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ABSTRACT OF THE DISSERTATION

Using SpArcFiRe to Help Automate GALFIT’s Multi-Component Decomposition of Spiral
Galaxies

By

Matthew Portman

Doctor of Philosophy in Computational Science

University of California, Irvine & San Diego State University, 2024

Associate Professor Wayne Hayes, Chair (UCI)

Spiral galaxies constitute a significant fraction of galaxies observed in the local universe

yet their characteristic structure is not well understood. Current methods of analysis rely on

manual intervention and expertise, both of which present a significant barrier to the investi-

gation of spiral structure at the scale of modern observational surveys. We present an auto-

mated modeling method that uses the simple, one-dimensional arc analysis from SpArcFiRe

to generate an initial guess for GALFIT to produce two-dimensional photometric decomposi-

tions of spiral galaxies. Our automated method is encapsulated in a Python module entitled

"GalfitModule" which contains a generalized framework to handle GALFIT components and

parameters. GalfitModule employs this framework to translate SpArcFiRe’s output to in-

put for GALFIT, runs GALFIT using multiple novel techniques with distributed processing, and

performs an assessment of the success of our decompositions. Using this pipeline, we produce

two and three component decompositions of several samples of spiral galaxies from the SDSS

DR7 data release, as selected by the Galaxy Zoo team. We then assess the performance of our

method, validating our results by-eye, and analyze the resultant parameterization of these in

bulk. Our largest sample is 28912 galaxies, of which we estimate 54% (about 15,700) of the

models accurately map the visible structure of the original observations. We identify trends

in the Sérsic indices, magnitudes, and arm-to-total flux ratios, and compare these trends

xi



to previous decomposition studies, finding general agreement in the arm-to-total flux ratio.

Of the other parameters, there is evidence that our models overfit the observations, causing

disagreement. Finally, we present an extension to our method which evaluates the model’s

pitch angle as it varies along the length of the arm.
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Chapter 1

Introduction

Spiral galaxies comprise about 70% of galaxies observed in the local universe (Sparke &

Gallagher, 2007) yet the formation of the characteristic arms and their visible structure are

not fully understood beyond strict formalisms that describe their dynamics (Lin & Shu,

1964; Binney & Tremaine, 2008). To make progress on this front, it is necessary to pro-

duce objective, quantitative measures of their structure to compare with theory and models

obtained from increasingly detailed cosmological simulations such as Illustris (Vogelsberger

et al., 2014; Pillepich et al., 2018), and more local simulations such as FIRE (Hopkins et al.,

2014, 2018) and NIHAO (Wang et al., 2015). As the amount of data continues to increase,

the development of automated procedures to evaluate galactic structure is paramount.

In the context of morphological analysis, two types of analyses are most common: para-

metric and non-parametric fitting. Non-parametric fitting, being highly dependent on Signal-

to-Noise (S/N) and therefore resolution and morphology, is less than optimal for such large

and varied data sets (Lisker, 2008; Peng et al., 2010). Parametric fitting, on the other hand,

models the light distribution of a galaxy by using analytic functions to fit individual features

or components of the galaxy which allows us to decompose the galaxy into individual struc-

tures by their surface brightness distributions. Parametric fitting was first introduced by de
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Vaucouleurs (1948) and expanded by Freeman (1970). The practice has since continued and

expanded from one-dimensional analysis (Kormendy, 1977; Kent, 1985) to two-dimensional

analysis (Byun & Freeman, 1995; Schade et al., 1996; Wadadekar et al., 1999; Benson et al.,

2002) which have all laid the foundation for modern, analytical two-dimensional galaxy fit-

ting programs such as GIM2D (Simard et al., 2002), BUDDA (de Souza et al., 2004), PROFIT

(Robotham et al., 2016), and GALFIT3.0 (henceforth simply referred to as GALFIT, Peng et al.,

2010). All provide the user with the ability to perform bulge+disk (B+D) decompositions—

i.e. decomposing a galaxy into individual sub-structures—on images of galaxies; however,

GALFIT is the only program which can extend the analytical fitting process to model spiral

arms as well.

It is possible to employ spiral arm only decompositions or to use these in conjunction

with existing B+D decompositions. The Fourier transform decomposition technique in one

(Grosbøl et al., 2004; Kendall et al., 2011) and two dimensions (Seigar et al., 2005; Davis

et al., 2012; Mutlu-Pakdil et al., 2018; Yu & Ho, 2018; Díaz-García et al., 2019; Hewitt

& Treuthardt, 2019; Yu & Ho, 2020) is widely used but it fails to capture the variation in

pitch angle found in observations of real galaxies (Ringermacher & Mead, 2009; Savchenko &

Reshetnikov, 2013; Savchenko et al., 2020). Davis et al. (2012) and Savchenko & Reshetnikov

(2013) propose solutions to this issue by either summing logarithmic spirals or by segmenting

the Fourier analysis along the arm but neither of these techniques appear to have been widely

adopted. Chugunov et al. (2023) proposes an entirely different technique—one which is more

similar to that of GALFIT’s implementation—that takes an existing B+D decomposition and

manually applies their own physically-motivated spiral arm function. As with previous at-

tempts at using GALFIT for spiral arm decomposition, their process is heavily labor-intensive

and expertise driven. As for non-expertise driven decompositions, the Galaxy Zoo team

implemented the Galaxy Builder process (Lingard et al., 2020, 2021) which applies a loga-

rithmic spiral based on traces drawn by human volunteers. Logarithmic spirals are defined

by a constant pitch angle so this method again falls prey to the pitch angle variation problem.
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The spiral arms that GALFIT creates are not restricted by a constant pitch angle and can be

applied to existing B+D decompositions but its implementation is best suited to modeling

two or more arms at a time (see Section 2.2.2). Previous attempts to model spiral arms using

GALFIT have been performed manually (Läsker et al., 2013; Gao & Ho, 2017) however the

manual fitting process is labor-intensive and requires significant expertise—it is not feasible

to employ at the scale of observational surveys.

Attempts to automate GALFIT have been made previously (see Vikram et al., 2010; Kim

et al., 2016; Domínguez Sánchez et al., 2021, among others specific to DR7 cited below),

but none have successfully automated the modeling of spiral galaxies due in no small part to

GALFIT’s need for a well-conditioned initial guess on a per-image basis. To solve this issue,

we propose a completely automated method which translates the output from SpArcFiRe

(Davis & Hayes, 2014), a computer vision based spiral arc finding program, to an initial guess

as input for GALFIT. We present our method using data from SDSS DR7 to coincide with

prior analyses performed by SpArcFiRe in Davis & Hayes (2014), Silva et al. (2018), and

Hart et al. (2016). Several other automated 2D decomposition studies have been performed

on galaxies from DR7—Simard et al. (2011) performed bulge+disk decompositions of the

photometric sample of the galaxies using GIM2D; Kelvin (2012) performed single component

fits on a subsample of spectroscopically selected galaxies in DR7; Lackner & Gunn (2012)

fit a sample of 70,000 galaxies at low redshift with B+D decompositions; and Meert et al.

(2014, 2015) performed single and multi (bulge+disk) component fits for spectroscopically

selected galaxies in DR7. The latter studies, and a B+D decomposition study performed by

Kim et al. (2016) on SDSS DR12 galaxies, served as a baseline for many of our assumptions

and initial choices made when developing the pipeline to GALFIT.

Since this is the first automated study of spiral galaxies using GALFIT, we aim to use these

models as an opportunity to explore GALFIT’s framework as an estimate of spiral galaxy

morphological structure. We would like to emphasize here that the goal of this research is to

3



produce models of the arms of spiral galaxies–we do not intend to make any strong claims

about the accuracy of the resulting flux distribution, especially in the region of the bulge.

The chapters are laid out as follows: Chapter 2 details the programs that form the basis

of the pipeline, SpArcFiRe and GALFIT in the context of our automated modeling method;

Chapter 3 describes the translation strategy between SpArcFiRe and GALFIT that we em-

ploy in order to automate the fitting process; Chapter B provides documentation for the

GalfitModule, the Python module (in development) which governs the operation of the

pipeline and which we intend to release as a tool to the community upon its completion;

Chapter 4 describes the fitting procedure the pipeline employs, from the scripts that control

and execute the procedure, to the computational and algorithmic strategies we employ, to

the validation scheme we have developed; Chapter 6 presents our results on several subsets of

galaxies from SDSS DR7/GZ1; Chapter 7 provides a discussion of the results and validation

method as well as comparisons to both existing B+D decomposition surveys on DR7 and

smaller scale spiral galaxy decomposition studies; Chapter 8 summarizes our results; and

finally, Chapter 9 describes the work we have planned for the release and improvement of

our method as well as potential avenues for future study using our method. Additionally,

we have included several appendices (A – F) which should aid in understanding our process

and results.
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Chapter 2

Methods

2.1 SpArcFiRe

SpArcFiRe (Davis & Hayes, 2014) is a computer vision algorithm designed to take im-

ages of real spiral galaxies as input, and automatically extract objective information about

their structure. It has been used i) to provide quantitative information about spiral galaxy

morphology on the GZ1 galaxies (Davis & Hayes, 2014), ii) to illustrate and explain S-wise

spiral galaxy winding bias in the results of GZ1 (Hayes et al., 2016), iii) to demonstrate its

proficiency (robustness and validation) in identifying structure across GZ1 and SDSS images

(Silva et al., 2018), and iiii) by the Galaxy Zoo team to measure pitch angles (Hart et al.,

2017) of the spiral galaxies in GZ2 and to subsequently assess the correlation between bulge

size and arm winding via pitch angle (Masters et al., 2019).

The first step SpArcFiRe takes is to use an iterative 2D Gaussian fit to precisely center

and isolate the target galaxy. The image is then deprojected to produce a face-on view of the

galaxy and contrast enhanced before an orientation is assigned to each pixel. Based on the

local strength and direction of the orientation, pixels are hierarchically clustered into regions
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with consistent logarithmic spiral shape—a common choice for describing spirals in galaxies

(see Binney & Tremaine, 2008). Each cluster is then associated with a logarithmic spiral

curve as determined by a least-squares fit before a final merging is performed using nearby

arcs with compatible shape. See Davis & Hayes (2012) for a more in depth description of

the algorithm.

Figure 2.1: Steps SpArcFiRe takes to identify arcs in an image of a spiral galaxy. a) Auto-
crop, centering, and de-projection. b) Contrast enhancement. c) Orientation field determi-
nation. d) Hierarchical clustering via consistent logarithmic spiral shape and orientation.
e) Secondary merging to account for nearby shape. f) Final arc fit superimposed on (a),
red arcs denote S-wise winding while cyan arcs denote Z-wise. From this process, a CSV is
produced which provides parameters from the fit: a length-sorted list of arms containing, for
each arm, the initial and final polar co-ordinates, the signed pitch angle, and the area (in
pixels) from the masks in figures (d) and (e) along with other image level information.

Figure 2.1 shows a visual representation of SpArcFiRe’s output at each step. Along

with these images, SpArcFiRe also outputs information, to csv files, regarding approximate

measurements of features of the galaxy, including bulge and disk radius, arm length in pixels,

and arm beginning and end angle, all of which may be used to inform the input to GALFIT

(see (Davis & Hayes, 2012) for a more in depth description of the program and (Davis &

Hayes, 2014) for how it was tested). SpArcFiRe’s output is limited however, to a simplistic

description of the galaxy’s shape, i.e. the arm length, pitch angle, and area (in binary pixels).

Although this information is useful on an image level, astronomers are unable to use it to

compare theory with observation: it cannot, on its own, describe the brightness profile of

a galaxy. More work is therefore necessary to extend SpArcFiRe’s functionality to better

understand the complex physics of galactic morphology. For this, we can turn to GALFIT to

model these galaxies in order to approximate their visible structure.
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2.2 GALFIT

GALFIT (Peng et al., 2010) or P, 2010 is a parametric fitting program designed to model

the light distribution of galaxies given a user-defined set of initial components and function

parameters. It has seen frequent use in the astronomy community since its inception, having

been used to model galaxies in many surveys including: GEMS (Bell et al., 2006), Spitzer

(Sheth et al., 2010), CANDELS (Kartaltepe et al., 2015; van der Wel et al., 2012; Bouwens

et al., 2015), the Carnegie-Irvine Galaxy Survey (Yu et al., 2018), and COSMOS (Dewsnap

et al., 2023) among others.

In order to perform the galaxy decompositions, GALFIT takes the observation as input,

convolves the image with the user-defined functions, and optimizes on the resulting model

in order to minimize the difference between the model and the image (described in depth in

2.2.1).

2.2.1 GALFIT Components and Models

GALFIT uses the Levenberg-Marquardt technique to optimally fit user-specified functions

to structures in an image. The algorithm works by minimizing χ2 or the residuals between

the data image and the model as given by the normalized equation,

χ2
ν =

1

Ndof

nx∑
x=1

ny∑
y=1

[fdata(x, y)− fmodel(x, y)]
2

σ(x, y)2
(2.1)

where x and y are image dimensions, fdata is the image flux at a pixel, fmodel is the sum of the

user-specified functions employed by the model, and σ is the Poisson error at each pixel. The

minimization procedure is heavily dependent on the parameterization of the user-specified

functions for some level of success, especially when tasked with fitting multiple components

to an image.
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GALFIT assumes light profiles are axially symmetric, generalized ellipses and uses a modi-

fied ellipse equation to define the radial pixel coordinate,

r =

(
|x|c+2 +

∣∣∣∣yq
∣∣∣∣c+2

) 1
c+2

(2.2)

where c determines the shape of the ellipse and q is the ratio of the minor and major axes.

GALFIT then uses a user-provided input radial light profile (functions of r, see Equation

(2.3)) to create a model image before optimizing via Levemberg-Marquardt and outputting

the final results.

One of the most common radial light profiles used to study galaxy morphology, and the

function we use to model the bulge and disk of galaxies in our method, is the Sérsic powerlaw

which has the functional form (Sersic, 1968):

Σ(r) = Σe exp

{
−κ(n)

([
r

re

]1/n
− 1

)}
(2.3)

where Σ(r) is the surface brightness at a distance r from the center of the galaxy, re is the

effective radius or the radius within which half of the total light of a galaxy is contained, Σe

is the surface brightness at the effective radius, and n is the Sérsic index which shapes the

light profile of the galaxy (P, 2010). In practice, GALFIT limits the value of n between 0 and

20 for both practical reasons and theoretical consideration of κ. In the limit of large n, we

define κ as

κ ≈ 2n− 0.331290 (2.4)

while at low n, the value of κ is interpolated (Chien Peng, personal communication, 2020).

The Sérsic implementations in GALFIT employ either an integrated magnitude mtot or

the surface brightness magnitude µe which corresponds with Σe. For this study, we use
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the integrated magnitude—all references to magnitude throughout the paper refer to the

integrated magnitude unless otherwise specified. The integrated magnitude is defined as:

mtot = −2.5 log10

(
Ftot

texp

)
+ mag zpt (2.5)

where Ftot is the total flux associated with the Sérsic component, texp is the exposure time

used to take the image, and mag zpt is the zero-point magnitude associated with the instru-

mentation.

These parameters along with the axis ratio (q) and position angle of the underlying ellipse

are free parameters the user may modify in order to fit galactic features. Other radial light

profiles are available in GALFIT and may be used to model the bulge and disk, however,

some—the de Vaucouleurs (de Vaucouleurs, 1948), Exponential, and Gaussian functions—

are special cases of the Sérsic profile at values of n = 4, n = 1, n = 0.5 respectively.

2.2.2 Spiral Galaxies in GALFIT

In the case of spiral galaxies, the Sérsic function, which models the disk, undergoes coordi-

nate rotation as controlled by a powerlaw spiral (α-tanh) function coupled to the hyberbolic

tangent function to account for the possible existence of a bar extending to the center of the

galaxy. The exact functional form is given in P, 2010 (and can also be found in Chapter 7.2)

but a schematic function outlining the available free parameters has the form:

θ(r) = θout tanh
(
rin, rout, θincl, θ

sky
PA; r

)[1
2

(
r

rout
+ 1

)]α
(2.6)

where r is the radial coordinate system, θout is the rotation angle at rout, and α is the

powerlaw index. rin, referred to as the inner spiral radius throughout this paper, is the

mathematical construct of a bar but it can be used to represent the radius of a physical

bar, i.e. the radius at which the rotation relative to the major axis of the underlying ellipse

9



reaches approximately 20 degrees—an empirical choice by P, 2010. θincl is the line-of-sight

inclination of the disk where 0 degrees is face on and 90 degrees is edge-on. Finally, θskyPA is

the sky position angle which rotates the spiral in the plane of the sky. For a more in-depth

discussion of each of these parameters, see P, 2010.

The fit of the arms can further be refined with the addition of Fourier Modes which modify

the azimuthal shape by perturbing the coordinate system from a rectilinear grid. This choice

ensures the preservation of the radial light profile while allowing us to modify the underlying

ellipse in conjunction with the powerlaw. The Fourier perturbation on an ellipsoid is defined

as follows:

r(x, y) = ro(x, y)

{
1 +

N∑
m=1

am cos[m(θ + ϕm)]

}
(2.7)

where ro(x, y) is the radial coordinate of the ellipse and am is the Fourier amplitude for

mode m. The phase angle, ϕm, is the angle of mode m relative to the position angle of

the generalized ellipse - 0◦ in the direction of the semi-major axis and increasing counter-

clockwise. The number of modes N is determined by the user and allows for non-specified

modes to be skipped. Finally, θ is defined as

θ = arctan
y − yc

q(x− xc)

where the right hand side is derived from Equation (2.2) but modified for generality with

respect to the coordinate axes; (xc, yc) is the centroid of the ellipse (please refer to P, 2010 for

more information). The Fourier modes, in effect, retain the structure and meaning (wherein

prior intuition still applies) of the radial profile function thereby allowing for meaningful

physical analysis (P, 2010).
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By using SpArcFiRe, we can automate the procedure of producing an initial estimate

for the parameters which describe the model as input for GALFIT. This is the basis of our

pipeline. We discuss several other methods we employ which aim to improve the chances of

producing a ‘successful’ model in Section 4 below.

Equations (2.1)–(2.7) form an incredibly complex system of parameters that makes the

task of translating SpArcFiRe’s output into suitable input nontrivial. Little in GALFIT’s

mathematical description directly correlates to parameters output by SpArcFiRe and both

utilize different coordinate systems when executing their analysis. By first performing man-

ual fits using easily resolved galaxies, we can develop an intuition for implementing an auto-

mated procedure and later utilize the intuition to inform parameter choices when translating

between the two programs.
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Chapter 3

Input to GALFIT

Both SpArcFiRe and GALFIT, as standalone programs, can be made to work in an auto-

mated fashion. However, translating between the two presents a challenge in overcoming the

necessary conventions of both. Immediate considerations include translating between cho-

sen coordinate systems, properly scaling SpArcFiRe’s output, and determining what output

should be converted as input to GALFIT. It should be noted that our automation pipeline

is implemented on top of SpArcFiRe’s current file hierarchy. Furthermore, the pipeline is

designed to work completely independent of running SpArcFiRe, allowing the user to save

computation time and to generate results on any data set previously generated by SpArcFiRe

such as those from Davis & Hayes (2014) and Hayes et al. (2016)–we do not intend to use

the pipeline to modify SpArcFiRe’s capabilities. We therefore focus much of the following

sections on ensuring GALFIT’s success as it is highly dependent on an appropriate initial

parameterization. Furthermore, we aim, with this research, to automate the process of mod-

elling spiral arms with GALFIT with the expectation that the bulge and non-arm disk fit may

be less accurate given the nature of multi-component decompositions. Many of the choices

discussed below reflect this goal.
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3.1 Header Information and Pre-Processing

The GALFIT header holds information for several control parameters needed to perform

the image convolution–we will describe them in brief as informed by P, 2010 here. Items

A and B indicate the input and output filenames. Items C–G and I are optional and allow

the user to specify: C) a sigma image or noise map of the data, which we allow GALFIT to

generate (see P, 2010 for information on how this is done), D) a PSF image to be convolved

with the model, E) the PSF fine sampling factor which is used when the PSF has a finer

pixel scale than the data, F) a pixel mask, G) a constraint file which indicates limits for

fitting parameters, and I) the size of the fitting region/box used to convolve the PSF with

each component. Item H is the image region (of the input image) to fit which crops the

image prior to fitting. Items J and K, the magnitude zero-point and plate scale, refer to

the instrumentation and are set according to the values found on the DR7 Website.1 Item

O allows for an interaction window and Item P indicates to GALFIT whether to perform the

convolution or not. Several of the above items require pre-processing, including the input

image and PSF from SDSS image fields, as detailed in Section 6.1, and the pixel mask and

region to fit.

To create pixel masks for the images, we use SourceExtractor (Bertin & Arnouts, 1996)

by the same method that SpArcFiRe applies during its pre-processing stage. This process

is summarized in Davis & Hayes (2014) and detailed in Davis (2014) but by re-using the

same method, we can retain consistency between SpArcFiRe’s analysis and GALFIT’s, an

important consideration when the images are dynamically centered and cropped.

To determine a fitting region on the images, we turn to SpArcFiRe’s analysis, specifically its

ellipse fitting routine. When SpArcFiRe processes a galaxy, it iteratively fits a 2D Gaussian

ellipse to the galactic disk to estimate its size and to identify the center position of the galaxy
1Further discussion, and the value used for the magnitude zero-point, can be found at

https://classic.sdss.org/dr7/algorithms/fluxcal.php
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in the image (see Figure 1 of Davis & Hayes, 2014). Under the assumption that galaxy disks

are roughly circular (Sparke & Gallagher, 2007), SpArcFiRe determines the 3D inclination of

the galaxy and transforms it to be face-on by stretching the ellipse into a circle and cropping

the image to a square with the circle inscribed (Davis, 2014). We extend the box out to two

times the circle’s radius in order to assist GALFIT in determining an appropriate value for

the background sky as suggested in the ’Technical FAQ’ section of GALFIT’s website. We

discuss approximating the background sky more thoroughly in Section 3.3.2. Note that none

of these transformations are applied to the original input image–when we process a galaxy

through the pipeline, we use the observation as-is.

Finally, we opt to avoid the inclusion of a PSF file as we have not yet developed a proper

automated method for its preparation according to the recommendations on GALFIT’s web-

site. Given our scientific goals, we do not believe this to be an issue with our analysis of the

results. We additionally avoid using a constraint file in order to allow increased flexibility

and algorithmic stability per recommendation 11 on GALFIT’s website. We have previously

attempted to incorporate a constraint file but found little impact on the results for our

scientific goals.

3.2 Morphological Parameterization

In an effort to minimize and standardize the vast and potentially degenerate parameter

space available when fitting galaxies, we choose to model the structure of the galaxies with

as few components as possible. In our case, and in extending the conventions set forth by

previous automated studies (such as Meert et al., 2014; Kim et al., 2016; Domínguez Sánchez

et al., 2021), we opt to model the bulge, disk, and arms of spiral galaxies by two – three

components, each represented by a Sérsic profile for additional flexibility when performing

the optimization step. For the arms, GALFIT can apply a power law coordinate rotation,

described in Section 2.2.2, to a chosen profile in order to mimic the spiral winding of the
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arms. When using two components, bulge and disk, we apply the coordinate rotation to the

disk component. When using three components, we choose to initialize a Sérsic profile with

a nearly identical parameterization to that of the disk and apply the coordinate rotation to

create the arms—we therefore do not specify the parameterization for this profile separate

from the disk itself except where necessary. In addition to the bulge, disk, and spiral arm

components, we use two Fourier modes (F1, F3), coupled to the power law function, to refine

the shape of the arms, and a final sky component to fit the background. These methods

are described as two and three component fits (NC2 and NC3 respectively) throughout the

paper, where the coordinate rotation and fourier transform are implicitly applied to the

’last’ Sérsic component and taking the sky component as also implicit. Although both the

NC2 and NC3 structures provide an intuitive approach to modeling spiral galaxies, it is not

necessarily the case that the components are physically meaningful on their own (Peng et al.,

2010; Meert et al., 2013, 2014). Furthermore, GALFIT will sometimes modify one component

to overcome the shortcomings of another to better minimize the χ2
ν which ultimately creates

a model of a galaxy that is not separable by the bulge-disk-arm convention. This is described

as ’overfitting’ in Meert et al. (2013, 2014). We will discuss the implications that arise from

these issues in Section 7.

Figure A.2 shows an example input text file which we refer to (generally) as a ‘feedme’

file—feedme files are the input GALFIT uses to perform the convolution. Component 1

represents the bulge, component 2, the disk, and component 3, the disk used by the power law

rotation function—the spiral power law function and Fourier modes are not output as distinct

’components’ but are represented by the ’R’ and ’F’ parameter labels respectively. Finally,

component 4 corresponds to the background sky. Two numbers describe each parameter:

the value, and a binary (0/1) number which indicates to GALFIT whether to optimize on the

parameter or to hold it fixed to the value given at input. Working from Figure A.2, which

follows the template we used for the galaxies in this paper, we have at most 26(+2) free

parameters, with the x, y position parameter of each component held fixed throughout the
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duration of fitting. The spiral inner (R1) and outer radii (R2) are held fixed prior to the

final step as discussed in Section 4.3, hence the 2 additional free parameters.

3.3 SpArcFiRe to GALFIT (S2G)

SpArcFiRe, as described in Section 2.1, provides limited morphological information about

spiral galaxies but offers a wealth of image-level measurements which can be used to estimate

GALFIT input parameters. Table 3.1 shows the correlations we have chosen between the two

programs. Length measurements must be scaled according to the ratio of the cropped image

and the size of the original image fed into SpArcFiRe. We introduce two scale factors when

transforming the length quantities, calculated as the ratio of the cropped image to the size

of the either the original image or the size of SpArcFiRe’s standardized image, 256 x 256

pixels, and use whichever scale factor is appropriate to the selected quantity as dictated by

Davis (2014). Angle measurements are also corrected to accommodate differing coordinate

conventions and may otherwise be transformed to account for known behavior in SpArcFiRe.

For a visual representation of the SpArcFiRe’s arc parameters in Table 3.1, please refer to

Panel F of Figure 2.1. Also note that SpArcFiRe does not provide any information which

can be used to initialize the magnitudes of the bulge and disk in our model. For the bulge,

we use a parameter search method, detailed in Section 4.4, and initialize the disk to the

value of the r-band Petrosian magnitude petromag provided by SDSS DR7.

In the following sections, we will present and discuss the transformations used to cre-

ate the input to GALFIT. We follow the general ordering of the parameters in each com-

ponent per Table 3.1 and A. The code that performs these transformations is entitled

sparc_to_galfit_feedme_gen.py.

16



Feature SpArcFiRe GALFIT
(GALFIT Component) Output Parameter

inputCenterR,
inputCenterC Position x, y

CropRad Image region to fit
Bulge bulgeMajAxsLen Re (Effective Radius)

(Sérsic 1) bulgeAxisRatio Axis ratio
bulgeMajAxsAngle**, Position angle

Disk diskMajAxsLen Re (Effective Radius)
(Sérsic 2/3) diskAxisRatio Axis ratio

diskMajAxsAngle** Position angle
Arms r_start* Spiral Inner Radius

(Power) r_end* Spiral Outer Radius
math_initial_theta*,
relative_theta_end* Cumulative Rotation Out

pa_alenWtd_avgdomChiralityOnly α (Powerlaw Exponent)
chirality_maj,

chirality_alenWtd Spin Direction
diskAxisRatio,

diskMajAxsAngle* Inclination
diskMajAxsAngle* Sky Position Angle

Table 3.1: Correspondences between SpArcFiRe output and GALFIT input parameters (Ap-
pendix A) and the galactic feature the parameters will be used to model. For more informa-
tion regarding the meaning of the SpArcFiRe parameters, see Davis & Hayes (2014). *From
arc-level output. **SpArcFiRe measures the bulge and disk angles as the closest angle to 0
so the resulting angle found always lies within the I and IV quadrants.
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3.3.1 S2G – Bulge & Disk

The effective radii (or half-light radii), as informed by SpArcFiRe, are first scaled by the

scaling transformation described in Section 3.3. For the non-rotated disk, and for NC3, we

reduce the effective radius slightly given that SpArcFiRe measures the major axis length of

the ellipse to completely encompass the arms which sometimes causes GALFIT to over-extend

the disk and lose precision in the arm fit. In general however, we find that SpArcFiRe’s

measure of axis length to be, at worst, a slight overestimate of the effective radius but

generally close enough that no further adjustment is necessary. For the Sérsic index of the

bulge, we initialize its value to that of the classic de Vaucouleurs profile, i.e. nbulge = 4 (de

Vaucouleurs, 1948; Peng et al., 2010). In testing this choice, we find that GALFIT tends to

drive the index lower to accommodate for using the disk to create the arms (hence ’overfitting’

the model to the galaxy) but do not find significant improvement when initializing the index

at a lower value. For the disk, we initialize the Sérsic index to that of the exponential profile,

i.e. nbulge = 1.

For the position angles, SpArcFiRe uses standard mathematical convention and measures

angles with respect to zero on the x-axis unless the measurement is expressly relative to

another while GALFIT defines the position angle (of the semi-major axis on-sky) to be relative

to Celestial North, i.e. zero on the y-axis. The difference in convention is complicated by the

fact that SpArcFiRe restricts the bulge and disk position angle measurements to ±90◦ on the

assumption that both are symmetric about the origin. This behavior however simplifies the

transformation–we only have to subtract SpArcFiRe’s measurement from 90◦. This comes

with the additional advantage that large angular measurements do not seem to play well

with GALFIT’s optimization process.

The axis ratio of the bulge is used directly without scaling due to the length invariance

of the ratio. For the disk, we may elect to avoid fitting arms to an image of a galaxy as

determined by a max arm length threshold (via SpArcFiRe) of 75 pixels from the original
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image. In this case, we use the disk axis ratio as-is. When we do incorporate the spiral arm

rotation function, the axis ratio directly affects GALFIT’s ability to model the arms as this

second Sérsic profile is ultimately what undergoes the coordinate rotation—as a description

of the underlying ellipse, the axis ratio therefore directly represents the width of the arms.

The inherent trade-off is that the more elliptical the profile, the more well-defined the arms

are, the less this component is able to accommodate for disky, inter-arm light. This trade-off

is the main crux of the difference between the NC2 and NC3 methods. For some galaxies,

there is not enough inter-arm or extended disk light to warrant an additional component,

especially at the resolution scale of SDSS DR7, while for others (when no additional disk

is supplied), GALFIT may sacrifice either the bulge or arm fit in order to properly model

the rest of the disk. We will discuss the difference in results from using the two component

methods in Section 6.

3.3.2 S2G – Spiral Arms

The SpArcFiRe parameters which inform the power function (2.6) undergo a variety of

transformations as few directly correlate to a purely mathematical description of spirals, with

the exception of SpArcFiRe’s determination of chirality. Furthermore, SpArcFiRe outputs

arm measurements on a length-sorted, per-arc basis, which uses an empirical threshold to

merge nearby clusters (panel d in Figure 2.1), but which is also agnostic to a preferred winding

direction. This all implies that great care must be taken in the selection and transformation

of arc measurements to usable GALFIT parameters. We also operate on the assumption that

most spiral galaxies will have two distinct, bright arms—duly appropriate given GALFIT’s

coordinate rotation implementation of an ellipse—and allow for Fourier modes to assist in

handling additional arms when this is not the case. In the following paragraphs, we will

discuss first the parameters taken from SpArcFiRe’s galaxy level output before continuing

with those from the arc-level output as indicated by a * in Table 3.1.
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In the power function, the α parameter can be described by the relation:

θ ∝ rα → α ∝ logr θ (3.1)

as derived from the pure power law spiral formulation which GALFIT adopts beyond θout.

Based on both this mathematical description of α and on the description and graphical

representation of (varying) the parameter in P, 2010, we use an empirically derived correlation

between α and the length-weighted pitch angle of the galaxy. Furthermore, we expect α to

be between 0 and 2 but find that GALFIT has a tendency to drive α negative when the

cumulative rotation is inaccurate. This produces a galaxy with arms which rotate in one

direction out to the outer radius and then switch directions beyond—a behavior which is

often undesirable. We have not yet found a SpArcFiRe parameter that better correlates to

α although we are exploring the relationship between GALFIT’s power law spiral formulation

and SpArcFiRe’s logarithmic implementation. GALFIT is relatively sensitive to the initial

choice of α, especially when α is small, so we attempt to ensure a successful fit by limiting

our input (note: not the GALFIT parameter itself) to be greater than 0.75.

The inclination of the galaxy, or the tilt in the plane of the sky, is directly related to

the axis ratio of the ellipse which fits the galactic disk and can be retrieved by taking the

arccosine of this ratio. Although the transformation is simple, the arccos function does not

allow us to retrieve the sign of the original angle so we use the same parity as that of the

diskMajAxsAngle, which influences how SpArcFiRe determines which side of the galaxy is

into/out of the plane of the sky—this is done after accounting for SpArcFiRe’s rotation about

the origin and thus avoids the need for additional considerations.

The sky position angle, as defined by GALFIT, is measured with respect to zero on the

x-axis, which corresponds directly with SpArcFiRe’s convention. It operates in the same

fashion to that of the Sérsic position angle in that it rotates the spiral (disk) in the plane

20



of the sky and does so in addition to the rotation from the disk position angle since the

power law directly modifies the disk profile. We overcome this degeneracy by subtracting

the transformed disk position angle from SpArcFiRe’s measure of the disk angle and apply

a modulo 180◦ operation to avoid too-large numbers, before taking the result. It is tempting

to avoid this process by initializing the sky position angle to zero but we found that GALFIT

does not seem to perform as well with no rotation.

Of the arc-level output, we ingest the file as-is to iterate through the arcs in decreasing

length-sorted order. If the winding direction of an arc disagrees with the winding direc-

tion of the longest arc, we skip that arc and continue. This approach is agnostic to the

previously found (in the code) spin direction in order to prioritize—on the assumption of

the dominance of two-arm galaxies—well-resolved measurements which naturally arise from

the longest arcs. Each parameter is transformed for scaling and to account for SpArcFiRe

behaviors and weighted according to their position in the (winding direction) order be-

fore we reach a final value to be input to GALFIT. Similar to the galactic measure of the

pitch angle (pa_alenWtd_avgdomChiralityOnly), this weighting is a length weighted, dom-

inant chirality estimate. It should be noted that we scale the arc parameters to be slightly

smaller than the direct scaling relation—in prototyping the pipeline, GALFIT seemed to favor

shorter lengths, possibly to accommodate for the extension of light along the underlying el-

lipse. r_end is the simplest to transform and is done so without further considerations.

We detail the considerations and transformation of r_start and math_initial_theta,

relative_theta_end below before discussing the final component related to the spiral arm

component, the Fourier modes.

The spiral inner radius formally functions as the mathematical construct of a bar (P,

2010) (see also Section 2.2.2) and in practice mimics the light profile of a bar quite well.The

edge of a bar is, however, an excellent proxy for the beginning of the spiral arm in a model

and is treated as such in this study. With this in mind, SpArcFiRe’s r_start parameter
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correlates nicely with GALFIT’s representation of the spiral inner radius–for a discussion on

how SpArcFiRe handles bars, please see Davis & Hayes (2014); Davis (2014). Furthermore,

we use the r_start parameter to identify when SpArcFiRe extends an arc too far into the

bulge, by comparing to the previously found bulge radius, and heavily punish the resulting

measurements to accommodate.

The cumulative rotation out parameter represents the rotation angle roughly at the spiral’s

outer radius and controls the chirality of the galaxy, S-wise is positive and Z-wise negative.

This parameter is unique in that it is measured with respect to the angular position of the

beginning of the spiral as opposed to having a fixed angular origin. SpArcFiRe outputs

information regarding both the initial angular measurement of the arm as well as the an-

gular distance swept out by the best-fit logarithmic spiral function with no restriction on

full (360◦) or beyond full rotation. This means that SpArcFiRe can and often does measure

the beginning or the end of an arm well beyond 360◦ by design. In the case of the cumu-

lative rotation parameter, the greater the value, the more winding occurs until the rotation

reaches that angle, again with no restriction to 360◦. To avoid over-winding then, we take

the value of both math_initial_theta, relative_theta_end modulo 270◦, as opposed to

360◦ to account for over-determination due to SpArcFiRe’s weighting scheme, and weight as

described above.

The Fourier modes are an inessential but useful tool for refining the fit of the spiral arms

by modeling the higher order features of the galaxy. We can tune the amplitude of each

mode to emphasize the arms with a direct correspondence between the number of the mode

and the number of arms (plus one) we should expect the model to have–see Figure 9 from

P, 2010 for a simple demonstration of this phenomena. This is complicated by a degeneracy

between the m = 2 mode and the axis ratio of the underlying ellipse (P, 2010) so we opt to

instead use the m = 1 and 3 modes, initializing the latter with a much smaller amplitude.

We have found no means of correlating SpArcFiRe output to the value of the amplitudes
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and phase angles but choose initial values which generally reflect the values GALFIT has

produced in hand-fit test models. We have not found GALFIT to be sensitive to this initial

parameterization.

The final component of the model to fit is the background sky. When fitting galaxies

for photometric accuracy, this component is of great importance, especially when using a

Sérsic profile with a high (n ≳ 4) Sérsic index (Guo et al., 2009; Peng et al., 2010) due

to the extended wings produced by a Sérsic profile with a high n. In our case, this may

occur when GALFIT determines that a high Sérsic index value is necessary since we opt to

initialize each Sérsic profile with the canonical value associated with the bulge and disk. The

GALFIT webpage recommends providing an estimate of the sky background where possible

but explicitly recommends against using SourceExtractor to avoid introducing systematic

errors as it has been shown to overestimate this background (Häussler et al., 2007). The

paper by Häussler et al. further emphasizes that GALFIT’s estimation of the sky background

returns more reliable results than SourceExtractor when the component is left free for

GALFIT to optimize on. This can be seen most clearly in Figure 15 of Meert et al. (2013)

which shows that GALFIT’s ability to determine the sky background is indeed robust. We

take this approach and use an initial estimate of 1000 ADUs [counts] to accommodate the

SDSS soft bias,2 and allow GALFIT to optimize on this component. The choice to use a ’global

sky background’ is supported by previous studies, specifically those by Von Der Linden et al.

(2007) and Guo et al. (2009) which performed their analysis on galaxies from SDSS DR4

(Adelman-McCarthy et al., 2006). The former asserts that the global value is a good enough

approximation of the sky to study the structure of galaxies while the latter demonstrates the

sensitivity of the Sérsic index when choosing this value. We note here that the approach in

Guo et al. differs from our own in that they opt to hold the component fixed so the systematic

uncertainties they find may not be wholly applicable. We would also like to emphasize that

sky values are provided by SDSS (if still underestimated, Blanton et al., 2011) but we do
2https://classic.sdss.org/dr7/algorithms/fluxcal.php#assessment
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not think they are necessary to satisfy our scientific goals given GALFIT’s robustness by this

approach.
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Chapter 4

Fitting Procedure

As discussed in Section 3, our pipeline is completely modular and can be run after

SpArcFiRe has performed its analysis. The pipeline can be run in either serial or paral-

lel via distributed computing (on-node multi-processor or cluster) in which case the outputs

and procedure are slightly different. These differences are discussed in detail in Section B

and in Section 4.5. The fitting process is generally as-follows: 1) locate input FITS files and

perform logistical checks, 2) check for star masks from SpArcFiRe and if not found, gener-

ate star masks prior to fitting, 3) generate feedmes, 4) run GALFIT, 5) analyze FITS and

output results. In addition to the results, we output PNG files which tile the observation,

model, and residual using fitspng (F. Hroch, 2019) and ImageMagick (The ImageMagick

Development Team, 2020).

The pipeline is primarily composed of three scripts—one script controls the conversion

from SpArcFiRe to GALFIT parameters, while the other two, a control script and a ’run’

script, generally perform the set-up, calls to GALFIT, preparation for analysis, and clean-up.

Figure 4.1 shows a flow chart of the control script (control_script.py) and Figures 4.2 and
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4.3 show the flow chart of the ’run’ script (go_go_galfit.py) for the different component

initializations, 2-component and 3-component.

4.1 control_script.py

control_script.py is the script which sets-up the pipeline and calls the programs used

to perform the fitting and subsequent processing. A flow chart which summarizes the script’s

operation can be seen in Figure 4.1.

control_script.py begins by first ingesting command-line arguments which specify set-

up and run conditions. We would like to highlight a few such command line arguments

here:

• -p | –parallel – indicates whether to run in serial (option 0) or parallel (options 1

and 2). Option 1 corresponds to on machine parallel via the parallel driver parallel.

Option 2 corresponds to distributed computing via SLURM via parallel driver distrib_slurm.

Both parallel drivers can be found in the GalfitModule under the ParallelDrivers

directory. ’1’ is the current default.

• -NS | –num-steps – indicates the number of steps to use in the multi-step fitting

process, Section 4.3. The number of steps is allowed to range from 1–3 and corresponds

with fitting different components per step depending on the number of components

selected Section 3.2. ’2’ is the current default.

• -NC | –num-components – indicates the number of components to use in the fit-

ting process, Section 3.2. ’2’ corresponds to the 2-component method and ’3’ the

3-component method. ’3’ is the current default.

• -r | –restart – indicates whether to restart the pipeline assuming some failure or

early stoppage.
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Figure 4.1: A flow chart detailing the operation of the control_script.py script.
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• -n | –basename – dictates the name of the results folder, found in the -out directory,

and the prefix for the results. The basename defaults to “GALFIT”.

The paths to the directories populated by SpArcFiRe may also be specified. If paths are not

supplied, the script defaults to using sparcfire-in, sparcfire-tmp, and sparcfire-out.

After these arguments are handled, the script cleans and creates the directories necessary

to use the pipeline. We then build a master galaxy list from the observations in the input

directory. At this point in the program, we can begin the fitting process. If the parallel

option is set to 0, go_go_galfit.py is run in serial. For the distributed fitting process

(Section 4.5), we begin by setting the ParallelDriver options and chunk size, i.e. the

number of unique observations to be sent to each call to go_go_galfit.py. Currently and

for the results in this study, our code utilizes a chunk size of 10. In our experience, 10

observations seems to provide a good balance between limiting the heavy I/O involved in

the fitting process—especially when the number of compute nodes is high (e.g. when using

SLURM—and accommodating bad observations or otherwise poorly initialized models which

can greatly increase the overall runtime. We then prepare the text file to be piped to the

ParallelDriver and run the selected driver via a python subprocess shell.

If the parallel ParallelDriver is selected (option 1), both STDERR and STDOUT from

go_go_galfit.py are captured. Given this, and although this option is the default, we

recommend for users to first run the code in serial to confirm that their files and directories

are set-up correctly before attempting to perform the fitting procedure in parallel. We

furthermore do not recommend using this option for very large runs as miscellaneous errors do

pop-up from time to time and the capturing of STDERR makes these errors nearly impossible

to debug.

If distrib_slurm ParallelDriver is selected (option 2) as the parallel driver, errors and

STDOUT are output to files corresponding with node and process name in a subdirectory,

GALFITTING, of the affectionately named SLURM_TURDS directory in the user’s home direc-
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tory. We highly recommend that users of this pipeline check the .err files in this directory

periodically to monitor the progress of the fitting procedure.

After all chunks have been sent to go_go_galfit.py, we check whether the number of

output model files (including failures) matches the total galaxy count found during set-up.

If fitting errors occurred or a bug otherwise prevented a chunk from being processed, the

remaining galaxies are re-chunked and fed back to go_go_galfit.py to be processed again

with a notification of the number of galaxies remaining printed to STDOUT. We set an upper

limit on this processing loop to 10 attempts. If an unmanageable error occurs, this is most

often evidenced by what appears to be a fixed number of galaxies remaining, as reported to

the user, throughout the duration of the re-processing loop. When all model or failure files

have been successfully produced, the fitting process is complete.

The final step control_script.py takes is to extract the GALFIT parameterization and

residual analysis, performed in go_go_galfit.py, Section 5.1, from the output FITS. We

again take advantage here of our distributed computing scheme and split the results into

chunks, combining the individual galaxy data together (per chunk) into a pandas dataframe,

saving to disk, and then combining all chunks into a single output file. This output file is

dropped in the “basename” folder located in the output or -out directory with the name

[basename]_output_results.pkl. If multiple runs are performed with the same name,

the script appends an iterative number before the extension so as not to overwrite previous

results. This is accommodated in the results analysis (Section 5.3) as the analysis framework

always uses the most recent output, i.e. the output with the highest number. Once this is

complete, we tarball the final fits to the “basename” directory.
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Figure 4.2: A flow chart detailing the operation of the go_go_galfit.py script for the two
component fit method.
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Figure 4.3: A flow chart detailing the operation of the go_go_galfit.py script for the three
component fit method.
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4.2 go_go_galfit.py

go_go_galfit.py is written to be called from command line to ensure compatibility with

the distributed computing scheme we employ, Section 4.5. It takes in, as command line

arguments, setup information as well as the chunk of identifying galaxy names to be fit.

go_go_galfit.py begins the fitting process by generating starmasks via

remove_stars_with_sextractor.py, a slightly modified version of the starmasking code

used by SpArcFiRe, and GALFIT feedmes, generated by sparc_to_galfit_feedme_gen.py,

for the list of galaxies fed in. Notably, sparc_to_galfit_feedme_gen.py returns a dictio-

nary of FeedmeContainer objects which contain the initial parameterization for all galaxies

in the chunk. This object, referred to as the “feedme object” or “FO” in Figures 4.2 and

4.3, is ultimately what handles the GALFIT parameterization throughout the fitting process.

go_go_galfit.py then prepares to run GALFIT itself.

The entire fitting process is detailed in the flowcharts in Figures 4.2 and 4.3, which

demonstrate the process for two and three component fits (Section 3.2) respectively. These

flowcharts include several fitting techniques developed for and employed in this study—multi-

stage fitting, Section 4.3 and parameter search fitting, Section 4.4—but we will provide a

brief overview here.

Two parameters are set before GALFIT is first run: the disk axis ratio of the component

to be rotated to form the arms and the magnitude of the bulge in accordance with the

parameter search. The former is set using a semi-empirical relationship between it and the

probability of spirality, p_spirality, as reported by GZ1 in order to give GALFIT the best

chance to generate arms (Section 3.3.2). The step-wise relationship boils down to: the higher

the probability, the lower the disk axis ratio, the more well-defined the arms should be in

the initialization given to GALFIT. Both these parameters are then fed into the parameter

search loop so that the multi-stage fitting process can begin.
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The parameter search loop is performed asynchronously (per galaxy) using python’s

asyncio library. Each asynchronous instance performs the entire multi-step fitting procedure

for each iteration of the parameter search. To be clear, each galaxy fed in is processed in serial

on-node—only the parameter search variations of each galaxy are processed asynchronously.

For this reason, we have implemented a process watcher that monitors all instances of asyn-

chronous subprocesses (GALFIT) in order to timeout the fitting procedure for models that are

poorly initialized. After the completion of the multi-stage fitting procedure, we perform a

residual analysis on the output and store the result for comparison against the other param-

eter search models. This is the final step of the multi-stage fitting procedure per parameter

iteration.

After all models for a single galaxy have been generated, we find the model which minimizes

our residual metric. We select this model as the “best” model, update its FITS header with

the residual analysis, and copy it to its corresponding galaxy folder in the output directory.

If GALFIT failed to produce a model for all iterations of the parameter search, a file entitled

failed_[galaxy name]_galfit_output.fits is generated in the -tmp directory—but not

copied to the galaxy folder—which holds all output GALFIT files. Once the successful fit has

been determined, we create an arms-only model (if applicable) for SpArcFiRe by modifying

the feedme to 1) turn off optimization and 2) only output the rotated disk component so as

to improve the chances of SpArcFiRe successfully processing the model.

4.3 Multi-Stage Fitting

A unique feature of our pipeline is the ability to fit the model to the image in multiple

stages corresponding to the NC2 and NC3 methods we use to generate the spiral, from one

to four stages. For the first set of results in this paper, we perform a three-stage fit using

the NC2 structure, in which we first fit our initial guess of the bulge and sky, then fit the

resulting output with our initial guess for the rotated disk to form the arms. In the final
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stage of the fit, we allow the inner and outer radii of the power function to be free parameters

in an attempt to refine the modeling of the arms.

For the second set of results, NC3, we perform another three-stage fit, in which we first fit

our initial guess of the bulge, arm, and sky components, then fit the resulting output with

the guess for disk, updating the disk magnitude with that of the rotated disk component. As

with NC2, we perform a final fit, setting the inner and outer radii of the power function to

be free parameters. We choose to fit the arms during the first step to aid GALFIT in retaining

the arms when the disk is introduced—GALFIT has a tendency to use the light from the disk

to cover the arms and this strategy appears to be the best way to mitigate that.

We motivate the choice to start both procedures with the bulge on the assumption that

our initial guess is imperfect but that the bulge will provide the most reliable starting point

for the rest of the convolution given the density of light in that region and GALFIT’s inherent

sensitivity to flux differences between observation and model. In the initial development of

the multi-stage procedure, we attempted to fit the disk first on the dual assumption that

GALFIT would be more successful in fitting the arms of the galaxy having been given the

chance to fit them pre-rotation by a pure disk profile and that the components in the final

fit would be more easily separable. However, we did not find either of these assumptions to

be the case and in comparing the two methods, found that the bulge-first procedure resulted

in a higher success rate overall.

There is no guarantee that each stage of the multi-stage fit will work. If this is the case, we

resume with the following stage and allow GALFIT to proceed with the non-failure outputs

and the initial input(s) all at once. If only the first stage succeeds, we proceed with our

analysis taking the galaxy as a single component fit but otherwise, nothing changes in our

analysis. A new feedme is generated at each stage, named for the component(s) being fitted

(with the exception of the final feedme entitled GalaxyID.in), and retained, if specified, for
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each galaxy. Subsequent FITS outputs are not retained but can be generated again using

the appropriate feedme.

As mentioned in Section B, the multi-stage fitting procedure is handled by the

OutputContainer class from the GalfitModule, written to ingest GALFIT output text from

console (STDOUT). The ability to do so without file I/O is a key feature of our ap-

proach, especially in the context of parallelizability. An important byproduct of using the

OutputContainer class to handle output and subsequent feedme generation is that the

components are always output in the same order to the feedme file. In prior versions of the

multi-stage fitting code, we noticed result and runtime discrepancies when GALFIT attempted

to convolve images with components in a different order, i.e. sky before disk or disk and arms

before bulge, and the additional processing necessary to avoid this, while maintaining the

flexibility of the current approach, was impractical. This directly motivated the development

of the OutputContainer class, and the GalfitModule as a whole.

4.4 Parameter Search Fitting

In addition to the multi-stage fitting, our pipeline incorporates a parameter search method

into the fitting process. This is achieved on initialization of the multi-stage fitting procedure

in go_go_galfit.py—we set the desired value of the parameter, modify the name of the

output model accordingly, and substitute these into the feedme generated from the S2G

procedure, before running the full multi-stage fit for each iteration of the parameter. We

then compare the resulting output using the residual analysis methods detailed in Section

5.1 below, and choose the result which minimizes the difference between the observation and

model. For this study, we perform our parameter search on the bulge magnitude, initializing

this magnitude to the petromag provided by SDSS DR7, and search above and below this

value in steps of 1 magnitude.

35



The parameter search method can be computationally expensive as it requires GALFIT

to be run repeatedly on the different initializations in order to search the parameter space.

Care must be taken when selecting the parameters and values to search. For this study, we

utilize this method on the bulge magnitude having found GALFIT to be the most sensitive

to this parameter in the context of our component selection. We attempted to perform the

parameter search on the disk magnitude along with the bulge but did not find significant

improvement in the results especially when considering the twofold increase in runtime. The

parameter search approach is similar, in its treatment of the magnitude, to that of the multi-

band fitting technique (Simard et al., 2002; Simard et al., 2011; Lackner & Gunn, 2012; Meert

et al., 2014; Kim et al., 2016, among others) which fits an observation in one band and then

uses this result as input—fixing all parameters but the magnitude—for an observation in a

second band. We discuss this technique further in Section 9 but have not yet integrated it

into our pipeline.

4.5 Distributed Processing

SDSS DR7 contains approximately 900,000 galaxies, 600,000 of which are likely to be

spiral. It is therefore important to optimize our pipeline to fit models to these galaxies as

efficiently as possible. GALFIT, although well-optimized and fast for low resolution galaxies

with few components, which avoids the need to parallelize GALFIT itself, has no built-in bulk

fitting capability. This suggests the need for a generalized distributed computing scheme

to be the solution. We outline the method we use to perform the parallelization below to

motivate our approach.

As described, the main GALFIT driver in our pipeline is the go_go_galfit.py script which

can be run from the command line. This script, along with the GalfitModule containers,

are what allow us to pipe galaxies to different processors or nodes via SLURM or other

workload managers. In the current version of the pipeline, we utilize command line options
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to set the style of distributed computing, either by serial, on-node, or cluster computing

via SLURM, and also use python’s asyncio library for asynchronous computation with the

serial and cluster parallelism options to accommodate the parameter search fitting proce-

dure. The scripts/executables that handle the distributed processing can be found in the

ParallelDrivers directory of the GalfitModule.

The main challenge of parallelization is the need to update the GALFIT components between

stages. GALFIT outputs the model’s parameterization in three places: the header of the

output model FITS image block, STDOUT, and an output feedme file named, by default,

galfit.NN where NN is an integer which keeps increasing so as not to overwrite the previous

output file (from any galaxy) (Peng et al., 2010) and are dropped in the current working

directory. The final method is the simplest way to manage subsequent fits as the output

parameterization can be fed directly back into GALFIT however, beyond the runtime problem

described above, a concurrency issue arises when using distributed computing as multiple

nodes may attempt to write the same galfit.NN to file. Without these galfit.NN files being

available to use, we instead ingest the resulting parameterization from STDOUT, update the

components in the GalfitModule container, and output a new feedme file for the next stage

of fitting.1 If we have reached the final stage of fitting, we do not output a final feedme but

pull the final model from the output FITS file and calculate our residual metrics at this stage.

It would be possible to modify GALFIT’s source code as distributed via the Facebook group to

change the naming convention of the galfit.NN files and thus avoid the concurrency issue,

but our current approach, especially in the context of multi-stage fitting, saves on I/O and

is ultimately more flexible.

1It is due to this limitation that we are unable to use other concurrency frameworks (such as cofutures
or multiprocessing) to aid in the parameter search fitting procedure.
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Chapter 5

Results Analysis

5.1 Residual Analysis

To evaluate the efficacy of our models, we use the combination of two methods to assess the

residuals that are output by GALFIT. The first is a statistical Kolmogorov–Smirnov (KS) test

as implemented from the SciPy.stats package (Virtanen et al., 2020) and the second uses

a variation on Equation (2.1) to determine a numerical measure. Neither of these methods

is particularly sensitive to the arm fitting of the model but in using both, we hope to set

a numerical threshold on good/bad fits before we can proceed to use analytic methods to

otherwise determine model success. We are hesitant to apply physically-motivated methods

at this stage in the development of the pipeline as the multi-component structure of our

models do not always lend themselves to direct physical analogues, an issue we discuss in

Section 6.4.2.

To prepare for these two methods, we use our OutputFits to ingest the residual from the

output FITS file as a NumPy array as well as the star mask generated by SourceExtractor.

We then multiply the residual array by this star mask and store the result as an attribute
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in the object. The masked residual is the basis of both methods. We have attempted, in the

past, to use a bulge mask to assist in the calculation of the residual in order to better isolate

the arm fit according to the scientific goals laid out in Section 1. We generally find that this

method produces significantly worse results when used during the fitting procedure (Section

4.5) so we opt to avoid its use for this study.

For the KS test, we perform our comparison of the masked residual against a Gaussian

centered at the mean of the residual and with the same standard deviation to represent a

pure-noise image. We take our null hypothesis to be that the two distributions are the same

and reject the null hypothesis if the p value is less than 0.05. The KS test is incredibly

sensitive to fitting errors near the bulge and in the brighter regions of the disk. For this

reason, it is not suitable to be used alone for analysis according to the goals of our research.

The second method we use evaluates the norm (2-norm) of the residual to give a pure

numerical measure of the goodness of the fit. This measure operates in a similar method

to the built-in χ2 measure output by GALFIT, (2.1), but it uses the minimum between the

norm of the masked model and norm of the masked observation image as the normalizing

value. We then take the norm of the normalized masked residual (NMR) and this gives us a

value of the goodness of fit. This method is less sensitive than the KS test but tends to miss

fine details and slight-if-noticeable errors in the arm fit. When combined, by multiplying the

NMR with 1 - pKStest, our fit quality measure, referred to as NMR_x_1-p, does a good job of

filtering out exceedingly bad models and provides a robust method for sorting the results. It

also provides a means of quantifying non-spiral fits, of which we categorize as ‘not successful’

in this study, despite how well the model may fit the observation.

These methods are integrated as a class method in the OutputFits class and store the

results as each as attributes. The method also updates the header of model image block in

the FITS file with the value of the NMR as well as the p value of the KS test which we use

when we collate our final results.
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We perform the residual analysis in the pipeline in go_go_galfit.py, as part of the

parameter search process. After all steps of a fit have been completed, we calculate the

residual of the different galaxy models so that we can determine a minimum value to select

the best fit. To avoid extraneous file I/O during the already I/O intensive fitting process—i.e.

by writing the results of this calculation to the header using the generate_masked_residual

method of the OutputFits class—we store the NMR_x_1-p and find the minima of these values

after the parameter search process is completed. We then update the header of the minima

with the NMR_x_1-p.

In the main running script, control_script.py, the accumulation of residuals takes place

after all GALFIT models have been generated. We again take advantage of the work done in

go_go_galfit.py and merely extract the residual information from the headers of the FITS

files. We also also collate the final model parameterizations at this time.

5.1.1 GalfitModule: Calculating and Extracting Residuals

We have created three utility codes which enable the user to calculate and extract residuals

from GALFIT models and their FITS headers. These scripts are entitled:

calculate_residual_info.py, calculate_residual_info_helper.py, and

extract_residual_info_from_headers.py. Of the first two scripts,

calculate_residual_info.py performs the bulk of the preparation for calculating the resid-

uals, and only calls the helper when distributed computing is employed via shell. The primary

utility of this script is to calculate and collate the NMR_x_1-p values for every model (updat-

ing their headers along the way) as well as their parameterizations to be output as a pandas

dataframe for later analysis. The secondary utility of this script is to test alternative residual

methods as it can easily be updated to accommodate any changes to the masked residual

calculation done by the generate_masked_residual method. Finally, the command line
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arguments which can be fed to this script are structured in the same way as that of the

control_script.py albeit with fewer options.

The extract_residual_info_from_headers.py script, is a utility developed to be used

in the control_script.py. Assuming residuals have already been calculated and the headers

updated, this script is used to collate both the NMR_x_1-p values and their parameterizations

to be output as a pandas dataframe.

5.2 Arm Fit Analysis

The above methods can provide a general means for determining the success of a fit but

neither is able to consistently quantify the success of the arm fit. We can, however, re-process

the models through SpArcFiRe and use the arc metrics that SpArcFiRe provides to assess

the models for arm consistency with the original observations.

To do this, we first generate a GALFIT model of the best-fit galaxy which contains only

the arms of the model. For the arms-only model, we reduce the value of the rotated disk

component’s diskAxisRatio to 0.15, thus producing thinner arms (Section 2.2.2), to provide

a ‘pure’ representation of the arm from which SpArcFiRe can determine an accurate pitch

angle measurement. This generally has the effect of reducing non-detections at the risk of

over-determining the arm length and occasionally losing contrast from the flux difference

between bulge, arms, and sky. We then re-process the model through SpArcFiRe, taking

advantage of SpArcFiRe’s ability to fit spirals arm-by-arm and extract from each galaxy—

before (observation) and after (model) performing the GALFIT decomposition—the top two

arms in length which match the spin direction SpArcFiRe has determined for the galaxy.

For each arm, we use the length, in pixels, and the pitch angle of each arm for our analysis.

To compare the lengths, we take the ratio of the shortest and longest arms of the model

(again using the top two chirality-agreement arms) and use a fractional cutoff to determine
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success, i.e. the model’s second longest arm must be some fraction of the length of the

longest. In the case that SpArcFiRe does not detect more than one chirality matched arm,

we take this ratio to be one and proceed with the analysis. Note: the original intention of this

metric was to compare the shortest arm (of the top two in length) against the longest arm

of the observation. We found, however, that a model-only comparison reduces the overall

mis-classification rate and allows for a slightly more stringent cutoff value.

To compare the pitch angles, we take the minimum of the difference of the pitch angles

for before and after as well as the difference between the reported

pa_alenWtd_avgdomChiralityOnly values and use this difference to determine success. Ta-

ble 6.1 displays the values chosen for the cutoffs for each metric. We discuss the consider-

ations made in further detail in Section 7.1 but note here that the choice of cutoff value is

arbitrary until compared with by-eye validated results. Finally, galaxies which do not have:

an arm component in the final GALFIT fit, arc level information for either the observation or

model from SpArcFiRe, or near-zero/near-90 deg pitch angles—although both these types of

values are possible, it’s more likely they represent failed galaxies—are excluded from consid-

eration and are counted as failures. The results in Section 6 are produced using the cutoffs

in Table 6.1 and considerations described above. Rerunning the models through SpArcFiRe

is time consuming but doing so the most reliable approach we have found so far.

The code that reruns SpArcFiRe, run_sparc_on_models.sh, is currently found in the

Utilities submodule but this may change with future versions of the GalfitModule. This

script operates by preparing the working directory and running SpArcFiRe before plac-

ing the csv results in the user-specified runname (alternatively referred to as basename)

folder in the output directory. The per-galaxy results are retained in a directory enti-

tled post_galfit-out. As with the pipeline, this script takes advantage of the same

distributed processing executables/scripts found in the ParallelDrivers directory of the

GalfitModule.
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5.3 GalfitModule: ResultsAnalysis

The GalfitModule contains several scripts in the ResultsAnalysis submodule which can

be used to assess the results from running the pipeline. This analysis includes filtering the

results by the metrics laid out in Sections 5.1 and 5.2, plotting functionality, the ability to

combine results from multiple data sets, and a utility for extracting a representation of the

results by residual metric (Section 5.1) quantiles. In order of the processing of results, we:

1. extract residual and parameterization information from the models, as collated into

the [basename]_output_results.pkl file (Section 5.1),

2. extract SpArcFiRe results pre and post-GALFIT,

3. summarize and combine (1) and (2) according to the processing described in Sections

5.1 and 5.2,

4. evaluate success by user-defined metric cutoffs,

5. compare this performance to that of the by-eye success determination (optional),

6. combine the results from multiple data runs (if applicable), as used in this study to

combine the NC2 and NC3 results,

7. plot several features of the results to evaluate their behavior in bulk, and

8. sort and output the results by NMR_x_1-p quantiles—using the PNGs if generated—for

quick image reference (optional).

The combination of these can be found in the results_analysis.py script, which combines

all of the above to complete the processing of the results. The results are output as a

dictionary with format:

{
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basename : results namedtuple,

"[basename prefix]_combined" : combined results namedtuple,

}

where the results namedtuple has index number/fields:

0 / full_df – a dataframe containing all information for all results.

1 / success_df – a dataframe containing all information for the models which were deemed

‘successful’.

2 / not_success_df – a dataframe containing all information for the models which were

deemed ‘not successful’.

3 / by_eye_success_df – a dataframe containing all information for the models which

were deemed ‘by-eye successful’.

4 / by_eye_not_success_df – a dataframe containing all information for the models which

were deemed ‘by-eye not successful’.

and where the combined results namedtuple has index number/ fields:

0 / bool_df – a dataframe containing (generally) boolean information regarding the com-

bination of the results, i.e. success by metrics individually, success by metrics when

combined per Section 5.3.1 below, by-eye success, etc. This dataframe should be used

for counting results (as is used in combine_multi_run_results.py) given the choices

used to determine success per the combination of result sets.

1 / full_df – a dataframe containing all information for all results across all data runs

combined.
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2 / success_df – a subset of combined_full_df which contains all information for the

models which were deemed ‘successful’.

3 / by_eye_success_df – a subset of combined_full_df which contains all information

for the models which were deemed ‘by-eye successful’.

purposefully re-used to provide flexibility when analyzing the results.

We recommend using the jupyter notebook results_analysis.ipynb to examine the

results as it is the most convenient method to do so. In the notebook environment, and with

the proper key word arguments set, the user can both see the summary of the results and

view the plots generated accordingly.

5.3.1 Combining Results

In the schema we employ, the GalfitModule can produce n-component models, from 1–3

(Section 3). Given the morpohological diversity of spiral galaxies, it is impossible to choose

a single n-component scheme which can provide the best fit for all observations in a survey.

It is for this reason that we produce both 2 (NC2) and 3 (NC3) component fits and combine

the results so as provide better coverage of the morphological diversity and to select the best

fit among the two schemes.

The combination of multiple result sets occurs during the results analysis in the

combine_multi_run_results.py function. This function takes as input the full_df

dataframes produced as part of the results analysis described above and produces a series of

comparisons between the n-component runs. When ran, these comparisons are summarized

in STDOUT. We provide two primary methods of combination, and one additional method

when compared with the by-eye results. These are referred to as:
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success_m ∨ success_n ∨ . . . ( ∧ by-eye)

(5.1)

minima → success_minima ( ∧ by-eye)

(5.2)

[(success_m ∨ success_n ∨ . . .) ∨ ( minima → success_minima)] ∧ by-eye

(5.3)

where success_m and success_n refer to the boolean variable indicating success by our met-

rics, minima → success_minima refers to selecting the best fit by the minimum of the fit

quality score (if minimum score then that model is what we select in the combination to de-

termine success), and by-eye is the boolean variable indicating by-eye success. The first two,

(5.1) and (5.2), are also used in conjunction with by-eye results where available. Each of these

combination methods are made available in bool_df, the combined boolean result dataframe,

as: by_sparcfire_score_success (5.1), by_sparcfire_and_best_score_success (5.2),

and by_minima_or_sparcfire_success_by_eye (5.3). For Eq. (5.1), if both models are

‘successful’, we choose the model with the lowest fit quality score to be the ‘best fit’ model,

provided the result (by its runname) in a column entitled best_fit. Similarly, we include

a column entitled best_fit_by_eye which also selects the smallest fit quality score when

both are by-eye successful. We use these methods via Eq. (5.1) as the basis for our results

in Chapter 6.

Note, it is possible to misunderstand the summary of results output to STDOUT by the

results_analysis.py script when compared to performing the analysis on the results in

by_eye_success_df via columns success, by_eye_success, and runname. The STDOUT

output is derived from multiple operations on bool_df whereas by_eye_success_df, as a
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subset of full_df, is chosen by the runname which produced the best fit, i.e. is successful

and has the lowest residual. It is sometimes the case that the ‘successful+residual’ model

between runs is not the model selected in the by-eye evaluation so a boolean comparison

between these two columns may cause discrepancies with the results in STDOUT.

5.3.2 Results Plotting

To plot the results, we use the Plotting submodule of the GalfitModule which con-

tains templates and a common interface function, create_plot, for several types of plots—

ECDF, scatter, scatter matrix, histogram. All plots are produced in Plotly (Inc., 2015).

When results are generated, the user has the option to specify whether to produce plots

via key word arguments to results_analysis which uses the create_all_plots function.

Adjustments to the plots can be made by specifying a dictionary through the key word

argument plot_options to results_analysis—We recommend viewing the plots in ‘in-

teractive’ mode to determine appropriate bounds and adjustments before saving them. An

example of this can be found in the results_analysis.ipynb notebook but dictionary keys

generally follow the syntax: [plot_feature_name]_[component]_[plot_type]. Individual

plots can also be generated through create_plot directly though we recommend consulting

create_all_plots to identify preparation methods.
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Chapter 6

Results on a Sample of Galaxies from

SDSS DR7

6.1 Data Selection

We select galaxies from SDSS DR7 to coincide with and utilize the analyses performed by

SpArcFiRe in Davis & Hayes (2014) and Silva et al. (2018) as well as Hart et al. (2016) who

uses Galaxy Zoo 2 data (Willett et al., 2013, or GZ2) to quantify spiral galaxy morphology

from DR7. We continue their analysis with r-band observations because the transmission

intensity is maximized for SDSS (Stoughton et al., 2002). From this data, we have created

three sample sets: 1) 14 well-resolved spiral galaxies for which SpArcFiRe can accurately

map the arcs (as identified by-eye in the final fitting step, f, in Figure 2.1), 2) 1000 galaxies

pulled at random from a set of GZ1 galaxies which were classified as having a spirality

probability of > 90% and with apparent magnitudes in the r-band between 16 and 17, and

3) 28,912 galaxies from the original GZ1 sample with clearly observable structure as described
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Sample Size 14 1000 28912
NMR_x_1-p Cutoff Value 0.007 0.007 0.009
Pitch Angle Cutoff Value 10 7 9
Arm Length Ratio Cutoff Value 0.5 0.62 0.45

Table 6.1: Table of the cutoff values used for each sample size for the fit quality, pitch angle
difference, and arm length ratio metrics, selected to minimize the false positive and false
negative classification rates.

in Davis & Hayes (2014) and Silva et al. (2018).1 These approximately 29K galaxies are not

guaranteed to be spirals but, by the analysis done by the human volunteers of Lintott et al.

(2011b), they are more likely to be so. 897 of the set of 1000 galaxies can be found in this

set of 29k.

We have chosen these three sets to optimize our pipeline to provide as much generality

as possible while prioritizing the by-eye accuracy of spiral galaxy models—more discussion

on this metric can be found in Section 6.4. Additionally, these galaxies have already been

downloaded and used as part of SpArcFiRe’s most recent data release, as part of Silva et al.

(2018), which saves additional computational time from needing to run SpArcFiRe again (see

Section 4) and allows us to be consistent across our studies. The input images, or source

observations, for all three sets, are postage stamps extracted from the fpC images provided

by the SDSS Data Archive Server (DAS).

6.2 Summary of the Results

We present the results of our SpArcFiRe to GALFIT pipeline for the NC2 and NC3 methods

as well as their combination (referred to as NC2 + NC3) for each of the data sets, 14, 1000,

and 29k in Table 6.2. Table 6.1 displays the values chosen for the ‘success’ cutoffs for each

metric. A ‘success’ is defined as any model which satisfies all of these cutoff values and which

also matches the chirality between observation and model as determined by SpArcFiRe. We
1We have since pruned some of the galaxies from the initial sample of 29,250 but the premise remains

the same.
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Sample Size 14 1000 28912
NC2 NC3 NC2 NC3 NC2 NC3

Total Number of Models Generated 14 14 1000 1000 28912 28912
Processed by SpArcFiRe* 14 14 951 965 27469 27643
Fit Quality Metric 12 13 909 896 26048 27496
Pitch Angle Metric 12 10 606 617 18126 18206
Arm Length Ratio Metric 9 14 720 709 20925 20943
Chiral Agreement 7 13 626 584 14341 15095
Success by Metrics 5 9 364 319 9866 10312
Success by-eye* 5 11 406 418 358** 461**
False Positive Rate* 1/10 0/3 17.8% 15.4% 17.2%** 17.6%**
False Negative Rate* 1/6 2/13 29.6% 32.9% 28.7%** 32.1%**

NC2 + NC3 NC2 + NC3 NC2 + NC3
Success By Metric 10 523 14905
Success by-eye 11 566 568**
False Positive Rate* 0/3 24.8% 23.5%**
False Negative Rate* 1/12 24.7% 23.8%**

Table 6.2: Table of results for our three sample sets, 14, 1000, 28912 (29k) for the NC2
and NC3 methods, and the metrics used for evaluating GALFIT success. We also present
the results for NC2 + NC3, as a sub-table, counting a success in either set as contributing
to the total. *All by-eye evaluations are with respect to the number in the ’Processed by
SpArcFiRe’ category. **As estimated by evaluating a sub-sample of 1000 random models
from the 29k set by-eye.
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discuss the considerations made for these cutoffs in further detail in Section 7.1 but note

here that the choice of cutoff value is arbitrary until compared with by-eye validated results.

Galaxies which do not have: an arm component in the final GALFIT fit, arc information

for either the observation or model from SpArcFiRe, or near-zero/near-90◦ pitch angles are

excluded from consideration and are counted as failures.

When combining the methods, i.e. NC2 + NC3, the success reported by our metrics is

taken as either method producing a success. In the case that a success is reported for both

methods, the model with the better fit quality score is taken as the best model fit. Several

of the analysis plots presented display the results across NC2 + NC3 for every set—given

that a model for each has been generated, the metric for both will be present. Appendix D

presents the observation, model, residual images sorted by fit quality score at 20% quantile

intervals for the 1000 and 29k data sets.

For the sample of 14 and 1000, we evaluate our results by-eye and compare these to

the residual and arm fit analysis (Sections 5.1 and 5.2). For the 29k set, we evaluate a

randomized subsample of 1000 galaxies by-eye and use this in support of our assessment

of the pipeline’s performance. We evaluate our false positive rate as False Positive / (False

Positive + True Negative) and false negative rate as False Negative / (False Negative + True

Positive) as illustrated in the 14 sample column. For each data set, we begin the process

of minimizing false positive/negative rates from an empirical residual cutoff value of 0.007

based on a survey of all models from the sample of 1000 and 29k galaxies. From there, we

adjust the cutoff values to minimize these rates in the combined sample. Between the sample

of 1000 galaxies and the 1000 sub-sample of 29k galaxies, we see consistent false positive and

false negative rates suggesting that 23 – 25% is a robust estimate for each of these rates.
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6.3 Results on the Selected Sample of 14 Galaxies

Figure 6.1 shows our results with each model tiled by: observation, model prior to GALFIT’s

convolution, NC2 model, NC2 residual, NC3 model, NC3 residual. The results are displayed

in fit quality metric sorted order. Note that although the galaxies in the successful models

may represent the visible structure of a galaxy well, the flux normalization process for con-

verting between FITS and PNG often obscures issues in magnitude estimation so it is not

necessarily the case that GALFIT has succeeded despite this advantage. Also note that we

do not mask stars in the residual that may have otherwise been masked during the fitting

process—this affects the scaling of the residual but it is often the case that these stars do

not affect the fit as can be identified by the model image itself. We intend to apply this

masking of the output in future versions of the GalfitModule.

6.3.1 By-Eye Evaluation on the Set of 14 Galaxies

The true positive and false negative tiles in Figure 6.1 are the by-eye successful results

for NC2 + NC3 for the set of 14. In general, we find that these models fit the pitch angle

and widths of the arms in the observation well regardless of the bulge fit. There are also

several cases where the model arms extend well beyond that of the original galaxy. This is

expected behavior as it is exceedingly difficult to place a limit on the length of the arms—

GALFIT has a truncation function built-in P, 2010 but the added complexity and difficulty

of translation makes its use infeasible in an automated setting. Furthermore, SpArcFiRe

provides an estimate of the beginning and ending of an arm which can be used to truncate

the results of interest, as is done in Section 7.2. It is sometimes the case, as in the NC3 model

of galaxy (2), that an arm from the observation (north of the bulge) can be clearly seen in the

residual despite what appears to be a successful trace of that arm in the model. The success

of this trace is further evidenced in the residual by the faint black structure which follows the

(white) arm. This indicates two things: the first, that there is a brightness mismatch from
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FALSE NEGATIVE (FN)

11)
TRUE NEGATIVE (TN)

12)

13)

14)

Figure 6.1: The results from the sample of 14 galaxies. Each result is tiled: observation,
model as parameterized prior to GALFIT’s optimization, NC2 model and residual, and NC3
model and residual. The images in each portion—TP, FN, TN—are sorted by our measure
of fit quality for the models which are deemed the best fit (i.e. smaller NMR_x_1-p) from
NC2 + NC3.
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the disk component—rotated to form the arm—in the region of that arm, and the second,

that the model arm is thinner than that of the observation but that it still appears to fit

both the winding and the pitch angle correctly. By the latter criteria and by the success of

the other arm, we deem this model to be a good fit. To be clear, we purposefully overweight

the pitch angle in our consideration to accommodate our scientific goal of examining spiral

galaxy morphology and classification. We furthermore have a means of measuring the pitch

angle as discussed in Section 7.2.

From working with this sample, it is clear that our approach is limited in its ability to

model well-resolved galaxies, especially those with distinct sub-structure in the disk. This

behavior was expected given the minimal component set used to describe the galaxies but

will certainly need to be addressed in upcoming studies when higher resolution images are

used. We anticipate incorporating something like the F -test used in Simard et al. (2011) and

Lackner & Gunn (2012) which should integrate nicely with the multi-step fitting process and

GalfitModule. Another issue which arose while working with this smaller subset, prior to

and as partial justification for incorporating the parameter search method, is GALFIT’s inher-

ent sensitivity to magnitude estimates. Despite much testing, we were unable to determine a

’better’ mapping between the petromag from SDSS and our model components: adjustments

to accommodate identified trends (Figures 6.5 and 6.10, Sections 6.4.2 and 6.5.2) often failed

to make a difference. This inconsistency does offer some measure of robustness from GALFIT,

and which appears again in the larger sample sets: an inaccurate parameter estimation for

one galaxy (by one method) is an accurate parameter estimation for another galaxy. What

this means is that minor changes in the individual parameterization, no matter GALFIT’s

sensitivity to those parameters, is unlikely to have a major effect on the results for larger

sets of data. This implies that we will have to turn to other methods (such as machine

learning, Section 9) of parameter estimation improvement or of success validation, in order

to see substantial increases in the performance of our pipeline.
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6.4 Results on the Sample of 1000 Galaxies

Table 6.2 provides a quantitative description of the overall results as filtered by the analysis

metrics used to determine success. Along with this table, We have produced several plots

using NC2 + NC3 which highlight features of the models or which showcase the results of

applying our metric cutoff values, Figures 6.3-6.6. We have included an additional figure that

illustrates the distribution of arm-to-total flux ratios (S/T ), defined as the ratio between the

flux associated with the spiral arms and the total flux of the model, calculated by Equation

(2.5). In these figures, we purposefully choose to label the components as ‘Sersic 1,2,3’ as

opposed to ‘bulge, disk arms’ given the possibility of GALFIT using one component to aid in

or otherwise take over the fitting of another component, i.e., a bulge expanding to become the

disk according to Sérsic index and half light radius conventions. This also allows for clarity

across NC2 and NC3 when compared directly in the same figure. We have also evaluated

the ‘Processed by SpArcFiRe’ sample of both the NC2 and NC3 sets independently by-eye

(Figure 6.2), choosing models which generally fit the shape and pitch angle of the arms to

be ‘successful’ as motivated by the scientific goals stated in Section 1 and discussed further

in Section 7.2. This selection criteria purposefully ignores arms which extend beyond that of

the original observation (see Section 6.3.1), de-weights the contribution of the bulge fit, and

furthermore excludes non-spirals from consideration, casting these as failures. We evaluated

the 14 model sample set and the sub-sample of the 29k galaxy set under this same criteria.

It is possible, in this scheme, that some valid models are excluded from consideration by

SpArcFiRe’s failure to process them, however, careful observation suggests this number to

be minimal and we don’t expect our results to deviate much with their inclusion.

6.4.1 Residual Evaluation on the 1000 Galaxy Set

Figure 6.2 shows models at 20% quantiles along the residual analysis hierarchy for the ’by-

eye successful’ models of NC2 + NC3 for the 1000 galaxy set. When we examine the residuals
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Figure 6.2: A representation of the 1000 galaxies from the by-eye successful NC2 + NC3
results in 20% quantiles of the fit quality score, tiled observation, model, residual as output
by GALFIT and converted to png by fitspng (F. Hroch, 2019).
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Figure 6.3: ECDFs of the fit quality measure for all models and all by-eye successful models
in the combined methods result of 1000 galaxies.

of the by-eye successful models in Figure 6.2 we generally find little variation in the quality

of the fits across the entire quantile range. Residuals are seldom completely indistinguishable

from noise but the shape of the model galaxies and magnitude estimation are close enough to

make it difficult to identify arm structures of the original galaxy. Structure, in the residual,

is most often identifiable near the bulge or occasionally when the arms of the model don’t

match the length, thickness, or brightness of that of the observation. Given our scientific

goals, none of these issues are of great concern.

The distribution of fit quality scores for all models of the 1000 galaxy set for NC2 + NC3

can be seen in Figure 6.3. We see from comparing these plots with those of the ECDF plots for

the residual analysis of the by-eye-samples that the NMR_x_1-p threshold of 0.007 successfully

captures a significant portion of the model fits, by-eye successful or otherwise. The residuals

closest to this threshold, in the 80% quantile of Figure 6.2 (1000 by-eye successful) generally

shows issues with the brightness distribution of the bulge and inner disk excepting a couple

arm-less decompositions in the latter figure. We are therefore confident that although this

measure is not a strong filter of the results, it nonetheless succeeds as a quality measure for

our purposes.
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Figure 6.4: Histograms of Sérsic index values of the bulge, disk, and rotated disk for all, by
metric successful, and by-eye successful models for NC2, NC3, and NC2 + NC3 of the 1000
galaxy set.
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Figure 6.5: Left column: histograms of the magnitude values of the bulge, disk, and rotated
disk for all, by metric successful, and by-eye successful models for NC2, NC3, and NC2 +
NC3 of the 1000 galaxy set. Right column: histograms of the difference between magnitude
and petromag for the categories detailed above.

Figure 6.6: Histograms of the S/T for all, by metric successful, and by-eye successful models
in NC2 + NC3 of the 1000 galaxy set.
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6.4.2 Parameterization of the 1000 Galaxy Set

Figure 6.4 shows comparisons between the distribution of Sérsic indices for all Sérsic

profiles in the NC2, NC3, and NC2 + NC3 results from the 1000 galaxy sample set across

the different result categories: all models, by metric success, and by-eye success. These

figures employ a ‘probability’ normalization scheme to equalize the representation across the

result categories and to avoid over-representing the Sérsic 1 and Sérsic 2 profiles given that

both NC2 and NC3 contain at least the two Sérsic components—this normalization happens

with respect to the total of each component individually.

The distributions are generally consistent, with all results for all profiles peaking at or

below the canonical disk value of n = 1. There is some scatter wherein the third Sérsic

component demonstrates a second peak in the ‘success’ and ‘by-eye success’ plots near n =

1.8. This figure, however, shows very few results for any of the profiles at or near the canonical

bulge value, n = 4. These findings are not consistent with the bulge-disk decompositions

performed by Simard et al. (2011) and Meert et al. (2014). In Meert et al. (2014)’s discussion

of the problem of overfitting, they indicate that this behavior likely implies either a low bulge

Sérsic index or the inverting of the (intended) bulge and disk components wherein the bulge

component is used to fit the disk and vice-versa. We find their assertion to be consistent

with our NC3 results as evidenced by the magnitude distributions for the different profiles in

the ‘success’ and ‘by-eye success’ plots in Figure 6.5. Gao & Ho (2017), in their study, uses

GALFIT to model several NGCs with a series of configurations, the foundation of which being

identical to our NC2 method. As with the B+D studies above, our Sérsic index results also

generally disagree although their models too demonstrate generally lower bulge Sérsic indices

than the canonical value. The phenomena of generally lower bulge indices is also found by

Chugunov et al. (2023)—a significant majority of their models have bulge indices less than 4

with several near 1. These results do not fully explain the tendency for a substantial fraction

of the indices to be lower than 1 but the discussions in Gao & Ho (2017) and Chugunov et al.
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(2023) indicate that this issue may be a result of the increase in central surface brightness

when arms (which reach the center of the galaxy) are applied. This is likely an excellent

starting point for examining the issue as a whole.

As discussed in Section 3.3, large Sérsic indices are sensitive to the sky estimation. By this

premise, it is possible that our treatment of the background sky is too imprecise and, by this

imprecision, that the multi-step, multi-component fitting process may therefore exacerbate

the issue by forcing the bulge component to accommodate other features in the image. We

attempted to correct for this systematic error by fixing the sky between steps after performing

an initial fit on the bulge but we found that GALFIT generally performed worse after doing

so. However, we believe that this issue, and our previous attempt at its correction, is worth

re-examining in light of our results. It may also be possible that our inability to use a PSF

image in the convolution of the fit is affecting the Sérsic index here but in previous attempts

at using the PSF, we found little to no difference in the bulk statistics of the results. It is

also worth noting that the existence of spiral arms more generally affects the photometry

described by the Sérsic profile (Sonnenfeld, Alessandro, 2022; Chugunov et al., 2023) but

neither of these studies show an effect as drastic as can be seen in our results.

Similar to Figure 6.4, the following figures compare the distribution of a selected quantity

of the Sérsic profile in our sample sets: 1) Figures 6.5 compares the distribution of magnitudes

as well as the distribution of magnitude - petromag (as provided by SDSS DR7); 2) Figure

6.6 shows the distribution of the S/T. We will discuss this latter figure with respect to the

29k galaxy sample set in Section 6.5.2.

Of the magnitude distributions in 1: in contrast to the Sérsic index figures, we see the

behavior of the magnitudes diverge across NC2 and NC3 in the Sérsic 1 component for both

sample sets. Although both methods show some spread in this component (although with

more samples, the spreading appears to smooth out), the centers are shifted: NC2 behaves

closer to our expectation—brighter bulge, dimmer disk— than that of NC3. In the NC3
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results, the shift is much greater than the offset between the two components in NC2. We

suspect that this shift occurs due to the concentration of light at the center of the galaxy

from the additional disk component. This behavior, again, indicative of overfitting, presents

a dilemma: according to the results in the 29k column of Table 6.2, the NC3 method produces

a significant fraction more by-eye successful galaxies than that of the NC2 method. It may be

prudent then to compare the Sérsic 2 component in NC3 with that of the Sérsic 1 component

in NC2 on the assumption that GALFIT is effectively using this second component in place

of the first to model the bulge and using the first component to fill in where necessary. This

is intuitive but aids in explaining the preference in the residual analysis for NC3 fits.

In the 1000 sample set, the Sérsic 1 of NC2 and Sérsic 2 of NC3 generally align. We

see a slight difference in the spread of the rotated disk components but in looking at the

comparison with petromag in Figure 6.5, it is not clear that the differences in spread are

meaningful.

Of the magnitude - petromag distributions in 1: the behavior here is similar to that of

the magnitudes in that we see a shift in the Sérsic 1 component difference for NC3. In

comparison to the results of the catalogue created by Simard et al. (2011, Figure 8) and that

of Meert et al. (2014, Figure 12), we expect a slight offset (±0.3) from the petromag for

both components. The Sérsic 1 component in NC2 and Sérsic 2 component in NC3 better

satisfy this constraint than the other components although in both methods, the distribution

is tightened for galaxies labeled as ‘successful’. Note that the NC3 results are distinctly not

centered at 0 for all components but that these are slightly shifted to the right. It may be

possible, in the future, to use this comparison as a metric for determining overfitting and to

subsequently re-parameterize a model to avoid this issue.

Additional parameterization-related plots can be found in Appendix E where figure E.1

shows pairwise plots for several Sérsic parameters in the NC2 + NC3 1000 galaxy sample

as colored by their success classification with ‘by-eye success’ taking color priority. This
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prioritization takes the form of boolean masking: models labeled ‘by-eye success’ retain this

label regardless of their ’by metric success’ status. In the 1000 galaxy set, this prioritization

is especially important given that all 1000 were labeled by-eye. This implies that all ’by

metric success’ models in these plots are false positives, and all ‘not successful’ models are

true negatives. In this scheme, we cannot identify false negatives from the scatter plots

but this is less important in this context. The parameters, magnitude or m, effective radius

or r_e, and Sérsic index or n, are labeled parameter_component number. Note that we

artificially limited the axes ranges—consistent across parameter types—to identify trends in

regions of the plots that are more densely populated.

6.5 Results on the Sample of 28912 Galaxies

As with the 1000 galaxy set, we presented tabulated results for the 29k sample in Table

6.2 and plots of various features of the results in Figures 6.8-6.11. We can estimate our final

success count from the 56.8% of 1000 labeled by-eye. Applying this percentage to the 27643

models processed by SpArcFiRe, we estimate our final success count to be approximately

15,700 models, equivalent to 54.3% of the total 29k.

Figure 6.7 shows a sample of the by-metrics ‘successful’ models at 20% quantile intervals of

the fit quality score. Note that although all galaxies pictured have satisfied our quantitative

metrics, several would not pass our by-eye criteria.

6.5.1 Residual Evaluation on the 29k Galaxy Set

Figure6.7 shows models at 20% quantiles along the residual analysis hierarchy for the

‘successful’ models of NC2 + NC3 for the 29k set. When we examine the residuals of the

by-metric successful models in 6.7 we find these results to be consistent with that of the 1000

galaxy set.
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Figure 6.7: A representation of the 29k galaxies from the by-metric ‘successful’ NC2 + NC3
results in 20% quantiles of the fit quality score, tiled observation, model, residual as output
by GALFIT and converted to png by fitspng (F. Hroch, 2019).
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Figure 6.8: ECDFs of the fit quality measure for all models in the combined methods result
of 29k galaxies.

The distribution of fit quality scores for all models of the 29k set for NC2 + NC3 can

be seen in Figure 6.8. In performing the same comparison (between ECDF plot and our

quantiled sample) as with the 1000 galaxy set, we again see consistency in the performance

of our method and of our fit quality metric.

6.5.2 Parameterization of the 29k Galaxy Set

Figure 6.9 shows comparisons between the distribution of Sérsic indices for all Sérsic

profiles in the NC2, NC3, and NC2 + NC3 results from the 29k galaxy sample set across the

different result categories: all models, by metric success, and by-eye success. As with the 1000

set, these figures employ a ‘probability’ normalization scheme to equalize the representation

across the result categories and to avoid over-representing the Sérsic 1 and Sérsic 2 profiles

given that both NC2 and NC3 contain at least the two Sérsic components—this normalization

happens with respect to the total of each component individually.

The results for this data set generally agree with the 1000 sample set—all results for all

profiles peak at or below the canonical disk value of n = 1 and bulge value of n = 4. With

respect to the 1000 sample set, we do not see the same second peak in the ’success’ and

‘by-eye success’ plots near n = 1.8 for the third Sérsic component. These findings are again
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Figure 6.9: Histograms of Sérsic index values of the bulge, disk, and rotated disk for all, by
metric successful, and by-eye successful models for NC2, NC3, and NC2 + NC3 of the 29k
galaxy set.
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Figure 6.10: Left column: histograms of the magnitude values of the bulge, disk, and rotated
disk for all, by metric successful, and by-eye successful models for NC2, NC3, and NC2 +
NC3 of the 29k galaxy set. Right column: histograms of the difference between magnitude
and petromag for the categories detailed above.

Figure 6.11: Histograms of the S/T for all, by metric successful, and by-eye successful models
in NC2 + NC3 of the 29k galaxy set.
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not consistent with the bulge-disk decompositions performed by Simard et al. (2011) and

Meert et al. (2014), indicative of everfitting.

Similar to Figure 6.9, the following figures compare the distribution of a selected quantity

of the Sérsic profile in our sample sets: 1) Figure 6.10 compares the distribution of magnitudes

as well as the distribution of magnitude - petromag (as provided by SDSS DR7); 2) Figure

6.11 shows the distribution of the S/T which we will compare to that of the 1000 set.

Of the magnitude distributions in 1: we again see the behavior of the magnitudes diverge

across NC2 and NC3 in the Sérsic 1 component. In comparison to the 1000 set, the Sérsic 1

of NC2 and Sérsic 2 of NC3 again generally align, however NC3 in the 29k sample set shows

a wider spread. We see a slight difference in the spread of the rotated disk components for

each as well but in looking at the comparison with petromag in Figure 6.10, it is not clear

that the differences in spread are meaningful. The results for the magnitude - petromag

distributions in 1 also agree with that of the 1000 set.

Of 2: the trends in the 1000 (Figure 6.6) and 29k galaxy sample sets differ substantially.

This may be due, in part, to the selection criteria used for the 1000 galaxy set, in that the

higher the likelihood of spirality, the brighter the arms will appear although it should be

noted that the y-axis scale is also relatively closely spaced. If we examine the 29k sample

set then, we see that the NC2 and NC3 results also show differing behavior. NC2 peaks

at either end of the range while NC3 peaks around 0.2. The latter is encouraging as it

generally agrees with the S/T results of Savchenko et al. (2020) and Chugunov et al. (2023)

given that GALFIT’s rotation function favors two-arm spirals. Note, the distribution in the

‘by-eye success’ figures—which are limited to 1000 galaxies—shows a large scatter that seems

to favor S/T ≤ 0.5 which supports the assertion that the scatter found in the 1000 sample

set may be due to the selection criteria. We see again here in comparing the ‘success’ plots

across the methods that NC3 is favored in terms of minimizing the residual: there is no

evidence of the peak in the NC2 plot near 1 in the NC2 + NC3 plot.
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Additional parameterization-related plots can be found in Appendix E where Figure E.2

shows pairwise plots for several Sérsic parameters in the NC2 + NC3 29k galaxy samples

as colored by their success classification with ‘by-eye success’ taking color priority. As with

the 1000 set, this prioritization takes the form of boolean masking: models labeled ‘by-eye

success’ retain this label regardless of their ’by metric success’ status.
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Chapter 7

Additional Discussion

7.1 Validation by SpArcFiRe

As discussed in Sections 5.1 and 5.2, we use the combination of our fit quality mea-

sure (NMR_x_1-p) with the pitch angle difference and arm length ratio metrics to determine

whether a model is successful in representing an observation of a galaxy. In the creation of

this validation scheme, we initially developed the above metrics to corresponded with our

intuition about the performance of SpArcFiRe and with our expectations for the ‘success’ of

a model, predominantly by setting hard cutoff values for both metrics. We have found, how-

ever, that the cutoff values we had set were inconsistent in their ability to correctly classify

the success of models, when compared with the by-eye classifications, across the different

data sets and results presented in this study. We therefore chose to allow these values to

vary across the different data sets. Individually (per component method), these values are

generally too strict but when the results are combined, the strictness balances out.

Figures 7.1 and 7.2 show scatter plots of the arms-only pitch angle values found by

SpArcFiRe for all model fits in NC2 + NC3 for the 1000 and 29k galaxy samples according
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Figure 7.1: From the NC2 + NC3 results on the set of 1000 galaxies—Top Left: histogram
of the arc length ratio between the longest and shortest arm in the model. Single arms are
counted as arc length ratio = 1. Top Right: scatter plot of the pitch angle difference between
the top two longest arms of the observation and model for all 2000 models from NC2 + NC3.
Bottom: histograms of the pitch angle differences pictured in the scatter plot. All quantities
in these plots are taken as measured by SpArcFiRe according to the analysis performed in
Section 5.2.
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Figure 7.2: From the NC2 + NC3 results on the set of 29k galaxies—Top Left: histogram
of the arc length ratio between the longest and shortest arm in the model. Single arms are
counted as arc length ratio = 1. Top Middle and Right: scatter plots of the pitch angle
difference between the top two longest arms of the observation and model. The middle
shows the difference for all models, while the right is for those identified as successful by-
eye. Bottom: Bottom: histograms of the pitch angle differences pictured in the scatter plot.
All quantities in these plots are taken as measured by SpArcFiRe according to the analysis
performed in Section 5.2.
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to the analysis presented in Section 7.2, colored with respect to their difference. According

to the results in Table 6.2, 1223/2000 models satisfy the cutoff for the 1000 galaxy set while

36,332/57,824 satisfy the cutoff for the 29k galaxy set. We see a relatively tight distribution

for both plots around the y = x line—as validated by the pitch angle difference histograms—

but note a bias in both plots lower than this line at lower model pitch angles and higher

than this line at higher model pitch angles. Figure 7.2 shows an additional scatter plot which

combines all by-eye successful fits for both methods of the 29k galaxy sets. In this plot, this

bias is still present but far less noticeable. We have not as-of-yet identified the source of this

bias.

In general, the mis-classification rates are more sensitive to variation in the pitch angle

difference cutoff value (±1 deg) than that of the ’equivalent’ fit quality (±0.001) or arm

length ratio (±0.1) cutoff values as evidenced by the arc length ratio and scatter plots in

Figures 7.1 and 7.2 with respect to the ECDF plot of the residual fit quality (Figures 6.3

and 6.8).

There are two assumptions that were made in the development of SpArcFiRe that renders

our arm-fit analysis imperfect: 1) SpArcFiRe is intended to run on real observations, and 2)

SpArcFiRe utilizes a logarithmic spiral function to trace out the arms. Of the first assump-

tion, the pre-processing that SpArcFiRe performs (Steps a and b in Figure 2.1, described

in further detail in Davis & Hayes, 2012; Davis & Hayes, 2014) is used to isolate and en-

hance observations with features that can be systematically transformed for its use. When

used on GALFIT models without further adjustment, we have found SpArcFiRe to perform

inconsistently, most often in its contrast enhancement. Furthermore, the image standardiza-

tion process may be inconsistent between observation and model, which may alter the results

when comparing the two. We attempt to avoid this inconsistency by re-using the image stan-

dardization produced by SpArcFiRe’s analysis on the observation. We found, however, that

the false positive/negative rates are slightly higher, likely due to the tightness of SpArcFiRe’s
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Galaxy (8), NC3, from Figure 6.1

Figure 7.3: A false negative model as determined by-eye with respect to our success met-
ric. Top row: observation, GALFIT model, and residual flipped from Figure 6.1 to match
SpArcFiRe’s output. Middle row: SpArcFiRe’s analysis of the original observation. Bottom
row: SpArcFiRe’s analysis of the GALFIT model. Note that the model used as input has the
arm width artificially reduced to aid in SpArcFiRe’s analysis. According to SpArcFiRe, this
galaxy failed by the pitch angle value metric. Note that the orientation flip between the
original observation in the top row and SpArcFiRe’s analysis is expected behavior (Section
3.1) and is accounted for in our processing—it is not indicative of a failure on either GALFIT
or SpArcFiRe’s part.

75



Galaxy (9), NC2, from Figure 6.1

Figure 7.4: A false positive model as determined by-eye with respect to our success met-
ric. Top rows: observation, GALFIT model, and residual flipped from Figure 6.1 to match
SpArcFiRe’s output. Middle rows: SpArcFiRe’s analysis of the original observation. Bottom
rows: SpArcFiRe’s analysis of the GALFIT model. Note that the model used as input has the
arm width artificially reduced to aid in SpArcFiRe’s analysis.

cropping operation and the lack of contrast at the center of GALFIT’s coordinate rotation. Of

the second assumption, GALFIT is capable of fitting a wide range of spiral structures with a

description that is not limited to the logarithmic spiral formulation. This can cause a signifi-

cant deviation in the pitch angle estimates when arms in either the observation or the model

do not follow the logarithmic spiral prescription. These two issues appear to have caused

SpArcFiRe to misclassify the models in Figures 7.3 (false negative) and 7.4 (false positive).

In the case of the false negative, the difference in pitch angles between the observation and

model was larger than that of our cutoff, as caused by the de-inclination of the observation

during the image standardization process, i.e. a consequence of the first assumption. For

the false positive, we find that this analysis falls prey to the second assumption as evidenced

by the tightness of SpArcFiRe’s final arm fit.
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7.2 Pitch Angle Analysis

The pitch angle of a spiral galaxy is a measure which describes the winding tightness of a

galaxy’s spiral arms and may be correlated with a number of galactic properties—the review

by Sellwood & Masters (2022) provides an excellent overview of the work that has been done

in this area over recent years. As discussed in Section 1, there are several automated methods

by which it can be measured, the most common of which being the discrete Fourier trans-

form technique. SpArcFiRe also provides galaxy-level as well as individual arm measures

of the pitch angle (Davis & Hayes, 2014) as does the Galaxy Zoo Builder project (Lingard

et al., 2020, 2021). These methods assume a constant pitch angle when conducting their

measurements—by virtue of the governing approximation of logarithmic spiral arms, Equa-

tion (7.2)—while other methods, (Ringermacher & Mead, 2009; Davis et al., 2012; Savchenko

& Reshetnikov, 2013) allow for varying pitch angles along the length of the arm (Davis et al.

(2012) sums logarithmic spirals with differing pitch angles to achieve this).

The pitch angle is defined in Binney & Tremaine (2008) as the angle between the line

tangent to a spiral arm, as formed with respect to the center of the galaxy, and the azimuthal

direction—the lower the angle, the tighter the winding, limited between 0 deg and 90 deg. It

can be described by the equation

cotϕ =

∣∣∣∣r∂θ∂r
∣∣∣∣ (7.1)

where ϕ is the pitch angle, r is the radius, and θ is the rotation angle in the plane of the

galaxy. In the context of logarithmic spiral arms, described by

r = Aeθ tanϕ (7.2)
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where A is an amplitude and the rest of the quantities are as described above, the right hand

side of Equation (7.1) is constant.

GALFIT uses a power law (cf. Eq. (2.6)—further details Appendix C), to perform the

coordinate rotation that creates the appearance of the arms. This powerlaw function does

not assume a constant pitch angle as the dependence on r does not vanish when the partial

derivative is taken (C.4). This framework can therefore provide an alternative description of

the pitch angle of these galaxies, one which is allowed to vary across the length of the arm.

Figure 7.5 shows the pitch angle analysis for galaxy (1) from Figure 6.1: a) a scatter plot

of the pitch angle with respect to the radius, and b) an overlay of our approach, represented

by the green line, on top of the model—de-inclined to face-on due to the degeneracy in the

inclination with the disk axis ratio. Additional scatter and overlay plots can be found in

Appendix F.

Figure 7.6a is another such plot. We present this overlay to validate our analysis and to

demonstrate, at radius 15, the agreement between the derived pitch angle from (7.1) and

that of the geometric definition of pitch angle, i.e. the angle between the tangent lines

to the spiral and to a circle at that radius. We see excellent agreement between the two

measurements—we believe the disagreement is due to our implementation of the estimate of

the slope of the spiral tangent.

Figure 7.5b shows a scatter plot of the pitch angles with respect to radius for a galaxy

from the 14 set. Figure 7.6b is another such plot. The green lines in each scatter plot

indicate the region between the smallest inner radius and largest outer radius between the

two longest arms as measured and detected by SpArcFiRe while the horizontal orange line is

the approximate pitch angle, pa_alenWtd_avgdomChiralityOnly, with shading to represent

the pitch angle uncertainty given by SpArcFiRe. Due to the radial dependence of GALFIT’s

pitch angle, it is difficult to ascribe a single value with which we can compare to SpArcFiRe.
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We intend, in the future, to use the two methods to aid in determining the success of a fit

but have not yet found a suitable relationship between them.

The framework is purely mathematical: neither the inner nor outer radius measures we

feed to GALFIT represent the start and end of an arm (Peng et al., 2010). Furthermore, we

are limited in our description of the arm by its representation as an mathematical line. This

results in a pitch angle measurement method that’s similar to the dominant mode approach

of FFT methods as we are limited to evaluating the pitch angle along what is effectively

a single arm. This limitation arises from our methodology: we evaluate the coordinate

rotation itself on the Fourier transformed grid rather than the resultant, rotated and Fourier

transformed ellipse from the image. This implementation therefore fails to capture some of

the effects from the Fourier transform, most notably in the regions of the arm which are

thicker or where the Fourier mode splits off a sub-arm and most often near the bulge as

in Figure 7.6. As a result, the method can misconstrue the value of the pitch angle in the

regions of galaxies which feature thick or partial arms or sharp bending features. We must

also note an additional limitation to consider when generating the overlay that arises from

the underlying ellipse rotation implementation as well as a degeneracy between the power

law inclination with the disk axis ratio. In order to generate the overlays in Figure 7.5, we

had to de-incline the model to face-on before applying the plot to the image.

It is unclear whether the comparison between the pitch angle values found from SpArcFiRe

and GALFIT can elucidate any information about the success of our models. When exam-

ining several models which otherwise satisfied our constraints, we often found SpArcFiRe

to underestimate the pitch angle, likely in an effort to average out the variation near the

bulge and at the edge of the disk. In other cases, the GALFIT arm fit simply wasn’t accu-

rate enough despite passing the other tests. SpArcFiRe’s success in processing the resulting

fits is, however, in conjunction with the residual analysis, still the best metric we have for

confirming a model to be representative of a spiral galaxy.
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a) b)

Figure 7.5: The pitch angle scatter plot with respect to radius (a) and the coordinate
rotation overlay (b) for galaxy (1) from Figure 6.1, pictured above both. a) The green
lines indicate the region between the smallest inner radius and largest outer radius between
the two longest arms as measured and detected by SpArcFiRe. The horizontal line is the
pa_alenWtd_avgdomChiralityOnly while the shading represents the uncertainty given by
SpArcFiRe. b) Along with the coordinate rotation overlay, we plot the tangent to the circle
at radius 15 (pixels) and the tangent to the overlay (geometric) to validate the pitch angle
measurement produced by solving equation (7.1) at radius 15, both values of which are given
in the upper left hand corner.

a) b)

Figure 7.6: The coordinate rotation overlay and pitch angle scatter plot for galaxy (2) from
Figure 6.1, showcasing the limits of our implementation.
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7.2.1 GalfitModule: Calculating the Pitch Angle

Section 7.2 above details the means by which we can produce a measure of the pitch angle

according to GALFIT’s coordinate rotation function. The script that performs this calculation

can be found in the PitchAngle submodule of the GalfitModule, calculate_pitch_angle.py.

When called from the command line, calculate_pitch_angle.py uses the FITS files output

by GALFIT to calculate and tabulate—into a pickled pandas dataframe—the arrays which

describe the pitch angle as it varies along the length of the arm. As columns in the dataframe,

these are the pitch angles (pitch_angle) and rotation angles (theta) on the fourier trans-

formed radial grid (fourier_rgrid). We also include a metric, the average pitch angle

constrained by a length weighted, dominant chirality estimate of the beginning and ending

of the arms in the observation (from SpArcFiRe and using the same scheme as detailed in

Section 3.3.2) as a column, avg_constrained_pa.

calculate_pitch_angle.py also has the capability to produce plots related to the cal-

culation of the pitch angle. The first, a scatter plot, as can be seen in Figure F.1, plots

the pitch_angle against the fourier_rgrid. In these plots, we overplot the approximate

average beginning and ending of the arms as well as SpArcFiRe’s uncertainty of the pitch

angle between these two bounds. The second plot we can produce is a series of overlay plots

(Figure 7.5)—alternatively identified as validation plots in the code—in which we recover

the coordinate rotation function using fourier_rgrid and theta and plot this function

overlaid onto an image of the de-inclined model to validate the accuracy of the function. In

addition to this overlay, we provide a ‘geometric’ calculation of the pitch angle, in which we

compute the angle between the tangents to the circle and the spiral, so as to compare with

our ‘derived’ pitch angle value. Using both the overlay and the comparison between the

‘geometric’ and ‘derived’ pitch angle values, we can effectively validate our approximation

of the pitch angle by this method. To re-iterate the discussion in Section 7.2, the purpose

for doing so is twofold: 1) this approach is novel—very few pitch angle calculation meth-

81



ods exist which account for variation across the arm, and 2) our representation/calculation

can only effectively capture a single arm. The single arm representation is generally valid

for GALFIT’s approach given GALFIT’s assumption of symmetry by virtue of the underlying

ellipse, however, when the amplitude of the fourier modes is high, the model arms become

highly anti-symmetric and/or split off into sub-arms, and we cannot capture this behavior

by our method.
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Chapter 8

Conclusion

We have developed the first method to automatically generate GALFIT P, 2010 models

on a large sample of spiral galaxies. Our files, as input to GALFIT (Section 2.2), are de-

rived from the output of SpArcFiRe (Section 2.1), our code for an image-level description of

spiral structure (Davis & Hayes, 2014)—Chapter 3. To facilitate this translation and to gov-

ern the operation of our processing pipeline, we have developed a Python module, entitled

“GalfitModule” (Chapter B), that abstracts GALFIT parameters (Section B.1.1), compo-

nents (Sections B.1.2 and B.1.3), and output (Section B.1.4). This module enables us to

employ distributed processing (Section 4.5) as well as a variety of fitting techniques—multi-

stage (Section 4.3) and parameter search fitting (Section 4.4)—which aids the pipeline in

producing models of spiral galaxies which accurately map the visible structure of the original

observation. To evaluate the success of these models, we used a series of techniques, includ-

ing: residual or fit quality analysis (Section 5.1), quantitative spiral arm analysis (Section

5.2), and by-eye assessment to produce estimates on the ability of our pipeline to validate

our results (Section 5.3). We have presented our method and results on three sub-samples

of spiral galaxies from SDSS DR7, consisting of 14, 1000, and 28912 galaxies identified to

be likely spiral by human volunteers as part of GZ1, Section 6.1. Of the largest sample, we
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estimate to have produced about 54.3% ( 15,700) successful models consisting of either two

(bulge + arms), or three (bulge + disk + arms) components (Section 6.5). This estimate

is derived from our by-eye analysis of a subsample of the 28912 galaxies and closely agrees

with that found in our sample of 1000 galaxies.

We extracted, from the results of the 1000 and 28912 sample sets, features of the underlying

profiles which describe the galactic components, such as the Sérsic index and integrated

magnitudes, and evaluate the ability of our pipeline to generate accurate models of galaxies

from these features (Sections 6.4.2 and 6.5.2). We compared our Sérsic index results to that

of previous studies which created bulge + disk models from SDSS DR7 galaxies and found

that our method is likely producing models which may not be readily separable by the bulge

+ disk convention due to a limited bulge fit. We also compared these results with other

bulge, disk, and spiral arm decomposition studies performed on a much smaller scale and

found our Sérsic index results to be closer to—-but still inconsistent with—the other studies.

Despite this, we found that our estimates for the magnitude of several components were

consistent with the results of the above studies. We additionally found general agreement

in our estimates of the ratio of spiral arm light to that of the total light of the galaxy in the

model.

Finally, we presented a method and results for evaluating the pitch angles of the models

as derived from GALFIT’s rotation implementation (Section 7.2). We demonstrated the fea-

sibility of the method and highlighted preliminary results for one of the galaxies from the

set of 14 (the rest of which can be found in Appendix F).
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Chapter 9

Future Work

9.1 Pipeline Improvements

9.1.1 Improving the Models

The results we have presented in Chapter 6 demonstrate the ability of the models produced

by our n-component method to fit their respective observations. It is still possible, however,

to improve these models in bulk across both NC2 and NC3 and to additionally include

other methods and techniques to do so. We anticipate additional methods may include the

use of truncation functions, PSFs, or a modification to GALFIT source code (Section B) to

favor, during its χ2 fitting process Eq. (2.1), the region beyond the bulge but we must

caution here against adding too much complexity. Of techniques, the simultaneous fitting

technique (Simard et al., 2002; Simard et al., 2011) is of great interest. This technique works

by fitting secondary (nearby) sources rather than simply masking these sources as their

contribution to the overall flux in the image can have an effect on the resultant decomposition.

GALAPAGOS-C (Hiemer et al., 2014) contains a substantial breakdown of this process which

could be consulted for its implementation.
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In addition to simultaneous fitting, Simard et al. (2011) employ a cross-band fitting tech-

nique which works by fitting images in one band before using the decomposition to fit in

another band, commonly r and g (e.g. Simard et al., 2011; Lackner & Gunn, 2012; Kim

et al., 2016). This is done to minimize fitting errors with the drawback that color gradients

cannot be measured between the simultaneously fit bands. In the context of spiral galaxies,

comparing color gradients (as in Pour-Imani et al., 2016, also see Section 9.4) can potentially

illuminate important morphological characteristics, e.g. pattern speed and star formation

rate (Binney & Tremaine, 2008), so this comparison may play a crucial role in future auto-

mated studies. Despite this drawback, it is still possible to use simultaneous fitting across

bands which may contain little or redundant morphological information to then inform the

fit across bands we are interested in comparing, hence why we intend to include it.

Another means of improvement could come from the development done on SpArcFiRe,

specifically the “mean-image guiding” technique first developed and integrated with

SpArcFiRe by Alan Barkley-Yeung, an undergraduate student in our lab. Mean-image guid-

ing uses a composite image of a galaxy across different color bands, pixel aligned by an

automated algorithm our group developed (Navarrette & Hayes, 2022), and generates a clus-

ter mask of this image (cluster masks are the colored regions in panels d and e in Figure 2.1)

that SpArcFiRe can then use to inform its analysis of the galaxy in each individual wave

band. This method will prove advantageous in its ability to correct for fitting issues across

all wave bands whether they occur due to ill-conditioning of input parameters or whether

they are due to physical/observational phenomena such as dust obscuring, source contami-

nation, low signal-to-noise ratio, etc. We therefore expect a mean-guided image to provide

an excellent basis for generating our final band-dependent models. We can furthermore use

this technique in conjunction with simultaneous fitting to provide increased robustness with-

out sacrificing the ability to compare across wave bands. To do this, we will use SpArcFiRe

composite image output and GALFIT’s subsequent convolution as our template for re-running
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GALFIT on the images from each waveband—a relatively trivial procedure and ultimately low

in computational cost.

Finally, and of great importance, is the issue of overfitting of the bulge, discussed in Section

6.4.2. We cannot yet say whether the overfitting found is indicative of deeper problems within

our translation framework or whether it is a consequence of the constraints of automating

GALFIT’s spiral arm decomposition method. We anticipate it is the former given the inherent

sensitivity of modeling the bulge especially with respect to the strides previous studies have

taken to accommodate for it. If it is the latter, it will be necessary to identify the extent to

which these models are appropriate for precision morphological analysis. We do not believe

this possibility invalidates our method however as these models can still offer a wealth of

information about general morphological trends. We therefore intend to explore this issue

and potential resolutions in full. We also intend to experiment with the application of our

algorithm to existing B+D decompositions as was done in Chugunov et al. (2023). This may

solve the overfitting issue or otherwise highlight where we can fix the original pipeline to

avoid it.

9.1.2 Improving Validation

One of the biggest challenges that we faced in the development of the pipeline was our

inability to automatically validate our results. The methods presented in Chapter 5 are the

result of years of work and experimentation, yet there is still much we can do to better assess

our results in terms of the false positive (FP) and false negative (FN) rates. In our current

framework, we employ our metrics as threshold cutoffs (Sections 5.1 and 5.2)—based on our

intuition about the comparison between model and observation—after which a model can

longer be considered ‘successful’. Although doing so allows us some manner of simplicity,

we believe it should be possible to employ a weighting scheme for the four metrics, whether

weighted together, i.e. threshold success boolean · weight, or individually, i.e. threshold
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value (with respect to our best guess for an appropriate value) · weight. Given our current

results per the discussion of the cutoff values in Table 6.1, we anticipate that the former

would provide flexibility across data sets while the latter would better be able to tune the

FP/FN rates. We also anticipate that a weighting scheme would benefit greatly from the

use of a neural network or similar regression based analysis as discussed below (Section 9.2).

Beyond the tuning of the metrics are potential improvements in both 1) the preparation

of the output for SpArcFiRe and, more importantly, 2) in tuning SpArcFiRe itself. Of 1) we

presented our method of reducing the arm width in preparation for SpArcFiRe in Section 5.2.

This method appeared to improve the FP/FN rates however it is possible that some other

adjustment—or some other choice of arm width—at that stage of the pipeline may improve

SpArcFiRe’s ability to evaluate the model. As a first attempt, we recommend exploring a

means to reduce the light at the center of the rotation in order to provide more contrast,

given the possibility of SpArcFiRe identifying false arms in that region as in Figures 7.3

and 7.4. This may be achieved by reducing the coordinate rotation’s outer radius or by

reducing the Sérsic index or half light radius of the underlying Sérsic function, however it is

not immediately clear which or what combination of these may work best.

Of 2) it is clear, even in the FP/FN figures (7.4/7.3) that SpArcFiRe is capable of success-

fully tracing out the arms of the models given the limitations of the logarithmic spiral arc

formulation. However, we can also identify two issues of note: a) the contrast of the model

image and b) the need for consistency of the image standardization between observation and

model.

2a) Without a well-defined, bright bulge, the conversion from FITS to PNG flattens the

diffusion of light we would otherwise see in a real image of a galaxy. This is an issue we

encountered in our rebuttal (Portman et al., 2023) of another work by Hewitt & Treuthardt

(2020) in which the authors used a pure disk of light and arms to model a spiral galaxy—

without tuning SpArcFiRe correctly, they produced erroneous results concerning the perfor-
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mance of SpArcFiRe. When tuned correctly, we were able to almost-perfectly analyze their

models. This leads us to believe that a solution, or an improvement to the current FP/FN

rates can be found in either the conversion from FITS to PNG (via ImageMagick) or in the

parameterization of SpArcFiRe’s contrast enhancement/image standardization itself.

2b) The model in Figure 7.3, identified as FN, was labeled ‘unsuccessful’ due to the pitch

angle metric for the set of 14 in Table 6.1. This can only be explained by the difference in the

image standardization used by SpArcFiRe on both images. This difference can be remedied

by one of SpArcFiRe’s features: SpArcFiRe outputs a file, after performing its analysis, that

details the parameterization of the image standardization which can be re-used to exactly

duplicate the standardization employed. We attempted to use this technique when preparing

our results but saw no clear improvement in the FP/FN rates. We believe, however, that

this failure simply requires more time and attention to resolve and should greatly improve

the success of the validation method.

We discuss, in Section 7.2, the possibility of finding some means of comparing GALFIT’s

pitch angle analysis with SpArcFiRe as another metric for determining success. We believe

this is still worth examining. However, the pitch angle analysis provides another avenue

through which the FP/FN rates could be improved: the comparison of the arm overlay as

pictured in Figure F.1 with that of SpArcFiRe’s arc overlay as pictured in Figure 2.1f. Given

the image-level simplicity of both overlays, it should be feasible, whether through computer

vision or machine learning, to assess the similarity between the arcs. Finding a method for

doing so would save much computation time given that SpArcFiRe would no longer have to

be run after GALFIT has completed its processing.
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9.2 Machine Learning

Work is ongoing to incorporate machine learning techniques to supplement the input to

GALFIT via regression. We are currently prototyping a supervised machine learning regres-

sor using XGBoost Chen & Guestrin (2016), trained on good model fits as identified by

visual classification, to supplement the input given by SpArcFiRe. Our aim is to supplement

SpArcFiRe’s output rather than to replace it entirely to allow for the ability to interpret

the decisions made by the regressor. We believe the ability to interpret the results in this

context will allow us to glean useful information which may help to improve the pipeline.

Additionally, we intend to incorporate a classifier which may better assist us in identifying

when GALFIT has failed to generate a reasonable model of the arms of a galaxy. We believe

we can derive a prototype of this classifier from the regressor by identifying when an output

model does not align with what the regressor may deem as a successful model. Azra Zahin

has began work on the development of a convolutional neural networks to be used on the

output images but this work has halted upon her departure from the project.

9.3 Completion of the GalfitModule for Release

As discussed in Chapter B, the GalfitModule is incomplete and more work must be done to

better generalize the existing framework insofar as the GALFIT objects are concerned. Since

the GalfitModule is deeply intertwined with the fitting pipeline, many of its additional

utilities are being updated regularly but the core functionality does not change.

We also plan to update the pipeline of the GalfitModule to streamline many of its features

and to better incorporate those features into SpArcFiRe. This includes updates to its ability

to handle even larger data sets, when disk space is a concern, as well as the inclusion of

a machine learning framework discussed below. As discussed briefly in section 7, using the

1000 galaxy subset as a proof-of-concept for the generality of our pipeline, we hope to use our
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method to model the approximately 900,000 galaxies from SDSS DR7 in order to compare

our results to other automated DR7 surveys such as Simard et al. (2011); Meert et al.

(2014) and to compare our GALFIT pipeline to others such as PyMorph (Vikram et al., 2010),

GALAPAGOS (Barden et al., 2012; Häußler et al., 2013), MORPHOFIT (Tortorelli & Mercurio,

2023), and more. We also intend to apply the pipeline to other data sets such as later SDSS

data releases, LSST (Ivezić et al., 2019), and those from cosmological simulations such as

Illustris (Vogelsberger et al., 2014; Pillepich et al., 2018), FIRE (Hopkins et al., 2014, 2018)

and NIHAO (Wang et al., 2015).

9.4 Comparison with Theory

We intend to use this pipeline to explore the predictions of spiral density wave theory and

to assist in the quantification of spiral galaxy morphology. The pitch angle analysis that we

provide here (and which is included in the GalfitModule’s utilities) will be the foundation

for this work, through which we will be able to test several predictions of the theory and

relationships between it and other galactic features. We intend to examine several of the

pitch-angle relationships described in Section 2.3 of the review of spiral galaxy literature

by Sellwood & Masters (2022), starting with our results for the galaxies of SDSS DR7 and

expanding to other data sets when possible.

We expect that, according to spiral density wave theory (Lin & Shu, 1964; Binney &

Tremaine, 2008), observations of the arms of a spiral galaxy in different imaging bands

should show a difference in their pitch angles, with gas and younger stars at the leading edge

and older stars at the trailing edge, and the arms crossing at the co-rotation radius, or the

radius at which the angular velocity of the stars in the arms match the pattern speed of the

arm (Binney & Tremaine, 2008). Pour-Imani et al. (2016) investigated this phenomena and

found that the pitch angles of the galaxies they selected were different across different bands.

We believe that our pipeline and pitch angle analysis can also be used for this purpose.
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Figure 9.1 shows our preliminary results concerning this comparison: pitch angle scatter

plots for r and g band NC3 models from the set of 14—as a reminder, the observations used

elsewhere in this thesis are from the r-band (Section 6.1). In these plots, we see that there is

consistently a difference between r and g bands. However, Galaxy (1) differs from the others

in that the pitch angle in the r-band is mostly lower than the g-band. We are unsure what

the implications of this inconsistency are—it is possible that, despite Galaxy (1) having the

lowest fit quality score across both bands, the arm fit is not as good as in the others or

vice-versa. It is also possible, given GALFIT’s sensitivity to magnitude, that minor variations

in fit parameters could alter the arm fit enough to change these results. A sensitivity analysis

of this relationship will be crucial to the validation of this comparison method.

Beyond the sensitivity analysis, much work must be done to handle the variety of behavior

we see in the pitch angle. In the g-band pitch angle scatter plot for Galaxy (4), we see a

peak/discontinuity at about radius 12.5. This peak is known behavior—it occurs due to a

negative power law index which reverses the direction of the winding (Section 2.2). Similarly,

in the g-band plot for Galaxy (7), we see a minima around radius 9 which may be due to

a relatively strong Fourier amplitude in the m1 mode. It is not clear whether this behavior

should be accounted for given GALFIT’s sensitivity in the region near the bulge. In both

cases, the parameterization of the rotation and Fourier functions holds the key to identifying

these behaviors. It may be prudent then to use machine learning to identify the (combination

of) parameters that cause ‘problem’ behaviors to occur and whether or not these problems

indicate a poor model fit. In any case, work must be done to determine a means to identify

and to potentially correct for these discrepancies.
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Figure 9.1: Pitch angle scatter plots for four NC3 models from the set of 14 successfully fit
in both the r and g SDSS DR7 imaging bands.
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Appendix A

Sample GALFIT Input File

A sample input file like those generated as part of our study. This file displays the general

structure of the file GALFIT takes as input as well as the components we have selected to

use throughout the study to model galaxies for the NC3 structure. We cannot encode our

multi-stage fit nor the parameter search fitting technique in this simple representation but

these two methods are simply modifications of this input.
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===================================================================
# IMAGE and GALFIT CONTROL PARAMETERS
A) galaxy_name.fits # Input data image (FITS file)
B) galaxy_name_galfit_out.fits # Output data image block
C) none # Sigma image name (made from data if blank or ’none’)
D) galaxy_name_psf.fits # Input PSF image and (optional) diffusion kernel
E) 1 # PSF fine sampling factor relative to data
F) galaxy_name_star-rm.fits # Bad pixel mask
G) none # File with parameter constraints (ASCII file)
H) 37 85 37 85 # Image region to fit (xmin xmax ymin ymax)
I) 50 50 # Size of the convolution box (x y)
J) 24.8 # Magnitude photometric zeropoint
K) 0.396 0.396 # Plate scale (dx dy) [arcsec per pixel]
O) regular # Display type (regular, curses, both)
P) 0 # Choose: 0=optimize, 1=model, 2=imgblock, 3=subcomps
====================================================================

Figure A.1: GALFIT input file header for Galaxy ID 1237667429564547261. Descriptions of
each parameter can be found as a comment in the figure.
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====================================================================
# INITIAL FITTING PARAMETERS
#
# For component type, the allowed functions are:
# sersic, expdisk, edgedisk, devauc, king, nuker, psf,
# gaussian, moffat, ferrer, and sky.
#
# Hidden parameters will only appear when they’re specified:
# Bn (n=integer, Bending Modes).
# C0 (diskyness/boxyness),
# Fn (n=integer, Azimuthal Fourier Modes).
# R0-R10 (coordinate rotation, for creating spiral structures).
# To, Ti, T0-T10 (truncation function).
#
# ------------------------------------------------------------------
# par) par value(s) fit toggle(s) # parameter description
# ------------------------------------------------------------------

# Component number: 1
0) sersic # Component type
1) 60.5588 60.5802 0 0 # Position x, y
3) 14.4900 1 # Integrated magnitude
4) 12.0600 1 # R_e (effective radius) [pix]
5) 1.1600 1 # Sersic index n (de Vaucouleurs n=4)
9) 0.6500 1 # Axis ratio (b/a)

10) 23.0200 1 # Position angle (PA) [deg: Up=0, Left=90]

# Component number: 2
0) sersic # Component type
1) 60.5588 60.5802 0 0 # Position x, y
3) 15.0000 1 # Integrated magnitude
4) 8.9878 1 # R_e (effective radius) [pix]
5) 4.0000 1 # Sersic index n (de Vaucouleurs n=4)
9) 0.6000 1 # Axis ratio (b/a)

10) -14.9366 1 # Position angle (PA) [deg: Up=0, Left=90]

# Component number: 3
0) sersic # Component type
1) 60.5588 60.5802 0 0 # Position x, y
3) 15.0000 1 # Integrated magnitude
4) 10.9878 1 # R_e (effective radius) [pix]
5) 4.0000 1 # Sersic index n (de Vaucouleurs n=4)
9) 0.6000 1 # Axis ratio (b/a)

10) -14.9366 1 # Position angle (PA) [deg: Up=0, Left=90]
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R0) power # PA rotation func. (power, log, none)
R1) 0.0000 0 # Spiral inner radius [pixels]
R2) 25.8517 0 # Spiral outer radius [pixels]
R3) -60.0000 1 # Cumul. rotation out to outer radius [degrees]
R4) 1.4824 1 # Asymptotic spiral powerlaw
R9) -51.0979 1 # Inclination to L.o.S. [degrees]
R10) 90.0000 1 # Sky position angle
F1) 0.0500 45.0000 1 1 # Azim. Fourier mode 1, amplitude, & phase angle
F3) 0.0500 25.0000 1 1 # Azim. Fourier mode 3, amplitude, & phase angle

# Component number: 4
0) sky # Component type
1) 1000.00 1 # Sky background at center of fitting region [ADUs]
2) 0.00 1 # dsky/dx (sky gradient in x) [ADUs/pix]
3) 0.00 1 # dsky/dy (sky gradient in y) [ADUs/pix]

=================================================================

Figure A.2: Example of GALFIT input file components used in this study for a NC3 model.
The first component is parameterized to represent the bulge using a Sérsic profile. The
second component is parameterized to represent the disk using a Sérsic profile. The third
component is parameterized similarly to the disk but is modified by the power function
(R0 – R10) which performs a coordinate rotation on the this component to represent the
spiral arms. The fourier modes (F1–F5) further refine the spiral arm fit. Finally, the fourth
component, the sky, estimates the brightness of the background sky. For a complete example
of a GALFIT input file with all profiles available, please see GALFIT’s website.
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Appendix B

GalfitModule

GALFIT is written in C++ and can be downloaded as either an executable from GALFIT’s

webpage or built from source linked in the about page of GALFIT’s Facebook group.1 In

this work, we opt to use the executable version of GALFIT and have developed an object-

oriented library in python to handle its input and output entitled GalfitModule. The

GalfitModule is currently packaged with SpArcFiRe on GitHub but plans to release it as an

independent package are underway. In its current state, the GalfitModule is written in two

parts: the first, to generically handle GALFIT components, models, and output via object

oriented programming, and the second, to explicitly handle the naming conventions and

choices of SpArcFiRe to automate the batch processing of spiral galaxies, i.e. the pipeline.

In the current version of the code, the pipeline has taken precedence so some choices and

restrictions related to modeling spiral galaxies are currently hard coded. We will disentangle

the two and generalize the module by the time of its formal release.
1Prior to the author’s discovery of the available source code, it is indicated on the website that source

would not be distributed due to the use of proprietary algorithms. The choices made in developing the
current iteration of the GalfitModule are informed by this limitation.
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B.1 Fundamental Classes

The object oriented segment of the GalfitModule is the basis upon which much of the

pipeline relies. We utilize four main class types: parameters, components, containers, and

fits handlers to process the information through the pipeline. These four types, in that order,

form the main operating hierarchy of the GalfitModule. These class types are submodules

of the Classes submodule of the GalfitModule and are stored in two forms: as a .py

file and as a jupyter notebook (.ipynb) file. The latter is used for documentation and

for prototyping and in all cases, outputs the .py version of the file in the last cell of the

notebook. All notebooks, and therefore all .py files, contain unit testing code. In the case

of the notebooks, when all cells are run sequentially, the unit tests must pass before the

notebook can be exported to a standalone python script. This unit testing standard applies

to the .py files generated, therefore, all submodules can also be run as standalone scripts

for unit testing purposes.

B.1.1 GalfitParameter

The parameters, stored in the Parameters submodule and based on a parent

GalfitParameter class, are abstracted GALFIT parameters, written primarily to store nu-

meric values and other extraneous information used for creating standalone feedme files,

and to set parameters as fixed or free during the fitting process. The required arguments,

attributes, methods, and overrides of this class are:

REQUIRED ARGUMENTS

· value – the generic type value of the parameter to be stored by the object.

ATTRIBUTES

· value – the value from REQUIRED ARGUMENTS.

105



· fix – abstracts the binary value (represented as integer 1’s or 0’s) which indicates to

GALFIT whether to hold the value fixed during fitting.

· parameter_number – stores the number which corresponds with the parameter being

instantiated as used by the GALFIT function.

· parameter_prefix – stores the prefix used in generating the GALFIT feedme which

corresponds to the chosen GALFIT function.

· comment – stores the comment associated with the parameter which describes the

parameters use.

· component_name – stores the name of the component the parameter belongs to.

· component_number – stores the number of the component the parameter belongs to.

OVERRIDES

· __str__ – overrides str(). Is used for outputting a string formatted in the style of

the GALFIT feedme.

· __repr__ – overrides repr(). Is used for outputting a string containing solely the

value of the object. We choose to do so to provide what we anticipate to be the

desired output in the case of debugging, in contrast to the full feedme-style output of

the str override.

The non-required argument attributes have default values but can also be specified by key-

word arguments to the new object.

Child classes of GalfitParameter are written to accommodate other GALFIT features

(or anything which is contained in the feedme file) such as header parameters and multi-

valued parameters, i.e. position, fourier modes, etc. These multi-valued parameters are
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generally described by purpose-built classes to accommodate various differences in outputting

to string and other attributes of convenience but all inherit the attributes and methods

of a parent MultiParameter class which also inherits the attributes and methods of the

GalfitParameter.

The non-inherited attributes of the MultiParameter class are:

· x

· y

· fix_x

· fix_y

The MultiParameter uses the built-in NamedTuple python module to enable flexible value

and fix value retrieval. For example, the x and y values of the position parameter (itself

otherwise described by a unique child class of MultiParameter) can be retrieved by using

any of the following syntax:

multiparameter_obj.value

(multiparameter_obj.value[0], multiparameter_obj.value[1])

(multiparameter_obj.x, multiparameter_obj.y)

This same syntax applies to the fix attribute.

Several other classes are defined in the Parameters submodule which inherit the attributes

and methods from GalfitParameter and MultiParameter. In the Parameters submodule,

we also include functions which create python dictionaries, corresponding to GALFIT functions

(i.e. Sérsic, power, etc.), with keys as the parameter names and values as the instantiated
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parameter objects loaded with “defaults” for the various attributes. The Components sub-

module takes significant advantage of these functions. Furthermore, the dictionary structure

is fundamental to the operation of Components and enables increased flexibility in a similar

manner to that of the NamedTuple usage discussed above.

B.1.2 GalfitComponent

The components, stored in the Components submodule and based on a parent

GalfitComponent class, are abstracted GALFIT component functions, with Sérsic, Power,

Fourier, and Sky components currently available. The header, although not a GALFIT

function is also treated as a component being a child class of GalfitComponent. The

GalfitComponent class is written to generically handle the parameters associated with a

component as well as meta information about the components. It is also designed to provide

flexibility by the dictionary which stores parameters and to handle I/O at the level appro-

priate for components (see the Container and FitsHandlers sections below). The required

arguments, attributes, methods, and overrides of this class are:

REQUIRED ARGUMENTS

· component_type – the type of component being created. String.

ATTRIBUTES

· component_type – the component_type from REQUIRED ARGUMENTS.

· parameters – stores the parameters that inform the component/function as a dictio-

nary. This dictionary can be accessed as key/value or more directly as an attribute of

the class, i.e.

sersic_obj.magnitude.value
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or

sersic_obj.parameters[‘magnitude’].value

· component_name – stores the name of the component as a string.

· component_number – stores the component number. This attribute is important for

functions which modify other components, i.e. Power functions, and allows us to retain

the correct function pairings should an issue arise.

· param_prefix – stores the prefix used in generating the GALFIT feedme which corre-

sponds to the chosen GALFIT component/function.

· _start_dict/end_dict – internal use attribute. Stores the strings which indicate the

start and end of the dictionary ingested from a GALFIT output FITS file header.

· _start_text/end_text – internal use attribute. Stores the strings which indicate the

start and end of the dictionary ingested from a GALFIT input feedme file.

· _section_sep – internal use attribute. Stores the string which is used as the generic

separator in the GALFIT feedme.

METHODS

· update_parameter_dict_with_dict/list – used for updating the parameter attribute

(dictionary) with another dictionary/list. Importantly, this function does allow updat-

ing of the parameter attribute with parameters which do not already exist in the

component.

· update_from_log – used for updating a component from the log output to STDOUT

by GALFIT as a result of the fitting process.
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· to/from_pandas – used for reading in from or outputting the component to a pandas

dataframe (The Pandas Development Team, 2020). Assumes and/or creates column

headers in the format: [parameter_name]_[component_type]_[component_number]

· from_file – used to handle and pre-process input FITS or feedme files for ingestion

into the component object.

· from_file_helper_dict/list – used for extracting component information from a

dictionary or a list after the pre-processing of a FITS header or feedme file that occurs

in from_file.

· to_file – is used to print a component to a file. Uses the component’s string override

to achieve this and hence achieves generalizability. If other components are specified

as positional arguments, they are printed in addition to the component calling the

method to file.

OVERRIDES

· __str__ – overrides str(). Is used for outputting the entire component as a string

formatted in the style of the GALFIT feedme.

· __repr__ – overrides repr(). Is used for outputting the entire component as a string,

in the same format as __str__, but containing solely the value of the parameters

inside.

The other non-internal attributes have default non-values (i.e. 0, empty string, or string

with a space) but can also be specified by keyword arguments to the new object.

Child classes of GalfitComponent are written to accommodate the specific GALFIT com-

ponents/functions referenced above. All but the Header class require component_number as

a positional argument upon creation. These child classes take advantage of the parameter
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loading functions described in the Parameters section above (B.1.1) to fill the object upon

creation. These defaults can still be overwritten during creation through keyword arguments.

The Fourier and Header classes diverge the most from the other child classes in the specific

formatting and conventions necessary for both.

The Fourier class in particular has several special attributes and methods which we

detail here in anticipation of this scheme forming the basis of additional components to be

added in the future, i.e. bending modes and truncation). Besides the component_number

and other inherited keyword attributes, the Fourier class can also take a dictionary as

a key word argument (with key n) which provides the desired fourier modes, amplitudes,

and phase angles in the form {[fourier mode]:[amplitude], [phase angle])}. The

additional attributes and methods are:

ATTRIBUTES

· amplitudes/phase_angles – stores the amplitude/phase angle values in list format.

Note: these attributes alone do not contain the corresponding mode information but

rely on the user to have this information upon using.

METHODS

· sort_parameters – used for sorting the fourier modes via parameters into numerical

order given potential issues which may arise from keyword argument input or default

overriding.

· include_fn – used for creating/updating fourier mode parameters from a dictionary.

As is the case with the Parameters submodule, we provide a load_all_components func-

tion in Components which creates a dictionary containing a default set of all available com-

ponents. The ComponentContainer and, to a lesser extent, FitsHandler submodules take
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significant advantage of this function. It is (again) fundamental to the flexibility of their

implementation.

B.1.3 ComponentContainer

The containers, stored in the Containers submodule and based on a parent

ComponentContainer class, are developed to generically hold multiple components as at-

tributes of the container. If the user desires, upon creation of a container, they can specify

the names of physical structures coinciding with the specific components via keyword ar-

guments in order to abstract the structures into the container object. This again takes

advantage of python’s dictionary key/value structure. If the names are not specified or the

default structure is not used, the keys default to [component_name]_[iterator]. Its main

attributes, methods, and overrides are as follows:

ATTRIBUTES

· components – abstracts the components being stored in the container into a dictionary.

METHODS

· to_tuple/list – used to create a tuple/list out of the components stored in the

container.

· to/from_pandas – used to combine the dataframes output by or ingest dataframes

into the components classes into/from one unified dataframe.

OVERRIDES

· __str__ – overrides str(). Is used for joining all component strings into a single

string.
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· __repr__ – overrides repr(). Is used for joining all component repr strings into a

single string.

Although the ComponentContainer contains some utility in the basic transformations de-

scribed above, its two child classes FeedmeContainer and OutputContainer, are designed

to perform I/O to/from STDOUT or file and thus enjoy the most usage in the pipeline.

The FeedmeContainer is designed to abstract a GALFIT feedme file. It has a single addi-

tional attribute, path_to_feedme which stores the path to the feedme file used to generate

the object or otherwise the path to write the feedme to. A keyword argument load_default,

which defaults to true, can be used to specify loading the default (as used in this study:

header, bulge, disk, disk for arms, arms, fourier, and sky) component set. Setting this key-

word argument to true will not override any components passed in as arguments during the

object creation. Care must be taken when using this option with components fed in during

object creation as misnaming will cause extra components to be stored in the container. The

FeedmeContainer also contains many additional methods and overrides which allow it to

handle file I/O. These are:

· sort_components – used to sort components in their host dictionary in numerical

order by their component_number. Uses the hierarchy: Sérsic, power, fourier, bending,

truncation to determine combination order.

· to_file – used to print the components as a full feedme to a file. Uses the components’

string overrides to achieve this and hence achieves generalizability. If components

are specified as positional arguments, this method is identical to that found in the

GalfitComponent class.

· from_file – used to ingest a feedme in its entirety and parse the subsequent compo-

nents into the container. This method employs several inner functions which we detail

below.
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from_file INNER FUNCTIONS

·· check_matches – used to validate ingested components against components al-

ready existing in the container. This function assigns new key values to these

components, in the form of [component_name_iterator], before adding them to

the components attribute dictionary. This function is written with compatibility

for both the input from FITS headers and text.

·· from_fits – used to parse FITS headers as output by GALFIT which contain

the model parameterization. Once parsed, the function sends the appropriate file

chunks to the individual component’s from_file_helper methods. Note that

FITS headers have a limited character width so some of the GALFIT header in-

formation found in the FITS header may be truncated—typically file path in-

formation as is found in header items A – F.We elect to leave these potentially

incomplete header entries to their default values as handled by the GalfitHeader

class from Components.

·· from_text – used to parse GALFIT text feedme files. Once parsed, the function

sends the appropriate file chunks to the individual component’s from_file_helper

methods.

OVERRIDES

· __str__ – overrides str(). Is used for joining all component strings into a single string

in the style of the GALFIT feedme. As compared to the method in the

ComponentContainer, this is designed to output components which modify others

directly next to the modified component, i.e. power and Sérsic.
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The primary utility of the FeedmeContainer in this pipeline is to carry information from the

conversion from SpArcFiRe to GALFIT and to hold the feedme information in the abstracted

FITS file output described in the FitsHandlers section below.

The OutputContainer is the main driver of the multi-step fitting scheme (Section 4.3)

as it takes as input and handles GALFIT’s output to STDOUT/STDERR, and populates or

updates the component attributes accordingly. The ability to handle GALFIT output and

success/failure dynamically is a necessary feature for efficient distributed computing in our

implementation, Section 4.5. It is a child class of the FeedmeContainer—its additional

attributes and methods are as follows:

ATTRIBUTES

• success – stores a binary value indicating whether GALFIT successfully completed its

decomposition. Defaults to false.

• galfit_out/err_text – used to store the output texts from stdout/stderr as extracted

from the python subprocess.CompletedProcess object which results from running

GALFIT as a subprocess in python. If the option store_text is specified, the text is

stored. If not, default text indicates the need to use the option store_text if storing

output is desired.

METHODS

• check_success – local function. Is used to parse output and determine whether

GALFIT succeeded or not. Updates the success attribute with the results of this

operation.

• update_components – local function. Updates components from the information out-

put to STDOUT by GALFIT given success is true using the components’

update_from_log method. Currently requires the component list to be specified ahead
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of time (or the default to be used) due to its inheritance of the FeedmeContainer class.

This may change in a future release.

• __str__ – overrides str(). When called, prints out the output from STDOUT stored

in galfit_out_text.

B.1.4 FitsHandlers

The fits handlers, stored in the FitsHandlers submodule, generically abstract FITS files

of the kind used and output by GALFIT, with most of the base I/O utility being derived

from Astropy’s FITS handling package io.FITS. This submodule uses a HDU class as its

foundation which abstracts the name of an HDU, its header information, and the image

data associated with the HDU and stores these as attributes. On top of this, the parent

FITS handling class we employ is FitsFile which is designed to generically store HDU data

but which contains some default choices convenient for use with GALFIT. Its main attributes

and methods are:

REQUIRED ARGUMENTS

• filepath – the filepath to the FITS file being ingested.

ATTRIBUTES

• filepath – the filepath from REQUIRED ARGUMENTS.

• gname – the galaxy name of the file being ingested. This attribute can be set as a

key word argument during object creation but defaults to extracting the filename from

filepath.
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• names – a list of the names of the images being ingested to be used as the key to the

dictionary holding the ingested HDU objects. This attribute can be set as a key word

argument during object creation but defaults to [‘observation’] for convenience.

• num_imgs – the number of FITS file HDUs present in the file being ingested. This

must equal the length of names or an error will be raised.

• all_hdu – a dictionary containing the names (keys) and populated HDU objects from

the ingested FITS files (values).

• observation – this attribute refers to the “observation”, if present in the dictionary,

and is offered for convenience. Its inclusion here is based on the assumption that the

FitsFile class will be predominantly used to handle observation files used as input

for GALFIT.

METHODS

• close – a destructor used to fully close FITS files according to Astropy convention.2

• to_png – a method to generically generate and tile images using fitspng (F. Hroch,

2019) and ImageMagick (The ImageMagick Development Team, 2020). If the FitsFile

object only contains a single image, this method will output a resized version of the

image with dimensions 175x175. Sets several attributes which store the filepath to

the generated pngs—we do not describe them here as they are provided merely for

convenience but do not play a crucial role in our pipeline.

OVERRIDES
2See Warning in https://docs.astropy.org/en/stable/io/fits/#working-with-large-files
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• sub – overrides built-in subtract. Can be used to compare single or multiple image

blocks given that the two FitsFile objects contain the same number of HDU objects.

If not, the code will raise an error.

The primary fits handler class we employ is an OutputFits class, child of FitsFile,

which conveniently holds the header and data of each image block from GALFIT’s output:

observation, model, and residual, and generates a feedme via the FeedmeContainer class

from the model header. Importantly, the OutputFits class has the capability to calculate

our measures of the residual (Section 5.1) and to update the output FITS file header with

these values to be retrieved later. We take advantage of the header updating feature to collate

our results during the analysis portion of our pipeline, see Figure 4.1. Its main attributes

and methods—beyond those it inherits from FitsFile—are:

REQUIRED ARGUMENTS

• filepath – the filepath to the FITS file being ingested.

ATTRIBUTES

• model – this attribute abstracts the model HDU generated by GALFIT.

• residual – this attribute abstracts the residual HDU generated by GALFIT.

• header – this attribute abstracts the header of the model and is populated on object

instantiation. The attribute is offered for convenience on the assumption that a user

requesting a header from an OutputFits object is likely referring to the header of the

model.

• data – this attribute abstracts the image data of the model and is populated on object

instantiation. The attribute is offered for convenience on the assumption that a user

118



requesting data from an OutputFits object is likely referring to the image data of the

model.

• feedme – this attribute abstracts the feedme into a FeedmeContainer. It is populated

on object instantiation as extracted from the model header.

• bulge_mask – this attribute abstracts the bulge mask that SpArcFiRe uses to process

the galaxy. On object creation, it is created as a ones-array (no masking) with shape

equivalent to that of the model image data array. This attribute is used in our residual

analysis and can be updated by the generate_bulge_mask method.

METHODS

• generate_bulge_mask – a method to generate a bulge mask from SpArcFiRe’s anal-

ysis. Stores the resultant bulge mask in the bulge_mask attribute. Returns the bulge

mask data array.

• generate_masked_residual – a method to calculate our metric for the residual (Sec-

tion 5.1). Incorporates the star mask generated by SourceExtractor (Bertin & Arnouts,

1996) and the bulge mask if desired. Sets many attributes in the object related to this

analysis. Returns the masked_residual_normalized.

ATTRIBUTES SET BY generate_masked_residual METHOD

• masked_residual – abstracts the data array representing the residual masked by the

star mask—this is referred to as the crop_mask in the code to indicate that the star

mask used is cropped to the coordinates specified during the GALFIT decomposition.

• kstest – abstracts the results from running the Kolmogorov–Smirnov (KS) test as

implemented from the SciPy.stats package (Virtanen et al., 2020). Stores the object
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generated by the SciPy.stats kstest method. Can be written to the FITS header by

the option update_fits_header.

• norm_observation – abstracts the 2-norm of the observation image data array.

• norm_model – abstracts the 2-norm of the model image data array.

• norm_residual – abstracts the 2-norm of the residual image data array.

• masked_residual_normalized – abstracts the masked residual data array normalized

by the minimum between the observation and model 2-norms (via SciPy.linalg.norm

Virtanen et al., 2020).

• nmr – abstracts the 2-norm of the masked_residual_normalized. The abbreviation

refers to “norm of the masked residual”, abbreviated so to avoid confusion with the

masked_residual_normalized. Can be written to the FITS header by the option

update_fits_header.

B.2 Regression Testing

Regression tests have been incorporated into the GalfitModule in the RegTest submodule.

The regression test can be run by calling the script RegTest.py from this submodule. The

test operates by first creating a TestOutput directory, where all subsequent files will be

dropped, and calling each class module in a subprocess shell so as to run their individual unit

tests and capture their output. This output is compared to known output in the TestData

directory and any errors are reported to a text file entitled OutputError.txt. Furthermore,

the code runs GALFIT on 11 observations, checking the input files for consistency with the

’correct’ files and the output files for having been generated. It is not possible, at this time,

to compare the image data in the GALFIT output files directly as different computing set-ups

have been shown to produce different results, some of which cannot be avoided by setting a
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tolerance threshold. We anticipate that it may be possible to circumvent this issue by using

GitHub actions and a docker environment and intend to explore this option in the future. The

results of the reg test are summarized in STDOUT and output to the UnitTestStdOutput.txt

and OutputError.txt files. If verbosity is enabled, all information written to these files along

with the STDOUT from GALFIT (which is otherwise captured) is output to STDOUT.

B.3 Additional Utilities

The GalfitModule contains additional utilities in the Utilities submodule that aid in

the operation of the pipeline or that can be/are used in conjunction with the pipeline to

produce and assess results. In several cases, these utilities augment the processes built

into the main scripts and are demarcated as “utilities” to indicate that they can be run as

standalone or that it may be appropriate to use these scripts outside the scope of the main

pipeline.

We summarize here several utilities which do not require in-depth explanation but which

a user may find useful or otherwise convenient:

• extract_model_from_galfit_output.py – a script that extracts solely the model and

header information from the FITS files output by GALFIT into a single image block FITS

file.

• generate_model_only_fits.py – a script that can be used to turn off GALFIT’s op-

timization stage and produce models directly from the . This utility is most desirable

in the context of refining the S2G procedure and in some aspects of the analysis.

• generate_png.py – a script that can be used to generate observation, model, residual

tiled PNGs for models output by GALFIT. This is essentially a convenience wrapper

for the to_png method of the FitsFile class and is most often used for when models
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cannot be generated due to compatibility issues with fitspng or ImageMagick when

the pipeline is run.

• label_images.py – a script that allows a user to label output result images (converted

to jpg) by sorting them into pre-specified directories. All by-eye labeling in Chapter 6

has been done using this script.

• symlink_data.py – a script that prepares a directory with the symlinked data neces-

sary to run the pipeline. The data that are symlinked are the input observations, placed

in the default input directory sparcfire-in, and the csvs from a SpArcFiRe data run,

placed in individual galaxy folders in the default output directory sparcfire-out, all

of which will be created if not already done so.

• no_opt – a subdirectory of Utilities which contains scripts to generate and tile

GALFIT models which don’t undergo the optimization process. This is used in Section

6.3 to demonstrate our translation SpArcFiRe output to GALFIT parameterization as

a good initial guess for our modeling procedure.
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Appendix C

Deriving the Pitch Angle Measurement

from GALFIT

We present the full calculation used to determine the pitch angle via GALFIT. Expanding

on the functional form of Equation (2.6), and following a condensed version of that presented

in (P, 2010),

A =
2× CDEF

|θout|+ CDEF
− 1.00001 (C.1)

B =
[
2− tanh−1(A)

]( rout
rout − rin

)
(C.2)

tanh
(
rin, rout, θincl, θ

sky
pa ; r

)
≡

0.5×

{
tanh

[
B

(
r

rout
− 1

)
+ 2

]
+ 1

}
(C.3)

We use this expanded form to find the derivative of Equation (2.6)
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θ1(r) =
1

2

{
tanh

[
B

(
r

rout
− 1

)
+ 2

]
+ 1

}
(C.4)

θ2(r) = θout

[
1

2

(
r

rout
+ 1

)]α
(C.5)

θ(r) = θ1(r) · θ2(r)

∴
∂θ

∂r
= θ1(r)

∂θ2
∂r

· θ2(r)
∂θ1
∂r

(C.6)

where
∂θ1
∂r

=
B

2rout cosh
2
(
2−B +B r

rout

)
∂θ2
∂r

=
αθout
2α

(
1 + r

rout

)α
rout + r

As the code is implemented in Python, we catch Overflow errors due to division by 0.
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Appendix D

Additional GALFIT Results Quantiled

We present the image, model, residual results from the NC2 and NC3 results from the

1000 and 29k data sets, selected by residual score quantiles, in intervals of 20%. The images

from the 1000 data set are those selected by-eye. The images from the 29k data set are

selected from the results which are deemed successful by our combined success metric.
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Figure D.1: Models from the by-eye successful sample of 1000 galaxies from NC2 selected
by quantile, with representations at every 20%, of the residual metric. Each image is obser-
vation, model, residual, vertically oriented.
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Figure D.2: Models from the by-eye successful sample of 1000 galaxies from NC3 selected
by quantile, with representations at every 20%, of the residual metric. Each image is obser-
vation, model, residual, vertically oriented.
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Figure D.3: Models from the by-metric successful sample of 29k galaxies from NC2 selected
by quantile, with representations at every 20%, of the residual metric. Each image is obser-
vation, model, residual, vertically oriented.
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Figure D.4: Models from the by-metric successful sample of 29k galaxies from NC3 selected
by quantile, with representations at every 20%, of the residual metric. Each image is obser-
vation, model, residual, vertically oriented.
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Appendix E

Pairwise Parameter Scatter Plots

We present pairwise scatter plots for several of the parameters discussed in Sections 6.4.2

and 6.5.2 for the NC2 + NC3 results for the 1000 and 29k sample sets. Note that the axes

limits on these results are artificially reduced in order to highlight trends in high density

regions of the plots.
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Figure E.1: Pairwise scatter plots for the Sérsic: magnitude, effective radius, and Sérsic
index for components 1, 2, and 3 (if applicable) of the 1000 galaxy sample set. The markers
in each scatter plot indicate the success level with color priority decreasing from by-eye
successful to successful to not successful, i.e., by-eye successful models are always colored
green regardless of their by metric determination. This implies that the ’by metric success’
markers in these plots are false positives and all ‘not successful’ markers are true negatives
given that all 1000 galaxies have been labeled by-eye. False negatives cannot be seen.
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Figure E.2: Pairwise scatter plots for the Sérsic: magnitude, effective radius, and Sérsic index
for components 1, 2, and 3 (if applicable) of the 29k galaxy sample set. The markers in each
scatter plot indicate the success level with color priority decreasing from by-eye successful to
successful to not successful, i.e., by-eye successful models are always colored green regardless
of their by metric determination.
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Appendix F

Additional Pitch Angle Plots

We present the full set of scatter plots and spiral arm overlay (validation) plots for the

sample of 14 NC3 galaxies.
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Figure F.1: Pitch angle scatter and overlay plots for the sample of 14 NC3 galaxies.
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