected to

2This well-known fact is discussed explicitly e.g. in Refs. [211, 56, 44].
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correlations, there is no simple one-to-one correspondence between the behavior of our

geodesics and the behavior of two-point correlation functions. As outlined in Ref. [56],

an intuitive relation is for correlations to decay exponentially with the geodesic length.

This relation is precise for MPS, and also suggests the possibility of power-law decay of

correlations in MERA (although for certain MERA the correlations may decay faster).

However, the connection breaks down in the case of a PEPS: while the length of a geodesic

is always at least the physical (Manhattan) distance, it is possible to find PEPS whose

correlations decay as a power law [211]. Finally, the intricate behavior in a quantum

quench discussed below is largely invisible to two-point correlations.

4.4 Models

We first study the properties of the disentangling circuits in a model of non-interacting

spinless fermions in one dimension moving in a disorder potential. We discuss further

examples in Section 4.6. The random-potential model is given by

Ĥ = −t
∑
i

(
ĉ†i ĉi+1 + ĉ†i+1ĉi

)
+
∑
i

wiĉ
†
i ĉi, (4.1)

where ĉ†i creates a spinless fermion on the i’th site of a chain of length L. Throughout

this chapter, we work with periodic boundary conditions, set t = 1 as an overall energy

scale, and focus on Slater determinants at half filling. The random on-site potential

is chosen from a uniform distribution of width W , wi ∈ [−W/2,W/2]. For vanishing

disorder W → 0, this system is critical and the long-wavelength limit of the ground state

is described by a free-boson conformal field theory with central charge c = 1. For any
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Figure 4.3: Geodesic length of the L = 500 Anderson disorder model for different values
of the disorder strength W , with 200 realizations each. While the physical distance is
given in lattice spacings, the geodesic length is in arbitrary units. The inset shows the
same data for W = 6.0, 8.0, 10.0 on a linear scale to highlight the linear dependence
dg ∼ dp.

finite strength of the disorder potential, the fermions localize [10]. However, for very

small W � 1, the localization length ξloc is large compared to the system sizes we study,

allowing us to break translational invariance without significantly affecting physically

observable properties.

4.5 Numerical Results

Our numerical findings for the scaling with the physical distance of geodesics in ground

states of (4.1) are shown in Fig. 4.3 for different disorder strengths. Consider first the

case of very large disorder strength, and thus short localization length. The geodesic

length initially grows as dg ∼ log dp with the physical distance dp (see in particular the

inset of Fig. 4.3), and then crosses over to a linear dependence dg ∼ dp, indicated by
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Figure 4.4: Quench from the ground state of the Anderson disorder model with with
L = 200 sites and W = 8 to the clean case W = 0. Left panel: Geodesic length dg as
a function of physical distance dp. Right panel: entanglement entropy of a contiguous
region of ` sites. Individual lines represent snapshots of the system at times equally
spaced between T = 0 to T = 25.25 averaged over 200 disorder realizations. The curves
in the left panel have been offset by −15 · T . Increasing copper/decreasing blackness
indicates times further in the quench.

the sharp kink in Fig. 4.3. This behavior at large physical distance is characteristic of

the flat entanglement geometry expected in a localized state. As the disorder strength

decreases, the crossover shifts to larger and larger distances, indicating that the crossover

length corresponds to the localization length. For very weak disorder potential (such as

W = 0.1, where the localization length exceeds the system size), the region of logarithmic

dependence spans the entire system. This is the hallmark feature of hyperbolic entan-

glement geometry and establishes a connection to other holographic mappings, such as

the AdS/CFT correspondence.
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Going beyond eigenstates, we now consider a quench where the system is initialized

in the ground state of (4.1) with finite disorder (W = 8 in the examples chosen here),

and is subsequently evolved under the translationally-invariant Hamiltonian (W = 0).

This is similar to quenching the mass gap from a finite value to zero. We evolve up to

time T = 100, performing the disentangling algorithm to obtain dg(dp) at various times

during the quench. Our results are shown in the left panel of Fig. 4.4, while the right

panel shows the growth of bipartite entropy of a block of ` sites, and thus the crossover

from area-law to volume-law entanglement entropy scaling. Note that here, in contrast

to Fig. 4.3, the horizontal axis scales linearly.

Initially, the system exhibits the expected dg ∼ dp scaling of a localized system.

The dominant effect at early times is a fast reduction in the scaling coefficient. However,

careful examination at early times already reveals a drastic change in the scaling behavior

at short distances, where dg, instead of growing linearly with dp, becomes nearly constant

(or even decreases slightly). There is a sharp kink associated with the crossover from

this to the linear behavior, which moves out to larger and larger distances with time,

and finally reaches the maximal distance dp = L/2. Comparison with the right panel of

Fig. 4.4 shows that the location of the kink corresponds to the crossover from area-law to

volume-law scaling of the bipartite entanglement entropy. Once the system has reached

a long-time state with volume-law entanglement entropy, dg shows some dp-dependence

only for short distances, and is flat otherwise.

In terms of the emergent entanglement geometry, the interpretation of these findings is
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as follows: the global quench excites a homogeneous and finite density of local excitations,

which ballistically spread and entangle with each other. Both the kink and the area- to

volume-law crossover follow the spread of this wavefront. For distances beyond this

(time-dependent) scale, the circuit is not qualitatively affected; however, a quantitative

change in the coefficient dg/dp occurs. Similar to the coefficient of an area law, this

quantity is easily changed by a local finite-depth unitary. Within the characteristic length

scale, on the other hand, the nature of the circuit is qualitatively changed from a short-

ranged circuit encoding an area law state to a very long-ranged circuit, with unitaries

connecting the current location of an excitation to its origin, and thus encoding volume-

law entanglement. In the final state, this long-ranged circuit dominates the geodesic,

with only the short-distance behavior which originates from the boundary of the circuit

exhibiting some locality. This bears resemblance to the final state in other holographic

theories of quantum quenches [87, 1], with the non-local part of the circuit playing the

role of a black hole. The relation of our results for intermediate times to the model put

forward in these references is an open question left for future work. We also note that

some details of the emergent geometry, including in particular oscillations observed at

times longer than the initial spreading of entanglement shown in Fig. 4.4, may be due to

integrability of the model.
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4.6 Light Cone Growth

In a complementary analysis to the geodesics discussed in Section 4.5, we can also charac-

terize the emergent geometry of unitary networks through the growth of light cones. To

define the light cone, we interpret the unitary circuit as creating the physical state from

an initial product state (i.e., the reverse direction of how it is obtained in the algorithm)

and track the effect of changing one of the unitary operators. For an illustration of the

light cone in a unitary circuit representing a MERA state, see Fig. 4.5. It is important

to note that a notion of causality is crucial for the definition of a light cone. In the disen-

tangling circuits, this is ensured through the unitarity of each operator. This is a crucial

difference to distance discussed in Section 4.3, which could in principle be generalized to

non-unitary networks.

We define the width of the light cone emanating from a particular unitary operator

as the number of physical sites whose state is affected by changing this unitary operator.

Quantifying the depth of the light cone, however, is more subtle. In many ansatz states,

such as a scale-invariant MERA, each layer is the same and one can thus simply count the

number of layers. However, the operators in the disentangling circuits are all different,

and furthermore become closer to the identity as the disentangling procedure progresses

and the state approaches a product state. To measure the depth in the circuit, we employ

the entangling power P (Û); recall (from the main text) that P (Û) is a measure related

to the amount of bipartite entanglement a unitary can create in a multipartite state. We
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|ψ〉

Figure 4.5: Two-local unitary network with the structure of a MERA state [213], il-
lustrating the light cone of a bulk operator. To make the structure of the light cone
more transparent, the network is interpreted as acting on a product state |0〉⊗L (at the
upper end), which is evolved into the physical state |ψ〉. Each tensor acts only on its
ends (thicker lines). The red tensors correspond to disentanglers with two input and two
output qubits, while the blue tensors are isometries that take a qubit of an entangled
state (thick line) and a previously unentangled qubit (thin line) and entangles them.
The circuit’s structure defines a light cone emanating from each unitary in the circuit.
Modification of the unitary at the top of the yellow-shaded region will only affect the
circuit evolution and physical sites in the region; thus, the yellow region represents a
light cone.

here use the accumulated entangling power of the steps τ up to some step t,

P(t) =
∑
τ<t

P (Û(τ)), (4.2)

where P (Û(τ)) is the entangling power of the unitary obtained in the τ ’th iteration of the

algorithm, to measure the depth into the circuit. We have also explored other measures

for the depth, such as the total correlations [140, 139] (see definition below), the average

bipartite entropy, and the average mutual information between pairs of sites. For all

these quantities, qualitatively similar results are obtained. We restrict our discussion to

P since it has an interpretation purely in terms of the circuit without having to refer to

the initial state that the disentangling circuit is applied to.

In a MERA, the width of the light cone grows as w ∼ bn, where b is the number of
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incoming legs on an isometry of the MERA, and n is the number of layers (see Fig. 4.5).

Since the unitaries of a scale-invariant MERA are the same in each layer, the accumu-

lated entangling power is P ∼ n, and thus log(w) ∼ P . This reflects the fact that

the entanglement of a critical system can be understood as a sum of equal contribu-

tions from each length scale [213]. Indeed, since the light cone in a MERA grows as bn,

and the entropy of a region of size l in a critical state follows c
3

log l [192, 32, 83, 215],

we have that the entropy of a reduced density matrix in a MERA after n layers is

S (ρ̂(n)) ∼ c
3

log(bn) = nc
3

log(b) and thus S (ρ̂(n+ 1)) − S (ρ̂(n)) = c
3

log(b). Each layer

of the MERA captures the amount of entanglement encoded at a length scale bn and

makes a constant contribution proportional to the central charge of the system.

Below, we present numerical results for light cone growth as each step of a disen-

tangling unitary circuit is applied. In addition to the Anderson model, we also analyze

two further examples: an analogue of a random singlet phase in a chain of free fermions,

as well as the André-Aubry model of electrons in a quasi-disordered potential, which

exhibits a delocalized phase even when translational symmetry is broken.

4.6.1 Anderson Model

Our numerical results for light cone growth in the Anderson model (4.1) are summarized

in Fig. 4.6. In the top panel, we show results for different strengths of the disorder

potential. For W = 0.1, the localization length exceeds the system size and the expected

scaling behavior for a critical system is observed: after an initial regime where the light
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Figure 4.6: Width of the light cone w(t). Here, t represents the number of steps into
the disentangling circuit. Top panel: Ground states of the Anderson model for L = 500,
for 200 disorder realizations. Bottom panel: Ground states in the random-singlet phase
for L = 700, for 250 disorder realization.
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cone width remains at w = 2, which can be attributed to short-range non-universal

physics that is encoded in local correlations, there is a broad regime with the expected

scaling of log(w) ∼ P . This regime continues until w saturates to its maximum value.

As the disorder strength in the Anderson model is increased and the localization length

becomes comparable to the system size, we find that the initial plateau becomes much

shorter and the width of the light cone increases very rapidly. This is consistent with

the state having a limited amount of short-range entanglement and almost no long-range

entanglement. For very strong disorder, the final steps of the circuit exhibit a very rapid

growth of w(t) with P(t). This is due to the fact that while almost all correlations are

very local in these states, there is a very small amount of long-range correlations which is

addressed by the last iterations of the algorithm and leads to large w(t); however, since

these correlations are very weak, the unitary operators that remove them are very close

to the identity and thus contribute only very little to P(t). Therefore, the growth of w(t)

appears very steep in the final steps of the disentangling algorithm.

4.6.2 Random Singlet Phase

The Hamiltonian for the “random singlet phase” is given by

Ĥ = −
∑
i

Ji

(
ĉ†i ĉi+1 + ĉ†i+1ĉi

)
, (4.3)

which we study at half filling. For Ji = J = 1, this model coincides with (4.1) for

W = 0. However, upon introducing disorder by choosing the Ji randomly and identically

distributed, the system flows to a strongly disordered fixed point known as the random
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singlet phase [61]. At the random-singlet fixed point, the low-energy states take the form

of a product of maximally entangled pairs, i.e. for every i there exists another site j such

that I(i : j) = 2 log 2 is maximal, while I(i : k) = 0 for all k 6= j. Despite being very

different from the ground states in the clean chain, the entanglement scaling is similar

to critical systems with an effective central charge c̃ = log 2 [165].

To obtain the universal behavior of this fixed point in small systems, it is convenient

to choose the couplings Ji from the fixed-point distribution,

P (J,Ω) =
α

Ω

(
Ω

J

)1−α
Θ(Ω− J) (4.4)

where α = −1/ log Ω. The exponent of the distribution is controlled by Ω: for Ω =

e−1 ≈ 0.368, the exponent is 0 and the distribution is a box distribution of width Ω; for

Ω → 0, the exponent becomes larger and larger. The random-singlet behavior is more

pronounced at short scales (high energies) for smaller Ω.

The drastic difference between the structure of the random-singlet states in the lower

panel of Fig. 4.6 and the eigenstates of the Anderson model with small W in the upper

panel of Fig. 4.6 is very apparent in the growth of the light cones. The width of the

light cone remains at w = 2 for most of the circuit, since most of the entanglement is

encoded in two-local (long-ranged) operators. The deviations from this – that is, the

point where the light cone grows to w > 2 – occur at later times as Ω is reduced, i.e. the

system is brought closer to the ideal random-singlet fixed point. As shown in Sec. 4.7.4,

the disentangling algorithm also converges drastically faster in the random-singlet phase.

Similar to the Anderson model for strong disorder, the growth of w(t) is very rapid in
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Figure 4.7: Light cone growth for the André-Aubry model at λ = 0.1. Top panel:
Ground states. Bottom panel: Excited states. Note the different scales for the axes in
the two plots.

the final stages of the algorithm.

4.6.3 André-Aubry model

As a final example, we consider the André-Aubry model [12] given by

ĤAA = −
∑
i

(
ĉ†i ĉi+1 + ĉ†i+1ci

)
+
∑
i

λ cos(2πqi+ φ)n̂i,

(4.5)
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where ĉ†i creates a spinless fermion on the i’th site of a 1d lattice, n̂i = ĉ†i ĉi, and we

choose q = (
√

5 + 1)/2. The model is in a delocalized regime characterized by extended

wavefunctions for λ < 2, while at λ = 2, the entire spectrum undergoes a localization

transition into an Anderson insulator for λ > 2. Upon adding interactions, the system

is known to undergo a many-body localization transition [92]. The fact that extended

single-particle wavefunctions can persist even when translational invariance is locally

broken by the external potential allows us to at the same time study large systems and

obtain smooth results by averaging over different choices of φ.

In Fig. 4.7, we show the growth of light cones in these two cases for a system at half

filling. In the case of ground states for small λ, the system exhibits the expected critical

scaling w(t) ∼ exp(P(t)) over almost three order of magnitudes in the largest system. In

the case of excited states, on the other hand, the width of the light cones diverges very

rapidly and saturates to the system size. This indicates that the entanglement is mostly

encoded globally in the state.

4.7 Details of the disentangling algorithm

4.7.1 Ambiguity of local unitaries

As discussed in the main manuscript, an ambiguity arises since the unitary can always

be followed by a swap of the two sites or a single-site unitary while keeping the mutual

information the same. In order to partially lift this ambiguity, we choose the unitary to
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minimize the entangling power P (Û). To define the entangling power of a two-site unitary

Ûij, consider its decomposition Ûij =
∑
α

√
λαX̂

α
i ⊗ Ŷ α

j , where X̂α
i and Ŷ α

i are unitary

operators acting on sites i and j, respectively, and Tr
(
X̂α
i X̂

β
i

)
= Tr

(
Ŷ α
j Ŷ

β
j

)
= δαβ.

We then define P (Û) = −
∑
α

λα log(λα). This quantity is closely related to the amount

of entanglement the unitary can create between two systems, given additional ancilla

systems (assisted entangling power, see e.g. Refs. [233, 219]).

4.7.2 Optimization of the two-site disentangling unitary

We now describe our strategy for quickly finding a two-site unitary U that maximally

reduces the mutual information between two qubits i and j, I(i : j) = Si+Sj−Sij. Since

the overall contribution Sij must remain unchanged under unitary transformations, we

only need to minimize Si + Sj.

We can write a general unitary rotation on the two-qubit reduced density matrix in

the form

Û = |00〉〈0|+ |01〉〈1|+ |10〉〈2|+ |11〉〈3|, (4.6)

where |a〉 = {|0〉 , . . . , |3〉} is an orthonormal basis for C4, 〈a|b〉 = δab. Since we can apply

a unitary to each qubit without affecting the entanglement properties, we can assume

w.l.o.g. that U is chosen such that the reduced density matrices for the two qubits are

diagonal,
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ρi = Trj

(
ÛρÛ †

)
=

(
pi 0
0 1− pi

)
(4.7)

ρj = Tri

(
ÛρÛ †

)
=

(
pj 0
0 1− pj

)
, (4.8)

where

pi = Tr [ρ(|0〉〈0|+ |1〉〈1|)] (4.9)

pj = Tr [ρ(|0〉〈0|+ |2〉〈2|)] . (4.10)

The quantity we want to minimize is then

Sa + Sb = Hb(pi) +Hb(pj), (4.11)

where Hb(p) = −p log p− (1− p) log(1− p) is the binary entropy.

The strategy we pursue is to choose |a〉 to be the eigenvectors of ρ, in order of

descending eigenvalue. If the eigenvalues of ρ are λα, λα ≥ λα+1, then pi = λ0 + λ1, and

pj = λ0 + λ2. This clearly minimizes Si, as well as minimizing Sj under the constraint

of keeping Si minimal. While we do not provide a proof that this is the global optimum,

further analytical calculation can show that this is a local minimum, and numerical tests

have always shown this to be a global minimum.

4.7.3 Disentangling algorithm for free fermions

In the case of non-interacting fermions, the entanglement properties of the system are

encoded entirely in the correlation matrix (equal-time Green’s function)

Ckl = 〈ĉ†kĉl〉, (4.12)
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where ĉ†k creates a fermion on the k’th site of the lattice. Given a free-fermion Hamilto-

nian

Ĥ =
∑
k,l

hklĉ
†
kĉl =

∑
α

εαd̂
†
αd̂α, (4.13)

where εα are the single-particle energies and d̂†α =
∑
i

wαiĉ
†
i creates a fermion in the α’th

eigenstate,

Ckl =
∑
α∈F

wαkw
∗
αl, (4.14)

where F is the set of filled orbitals.

The entanglement of a group of sites A is obtained by restricting Ckl to the sites in

A, CA
kl = Ckl for k, l ∈ A, computing the eigenvalues λα of CA, and then computing

SA =
∑
α

Hb(λα) [215, 156, 157], where Hb is again the binary entropy. In particular, for

a single site the entropy is simply Si = Hb(Cii).

The mutual information between two sites I(i : j) in a free-fermion state is therefore

completely encoded in the 2× 2 submatrix of the correlation matrix C{ij}. Furthermore,

if C{ij} is diagonal, the mutual information vanishes. To maximally reduce the mutual

information, we therefore find the orthogonal rotation R(θ) of the fermion operators that

diagonalizes C{ij}.

On the many-body operators, this transformation acts according to

ĉ†i 7→ R(θ)11ĉ
†
i +R(θ)21ĉ

†
j (4.15)

ĉ†j 7→ R(θ)12ĉ
†
i +R(θ)22ĉ

†
j (4.16)

ĉ†i ĉ
†
j 7→ det (R(θ)) ĉ†i ĉ

†
j. (4.17)
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This can be succinctly summarized in the block-diagonal matrix

U =


1 0 0 0
0 0
0

R(θ)
0

0 0 0 det (R(θ))

 , (4.18)

where care must be taken to correctly implement fermionic anti-commutation rules when

applying the off-diagonal elements.

It is interesting to note that for free fermions, the mutual information between two

sites can always be reduced to zero. While many other entanglement properties of the

free-fermion chain are similar to those of weakly interacting fermions in the same phase

(for example, the CFT description and thus the universal terms in the entanglement

entropy are the same), this is a strong indication of the simpler entanglement structure

in non-interacting systems.

4.7.4 Convergence

To characterize the convergence of the unitary circuit towards a product state, we mea-

sure the distance from a product state [209]. For an easily computable measure of this

distance, we rely on the “total correlation” [140, 139], which for a state ρ̂ is given by

T (ρ̂) =
∑
i

S(ρ̂i)− S(ρ̂), (4.19)

where ρ̂i are the reduced density matrices for sites i, and S(ρ̂) = −Tr ρ̂ log ρ̂. The total

correlations have the property that T (ρ̂) = minπ̂ S(ρ̂||π̂), where S(ρ̂||σ̂) = −Tr(ρ̂ log σ̂)−

S(ρ̂) is the relative entropy, which obeys S(ρ̂||σ̂) ≥ |σ̂ − ρ̂|21/2, where | · |1 is the trace

norm, and π̂ = π̂1 ⊗ π̂2 ⊗ . . . ⊗ π̂L is the closest product state (in relative entropy) to
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Figure 4.8: Convergence of the disentangling algorithm. Here, T denotes the total cor-
relation as given in (4.19), and t represents the number of steps into the disentangling
circuit. Left panel: Ground states of the Anderson model (4.1). For W = 0.1, the local-
ization length exceeds the system size and the system is effectively critical on the length
scales considered here, while for W = 4 the localization length is smaller than the system
size and the effects of localization can be observed. Averaging has been performed over
100 disorder realizations. Right panel: Ground states in the random-singlet phase for
L = 700, averaged over 250 realizations.

ρ̂. Since we are working over pure states, S(ρ̂) = 0 and T (ρ̂) is easily computed, since

we need to compute the S(ρ̂i) in the course of the disentangling algorithm. It is worth

noting that for pure states ρ̂ and σ̂, |ρ̂− σ̂|1 =
√

1− |〈ρ̂|σ̂〉|2.

In Fig. 4.8, we show the convergence of T (t)/L (where T (t) denotes the total correla-

tion of the state after t iterations of the disentangling algorithm) for ground states of the

Anderson model as well as the random-singlet model. We consider two disorder strengths

for the Anderson model: one which leads to a localization length ξloc that exceeds the

system size, while the other leads to a localization length ξloc short enough that local-

ization can be observed for accessible system sizes (L up to 500 sites). In the strongly

localized regime, we find very fast convergence that is almost independent of system size.

This is expected since localized states obey an area law and are known to be generated
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by finite-depth local unitaries [19]. In the weakly localized regime, convergence is slower

and depends much more on the system size. This is expected since these states violate

the area law with a logarithmic correction up to the relevant length scales.

For the random-singlet phase (not shown), we find very rapid convergence to a prod-

uct state, even though the bipartite entanglement of the initial state is comparable to

that of a critical system. This can be explained by the very simple structure of these

quantum states, whose entanglement is almost all contained in simple two-site correla-

tions. Convergence is faster for smaller Ω, where the finite-size states are closer to the

random-singlet fixed point.

4.8 Outlook

While we have so far applied our methods to systems where a holographic descrip-

tion is already known, the fact that we did not make use of any a priori knowledge

of these systems makes our methods ideally suited to systems with no known holo-

graphic description. Most prominently, this includes the many-body localization transi-

tion [18, 149, 152, 16, 19, 127], which is known to be characterized through entanglement

properties [19] while the details of the transition remain controversial [69, 103, 231].
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Chapter 5

Quantum Quenches and

Entanglement Geometry

5.1 Introduction

In Chapter 4 we developed an algorithm to disentangle generic quantum wavefunctions

to product states, generating a tensor network description of the wavefunction which can

be analyzed to determine its entanglement structure and which can reproduce aspects of

the AdS/CFT holographic duality.

A rich body of literature exists related to using AdS/CFT to predict how quantum

quenches applied to the CFT side are expressed on the AdS bulk dual [87, 1, 190] through

the mapping dictionary and, conversely, how perturbations in the gravity theory can be

observed in the surface properties [23, 189, 143, 5] of the CFT. Inspired by this line of
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inquiry, we wish to extend the established results of the previous Chapter to develop

better understanding of the interplay of quenching and disorder. In previous work, we

focused on the Anderson model (reproduced below) at one disorder strength, W = 8, at

a single system size:

Ĥ = −t
∑
i

(
ĉ†i ĉi+1 + ĉ†i+1ĉi

)
+
∑
i

wiĉ
†
i ĉi, (5.1)

where ĉ†i creates a spinless fermion on the i’th site of a chain of length L. wi is drawn

from a uniform distribution between [−W/2,W/2]. Throughout this Chapter, we work

with periodic boundary conditions, set t = 1 as an overall energy scale, and focus on

Slater determinants at half filling.

We perform the same instantaneous quenching procedure as in Chapter 4:

1. Prepare the system in the groundstate of the disordered Anderson model (5.1).

2. Time evolve the system from t = 0 → t = tf using the W = 0 Anderson Hamilto-

nian.

Because the model we consider is non-interacting, we are again able to exploit the

fact that the algorithm can be used on the matrix of two-point correlation functions (see

Sec. 4.2). This allows us to calculate the equal time Green’s functions at various dis-

tances and times throughout the quench easily and to relatively quickly find disentangling

circuits for all the disorder strengths and system sizes we consider.

We find that the disorder strength sets an effective energy density, reflected through-

out the quench. When the quench occurs and the disorder vanishes, excitations are

free to move through the system and the number of these excitations increases with the
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pre-quench disorder strength. This leads to interesting behavior which reveals itself in

a variety of observables. First, in Sec. 5.2 we examine the behavior of the equal time

Green’s function. We find that for a localized initial state it increases monotonically

outward as the wavefront of excitations spreads, finally reaching a “flat” steady-state

late in the quench. The geodesics and entanglement entropy, discussed in more detail in

Sec. 5.3, display two regimes: an initial rapid change – increasing to a volume law for

the entanglement entropy, decreasing geodesic length – which stabilizes into a long-time

regime of slowly decaying oscillations. The oscillation amplitude is set by this effective

energy density from the disorder strength. The oscillation period is controlled by system

size L.

5.2 Equal Time Green’s Functions

The real space equal time Green’s function at time t is given by:

G(r, t) =
L∑
i=1

〈
ĉ†i (t)ĉi+r(t)

〉
(5.2)

In Fig 5.1 we examine the behavior of G over all pairs of sites separated by distance

r, up to distance L/2 (since we use periodic boundary conditions) for a variety of quench

times. The W = 2 plots begin in the regime of the Anderson model where the localization

length ξloc is longer than the system size L, which explains the higher correlations at

longer distances early in the quench (darker). Initially, as expected, the equal time
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Green’s function decays exponentially with distance, capturing the exponential decay

of correlations in the regime where ξloc > L. During the quench (as the line coloring

lightens) the system crosses over to a volume law, and as this occurs sites further and

further apart become more and more correlated, until the late-time behavior where the

equal time Green’s function is saturated and flat for almost all site separation distances

and does not oscillate. This is in contrast to the entanglement entropy S(L/2, t), which

does oscillate even at late times in the quench.

5.3 Geodesic Rescaling

As the quench proceeds we observe two distinct regimes for the geodesic distance dg(dp, t):

• Very fast initial drop of geodesic distance early in the quench

• Very slowly decaying oscillatory behavior

Fig. 5.3 shows the length of the longest geodesic (averaged over all pairs of sites

distance L/2 apart) as a function of quench time t for various disorder strengths W

at fixed L = 250 and Fig. 5.2 similarly for system sizes L for fixed disorder strength

W = 7.0. Note that the time has been rescaled by system size L in Fig. 5.2, showing

that the periodicity in region (2) is controlled by the system size.

In Fig. 5.3 and Fig. 5.2, the geodesic for the longest accessible physical site separation

distance dp (L/2 due to periodic boundary conditions) is shown, along with the maximum

entangling power P (τ) (see Eq. (4.2)) reached by the longest geodesic at that quench time,
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Figure 5.1: Equal time Green’s function (top) in Eq. (5.2) and shifted bipartite entangle-
ment entropy maxt (S(L/2, t))−S(L/2, t) (bottom) for L = 250, W = 2 (left) and W = 7
(right). At early times in the quench (darker) the exponential decay of correlations is
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and the bipartite entanglement entropy S(L/2, t) at the beginning of the disentangling

procedure. From these data it is clear that the periodicity of the entanglement entropy

and the corresponding geodesics are linked, and that both reach their “long time” (region

(2)) behavior together as the system arrives at volume law entanglement scaling.

Once the geodesics have stabilized into region (2) they have an interesting oscillatory

pattern which has slowly decaying amplitude. This oscillatory behavior is also present

in the bipartite entanglement entropy S(L/2, t), but interestingly does not seem to be

present in the equal time Green’s function shown in Fig. 5.1. One might be concerned

that this is an artifact of the choice to examine these long-range separation distances for

dg and large cuts for S. Fig. 5.4 shows that the relationship persists for a much smaller

dp = L/10.

The system achieves the volume law bipartite entanglement entropy at the same

quench time as the geodesics reach the region of very slowly decaying oscillations, and

the minima in geodesic length correspond to maxima in bipartite entanglement entropy

through time - the two have the same period. This period is independent of disorder

strength W and is controlled entirely by the system size L, as can be seen in Fig. 5.2.

The disorder strength W does control the amplitude of the oscillation, as seen in Fig. 5.3

and Fig. 5.4, with stronger disorder leading to larger amplitudes. This is as expected in

our interpretation of larger disorder strength as creating more excitations which are then

able to move through the system (leading to higher entropy) after the quench occurs.

Later in the quench the peaks of both geodesic length (for fixed dp) and S(dp, t)
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Scaling W = 3 W = 4 W = 5 W = 7
Exponential 1.057× 10−6 9.623× 10−5 3.418× 10−5 1.453× 10−4

Polynomial 6.122× 10−5 1.055× 10−8 1.324× 10−5 1.250× 10−5

Table 5.1: Residuals of the linear regression for L = 250 half-system geodesics.

Scaling W = 2 W = 7
Exponential 0.36814 0.477891
Polynomial 0.0894624 0.0790413

Table 5.2: Residuals of the linear regression for L = 50 half-system entanglement entropy.

slowly decay in amplitude. To understand how this occurs in Fig. 5.5 we show a series

of semi-log and log-log plots of the half-system separation distance dp = L/2 geodesic

lengths dg(dp = L/2, t) for fixed L and various disorder strengths W on either side of

the crossover between the system size L being smaller than localization length ξloc and

L being the larger of the two at W ≈ 4. We compute a linear regression of peak maxima

against quench time in both cases, computing residual errors to determine which fit best

represents the peak decay. The residuals are presented in Table 5.1.

Since determining the entanglement entropy is much less computationally intensive

than both quenching and subsequently generating disentagling circuits from which to

extract geodesic information and the two measures track each other, we also perform a

long time quench and infer the behavior of the geodesics from the entanglement entropy.

In Fig. 5.6 a similar analysis to the one in Fig. 5.5 is performed, and with more input to

the regression the polynomial fit matches best. The residuals in these fits are presented

in Table 5.2.

The slope of the line in this log-log fit is approximately −1, indicating that the peaks
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the fit. The blue line drawn represents the result of the linear regression. All data are
for L = 250.

seem to decay linearly in quench time. In this plot we subtract the entropy at each

quench time (not disentangling time τ) from the maximum entanglement entropy for

that physical distance (dp = L/2) over all quench times. This accounts for the effective

energy density difference introduced by different disorder strengths.

As in Fig. 5.4 it is interesting to see how the geodesics oscillate in time over the range

of possible physical distances. In Fig. 5.7, the geodesic distances dg(dp, t) are shown

for all physical separation distances dp > 10 (shorter distances have very small geodesic
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lengths) after the oscillatory behavior has begun, t >∼ 23 for L = 250. For times before

this, the system is still in regime (1), working towards the volume law, and the geodesics

in this regime are much longer, washing out interesting features in regime (2). From this

we can observe that the feature of geodesic maximization/minimization oscillates across

the system through time.

5.4 Correlation Reconstruction

Another question of interest is how much information, especially local information, por-

tions of the disentangling circuit are able to capture and represent? The total circuit

must be able to represent all the information in the original physical state, since it can

be run in reverse to regenerate that state from the totally disentangled product state.

This circuit may be extremely long, especially for highly-entangled states such as volume

law states. If it is possible to truncate the circuit and still retain an accurate recipe (in

the form of the shorter circuit) for generating a state with good overlap with the origi-

nal, this would be valuable from a state preparation perspective. A shorter circuit which

retains essential information about the state is also more computationally tractable on

a classical computer. It is also interesting to determine whether local correlations are

removed first or whether correlators at all distances are reproduced equivalently quickly

in disentangling time.

We examine reconstructions of the previously discussed quenched wavefunctions.

Again, since these are all free fermion models, we are able to represent the wavefunction
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Figure 5.7: Heatmap of the geodesic lengths dg(dp, t) (color) as a function of physical
distance dp (y axis) and quench time t (x axis).
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τ = 1
τ = 2
τ = 3
τ = 4
τ = 5
τ = 6
τ = 7
τ = 8
τ = 9
τ = 10

|0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉

|ψ (τ = 4)〉

|ψp〉

|0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉

|0〉 |0〉 |0〉 |0〉|1〉 |1〉 |1〉 |1〉 |1〉

|φp〉

|φ (τ = 4)〉

Figure 5.8: The process of rebuilding the wavefunction for step τ = 4. The first 4 gates
are applied to the starting wavefunction |ψ〉 (left), which is then clamped to a product
state and run in reverse to generate |ψ′〉 (right). If the entire circuit were included,
|ψ′〉 = |ψ〉. If fewer gates are included, the difference between the correlations of |ψ′〉 and
|ψ〉 can be compared using the previously defined measures Eq. (5.4) and Eq. (5.4).

as its two-point correlation matrix, which makes running the disentangling circuit in re-

verse feasible. Our procedure for reconstruction at a given disentangling step τ (the τ -th

gate in the circuit) is:

1. Apply the first τ gates to the beginning physical state |ψp〉, giving |ψ(τ)〉 =∏τ
j=1 Ûj |ψp〉, and partially disentangling |ψp〉.

2. Project |ψ(τ)〉 (in the form of its correlation matrix) so that it forms a product

state |φ(τ)〉 = ⊗Li=1 |χi〉.

3. Run the first τ gates in reverse, re-entangling |φ(τ)〉 to |φp〉 =
[∏τ

j=1 Ûj

]
|φ(τ)〉 =

Û †1 ⊗ Û
†
2 ⊗ . . .⊗ Û

†
τ−1 ⊗ Û †τ |φ(τ)〉.

4. Measure the agreement in correlators between the original physical state |ψp〉 and

the reconstructed state |φp〉.

A schematic of this procedure is presented in Fig. 5.8.
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There are many possible choices of “metric” of agreement or difference between the

reconstructed state and the physical state. For a given distance, we choose to compute

the root mean square (RMS) difference defined in Eq. (5.4):

A(r, t, τ) =
〈
Cψ(t)(r)− Cφ(τ)(r)

〉
=

√√√√ L∑
i=1

[(
Ci,i+r
ψ(t)

)∗
− Ci,i+r

φ(τ)

]2

(5.3)

We can view A(r, t, τ) as a measure of “absolute” difference. However, it does not take

into account the fact that at large r, Ci,i+r will be smaller than at small r. In fact, it may

be exponentially smaller. This may mask disagreement in the reconstruction. Therefore

we also consider a relative measure, dividing the difference by its value at the start of

the circuit (since |φ(0)〉 = |ψ〉, because no gates have yet been applied) to give:

R(r, t, τ) =
1

A(r, t, 0)

〈
Cψ(t)(r)− Cφ(τ)(r)

〉
(5.4)

We apply the reconstruction procedure throughout the quench time t for disorder

strengths W = 2, 3, 7, 8. Since performing reconstruction is extremely time-intensive we

only do so for L = 50, L = 100, and L = 150. For larger τ (more of the circuit included),

the difference should decrease towards 0 for the two metrics.

Since the number of gates varies between disorder realizations, we consider a binned

average of scaled entangling power PS. The scaled entangling power at a gate is the

accumulated entangling power up to that gate, working “inwards” from the physical

state, divided by the total entangling power of the circuit. The total entangling power

of the circuit is the same as the accumulated entangling power at the last gate before
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|0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉 |0〉

|ψ〉

P(τ = 6) = 3.33

P(τ = 5) = 3.24

P(τ = 4) = 3.15

P(τ = 3) = 2.95

P(τ = 2) = 2.73

P(τ = 1) = 1.66

Figure 5.9: Example of a two-local disentangling unitary circuit. The thick red line
indicates a geodesic between the 5th and 9th qubit (from the left). At each step, on the
right we show the accumulated total entangling power. As in a real disentangling circuit,
most of the correlations are removed early on.

the completely disentangled product state. We compute 20 bins between 0 and 1 for

the entangling power, where the value corresponding to 1 occurs at the last (deepest)

gate. This allows us to compare like-to-like in the difference metrics, since some circuits

may have a long series of “ineffective” disentangling gates which each contribute little

entangling power, and other circuits many have fewer gates but each of these has much

stronger entangling power. To compute maximum scaled entangling power along a path

through the circuit, we compute the total entangling power reached at each gate touched

by the path and compute the maximum of these, then divide this value by the total

entangling power of the entire circuit. As an example, consider Fig. 5.9. The maximum

scaled entangling power of the geodesic shown there in red would be 2.95/3.33 = 0.8858.

The relative difference data presented in Fig. 5.10 and Fig. 5.11 do not seem espe-

cially amenable to simple interpretation. We can confirm that this rescaling allows the

difference at all length scales to be compared on the same footing. For the strong disorder

case at short times in the quench, we see that the agreement is very bad for intermediate
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Figure 5.10: Relative difference R(r, t,PS) for a variety of quench times t and physical site
separation distances r. The color indicates the quench time – darker is earlier (with black
indicating the initial state before the quench) and lighter and browner is later. Note that
before the quench begins (darker), the entire circuit must be included. These data include
reconstructions for all τ (and therefore PS), not only the gates before the maximum
geodesic penetration. For this reason, eventually all physical separation distances agree
at all quench times. For short distances (leftmost columns) at all disorder strengths
W the reconstructions make progress monotonically. For longer distances (rightmost
columns), especially at stronger disorder (lower panels), the relative difference grows
initially in scaled entangling power. A possible interpretation is that the reconstruction
is not effectively reproducing the small long-distance correlations of |ψp〉 – note that this
effect vanishes for longer quench times when the system is in the volume law. All data
are for L = 50.
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Figure 5.11: Relative difference R(r, t,PS) for a variety of physical site separation dis-
tances r. The color indicates the physical separation distance - purpler is shorter, yellower
is longer. The closest sites (purple) seem to achieve agreement earlier in the reconstruc-
tion than sites further away (yellower colors), and this is especially pronounced for weaker
disorder (top two rows of panels, W = 2 and W = 3) All data are for L = 50.
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Figure 5.12: Scaled entangling power PS (y axis, intuitively, the fraction of the circuit)
needed to reach relative difference R(dp, t,PS) (Eq. (5.4)) < 0.05 for all physical sepa-
ration distances dp (x axis). Color indicates time in the quench, with darker indicating
earlier and lighter later. All data are for L = 50.

τ because A(r, t, τ) � A(r, t, 0). Here, reconstructions over the entire circuit are per-

formed, and so eventually the difference falls to zero as expected (since the entire circuit

must reproduce |φp〉).

Finally, we examine how far into the circuit we must reconstruct in order to reach

certain threshold differences. These data are shown in Fig. 5.12. These plots show

the minimum scaled entangling power required to capture correlations up to relative

difference of 0.05, which indicates a very good reproduction of the correlations of the

physical wavefunction |ψ(t)〉 at quench time t (and “disentangling time” τ = 0). Again

it is noticeable that the entire circuit must be included early in the quench (black) to
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accurately reproduce correlations at any distance, while later, as the system achieves

the volume law, much less is needed, especially at short separation distances. Note

that for the weaker disorder (left columns), late in the quench the necessary scaled

entangling power saturates, while for stronger disorder (right columns), it grows with r.

This seems to provide some evidence for the supposition that the circuits reproduce local

correlations earlier than longer distance correlations, especially in the states with longer

initial localization length.

5.5 Conclusions

We examined the relationships between various metrics of quantum circuits generated by

our previously developed disentangling algorithm. We focus on systems of free fermions

as we instantaneously quench the initial disordered physical state with the non-disordered

version of the Hamiltonian of which it is a groundstate. Examining how circuit properties

change with properties of the physical state through the quench, we find an interesting re-

lationship between the entanglement entropy and geodesic distances which is not present

in the equal time Green’s function.

It would be interesting to try to connect these relationships with those developed in

the AdS/CFT framework. Since we work with lattice models, and most of the results in

AdS/CFT were developed for the continuum, so making such connections would likely

be nontrivial.
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[151] Stellan Östlund and Stefan Rommer. Thermodynamic limit of density matrix
renormalization. Phys. Rev. Lett., 75:3537–3540, Nov 1995.

[152] Arijeet Pal and David A. Huse. Many-body localization phase transition. Phys.
Rev. B, 82:174411, 2010.

[153] Shesansu Sekhar Pal. Model building in ads/cmt: Dc conductivity and hall angle.
Physical Review D, 84(12):126009, 2011.

[154] Arun Paramekanti, Leon Balents, and Matthew P. A. Fisher. Ring exchange,
the exciton bose liquid, and bosonization in two dimensions. Physical Review B,
66(5):054526, 2002.

[155] Fernando Pastawski, Beni Yoshida, Daniel Harlow, and John Preskill. Holographic
quantum error-correcting codes: toy models for the bulk/boundary correspondence.
Journal of High Energy Physics, 2015(6):1–55, 2015.

[156] Ingo Peschel. Calculation of reduced density matrices from correlation functions.
Journal of Physics A: Mathematical and General, 36(14):L205, 2003.

[157] Ingo Peschel and Viktor Eisler. Reduced density matrices and entanglement en-
tropy in free lattice models. Journal of Physics A: Mathematical and Theoretical,
42(50):504003, 2009.

[158] Robert NC Pfeifer, Glen Evenbly, and Guifré Vidal. Entanglement renormalization,
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