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ABSTRACT: The ab initio theoretical treatment of one-photon
double photoionization processes has been limited to atoms and
diatomic molecules by the challenges posed by large grid-based
representations of the double ionized continuum wave function. To
provide a path for extensions to polyatomics, an energy-adapted
orbital basis approach is demonstrated that reduces the dimensions
of such representations and simultaneously allows larger time steps
in time-dependent computational descriptions of double ionization.
Additionally, an algorithm that exploits the diagonal nature of the
two-electron integrals in the grid basis and dramatically accelerates
the transformation between grid and orbital representations is
presented. Excellent agreement between the present results and
benchmark theoretical calculations is found for H− and Be atoms,
as well as the hydrogen molecule, including for the triply differential cross sections that relate the angular distribution and energy
sharing of all of the particles in the molecular frame.

1. INTRODUCTION
The development of novel attosecond light sources has opened
new possibilities for imaging and controlling electron dynamics
in many-electron systems in their natural time scales. Notable
examples include extracting photoionization time delays of
molecules in the vicinity of Feshbach and shape resonances,1−4

monitoring the birth of a photoelectron,5 the observation of
correlation-driven charge migration in a DNA building block,6

and retrieving real-space movies of the internal motion in
molecules.7,8 Among the various light-induced phenomena,
double photoionization (DPI) is one of the most fundamental
processes. The photoelectrons ejection patterns provide a
complete picture of the competition between the effects of
electron−nuclear, and electron−electron interaction, as well as
the acceleration of the electrons in the direction of the light
polarization vector.9 In addition, due to its high sensitivity to
electron correlation, DPI offers a unique insight into the nature
of the collective electron dynamics of the target.
Complex computational methods to obtain DPI amplitudes

have been developed in the last two decade. However, most of
them have been exclusively directed to describing DPI in
atoms and the H2 molecule. These methods work within the
two-active electron approximation and usually make use of a
FEM-DVR basis set to describe the two outgoing elec-
trons.9−11 Other methods using Sturmian functions,12,13

Bsplines,13,14 or using hybrid basis e.g., combining Gaussian
functions with FEM-DVR,15,16 and orbitals with FEM-
DVR,17−20 have also been successfully employed.

Obtaining accurate DPI amplitudes in polyatomic molecules
usually requires a significant increase in the size of the basis set.
The size increase is 2-fold. First, higher angular momenta are
needed to accurately describe the multicenter molecular
potential, particularly the cusp at each nucleus. In addition,
the number of angular configurations in the basis increases as
the symmetry of the system decreases. Second, the density of
the radial grid has to be increased in order to describe the
highly compact core orbitals. This size increase makes the DPI
problem almost computationally intractable, even for small
polyatomic systems. In a recent work one-photon DPI
amplitudes for H2O were reported, however these amplitudes
were obtained averaging over all spatial orientations of the
molecule and considering an independent-particle model for
the molecular initial electronic state.21,22

In the present work, a novel energy-adapted orbital basis set
implementation is described. The orbital basis effectively
reduces the size of the basis without compromising the
accuracy of the observables. The orbitals, which are
eigenfunctions of the one-electron Hamiltonian, are used to
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describe the two photoelectrons, while the remaining core is
kept frozen (the two active electron approximation). The
energy gap between the valence and core electrons and the
close-shell character of the core electrons make this
approximation fairly accurate. Although we do not do so
here, the frozen core approximation can in principle be lifted
by coupling double ionization channels. The orbitals are
expanded in a product of FEM-DVR functions and symmetry
adapted spherical harmonics for the radial and angular
coordinates, respectively.
The key feature of the orbital basis we construct here is that

it can be energy adapted so as to reduce the size of the
problem. The number of orbitals included in the wave function
expansion is limited by the maximum energy of each electron.
The energy threshold imposed not only reduces significantly
the size of the basis but also eliminates (by construction) the
high spectral terms in the Hamiltonian, allowing the use of
larger time steps when solving the time-dependent Schrödinger
equation (TDSE). All of the above advantages makes the
orbital basis particularly well suited to describe DPI processes
in small polyatomic molecules. As a demonstration of the
orbital basis, we choose the relatively simple cases of DPI of
H− and Be atoms, and the H2 molecule. As theoretical data
from previous works is available for the three sys-
tems,12,14,17,18,23,24 they represent an excellent testbed of the
methodology presented here. We found an excellent agreement
between the DPI amplitudes calculated with the present
methodology and those reported in previous studies.
The outline of this paper is as follows. In Section 2 the

theoretical framework for the orbital basis is discussed. The
method to calculate the DPI amplitudes is detailed and some
computational details are given. In Section 3 the DPI
amplitudes calculated are compared with previous results
obtained using different approaches. Finally in Section 4 we
make some concluding remarks about the prospects for
applying this approach to larger molecular targets.

2. THEORY
Within two-active electron approximation the effective
Hamiltonian for the two electrons can be written (atomic
units will be used throughout):

= + +H h h
r
1

1 2
12 (1)

where r1/ 12 is the Coulomb repulsion between the active
electrons. The one-body operator h is

= + +h T J K V(2 )
o

o o nuc
(2)

where the sum is over occupied orbitals, T is the one-electron
kinetic energy operator, Vnuc the nuclear attraction, and 2Jo and
Ko are the direct and exchange components respectively of the
closed-shell core interaction with the valence electrons.
Explicitly, the Coulomb operator for the orbital o of
symmetry Γ is given by

=
| |
| |

J dr
r

r r
r( )

( )
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o
2

(3)

The doubly occupied orbital is expanded in a product of FEM-
DVR basis functions, r( )i , and symmetry adapted real

spherical harmonics, X ( , )m, , (see Appendix A) for radial
and angular coordinates, respectively

=r
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m
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with coefficients i m
o
, , .

The matrix elements of the Coulomb operator in this basis is
given by (dropping the symmetry symbol Γ for simplicity)
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in order to evaluate this six-dimensional integral we follow a
procedure paralleling the computation of the pure FEM-DVR
two-electron integrals. The strategy is to utilize a multipole
expansion for the electron repulsion,

| |
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,
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(6)

Then, the radial integrals in the FEM-DVR basis can be
reduced, using an approach that solves Poisson’s equation in
the FEM-DVR basis, to an expression involving just the inverse
of kinetic energy operator,10

=<

>
+r r

r
r

r r( ) ( ) ( ) ( )i k j l i k j l i j1 1 1 2 2 , , ,
(7)

where

= + [ ] + +r w r w
T

r r
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i j
i i j j

i j
i j

, ,
( ) 1

max
2 1

(8)

and where [ ]Ti j,
( ) 1 is the i j, element of the inverse of kinetic

energy matrix for the λ angular momentum, wi and wj are the
associated Gauss−Lobatto quadrature weights for FEM-DVR
points ri and rj, respectively. Importantly, the expression in eq 8
for the radial two-electron integrals is diagonal in the indices
for each electron.
Using eqs 5−8 the matrix elements of the Coulomb operator

can be written as
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1 1 2 2
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1 1 2 2

(9)

where the angular integral,

=C m X X X dr r r r( ; ; ) ( ) ( ) ( )m, , , (10)

is performed using a Lebedev−Laikov quadrature.25 Note that
the m,1 1 and m,2 2 angular pairs are constrained by the
symmetry Γ of the doubly occupied orbital ϕo, while the m,
and m, angular pairs are constrained by the total symmetry
of the Ji m j m

o
, , ; , , matrix element.

The nonlocal exchange operator acting on an orbital r( ) is
given by
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=
*

| |
K dr r r

r r

r r
r( ) ( ) ( )

( ) ( )
o o

o
(11)

Following the same steps taken to obtain the Coulomb
operator matrix elements, the final expression for the exchange
operator matrix elements can be written as,
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Finally, the electron−nucleus attraction potential is given by

=
| |

V
Z

r
r R

( )nuc
(13)

where Rβ and Zβ are the position and charge of the nucleus β,
respectively. Using the same approach that is used to evaluate
the Coulomb and exchange operators, the electron−nucleus
potential matrix elements can be written as
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Note that calculating the electron−nucleus potential in the
FEM-DVR basis involves evaluating the basis functions at the
positions of the nuclei (see eq 16). Consequently, it is
convenient to place one of the FEM-DVR boundaries at the
nucleus position where such evaluation is straightforward

= =R r w( ) /m k km k .
2.1. Orbital Basis. The orbitals in the basis are chosen to

be eigenfunctions of the one-body Hamiltonian in eq 2,

=h n n n (17)

where n is the index for a given eigenfunction of symmetry Γ
and where the orbitals are written as linear combination of the
grid basis set, similarly to the doubly occupied orbitals in eq 4

=r
r

r
X( , , )

( )
( , )n

i m
i m
n i

m
, ,

, , ,
(18)

In subsequent equations we will drop the symmetry
superscript Γ for the sake of simplifying the notation.
Obtaining the two-electron integrals in the orbital basis

|r r r r( ( ) ( ) ( ) ( ))n n n n1 1 2 21 2 3 4
usually involves performing a

four-index transformation of the two-electron integrals
calculated in the underlying FEM-DVR basis.26 Here we
avoid performing that transformation in its primitive form by
taking an “electron-density” approach that exploits the
underlying grid representation of the orbitals.
First, we take the product of the two orbitals with the same

electron index, r( )n 11
and r( )n 12

. This product is most
efficiently obtained by transforming to the grid representation
of the angular coordinates, in which we evaluate the values,

i
n
, , of the nth orbital at the angular point α and radial point i,

= X ( , )i
n

m
i m
n

m,
,

, , ,
(19)

where ( , ) are the Lebedev−Laikov quadrature points.
Then, the density is obtained taking the product of the two
orbitals in their grid representation. We note that in the two-
electron integrals we only need terms in the density which are
diagonal in the radial FEM-DVR functions. Thus, the density is
given by

=i
n n

i
n

i
n

,
,

, ,
1 2 1 2

(20)

This property of the two-electron integrals in the FEM-DVR
basis is the one that is emulated by the tensor-hyper-
contraction approximation27,28 to two-electron integrals in a
basis of Gaussian functions. The purpose of the tensor-
hypercontraction approximation is to approach the much
improved scaling with basis size that we describe below. Here
the diagonal property of the two-electron integrals in eqs 7 and
8 is exact within the FEM-DVR quadrature and no further
approximations are made.
Next, we transform the density, now in its grid

representation, back to the partial wave representation. This
transformation can be achieved by just integrating over the
angular coordinates,29

= X w( , )i m
n n

i
n n

m, ,
,

,
,

,
1 2 1 2

(21)

where wα is the Lebedev−Laikov quadrature weight associated
with the ( , ) point. The electrostatic potential due to the
density i m

n n
, ,

,1 2 can be written as

=
+

4
2 1i m

n n

j
i j j m

n n
, ,

,
, , ,

,1 2 1 2

(22)

where the radial two electron integrals, i j, , are defined in eq 8.
The final two-electron integrals in the orbital basis can then be
obtained by taking the overlap of densities i m

n n
, ,

,3 4 and the i m
n n
, ,

,1 2

functions.

| =( )n n n n
i m

i m
n n

i m
n n

, ,
, ,

,
, ,

,
1 2 3 4

1 2 3 4

(23)

For N orbitals the number of two-electrons integrals is N4.
This number can be significantly reduced taking into account
the permutational symmetry between the orbitals26 in eqs 23.
In addition, symmetry can be also exploited as the two-electron
integral is different from zero only if the product of the point-
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group symmetry of each orbital is equal to the totally
symmetric irreducible representation.
Finally, the matrix elements of the one-body Hamiltonians

are easily constructed because the orbitals are chosen to be
eigenstates of the one-body Hamiltonian,

| + | = +h h ( )n n n n n n n n n n1 21

1

3

3

2

2

4

4
1 3 1 2 3 4 1 2 3 4

(24)

Employing time-independent orbitals provides the flexibility
of only calculating the Hamiltonian matrix elements just a
single time. Then, those matrix elements can be stored and
used in different time-dependent calculations, e.g., for different
pulse frequencies and time durations.
2.2. Double Ionization Amplitudes. The interaction of

the target system with the radiation pulse is described by
solving the time-dependent Schrödinger equation (TDSE),

=( )t i
t

t( ) ( ) 0
(25)

where = +t H V( ) t , with H being the system time-
independent Hamiltonian in eq 1, and Vt is the laser-system
interaction. Using the length gauge and within the dipole
approximation the laser-system interaction is given by

= · +V tE r r( ) ( )t 1 2 , where the electric field for a photon
energy ω and total duration T can be written as

= [ ]lmono
t E F t t TE( ) ( ) , if 0, ,

0, elsewhere,
0

(26)

where E0 is the maximum electric field amplitude and is the
light polarization direction. We have chosen a sine-squared
envelope for the time dependence of the pulse F t( ),

= i
k
jjj y

{
zzzF t

T
t t( ) sin sin( )2

(27)

We solve eq 25 by expanding the time-dependent wave
function in the orbital basis described above.

=t C tr r r r( , , ) ( ) ( ) ( )
nm

nm n m1 2 1 2

1 2

1 2 1 2

(28)

The initial wave function at time t = 0, corresponding to the
ground state of the system, is obtained by diagonalizing the
time-independent Hamiltonian in eq 1. Since the ground state
is either a singlet or a triplet, =tr r( , , 0)1 2 is either an
antisymmetric or symmetric function of r1 and r2, respectively.
This permutational symmetry is then conserved at all times.
In order to extract the DPI amplitudes from the wave packet,

we let it further propagate for an additional time tp after the
end of the pulse. Then, the double photoionization amplitudes
are obtained by projecting the time-dependent wave function
onto products of continuum “testing functions” k r( , )( )

satisfying incoming boundary conditions,30−34

= | +C T tk k k r k r r r( , ) ( , ) ( , ) ( , , )p1 2
( )

1 1
( )

2 2 1 2

(29)

Projecting the uncorrelated product of continuum wave
functions onto the total time-dependent wave function has
been used previously to extract double ionization amplitudes
from wave packets for atoms and molecules to obtain results in
excellent agreement with other extraction methods.30−34 The
main limitation of this approach arises from the need to

propagate the wave function for longer times than the pulse
duration, but this method avoids the calculation of the surface
integral expression for the double ionization amplitudes
described by McCurdy et al.10

The functions k r( , )( ) are the target cation continuum
eigenfunctions with incoming momentum k. While there are
other physically equivalent alternatives for testing functions,
this choice is convenient since it eliminates the contributions
of the single ionization channels to eq 29. The incoming
continuum testing functions are related to the outgoing version
by = [ ]*+k r k r( , ) ( , )( ) ( ) , and +( ) satisfies

=+( )h
k

k r
2

( , ) 0
2

( )
(30)

We solve eq 30 by writing the +( ) as a sum of Coulomb
function and + k r( , )c

( ) and a scattered wave correction,
k r( , ),

= ++ +k r k r k r( , ) ( , ) ( , )c
( ) ( ) (31)

The Coulomb wave function admits the partial wave
expansion,

=+
k

i e
r

r
X Xk r r k( , )

2 ( )
( ) ( )c

m

i k k
c

m m
( )

,

( ) ,
, ,

(32)

where r( )k
c
, is the radial Coulomb function that behaves

asymptotically as + +kr Z k kr ksin( ( / )ln 2 /2 ( )), and
= +k iZ k( ) arg ( 1 / ) is the Coulomb phase. The

scattered wave correction satisfies the driven equation,10,14

= +( ) ( )k
h h

k
k r k r

2
( , )

2
( , )c

2 2
( )

(33)

Since ξ is an outgoing wave, the correct outgoing boundary
conditions are imposed by solving eq 33 using exterior
complex scaling.10,35

The fully differential cross section for a single photon double
ionization process, can be formally written as,

= | |

| |

d
dE d d c

C

T

k k4 ( , )

( , , )

if

if

3

1 1 2

2
1 2

2

2
(34)

where | |T( , , )if is the Fourier transform of the pulse, and

= E Eif f i, with Ei and = +E k k( )/2f 1
2

2
2 being the

ground state and final state energies, respectively. Resolving
the continuum dynamics using the above expressions allows us,
from a single time propagation, to extract fully differential cross
sections for any given final energy Ef within the bandwidth of
the pulse.
2.3. Computational Details. All the calculations were

performed within the D h2 point group symmetry. The basis set,
associated with the expansion in eq 28, is energy adapted by
including only the orbitals from eq 17 with an energy lower
than the threshold energy of eth = 1.1 au, 1.5 au, and 2.5 au for
H−, Be and H2, respectively. We performed convergence
studies (not shown here) that suggest that in general, for a
given excess energy Ef, convergence to graphical accuracy is
reached by including all the orbitals with an energy such that

× +e E E1.5 ( )fth ion , where Eion is the energy of the
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cation ground state. Note that the value of the energy in
parentheses here is the electron energy for a single ionization
process. The size of the basis set is further reduced by
restricting the value in the expansion of the wave function in eq
28 of the product 1 2 to the symmetry of the states
involved in the process studied. For instance, for a single
photon transition in the case of H− and Be the pair { 1, }2 is
restricted to values such that = { }A B,g u1 2 1 . We note
that there is no formal limitation to use the orbital basis to
study multiphoton double ionization processes, but that the
symmetries accessible by each photon must be included.
Employing a radial basis of 265 FEM-DVR functions and =

7 for the angular coordinates, in D h2 symmetry, would produce
a two-electron Hamiltonian of order ×6 108. Setting the
threshold energy in the orbital basis to eth = 1.5 au results in a
two-electron Hamiltonian of order ×2 107, thus effectively
reducing the order of the Hamiltonian by more than an order
of magnitude.
The maximum single-electron angular momentum needed to

converge the ground state energies and the triply differential
cross sections (TDCS), in the energy range considered, was
found to be max = 7 for the three systems studied. We note
that the calculated double-ionization potentials are in very
good agreement with previously reported values (see Table 1).

The time dependent calculations were performed setting the
pulse intensity and temporal duration to I = 3×1011 W cm−2

and T = 0.5 fs, respectively. The wave packet was allowed to
further propagate for an additional time of tp = 1.0 fs after the
end of the pulse. The time propagation was performed using a
short-iterative Lanczos propagator36,37 with a time step of

t 0.5 a.u. Imposing an energy threshold for the orbitals
included in the basis removes (by construction) the high
energy eigenvalues of the one-body Hamiltonian, which in turn
allows the use of larger time steps and more compact radial
grids without altering any physical observable.

3. RESULTS
3.1. H− Double Photoionization. Figure 1a depicts the

absolute squared amplitudes | |C k k( , )1 2
2 (see eq 29), for a

central frequency =20 eV, integrated over the emission
directions of the two electrons and the energy sharing between
them, as a function of the photon energy. In this case the
amplitudes for a given total electron kinetic energy and energy
sharing were extracted by projecting the total wave function
onto the product of two bare Coulomb functions with Z = 1
with the desired kinetic energies. The absolute square
amplitudes given in Figure 1a reflect the bandwidth and
central frequency of the attosecond pulse as well as the energy
dependence total cross sections. The total cross section,
presented in Figure 1b, is then obtained by dividing the

absolute square amplitudes by the pulse Fourier transform.
Our results are generally in good agreement with those
reported previously including calculations obtained by wave
packet propagation,12 convergent close coupling method,23

and a pure FEM-DVR basis set.24

A more robust test of the orbital basis is calculating the
TDCS, which depends on the emission directions of the two
electrons and on the energy sharing between them. The TDCS
contains the signatures of the contributions of electron
correlation to the dynamics. Thus, correlation in both the
initial and final states must be properly treated to obtain
accurate results.11,24 The TDCS for a photon energy of =
18 eV (3.7 eV of excess energy) is presented in Figure 2, for
various fixed-electron directions. The fixed electron carries
away 50% (upper row) and 90% (lower row) of the total
available energy. A comparison with converged benchmark
calculations obtained using a pure FEM-DVR basis set11,24 is
also presented. The agreement, both in magnitude and shape,
between the present results and the corresponding FEM-DVR
calculation is excellent.
In addition, both theoretical results exhibit the signature of

parity-selection rules preventing both electrons from being
ejected back-to-back at equal energy sharing, and preventing in
general the emission of both electrons perpendicular to the
light polarization direction.41 All of the above evidence
indicates an accurate representation of the electron−electron
interaction matrix elements encoding the physics that drives
the double-ionization process.
3.2. Be Double Photoionization. Figure 3 shows the

TDCS for a photon energy of = 37.4 eV (10 eV of excess
energy), for various fixed-electron directions. The fixed
electron carries away 50% of the total available energy. In
this case, the TDCS were determined using a pulse of central
frequency = 40 eV. Then, the amplitudes in eq 29 were
obtained using two different approaches. First, we projected
the time dependent wave function onto the product of Be+

Table 1. Double Ionization Potentials for H−, Be, and H2
a

System Orb. (eV) DVR (eV) Ex (eV)

H− 14.30 14.36 14.36
Be 27.41 27.42 27.53
H2 51.23 51.37 51.39

aThe present results are compared to results obtained using a FEM-
DVR basis set and exact values. Exact energies, Ex, are from ref.38 for
H2 (R = 1.4 a.u.), and from refs.39 and 40 for H− and Be, respectively.

Figure 1. (a) Squared amplitudes integrated over the emission
directions of the two electrons and the energy sharing between them,
as a function of the photon energy. (b) Total single-photon double-
ionization cross section of H− as a function of the photon energy.
Salmon solid circles: present results. Plum solid squares: results from
ref.12. Blue solid line: results from ref.23. Dark-cyan dashed line:
Results from ref.24.
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continuum eigenfunctions, calculated using Coulomb functions
with Z = 2 (see eqs 30-33). Second, we neglected the short-
range correction (see eq 31) in the testing function and
projected the time-dependent wave function onto the product
of two bare Coulomb functions. Using Z = 2 is a suitable

choice since the long-range behavior of the direct operator for
the s1 2( a1 g

2) core ( |J r2 2/s r1 ) screens the Z = 4 nucleus
of Be, and the exchange operator K s1 has the range of the 1s
orbital.
The TDCS in Figure 3 are compared with converged

benchmark calculations obtained using a hybrid orbital-FEM-
DVR basis set.18 The agreement, both in magnitude and shape,
between the present results and the hybrid basis results is
excellent. Both theoretical results exhibit the signature of
parity-selection rules observed in Figure 2. In addition, the
results obtained by projecting onto bare Coulomb functions
and Be+ continuum states are graphically indistinguishable
from each other. This means that, during the time propagation
the wave packet has enough time to reach the asymptotic
region, where the short-range correction is negligible and
projecting onto the different testing functions should be
equivalent. This serves as an additional test to the reliability of
the extraction method in eq 29.
3.3. H2 Double Photoionization. Our main motivation

for developing an orbital basis method was to study double
photoionization of molecular targets. TDCS in molecular
targets are sensitive to electron correlation in both the initial,
and final states.11 Thus, any comprehensive theoretical
description of double ionization processes in molecular targets
requires an accurate representation of the electron−electron
interaction. In the present, we have chosen as benchmark
system the H2 molecule which has been extensively studied
both theoretically and experimentally.9,11,14,32,42−45 Figure 4
shows the TDCS for a photon energy of = 61.2 eV (10 eV
of excess energy), for various fixed-electron directions with
respect to the light polarization vector. The fixed electron
carries away 20% (left column) and 80% (right column) of the
total available energy. The light polarization vector is oriented
parallel to the molecular axis, leading to the 1 +

u (1B u1 ) final
symmetry. In this case, the TDCS were determined using a

Figure 2. TDCS for double ionization of H− at =18 eV for in-plane geometries. Fixed electron (single ended red arrows) with 50% (upper row)
and 90% (lower row) of the available energy and various directions with respect to the light polarization vector (double ended blue arrow). Dark
cyan points: results from refs.11 and 24 (obtained using the velocity gauge). Magenta points: present results. Units are kbarn/eV/sr2.

Figure 3. TDCS for double ionization of Be at = 37.4 eV for in-
plane geometries. Fixed electron (single ended red arrows) with 50%
of the available energy and various directions with respect to the light
polarization vector (double ended blue arrow). Dark cyan points:
results from ref.18 (obtained using the velocity gauge). Magenta
points: present results obtained using Coulomb functions as testing
functions. Solid blue line: present results obtained using Be+
continuum states as testing functions. Units are kbarn/eV/sr2.
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pulse of central frequency = 62 eV, and projecting onto the
product of H2

+ continuum eigenfunctions, calculated using
Coulomb functions with Z = 2. The corresponding TDCS for
the light polarization vector oriented perpendicular to the
molecular axis, i.e., 1

u (1B u3 ,
1B u2 ) final symmetry, is

presented in Figure 5. The TDCS are compared with
converged benchmark calculations obtained using a pure

FEM-DVR basis set. As in the previously examined cases of H−

and Be, the agreement between the present results and the
FEM-DVR basis results is excellent. The small differences
observed could be due to potential convergence issues that
could be made visible by comparing the TDCS obtained using
different gauges and is possibly magnified by the small
magnitude of the cross section.
Although the 1

u and the
1 +

u cross sections differ in almost
an order of magnitude, the TDCS for both molecular
orientations (and each energy sharing), exhibit similar features,
i.e., two lobes in the opposite direction from the fixed electron
with no significant cross section in the back-to-back geometry.
This feature can be characterized as atomic-like as they
resemble the angular distributions obtained for H− and Be for
similar orientations of the fixed electron with respect to the
polarization vector (see Figure 3).

4. CONCLUSIONS
In this work, we have developed and applied an energy-
selected orbital basis set to describe DPI processes in atoms
and molecules. A strategy for evaluating the relevant operator
matrix elements has been given, including an efficient
transformation between numerical grid and orbital basis
representations. TDCS computed with the present method,
for H− and Be atoms, and for molecular hydrogen, and
compared with benchmark theoretical calculations reveals an
excellent agreement of the orbital basis results with the existing
data. The results presented here provide confirmation of the
present method for describing two electrons in the nontrivial
molecular continuum, suggesting the utility of expanding this
method for treating more complicated and experimentally
relevant molecular targets in DPI studies.
Employing a single-centered basis set to describe DPI

processes in polyatomic targets requires the use of high angular
momenta in order to accurately describe the molecular
potential. Thus, leading to a large number of orbitals in the
basis. However, such calculations can be performed with the
current implementation of this method for other linear or
hydrogenated molecules, e.g., H2O, CH4, NH3, where the
expansion center can be placed on the heavier atom. This
potential issue could be circumvented by using a multicenter
expansion placing a center on each atom.

■ A REAL SPHERICAL HARMONICS
Real spherical harmonics46,47 are defined as follow:
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