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ON THE SCALING LAWS IN THE STRONG INTERACTION AND IN THE 

* ELECTROMAGNETIC INTERACTION OF HADRONS 

Loh-ping Yu 

Lawrence Radiation Laboratory 
University of California 

Berkeley, California 94720 

June ll, 1971 

ABSTRACT 

We show that, within the framework of the dual 

resonance models, it is possible to find a scale trans-

formation on the Chan variables that generates the Bjorken 

scaling law in the deep inelastic lepton-hadronic 

scatterings and the Feynman scaling law in the had-

ronic inclusive reactions. Applying the similar scale 

transformations to the exclusive production processes, 

we show that the invariant amplitude, for both the 

lepton-hadronic and the pure hadronic exclusive reac-

tions, are not scaled, but the nonscaled parts are 

factorizable from the scaled parts. We then conclude 

that the hadronic cross sections at fixed multiplici-

ties as well as the lepton-hadronic structure functions 

at fixed multiplicities, are not scaled in general. 
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I. INTRODUCTION 

Two famous scaling laws, one suggested by Bjorken in the deep­

inelastic lepton-hadronic reactions and the other conjectured by 

Feyhman in the hadronic inclusive reactions, have been widely discussed 

by many authors. This paper aims at the explanations of the origins 

of these two scaling laws within the framework of the dual resonance 

model (and the parton dual resonance model). We give a unified treat­

ment of the Bjorken's scaling law and the Feynman's scaling law, and 

show that they in fact stem from similar origins. 

The crucial keys to the explanations are contained in the 

correct choices of the scale transformations,l which are uniquely 

determined by the physically required discontinuities. By the phys-

ically required discontinuities, we mean the discontinuities across 

the. missing mass square variables, to the strict exclusions of all 

extra pieces of imaginary parts contributed from all other channels. 

This strict exclusion uniquely fixes the scale transformations, which 

gives rise to the scaling. behaviors. 

In Sec. II, we use tJ;:te dual resonance amplitude to derive the 

generalized Feynman's scaling law, and use the parton dUal resonance 

mode1
2 

to derive the generalized Bjorken scaling law. They result_~n 

explici t formulas. In Sec. III, we apply the same scale tr·ansforma­

tions to the exclusive production processes, and show that the invar­

iant amplitudes are not scaled, but the nonscaled parts are universally·· 

known. As consequences of these nonscaling behaviors, it is argued 

that the cross sections at fixed multiplicities and the structure 

functions at fixed multiplicities, are not scaled in general. In 

Sec. IV, we conclude the possible multiplicity distributions in the 
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deep inelasticlepton-hadronic collisions as well as in the hadron- II. THE ORIGINS OF THE SCALING LAWS IN THE 

hadronicreactions. INCLUSIVE REACTIONS 

A. The Generalized Feynman's Scaling Law 

Consider the generalized hadronic inclusive reaction 

+ ... + h
n 

+ anything. (1) 

Since we use the optical theorem to construct a model for the cross 

section, we approximate the "anything" (= missing masses) by the reson-_ 

ances, and take the absolute square of the amplitude. Hence we get a 

2n-point function (with the important iE-prescription however). We 

then take the imaginary part in the missing mass -square variable 

sln == (kl + k2 + ••• + kn )2 so that \the cross section is given by, 

the formula (Fig. 1): 

where 

(incident energy), 

2 
(k + .•• + k ) ; 

1 n (missing mass square), 

and the standard 2n-point function is 

x 

(2) 

(4) 

. .. .., 



• 

,lith 

k. 
l 

s .. 
lJ 

-k 2n+l-i' 

-s-

(k. + k. 1 + .•• + k )2 . l l+ j , s2n+l-j ,2n+l-:-i, s .. 
lJ 

(1 - Y2n-l-i··· Y2n-j)(1 - Y2n-i··· Y2n-l-j) 
(1 y y - 2n-i··· 2n-j)(1 -y .... y .) 

. 2n-l-l ~ 2n-l-J 

n+l<.i<J·_<2 n - I; 

(sa) 

(Sb) 

(sc) 

(1 - x. 1··· x zy ... y ) (1 x z Y ) l- n-2 n-2 2n-j i-2··· ... 2n-l-j 
(1 - x. 2"· x 2zy 2"· y .)(1 - x. 1·· .z· ··Y2 .)' l- n- n- 2n-J l- _n-l-J 

2::::: i::::: n, 

n + 1 ::::: j S 2n-l, 

Xo = YO - 0, z. 

The symbol "fI1 means that ,'Ie delete the channel ex = ex • 2,2n-l 1,2n 

The iE-prescription states that all the invariant variables belonging 

to the right-hand side of Fig. 1, must be analytically continued from 

their cuts in opposite directions to those belonging to the left-hand 

side. 

We are interested in the generalized Feynman scaling limit, 

defined by 
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incident energy: s12 ~ +00 

momenta transfer: 

scaling variables: 

s. . fixed, 
lJ 

E -tli 
W. 

l 

2 < i < j ::::: n, (6) 

fixed> 0, 

i 3,·· ·n. 

Under this limit, we see that sli;;; (kl + k2 + 

"" s12(1 - w3 - w4···-wi)' which approach to +00 

2 
+ k.) ~ 

l 

in the same order as 

s12' if w3 + w
4 

+ ... + wi <.1. The single particle inclusive reactiol 

+ anything, is the case n = 3, so the Feynman's scaling 

variable is 
c 1-

x ;;; 2PII 
/ ( s ) 2 • 

To take the scaling limit (6) in Eq. (4), we can first consider 

the limits s12,s13, ... sln ~ -00, where the 2n-point function is conver-

gent. In this region all inequalities w. < ° and 
l 

W3 + w4 + ... + wi <. 1 are satisfied automatically. We then make a 

scale transformation, after which, we can rotate to s12,s13,···sln 

s12,s13,···sln-l +00, and take the imaginary part in Because 

approach to +00 at the same time as sIn does,the extra pieces of 

imaginary parts contributed from s12,s13,···sln-l are going to 'be 

mixed up with the physically required discontinuity in sIn· It is the 

necessity of disentangling the unwanted extra pieces of imaginary parts 

in that forces us to choose the scale transformation in 

Eq. (9). 

We first write Eq. (3) as 



B ' 
2n 

1 l' 1 

j OO/fi d(tn -) d(tn -) d(.en -)W-l , '( ) 
_ xi Y i z ~, i+l 0 
- (1 - x.)(l - y.)(l - z) (xi

y
i ) 

o i=l 1 1 i=l 

~ (0) ~ -a. (0) 
z ,n (1 _'1 I ·x.y.z) 'l.,2n 

i=l 1 1 

x 
'- I ~ -0: •. (s .. r n-2 s 11 Uij 1J 1J exp {Sln f.en ~ + .~ (!i+l\ .en(x.~.)J 

2~<jS2n-l L 1-1 ln J ~ 1 1 1 
(7) 

As s12,S13,···sln ~ -00, the important region that contributes 

to the (2n - 3) dimensional integral is when .en~, .en ~ 
xi Yi 

i =' 1,·. ·n-2 and 

transformation3 

.en ~ are small. We then make the scale z 

with 

.en ~ 
z 

n-2 

1 - L 
i=l 

Ki > 0, 

[

n-2 ] 
p 1 - L (ex. + ex! ) 

. 1 1 1 
1= '. 

(ex' + ex! ) 
i 1 

> 0, 

1 - w - ... - w _ 3 n 
- 1 - w - .•. - w ' 

3 i+l 

We further expand 1 - x. "'" P K ex 
1 i i' 

i = 1,2,···,n-2. 

(8) 

1 - z "'" pel - l:(exi + exi)] in Eq. (7). Then we find the p integral 

is 
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-1~,2n(O) 
p , exp(sln p) (10) 

Equation (10) has a cut if sln > 0, and this is precisely the physical 

cut corresponding to the imaginary part which we required. 4 Therefore, 

we see that because of the choice of the scale transformation Eq. ·(8), 

which is sca~~d in the sense of ratios of sli' that we have success-
\ 

fully isolated· the physical discontinuity from the other unwanted cuts. 

We now can analytically continue sli' i = 2,···,n-l, to 

+00 ± iE so that the variables i = 2", ·n-l, in the right-hand 

side channels (in Fig. 1), approach +00 + iE, but those in the left-hand 

side channels approach +00 - iE, while sln approaches- +00 ± iE. We 

then take imaginary part of the amplitude. From Eq. (10), the imaginary 

part is 

(11) 

Hence from Eqs. (7), (8), (10), (11), and (2), we get5 

-a. (0) 

l
Z>O 11-2 '[ 2:' ( ,)] 'l.,2n - (do:. dex.) Z +. K •. ex. + ex. X _1 __ 1 11.1 

, Z 
o i=l exiexi 

x 11 
2<ii<Il-l 

] 

-o:(s. ) 

[

(Y'-1)(Y'-2 + z) 1n 
1 1 (0: ~_HX' ) 

(Y. 2)(Y' 1 + z) 1- 1-

Equation (12) continued 

., 



1---''1/ [lY 1 
+ -z 

1-

X (Yi -:? + z 
Cl<i<-n-l 

;1., 

x 
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+Y'.)(Y· 2 J 1-

+ Y'.)(Y. 1 - J 1-

J -alk. ) + Z + Y'. 1) 
(0: <-->0:') 1 J-

+ Z + Y'. 1) J-

] 

-o:( Sij ) 

(0: <--> 0:' ) 

x I r ' n-2 -: [n-2 ] l-<X j ' 2n+l-S
O
) 

z+ I. 11:.(0:.+0:;): Z+ L K.(O:.+o:;) L .. 2 11 1J .. 1 111 

) r 1~:;)] [ l=J - n-2 1 J 
II l' Z+K. _20:· -2+ L K. (0:. +0:;) Z+K. _20:'· -2+ L K. (0:. +0:; ) 

J J .. 1 111 J J .. 1 111 
l l=J- l=J-

where O:j,2n+l_j(0) have the quantum number of the vacuum, 

n-2 .--. 
. Z - 1 - L (O:i + O:i) 

i=l 

K 0:' n-l n-l 

Y: 
1 

K: 0:' . + K 0:' +. .. + K
1
· 0:

1
; . 

n-2 n-2 n-3 n-3 

1, 

We immediately observe that., if 0:1 2n(0) ;;; 1, then (a) Eq. (12) , 

(12) 

(13) 

approaches a limitation distribution, (b) the cross section is scaled 

-10-

as a function of Kl ,"'Kn _2 and the momenta transfers Sij' 

2 <. i <. j .s n. 

Let us briefly rederive the formula for the single particle 

case5 hl + h2 ---> h3 + anything. Taking n = 3 in Eq. (12), we get 

x 

x 

with 

- 0: - 0:' ) 
1 1 

1 - x > 0, 

(1 - x)2 . 2 1 2 
"" - x M - x p~ . 

We can directly read off the predictions 

1
1-0: 

. 1 
00

1 
o 

00' 
1 

(14) 
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(a) 2 
f(X,Pl... ), (limit fragmentation), 

(b) x -->1, 
-2a(s23)+1 

(1 - x) f(s23)' 

(triple-reggeon.limit), (16) 

(c) X -->0, 
........... ~ -a34+1 5 2 
~ -c x p 1 exp( -4p.1. ), 
P.i

2>>tl ' 
(pionization limit). 

Hence the representation, Eq. (14), for the single particie inclusive 

reaction is completely in agreement with previous work. 5 

One can similarly 'study the'two-particle case, n = 4. Other 

workers have already studied this case, we ~ill not elaborate here. 

B. The Generaliz~d Bjorken Scaling Law 

Consider the reactions 

+ h
n

_l + anything, 

h + h4' + ... + h ' +h + anything. 
3 n-l n 

Isolate the strong in'teraction parts, we have 

"," + h n 
--> h3 + h4 + .•• + hn _l + anything, 

ltv" h h , --> 3 + 4 + ••• + hn_l + hn + anything: 

(17) 

(18) 

We use the parton dual resonance mode12 to obtain a formula for the 

generalized virtual forward Compton scattering 

(19) 
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2 6 
After performing the two-loop momenta integrals, we get' 

1 1 
d(.en -) dUn -) 

Yi z 

X /i) rr\G} exp(-J) 
,~v C2 

x 

where (i) 
K~v ' 

Cj 

+ s 
n ('1 "'2n)F(W' .j). 

(20) 

(G), J, and F(W's) have explicit forms. Here we 

only mention that Jis a function of the momenta transfers 

Sij = (k
i 

+ ki+l + .•. + kj )2, 3 ~ i < j ~ n, and F(W's) is a 

2 
function of the scaling variables wi - (2ki ·q)/(-q), i = 3,···,n. 

Also in Eq. (20) , s. - (q + k} + 
1 

2 
+ k

i
) -, 

S (q + k + ... 
n 3 

+ k )2 
n = missing mass square, and the incident energy 

2 (for 
2 

< 0). is s - (q + k ) ; q 
n 

We are interested in the limit 
2 q --> -00, i=3,···,n. 

In this limit, all wi < 0, and so F(w's) is positive definite, hence 

all terms in the last ,exponent of Eq. (20) are negative definite. 

To choose the correct scale transformation, we observe that 

(a) the parton is nonobservable, therefore we must avoid the 

imaginary part contributed from F(W's), 

(b) the physically correct discontinuity should be taken across sn 

only, hence we need to transform away all undesired pieces contributed 

from 2 q , si,3 ~ i < n - 1. 

, .' 



-~ 

-13-

Thus, we have to perform the scale transformation 

a' 
1 

a' 
2n 

.en 1 
xl 

P 131 , p 131, 

1 
tn 

x. (L) P 13 1" Si+l . 
i 2,'" ,n-2, 

1 

.en 1 
z 

a' 
1 

a' 2n 

(21) 

r i3n - l , 

We then expand everything else in terms of p and i3 i 's. The 

integral is 

Equation (22) is analytic in 
s 

s 
n 

if sn < 0, since then 
s 

1 - (1 ~ ~)i3n-l > O. 
q 

It has a cut in s 
n if 1 ~ (1 - ~)i3n-l' 

q 

if sn > threshold. To get the scale invariant result, we set? 

i.e. , 

al,2~(O) = 1. So, we see that, apart from a factoJ (q2)-1 in Eq. (22) 

and .enlq21 in C, our result now will be functions of si/q2 and the 

momenta transfers Sij' 

Bjorken scaling lavi. 

3 < i < j S n,--which is the generalized 

Now we keep 

ically continue s 
n 

2 
q , 

to 

trivial; we simply put 

+00 ± iE. 

i3 1 ~ (1 n-

, transformation (21), of course], 

fixed at -00 but analyt-

Taking its imarginary part is then 
s 

_ ...E.)-l 
2 

in Eq. (?O)[afterthe scale 
q 

together with the 9-function constraint 

9[1 - 13 - 13' - ... - 13' 
1 1 n-2 

sn -1 . 2 ~ - (1 -:2) J. We can further absorb' 
q 

the 9-function constraint by making the change of variables such that 

the range of integrations of~ i3 i is unchanged 

13: 
1 

[1 0 :~rjai' 
[1 -0 -:~)}i' i 1,2," ·n-2. 

We further define 

T •• 
1J 

2ki ·kj 
- --2-

-q 
2 n, 

s 

I n ... 1, Yl - 2 ~ w3 + w4 + + W + T •• -n 1J -q 
3Si<j:::,n 

i 2,···n - 2, 

and 

[(k.e + kj).q]W~i)(.ej) --> 2M F~i)(,ej), .e,j 3," 'n, 

(i) 
WI --> 

(i) 
Fl ' i 1,2, 

(24a) 

(24b) 
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with 

n [~ ~ ~ \' k _k£.q q' ~._kj 'q ~ 
2L£ 2 fl J 2 v 

£,j=) q, q 

+ 

We finally arrive at the generalized Bjorken scaling results 

for all structure functions (k,£ = ),··.,n) 

£' l l n- 'da.da! J
l- [(a.+CX'.) 2" 

'nlq21 0 . tr ("~"j 

I 1 

I 

l 
x 

Equation (26a) continued 

-1(,-

Equation (26a) continued 

x 

+ ••• 

x + ••• 

l
-a(s7,: ) 

+ Y!) ,)l 
l ( , 

+ Y! ),0 ~ Q ) 
l-l 

+ y. 2a . 2)(Y' l a . 1 + J- J- l- l-

+y· 1a· 1 ) 
J - J-

+y· 1a· 1 ) 
J - J-

, ]-a(s .. ) 
(Y. + 1 + Y'. )(Y. + 1 + Y'. ) lJ 

X (a a') l-l J l-2 J-l 
~ (Y. +l+Y'.)(Y. +l+Y~ ) (a.....-.a') 

l-2 :, J l-lJ-l 

n-~''''t ('1+ nt2,y.(a.+CX,.))(1+nt2y.(a.+CX,.)) , j-at(o)] 

y. 11 (- ~:;+lJ J J) \ j-i Jn~~ J ) (I 
i=l l+Yia i+ r yJ.(a.+CX'.) , l+y.a!+ ') y.(a.+CX'.) J' i 

j=d~l ,JJ l l j=T+l J J J J 
(2(,a) 

Where 

i <.. n - 3, 

1 + Yi - 1, if i > n - 2, 

Equation (26b) continued 

... 



Equation (26b) continued 

and 

z. 
1 

\' 

!.... -
n-2 

L 
i=l 

-17-

(26b) 

Equation (26) is true in the generalized Bjorken limits 

2 q __ ± +00, 

3 .::: i < j .::: n. 

i = 3,·· ·n-l; but s .. = fixed, 
lJ 

2 6 It holds for both' the lepton-hadronic and the 

colliding beam reactions, Eq. (17). 
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III. APPLICATIONS TO THE EXCLUSIVE PRODUCTION PROCESSES 

We apply the idea of scale transformations, developed in the 

previous section, to the hadronic exclusive processes as well as to the 

lepton-hadronic exclusive processes. 

A. Hadronic Exclusive Reactions 

Consider the reaction 

__ h +"'+h • 
3 n+l 

[We can regard is the ground state- of the excited leg in Eq. (ll); 

Le., the "anything." Then the exclusive process Eq. (27) is a 

particular case of the inclusive process Eq. (1), with the missing 

mass is fixed at the ground state.] 

The invariant amplitude is the standard n + l-point function 

(Fig. 3) 

dxi -a(s . )-1 1
1 n-2 n-2 

o 11 (1 - xi) IT xi 1,Hl ' 

-0: (k +k ) 
(1 _ x •.• x ) l,n+l 1 n+l 

1 n-2 

The symbol if( I means that we delete the channel 0:
2 

= 0:
1 

l' 
,n ,n+ 

We take the limit i=2,···,n-l, but keep 

Sij fixed, 2 < i < j .::: n, and Yi = fixed> 0, with 

(28) 

1 
••• - w: i 2,3," ·n-l. 

1+1 
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As suggested from Eq. (8), we make the scale transformation 

. 1 
tn -x. 

l 

i 2 '" n-2 , '.' 

0(1 - ~ - ~ - .•. - ~ ) 
2 3 n-2 ' 

1 - ~ - ~ - .•.. ~ ~ >- O. 2 3 n-2 ~ 

Substituting Eq. (30) in Eq. (28), and doing the 0 integral, we get 

0: (k +k ) fl-~2-' "-~n-2::::O nn-2 (d~.) 
( ) l,n+l 1 n+l 'l 
s12 ' -~. 
~ '0 i=2 l 

x 

x 
/1---(' 
, I 

2Si<j,Sn-l 
[ ]

-0: .. (s .. ) 
(y. l~· l+···+Y. 2~· '2)(Y .. 2~· 2+·'·+Y. l~· 1) lJ lJ l- l- J - 'J - l- l- J - J-

with 

- 1, 

(32) 

We then define Eq.(30) to be held for sli -7 +00, i 2,' ··n-l. 

Equation (31) shows that the invariant amplitude for n-l particle 

production has the expected regge behavior, which is not scaled, but 

which is factorized from the remaining scaled part. 

-20-

Since the invariant amplitude is not scaled, the cross section 

at fixed multiplicity n-m, given by 

20:1 +1(0)-2 -1 
s12 ,n F( )(£n sl"'w. ,so .), n-m c l lJ 

where (m-l) , is the number of detected particles and ¢ is the n-m n-m 

body phase space integral, will not, be scaled in general. But the sum 

over all multiplicities L a 
(n) should be scaled, as proved in 

n-m=2 
Eq. (12). 

B. The Lepton-Hadronic Exclusive Reactions 

Consider the reactions 

"yn h + 3 

"y" 

We adopt the idea2 that ~ he'avy virtual photon behaves like a 

parton-antiparton pair in its participation of the strong interaction. 

We then write down the invariant amplitude for producing (n-2) 

particles in the parton dual resonance model: 

We define the kinematic variables 

incident energy: s 

momenta transfers: 
2 

(k
l
· + k. 1 + ..• + k.) , 

l+, J 

3 <. i < j S n, 

Equation (36) continued 

(YJ) 

• 



Equation (3(,) continued 

scaling variables: 

One relation among w. IS 
l 

W. 
l 

T .• 
lJ 

is 

-21-

2k .. q 
l 

--2- , 
-q 

2k. ·k. 
l J 

--2-' 
-q 

1. 

i 3,'" ,n+l, 

3 .::: i < j < n +1. (36) 

In Eq. (33), we have neglected the spin complications of the 

virtual photon and the two partons. They are irrelevant in the following 

discussions. (They certainly can be correctly taken into account, as 

in Ref. 2.) 

We now do the loop momentum integration 'over 

-o:( s3 ) 

X (1 - x .•• x) n 
1 n-2 

1 
deen -) x. 

l 

(1 - x.) 
l 

U.. lJ 
lJ 

-o:(s .. ))~ 

exp -m (a + a ) - - L' k. { 2 l[ n 
1 2. C i=3 l 

4 d k
2

, and get 

-22-

where 

sl,i' 
=. (q + k3 + /' + ki ' 

o:(sij)' + k. 2 
0:0 + s .. 0:

0 lJ l 

and 

C 

F 
[ (

1 x ···X ~ 1 n-2 
a2 + £n 1 _ x 

1 

We take the limits 
2 

q -7 -00, 

8 12 

0, 

~: 
q , 

(itO) 

x "'x pl 
1 n-2 J 

x ·"x. 
1 l-2 

hence all "li <. 0, and 

F is positive definite. We then make the scale transformation, as 

suggested from Eq. (21): 

'"iith 

a' 
1 

£n ~ 
x. 

l 

a' 
1 

p(l -!3 _ ... -!3 ), 
1 n-2 

i 1,2," 'n-2, (41) 

1 

Expanding everything else in terms of p and !3i' we find for the ,:' 

integral 

f 
00 -0:

23 
2 

o dp p exp(q p) (42) 
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The remarkable feature is that the p integral is independent 

of ,s3n. This results from a delicated cancellation between the loop 

integration and 'the original n + l-point function. In the light-cone 

language, it means that the singularities of the operator expansions 

near the light cone are c numbers. 8 

Substituting Eqs. (41), (42) in Eq. (38), we then find 

x 

where 

F 

. 2k. . (k +k4+'" +k ). 
) 

1+2 3 n 
+ ••. + Yil\ 

anything + Y t3 1 - l. n-l n-

ft(~~) 
hl 1 .. 

(44) 

-24-

( ) 2. d We then define Eq. 39 to be true for q - -> ±OO, an s -> too, 

i.e., it holds for both the lepton-hadronic and the colliding beam 

exclusive reactions. 

It should be pointed out that the q2 dependence in Eq. (43), 

apart from the factor £n-l lq2 1, is the asymptotic form factors
2 

in the 

parton dual resonance model: 

-ex +1 
~C(12) 23 • 

Iq21->oo q 

(45 ) 

Thus the exclusive invariant amplitude-is asymptotically proportional 

to the universally asymptotic form factors. 

Again, since the invariant amplitude is not scaled, the struc-

ture function at fixed multiplicity (n - 2), given by 

vw(n-l) 2 Jde> ! L T(n-2) 12 
2 rJ q Y'n-2 perm. \' (46) 

is not scaled in general. But- the overall structure function 

does scale. 

The lepton-hadronic exclusive experiment is being carried out 

at Cornell. Let us therefore study. a little detail for the case 

n = 4, 

"y" h -> + 3 

"y" -> 
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The invariant amplitude, from Eq. (43), is 

G(q2) 1 i"-6" f T(2) 2 
r(l - "23) I dB1 df32 

da 
.enlq2! 

11 

o 0 

2 X, exp( -m a) 

[a + (1 - Rn(f31 ;lY2(32)] W
3

) 

{ "O-a" . ~'l" (61 + Y2
62T} X 

f:\ 
61;'\2 (Y~P2) Y f3 

- 2 2 
(48) 

2 
with t;: (k3 + k4 )2 = s34' Y2 = 3..... =~. In obtaining Eq. (48), 

. s3 - w3 

we have used the boo~strap conditions 0:
0 

+ ki
2 

0, i = 3,4,5. 

(a) 

(b) 

(c) 

Let us no", list the predictions from Eq. (48): 

(the regge limit) 

2 0:0 ' 
G(q )(W

3 
- 1) f'(t), (the threshold (49) 

behaviors) 

(the pionization limit 

for the colliding beam 

reaction) • 

The structure function W(2) 
v 2 for multiplicity two can be 

calculated; we get 

W(2) 
v 2 (50 ) 
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We see that, apart from the factor .en -2 1 q21, the 
2 

q dependence 

factor q2 G2(q2). is identical to that given by Bloom and Gilman for 

the threshold behavior in the electroproduction. The result, Eq. C,O), 

is consistent with RoY's9 wee parton calculation. 

From Eqs. (50), (4rS), and (44), it is clear that, in general, 

each individual vw~n) at fixed multiplicity n, falls off in q 

[of the order of q2 G
2

(q2)], but because more and more channels 

contributed as s;: (q + k3)2 (the incident energy) increases, \;e still 

get a sclaing result for the overall vW2 • This may be regarded as the 

physical origin of the Bjorken's scaling law. 
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IV. CONCLUSIONS 

In this paper we have fully discussed the scaling laws in the 

electromagnetic interaction and in the strong interaction. We have 

shown that by the correct choices of the scale transformations, the 

two scaling laws can be naturally explained, and that they in fact stem 

£'rom similar origins. We have further shown that the exclusive reactions 

do not scale in general, but the nonscaled parts may be found from ,the 

scaled parts. 

From the behavior of the unsealed parts, we can indirectly 

infer the average multiplicity distributions. If we assume that the 

sum of all exclusive processes should produce the inclusive results, 

i.e., 

00 

0.' L' c/n) , 
lnc 

then, because the left-hand sides of Eq. (51) are scaled, the terms on 

the right-hand sides summations must, combine in very delicate ways, so 

that they produce the scaling results. However, we know that the 

nonscaled parts of each individual term on the right-hand sides are 

smooth (one is regge-behaved, the other is proportional to the square 

of the form factor), therefore the summation over all n must produce 

smooth behaviors to cancel with the nonscaled parts. This implies that 

the average multiplicity distribution n must be function-of s or 

2 q , but not w. Thus we can roughly conclude that our work favors a 
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multiplicity distribution which depends on log s, rather than log w. 

(If we only consider the planar diagrams in the n dimensional phase 

space integrals.) 

The problems of spin, internal symmetry, and ghosts do not play 

any fundamental roles in this work. What is essential, in the scaling 

limits, is the regge bepaviors "in various channels, together with a 

(factorizable) pomeron pole of intercept 0:0 = 1. 

Finally, .Ie mention that we have neglected the permutation of 

external legs, and we hav~ not considered the nonplanar loop contribu-

tions to the inclusive reactions. 
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FIGURE CAPTIONS 

Fig. 1. The 2n-point function model for the hadronic inclusive 

reaction. 

Fig. 2. The 2n-poiht function parton dual resonance model for the 

lepton-hadronic and colliding beam inclusive reactions. 

Fig. 3. The n + l-point function model for the hadronic exclusive 

. reaCtion. 

Fig, 4. The n + l-point parton dual resonance model for the lepton­

hadronic and the collidil~g beam exclusive reactions. 

2 

-32-

2n 
) 

n n+t 

XBL716-3644 

Fig. 1 



-33- -34-

n+1 

XBL716 - 3645 
XBL716- 3646 

Fig. 2 

Fig·. 3 
~\ 

.. ! 



-35-

n+1 

3 

XBL716 - 3647 

Fig. 4 



r------------------LEGALNOTICE--------------------~ 

This report was prepared as an account of work sponsored by the 
United States Government. Neither the United States nor the United 
States Atomic Energy Commission, nor any of their employees, nor 
any of their contractors, subcontractors, or their employees, makes 
any warranty, express or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness or usefulness of any 
information, apparatus, product or process disclosed, or represents 
that its use would not infringe privately owned rights. 



TECHNICAL INFORMATION DIVISION 

LAWRENCE BERKELEY LABORATORY 

UNIVERSITY OF CALIFORNIA 

BERKELEY, CALIFORNIA 94720 

r; 




