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Utility-Based Power Control for a Two-Cell
CDMA Data Network

Chi Zhou, Michael L. Honig, Fellow, IEEE, and Scott Jordan, Member, IEEE

Abstract—Power allocation across users in two adjacent cells
is studied for a code-division multiple access (CDMA) data ser-
vice. The forward link is considered and cells are modeled as
one-dimensional with uniformly distributed users and orthogonal
signatures within each cell. Each user is assumed to have a utility
function that describes the user’s received utility, or willingness to
pay, for a received signal-to-interference-plus-noise ratio (SINR).
The objective is to allocate the transmitted power to maximize the
total utility summed over all users subject to power constraints in
each cell. It is first shown that this optimization can be achieved
by a pricing scheme in which each base station announces a price
per unit transmitted power to the users, and each user requests
power to maximize individual surplus (utility minus cost). Setting
prices to maximize total revenue over both cells is also considered,
and it is shown that, in general, the solution is different from
the one obtained by maximizing total utility. Conditions are given
for which independent optimization in each cell, which leads to
a Nash equilibrium (NE), is globally optimal. It is shown that, in
general, coordination between the two cells is needed to achieve
the maximum utility or revenue.

Index Terms—CDMA, data service, forward link, power
control, pricing, resource allocation, revenue, surplus, utility.

I. INTRODUCTION

IN A WIRELESS data network, limited resources, such as
power and bandwidth, must be assigned to a set of user

requests. In a cellular system, this allocation can take place
among multiple cells and must account for channel variations
across users. Here, we consider forward-link power allocation
across a static set of users in two adjacent cells in a wireless
code-division multiple access (CDMA) data network.

Our approach to resource allocation is based on maximizing
the overall utility of the network. That is, we assume that
each user has a utility function that describes received utility,
or willingness to pay, as a function of quality of service
(QoS), defined as received signal-to-interference-plus-noise
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ratio (SINR). The total utility for a given allocation of resources
is then the sum of the received utilities over the users. The
primary advantage of this approach is that it can directly
account for differences in perceived utility across the users.
In general, by maximizing total utility, more resources are
generally allocated to those users with higher utilities.

This work is a continuation of our prior work in [1] and [2].
In [1], utility-based forward-link power allocation across voice
users in a single-cell is considered, and in [2], this was ex-
tended to two adjacent interfering cells. In that work, the
utility function is assumed to be a step function, i.e., the user
receives a fixed utility provided that the rate, or SINR, exceeds
a threshold. For the data service considered here, the utility
function is assumed to be an increasing and concave function
of the data rate. This leads to qualitatively different results from
the voice service considered earlier. For example, in contrast to
the two-cell voice model, the optimal power distribution for a
data service is no longer characterized by a single threshold,
or radius of active users, and maximizing revenue can lead
to substantially different power allocations than maximizing
utility. Other related work on utility-based power allocation for
wireless networks has been presented in [3]–[10]. The emphasis
in that work is on conserving power at the handset, which leads
to a different model formulation than the one considered here.
Power allocation based on revenue maximization for a single
cell has been analyzed in [10]–[12].

We consider two scenarios. 1) Users announce their utility
functions to the base station, which then performs the power
allocation. (For example, there may be a small set of utility
functions associated with particular classes of service.) In this
scenario, the total utility is maximized by a pricing scheme.
Namely, each base station announces a price per unit power, and
each user requests an amount of power to maximize individual
surplus (received utility minus cost). 2) Users need not provide
the utility functions to the base station, and the base station sets
the price per unit power to maximize total revenue.

A symmetric one-dimensional (1-D) two-cell model is con-
sidered in which the users are uniformly spread over the two
cells. All users have the same utility function. Because signa-
tures within each cell are orthogonal, interference is received
only from the base station in the adjacent cell. We formulate
optimal power allocation problems across users in the two cells
in the large system limit as the number of users and processing
gain approaches infinity with fixed ratio. This model is simple
enough to be tractable, yet, it captures the effect of intercell
interference on intracell power allocations. In this way, we are
able to characterize the optimal power distribution across users
and infer certain properties.

1536-1276/$20.00 © 2005 IEEE
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Fig. 1. 1-D two-cell model.

We also specify the Nash equilibrium (NE) of the power
control game, in which the base stations (the players in the
game) each maximize their own utility or revenue indepen-
dently of the other base stations. We show that when the power
budget in each cell is sufficiently small, the NE corresponds
to the maximum achievable utility or revenue. In that case, the
incremental increase in utility in one cell, due to an associated
increase in power, is larger than the incremental decrease in
utility in the other cell due to the increase in adjacent-cell
interference. In contrast, if the power budget in each cell is
sufficiently large, then the maximum utility is achieved when
one cell uses all available power and the other cell uses only
part of the available power. In that case, increasing the power in
the other cell decreases the overall utility. That is, the increase
in utility in that cell is less than the utility decrease in the
other cell caused by the increase in interference. We therefore
conclude that an optimal allocation of power across the two
cells in general requires coordination between the two cells.

Similar types of results are shown when the base stations
allocate power to maximize revenue. A key difference from
utility maximization, however, is that with sufficiently large
power budgets, both cells may not use all of the available power
(i.e., the network may withhold resources).

Although our analysis pertains to a simple 1-D two-cell
model, we expect that our main conclusion regarding the value
of coordination applies to more realistic models. Namely, the
tradeoff between utility and other-cell interference in a two-
dimensional (2-D) multicell model will be qualitatively similar
to the 1-D tradeoff examined here.

In the next section, we present the two-cell CDMA system
model, and in Section III, we formulate the large system power
allocation problem. In Sections IV and V, we state properties
of the power allocations, which maximize total utility and
revenue, respectively. Conclusions are stated in Section VI. The
Appendix contains the proofs of theorems and lemmas.

II. SYSTEM MODEL

The 1-D model of two adjacent cells is illustrated in Fig. 1.
The cell radius is normalized to 1, and d0 is a small reference
distance from the base station. As in [2], we assume a static
set of users in each cell, which are uniformly distributed along
the line from d0 to 1, and consider a large system limit as the
number of users per cell K, and the number of available codes
per cell M , each to infinity with fixed ratio, or load K/M .
This model captures the effect of other-cell interference and

is sufficiently tractable to allow a characterization of optimal
power allocations across the two cells.1

We assume that the received power is determined solely by
the distance from the transmitter. All codes within a cell are
assumed to be orthogonal, so that interference is generated only
from the adjacent cell. Treating the signatures from the adjacent
cell as random independent identically distributed (i.i.d.), and
assuming matched filter receivers, we can write the SINR for a
user at distance r from base station i as

ξi(r) =
PT,i(r)
Ai(r)

where Ai(r) =
σ2 + P tot,jh(2 − r)

h(r)
, i �= j (1)

where PT,i(r) is the transmitted power from base station i
designated for the user at distance r, h(r) is the attenuation,
or path loss function, σ2 is the noise level, P tot,j is the total
power per code transmitted from cell j �= i, defined as

P tot,j =
K

M(1 − d0)

1∫
d0

PT,j(r′)dr′ (2)

and P tot,jh(2 − r) is the interference power. Here, we assume
that the processing gain is equal to the number of codes M .
As r increases, both the attenuation of the desired signal and
the interference increase, so that more transmitted power is
required to achieve a target SINR.

We assume that each user is assigned a utility function
U(·), which is an increasing concave function of the received
SINR [13], i.e., U ′(ξ) > 0 and U ′′(ξ) < 0 for all ξ ≥ 0. This
corresponds to the situation in which QoS is measured by data
rate, and the data rate is proportional to SINR. We consider
two scenarios, which lead to different interpretations for the
assigned utility functions. In the first scenario, the utility func-
tions are assigned by the service provider in order to capture
a desired tradeoff between efficiency and fairness. Since the
service provider knows the utility function for each active
user, it can allocate resources to maximize total (sum) utility.
Different utility functions might correspond to different classes
of service. In the second scenario, the utility function for each
user is private information and reflects the amount the user is

1A direct application of this 1-D model is specific to base stations along
a highway, where interference from base stations farther than the nearest
interfering base station is ignored.
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Fig. 2. (a)Utility versus transmitted power for users at different distances. (b) Demand function for users at different distances.

willing to pay for a given data rate. In that case, the service
provider can allocate resources to maximize its revenue.

In what follows, we make the simplifying assumption that
all users are assigned the same utility function U(·). (In the
first scenario previously mentioned, this corresponds to all users
being in the same priority class.) This is for analytical conve-
nience. Many of the following results can be easily extended
to the situation in which users are assigned different utility
functions.

Because of channel variations, which appear in the SINR
expression (1), different users derive different utilities for the
same transmitted power. This is illustrated in Fig. 2(a), which
shows utility as a function of transmitted power for users
at different locations in cell 1. For this example, the utility
function is

Uexp(ξ) = u0

[
1 − exp

(
− ξ

λ

)]
(3)

where u0 = 1, λ = 13, the attenuation h(r) = (0.1/r)4, and
P tot,2/σ2 = 40 dB. For the same transmitted power, users
closer to the base station receive a higher SINR, and hence,
more utility. The total utility per code for cell i is

Utot,i =
K

M(1 − d0)

1∫
d0

U [ξi(r)] dr (4)

where ξi(r) is given by (1).

III. UTILITY MAXIMIZATION

A power allocation across users is defined by the transmitted
power functions PT,i(r), d0 ≤ r ≤ 1, i = 1, 2. Our objective is
to find a power allocation that maximizes the total utility per

code over the two cells, subject to the power constraints in each
cell. That is, we wish to

Problem U1 : max
PT,1(r), PT,2(r)

Utot = Utot,1 + Utot,2 (5)

subject to : P tot,i ≤ P, i = 1, 2 (6)

where P is the total available power. When the power constraint
in cell i is satisfied with equality, we call cell i power limited.
Here, we implicitly assume that M is large enough so that
the load K/M ≤ 1, which guarantees that the K users can
be assigned orthogonal codes. A code constraint could also be
imposed, but is omitted to simplify the following discussion.

The maximum utility can be achieved via the following
pricing scheme:

1) Base station i announces a price per unit transmitted
power, αp,i, i = 1, 2.

2) Each user in cell i requests the transmitted power, which
maximizes individual surplus (utility minus cost), U(ξ) −
αp,iPT,i(r).

Given the prices αp,i, i = 1, 2, the SINR allocation, which
determines the power allocation, is given by

U ′ [(ξ∗i (r)] = αp,iAi(r) or ξ∗i (r) = V −1[αp,iAi(r)
]

(7)

where Ai(r) is defined in (1) and V (ξ) = U ′(ξ).
Theorem 1: There exist prices αp,i, i = 1, 2, for which the

power allocation produced by the preceding pricing scheme
achieves the maximum two-cell utility.

Proof: The Lagrangian for the utility maximization
problem is

L [PT,1(r), PT,2(r);µp,1, µp,2] = Utot,1 + Utot,2

+ µp,1(P − P tot,1) + µp,2(P − P tot,2) (8)
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where µp,1 and µp,2 are the Lagrange multipliers. Setting the
variation of L with respect to PT,i(r) equal to zero gives the
optimality condition

µp,i =
U ′(ξ)
Ai(r)

+
∂Utot,j

∂P tot,i

, if PT,i(r) > 0

>
U ′(ξ)
Ai(r)

+
∂Utot,j

∂P tot,i

, if PT,i(r) = 0 (9)

where Ai(r) is given by (1). Furthermore, µp,i > 0 if P =
P tot,i, and µp,i = 0 if P tot,i < P . Comparing with the pre-
ceding pricing scheme and (7), the optimal price is therefore
αp,i = µp,i − ∂Utot,j/∂P tot,i, where ∂Utot,j/∂P tot,i can be
interpreted as an externality price, which cell i pays to account
for the interference caused to cell j. �

The utility maximization problem is therefore equivalent to
finding the prices αp,i, i = 1, 2, which maximize total utility
subject to the power constraints

Problem U2 : max
αp,1,αp,2

Utot = Utot,1 + Utot,2 (10)

subject to : P tot,i ≤ P, i = 1, 2. (11)

We will see that the optimal prices may not be the same,
even for identical cells. We remark that for a single cell with
fixed interference, Theorem 1 holds where the price αp, which
maximizes the utility in that cell subject to the power constraint
is unique.

From (7), the demand for transmitted power at distance r as
a function of price is

DP (r;αp,i) =
{

Ai(r)V −1 [Ai(r)αp,i] , if surplus ≥ 0
0, otherwise

(12)

and

P tot,i =
K

M(1 − d0)

1∫
d0

DP (r;αp,i)dr

=
K

M(1 − d0)

1∫
d0

Ai(r)ξ∗i (r)dr (13)

Utot =
K

M(1 − d0)

1∫
d0

[U (ξ∗1(r)) + U (ξ∗2(r))] dr

i = 1, 2. (14)

For a user at fixed distance r, the demand for transmitted power
decreases with price αp,i. For any given price, as r increases
(i.e., a user moves away from the base station), Ai(r), the
received interference, increases, and the SINR V −1[Ai(r)αp,i]
decreases. Hence, from (12), the transmitted power may de-
crease as r increases.

Fig. 2(b) shows the demand function corresponding to the
exponential utility function (3) for users at different locations

with the same parameters as in Fig. 2(a). The demand depends
on the location r and increases as the price αp,1 decreases.

We emphasize that when each user in cell i requests an
amount of power according to (7), the power distribution
PT,i(r) depends only on P tot,i and P tot,j , j �= i. That is, it
does not depend on how the power is distributed over users
in cell j. Hence, (P tot,1, P tot,1) also specifies the total utility
(Utot,1, Utot,2). Furthermore, for fixed P tot,j both P tot,i and
Utot,i are determined by the price αp,i.

In the Appendix, we compute the derivatives ∂Utot,i/∂P tot,j

and ∂αp,i/∂P tot,j (for j = i and j �= i), which are needed
to prove many of the following theorems. This computation
shows that ∂αp,i/∂P tot,i < 0 and ∂ξ∗i (r)/∂P tot,i > 0. That
is, as the total transmitted power in cell i increases, the
price in cell i decreases, and each user requests more power,
which increases the SINR. Furthermore, ∂Utot,i/∂P tot,i > 0
and ∂Utot,i/∂P tot,j < 0, j �= i, i.e., as P tot,i increases, the
total utility in cell i increases, and the total utility in cell j
decreases due to the increase in interference.

IV. PROPERTIES OF THE OPTIMAL ALLOCATION

In this section, we state some properties of the optimal two-
cell power allocation. We first consider the case where the base
stations do not coordinate their power allocations. That is, each
base station attempts to maximize its own utility in the presence
of fixed interference from the other cell. This can be viewed as
a power control game with noncooperative players (the base
stations) [13]. To specify the corresponding NE, we start by
setting the price αp,i in cell i to maximize the utility Utot,i

subject to the power constraint P tot,i ≤ P .
With fixed interference, the received utility at any r increases

with the transmitted power. Hence, the total utility in the cell is
maximized by using all available power. That is

∂Utot,1

∂P tot,1

=
K

M(1 − d0)

1∫
d0

U ′ [ξ∗1(r)]
∂ξ∗1(r)
∂P tot,1

dr > 0 (15)

since U ′[ξ∗1(r)] > 0 and ∂ξ∗1(r)/∂P tot,1 > 0. Therefore, Utot,1

is maximized when cell 1 is power limited, i.e., P tot,1 = P .
Theorem 2: Any solution to the two-cell utility maximiza-

tion problem U1 has the property that at least one cell is power
limited.

If the two cells are constrained to be symmetric, namely,
P tot,1 = P tot,2 and αp,1 = αp,2, then (34) reduces to
∂Utot/∂P tot,i > 0. In that case, to maximize total utility, both
cells must be power limited.

We are interested in determining when the NE is globally
optimal, in the sense of maximizing Utot = Utot,1 + Utot,2.
Theorem 3: There exists a PL,U such that for any power

constraint P ≤ PL,U , the NE achieves the maximum total
utility.

Since from Theorem 2, at least one cell is power limited at the
global optimum, finding the two-cell optimal power allocation
can be achieved by fixing P tot,2 = P and varying the total
transmitted power in cell 1. Fig. 3(a) shows the total utility
Utot versus P tot,1/σ2 for small P with P tot,2 = P and the
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Fig. 3. Total utility versus P tot,1/σ2. (a) Small P (P/σ2 = 500 or 27 dB). (b) Large P (P/σ2 = 43 dB). (c) PL,U < P < PH,U (P/σ2 = 30 dB).
Parameters are u0 = 100, λ = 13, K/M = 1, and the path loss function h(r) = (0.1/r)2.

exponential utility function (3). For the parameters shown, the
total utility monotonically increases with P tot,1, so that the
optimal allocation occurs at P tot,1 = P tot,2 = P , which cor-
responds to the NE.

A complete characterization of conditions for which the NE
is optimal or suboptimal appears to be difficult. However, we
can gain insight by comparing the NE with the case P tot,1 = P
and P tot,2 = 0. We will refer to the corresponding optimal
power allocation as the one-cell solution, and the corresponding
total utility as UOC. The total utility corresponding to the NE is
UNE. In what follows, we assume that the utility function U(·)
has the additional property that limξ→∞ U ′(ξ) = 0.

Theorem 4: There exists a PH,U such that if P > PH,U and
U(∞) > 2U [ξ∞(d0)], then UOC > UNE.

Theorem 4 states that when the total power constraint in
each cell becomes large, the NE does not achieve the maximum
utility. Hence, achieving the maximum utility requires the two
cells to coordinate, i.e., one cell must reduce its power. Note
that the same result applies when the maximum power is fixed
and we vary the cell radius. That is, as the cells move closer
together, the total utility associated with the NE eventually de-
creases due to interference, and the total utility can be increased
by reducing the power in one cell.

The condition in Theorem 4 is true for any unbounded utility
function, that is, when U(ξ) → ∞ as ξ → ∞. Examples of
unbounded increasing concave utility functions are

Upl(ξ) = u0ξ
β where β < 1 and Ulog(ξ) = u0 log(1 + ξ)

(16)

where u0 is a constant. For the exponential utility function
defined in (3), the condition in Theorem 4 gives the following
corollary.
Corollary 1: For the exponential utility function, there exist

PH,U and λH,U such that if P > PH,U and λ > λH,U , then
UOC > UNE.

The thresholds PH,U and λH,U depend in a complicated way
on the path loss function h(r), the noise variance σ2, and the

load. Large λ in (3) implies that a relatively large increase in
transmitted power is needed to increase the utility significantly.
Furthermore, large P implies high interference. As P increases,
the marginal increase in utility in cell i due to increasing P tot,i

is therefore outweighed by the marginal decrease in utility in
the other cell due to the increase in interference.

Fig. 3(b) shows the total utility Utot versus P tot,1/σ2 for
large P when cell 2 is power limited (P tot,2 = P). For the
parameters shown, the total utility has a unique maximum at
P tot,1/σ2 < P/σ2. For this example, the total utility at the
NE (P tot,1 = P tot,2 = P) is about 8% less than the global
maximum.

If PL,U < P < PH,U , then it is not easy to determine if the
NE is globally optimal. An example is shown in Fig. 3(c).
For the parameters shown, there are two stationary points in
the Utot versus P tot,1/σ2 curve, one corresponding to a local
maximum, and the other corresponding to a local minimum.
The global maximum occurs at the NE.

A. Unequal Loads

When the two cells have different loads, distributed optimiza-
tion again leads to an NE with power-limited cells. In contrast
to the equal-load case, the two cells are not identical at the NE.
Let Ki be the number of users in cell i, and Li = Ki/M be the
corresponding load.
Theorem 5: If L1 > L2, then Utot,1 > Utot,2 at the NE.
When P is small, whether or not the NE is optimal depends

on the difference between L1 and L2. Namely, the NE is
optimal when |L1 − L2| is sufficiently small. As |Li − Lj |
increases, the total utility over the two cells becomes dominated
by Utot,i, and the power pair (P tot,1, P tot,2), which maxi-
mizes the total utility moves away from the NE (P tot,1 =
P tot,2 = P). Namely, P tot,i = P and P tot,j < P .

For large P , there exists a unique optimum, instead of the two
optima for the equal-load system. At the optimum, the cell with
the larger load is power limited, and the cell with the smaller
load is not power limited. The NE is again suboptimal.
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V. REVENUE MAXIMIZATION

We now consider the power allocation across the two cells
that results from maximizing revenue. That is, the objective is
to set the prices αp,1 and αp,2 to maximize the total revenue per
code, Rtot, subject to the power constraints in each cell, i.e.,

Problem R : max
αp,1,αp,2

Rtot = Rtot,1 + Rtot,2 (17)

subject to : P tot,i ≤ P, i = 1, 2 (18)

where Rtot,i = αp,iP tot,i is the revenue in cell i.

A. Nash Equilibrium

In analogy with the NE associated with utility maximization,
we can again define an NE for the power control game in which
each base station allocates power to maximize revenue. We
start by maximizing revenue in cell i in the presence of fixed
interference from cell j, specified by P tot,j . We have

∂Rtot,i

∂P tot,i

= P tot,i
∂αp,i

∂P tot,i

+ αp,i = αp,i

(
1

e(P tot,i, αp,i)
+ 1

)
(19)

where

e(P tot,i, αp,i) =
Fractional change in P tot,i

Fractional change in αp,i

=
αp,i

P tot,i

∂P tot,i

∂αp,i
(20)

is the price elasticity of demand for power [13]. Note
that ∂P tot,i/∂αp,i < 0, hence, e(P tot,i, αp,i) < 0. The de-
mand is elastic (inelastic) when e(P tot,i, αp,i) < −1(e(P tot,i,
αp,i) > −1). Elastic demand indicates that the demand is
price sensitive, and ∂Rtot,i/∂P tot,i > 0. The reverse is true
for inelastic demand, and the revenue is maximized when
e(P tot,i, αp,i) = −1.

In contrast with utility maximization, maximizing revenue
in the presence of fixed interference does not always lead to a
power-limited cell. Characterizing the optimal power allocation
for general utility functions appears to be difficult, so that
in what follows, we restrict our attention to the exponential,
power-law, and log utility functions in (3) and (16).
Lemma 1: For the exponential utility function, the one-cell

revenue is maximized by choosing P tot,1 =min(P
∗
,P), where

P
∗
=(K/M(1−d0))

∫
r λA1(r)dr. For the power-law and log

utility functions, revenue is maximized when P tot,1 =P .
For the power-law utility function, the maximum revenue is

Rtot,i =
Ku0β

M(1 − d0)

1∫
d0

(
αp,iAi(r)

u0β

) β
β−1

dr. (21)

As the price αp,i → 0, the demand for transmitted power
goes to infinity, and so does the revenue in cell i. Therefore,

Fig. 4. Single-cell revenue Rtot,1 versus P tot,1/σ2. The path loss is h(r) =
(d0/r)4, and the parameters for the exponential utility function are u0 = 100
and λ = 13.

Rtot,i → ∞ as the available power P → ∞. In contrast, for the
log utility function, the maximum revenue is

Rtot,i =
Ku0

M
− K

M(1 − d0)

1∫
d0

αp,iAi(r)dr ≤ Ku0

M
. (22)

As αp,i → 0, or equivalently, P → ∞, Rtot,i → Ku0/M
(a constant).

Fig. 4 shows Rtot,1 versus P tot,1/σ2 for the exponential
utility function with fixed interference from cell 2. There is a
unique maximum at P tot,1/σ2 = 44.8 dB, which corresponds
to the optimal power allocation, unless P/σ2 < 44.8 dB, in
which case the cell is power limited.

Fig. 5(a) and (b) shows received SINR (or equivalently, data
rate) and transmitted power PT,1(r) versus distance for a single
cell with fixed interference. Curves are shown for the path loss
function h(r) = (d0/r)α with different values of α. In each
case, the price is set to maximize the revenue. Fig. 5(a) shows
that the data rate decreases monotonically as the users move
away from the base station. Fig. 5(b) shows that the maximum
transmitted power is not requested by users at the cell boundary.
Namely, as users move away from the base station, the data
rate decreases moderately, and the transmitted power increases
with r. As the users approach the cell boundary, the data rate
decreases sharply, and the transmitted power decreases with r.

Lemma 1 allows us to characterize the NE for the different
utility functions considered. Specifically, we define a reaction
curve for cell i as the optimal (revenue maximizing) P tot,i

as a function of P tot,j , j �= i. This is illustrated in Fig. 6 for
the exponential utility function. According to (51), the optimal
power in cell i, P

∗
, is a linear function of P tot,j , j �= i, for

P
∗

< P , and is constant for P
∗

> P . The NE is the intersection
of the two reaction curves for cells 1 and 2. Fig. 6(a) and
(b) shows reaction curves for two different sets of parameters.
In Fig. 6(a), the NE is at the corner point B, i.e., P tot,1 =
P tot,2 = P . In Fig. 6(b), the NE is at the interior point A.
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Fig. 5. (a) SINR versus distance from the base station. (b) Transmitted power versus distance.

Fig. 6. Reaction curves for single-cell revenue maximization. Parameters used to generate (a) are K/M = 1, h(r) = (0.1/r)4, P/σ2 = 53 dB, and λ = 13.
For (b) P/σ2 = 49.5 dB and λ = 5.

The power allocations at the NE are summarized by the fol-
lowing theorem.
Theorem 6: For the power-law and log utility functions,

the NE is at the corner point. For the exponential utility
function, the NE is at the corner point if (K/M(1 − d0))∫ r∗

d0
(λh(2 − r)/h(r))dr ≥ 1. Otherwise, there exists a P0 such

that for P < P0, the NE is at the corner point, and for P > P0,
the NE is at an interior point P tot,2 = P tot,2 < P .

Proof: This follows directly from Lemma 1. For the ex-
ponential utility function, if K

∫ 1

d0
λh(2 − r)/h(r)dr/M(1 −

d0) ≥ 1, then in the absence of power constraints, the reaction
curves do not intersect, as shown in Fig. 6(a). If K

∫ 1

d0
λh
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Fig. 7. Total revenue versus (P tot,1/σ2, P tot,2/σ2), and revenue contours for small P . Parameters are u0 = 100, λ = 5, K/M = 1, P/σ2 = 33 dB, and
h(r) = (0.1/r)4.

(2 − r)/h(r)dr/M(1 − d0) < 1, then the reactions curves can
intersect, as shown in Fig. 6(b), where the value of P tot,i at the
intersection point corresponds to P0. �

B. Two-Cell Power Allocation

We now consider revenue maximization over the two cells.
The following theorem is analogous to Theorem 3.
Theorem 7: There exists a PL,R such that for any P ≤ PL,R

the total revenue over the two cells is maximized when P tot,1 =
P tot,2 = P .

Fig. 7 shows the total revenue over two cells versus
(P tot,1/σ2, P tot,2/σ2), and the corresponding revenue con-
tours when the total available power P is small. The revenue
contours show that the total revenue increases with P tot,i/σ2

for any fixed P tot,j/σ2. The maximum revenue occurs at the
NE, P tot,1 = P tot,2 = P .

When the total available power P is large, the corner point
P tot,1 = P tot,2 = P is often not optimal, and the exact solu-
tion depends on the specific utility function. Our results are
summarized by the following three theorems.
Theorem 8: For the power-law utility function, the power

allocation that maximizes utility also maximizes revenue.
Proof: For any αp,i, the received SINR for users at dis-

tance r is given in (7), and the utility per code in cell i is

Utot,i =
K

M(1 − d0)

1∫
d0

U [ξ∗i (r)] dr

=
K

M(1 − d0)

1∫
d0

u0

(
αp,iAi(r)

u0β

) β
β−1

dr

=
Rtot,i

β
(23)

where Rtot,i is given by (21). �

Hence, Theorem 4 applies in this case, and for large P , the
NE is not optimal. Theorem 8 presents a special case in which
utility maximization is equivalent to revenue maximization. In
general, these two optimization problems give different power
allocations.
Theorem 9: For the log utility function, the power allocation

that maximizes revenue has at least one power-limited cell. If
(K/M(1 − d0))

∫ 1

d0
(h(2 − r)/h(r))dr > 1, then there exists a

PH,R such that if P > PH,R, then the optimal power allocation
has only one power-limited cell.

Although maximizing either utility or revenue with the log
utility function gives one power-limited cell (according to
Theorems 4 and 9), the power allocation that maximizes total
revenue is generally different from the allocation that maxi-
mizes total utility.
Theorem 10: For the exponential utility function, there exist

PH,R and λL,R such that if P > PH,R and λ < λL,R, then the
maximum revenue does not occur at the NE.

Comparing with Corollary 1, which states the analogous
result for utility maximization, here, the condition is that λ
must be sufficiently small, whereas in Corollary 1, λ must be
sufficiently large. That is, small λ implies that the requests for
power, which maximize surplus are relatively small. Further-
more, for large P , it can be shown that the price decreases
nearly exponentially as P increases. Consequently, the mar-
ginal increase in revenue (i.e., price times total power) due
to increasing P is outweighed by the marginal decrease in
revenue due to the decrease in the price. As in Corollary 1,
the thresholds PH,R and λL,R depend on the path loss function
h(r), noise variance σ2, and load.

Fig. 8 shows an example of total revenue versus (P tot,1/σ2,
P tot,2/σ2) when P is large. In contrast to the solutions
for the power-law and log utility functions, the maximum
revenue occurs at an interior point of the constraint region,
i.e., P tot,1 < P and P tot,2 < P . In this example, the global
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Fig. 8. Revenue versus (P tot,1/σ2, P tot,2/σ2) and revenue contours for large P (P/σ2 = 53 dB). The remaining parameters are the same as in Fig. 7.

optimum does not coincide with either the corner point or
the NE shown in Fig. 6(b), which is at P tot,1/σ2 = P tot,2/
σ2 = 45.26 dB.

VI. CONCLUSION

We have studied forward-link power allocation across users
in two 1-D, adjacent CDMA cells. Utility maximization can
be achieved by a pricing scheme in which the base station
announces a price per unit transmitted power, and each user
requests the transmitted power, which maximizes surplus. For
data traffic, which is represented by an increasing concave
utility function, the prices that maximize utility are generally
different from the prices that maximize revenue. In either
case, the nature of the optimal power allocation depends on
the total power constraint. When the available transmitted
power falls below a threshold, the two cells use up all of
the power, which corresponds to uncoordinated, or distributed,
optimization NE. When the available power becomes large,
in general, the two cells must coordinate to maximize total
utility. Specifically, one cell must reduce the total transmitted
power below the power constraint. This can be accomplished by
raising the price per unit power in one cell relative to the other
cell. When maximizing revenue, both the NE and the optimal
power allocation can be in the interior of the constraint region.
An example shows that these two points do not generally
coincide.

Extending the analysis presented here for the 1-D model to
a 2-D cellular model is generally difficult. Still, we expect that
many of the results presented here apply to such models. For
example, the necessity of intercell coordination to maximize
total utility in a particular 2-D model is observed numerically
in [16].

Extensions of the results presented here to system models
with mixed voice and data traffic and stochastic arrivals and

departures are presented in [14] and [15]. Other extensions and
generalizations of the model presented here include nonuniform
user distributions within the cells, different utility functions
across users, and different types of path loss functions (e.g.,
random). Although an analysis of those more general models
may be difficult, performance measures such as utility, revenue,
and total rate can be evaluated numerically. Such studies may
provide additional insight into optimal resource allocation in
more practical situations.

APPENDIX

The proofs that follow make use of the following derivatives
with respect to P tot,i and P tot,j , i �= j. From (7), we have

U ′′ [ξ∗i (r)]
∂ξ∗i (r)
∂P tot,i

= Ai(r)
∂αp,i

∂P tot,i

(24)

U ′′ [ξ∗i (r)]
∂ξ∗i (r)
∂P tot,j

= Ai(r)
∂αp,i

∂P tot,j

+
αp,ih(2 − r)

h(r)
(25)

and, from (13), we have

1 =
K

M(1 − d0)

1∫
d0

Ai(r)
∂ξ∗i (r)
∂P tot,i

dr (26)

0 =
K

M(1−d0)

1∫
d0

[
Ai(r)

∂ξ∗i (r)
∂P tot,j

+
ξ∗i (r)h(2−r)

h(r)

]
dr. (27)
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Since ∂αp,i/∂P tot,i and ∂αp,i/∂P tot,j are independent
of r, from (24)–(27), we have

∂αp,i

∂P tot,i

=
1

K
M(1−d0)

∫ 1

d0

[Ai(r)]
2

U ′′[ξ∗
i
(r)]dr

∂αp,i

∂P tot,j

= −

∫ 1

d0

[
ξ∗i (r)

h(2−r)
h(r) + αp,ih(2−r)Ai(r)

h(r)U ′′[ξ∗
i
(r)]

]
dr

∫ 1

d0

[Ai(r)]
2

U ′′[ξ∗
i
(r)]dr

. (28)

Note that (28) implies that ∂αp,i/∂P tot,i < 0, as expected.
Since U ′′[ξ∗i (r)] < 0, (24) implies ∂ξ∗i (r)/∂P tot,i > 0.

From (4) and (7), we have

∂Utot,i

∂P tot,i

=
K

M(1 − d0)

1∫
d0

U ′ [ξ∗i (r)]
∂ξ∗i (r)
∂P tot,i

dr

=
K

M(1 − d0)

1∫
d0

αp,iAi(r)
∂ξ∗i (r)
∂P tot,i

dr (29)

∂Utot,j

∂P tot,i

=
K

M(1 − d0)

1∫
d0

U ′ [ξ∗j(r)] ∂ξ∗j(r)

∂P tot,i

dr

=
K

M(1 − d0)

1∫
d0

αp,jAj

∂ξ∗j(r)

∂P tot,i

dr (30)

and combining these with (26) and (27) gives

∂Utot

∂P tot,i

=
∂Utot,i

∂P tot,i

+
∂Utot,j

∂P tot,i

=αp,i−αp,j
K

M(1−d0)

1∫
d0

ξ∗j(r)h(2 − r)
h(r)

dr. (31)

A. Proof of Theorem 2

Suppose that the two-cell maximum utility is achieved at
P tot,1 = P ∗

1 , P tot,2 = P ∗
2 , and neither of the cells is power

limited at the maximum, that is, P ∗
1 < P and P ∗

2 < P . Since the
total utility Utot is differentiable, we have ∂Utot/∂P tot,i = 0
and ∂Utot/∂P tot,j = 0 at (P tot,1 = P ∗

1 , P tot,2 = P ∗
2 ).

From (13)

P tot,i =
K

M(1 − d0)

1∫
d0

σ2 + P tot,jh(2 − r)
h(r)

ξ∗i (r)dr

>
K

M(1 − d0)

1∫
d0

P tot,jh(2 − r)
h(r)

ξ∗i (r)dr (32)

or

P tot,i

P tot,j

>
K

M(1 − d0)

1∫
d0

ξ∗i (r)h(2 − r)
h(r)

dr. (33)

From (31) and (33)

∂Utot

∂P tot,i

= αp,i − αp,j
K

M(1 − d0)

1∫
d0

ξ∗j(r)h(2 − r)
h(r)

dr

> αp,i − αp,j
P tot,j

P tot,i

. (34)

Since ∂Utot/∂P tot,1 = 0 when Utot is maximized, from
(34), we have αp,1 − αp,2P

∗
2/P ∗

1 < 0. Furthermore, ∂Utot/
∂P tot,2 = 0 gives αp,2 − αp,1(P ∗

1/P ∗
2 ) < 0, which is a contra-

diction, hence, at least one cell must be power limited.

B. Proofs of Theorems 3 and 7

To prove Theorem 3, it suffices to show that ∂Utot/
∂P tot,i > 0 at (P tot,1 = 0, P tot,2 = 0), i.e., the marginal util-
ity is positive at this point. Since ∂Utot/∂P tot,i is a contin-
uous function of P tot,i, i = 1, 2, it follows that there exists a
PL,U such that ∂Utot/∂P tot,i > 0 for P tot,i < PL,U , i = 1, 2.
Hence, to maximize utility in this region, we must choose
P tot,1 = P tot,2 = P for any P ≤ PL,U .

At (P tot,1 = 0, P tot,2 = 0), we have ξ∗i (r) = ξ∗j(r) = 0
for any distance r. Therefore, from (31), we have ∂Utot/
∂P tot,i = αp,i. For small enough P , we must have αp,i > 0,
so that ∂Utot/∂P tot,i > 0.

To prove Theorem 7, it suffices to show that ∂Rtot/
∂P tot,i > 0 at (P tot,1 = 0, P tot,2 = 0). Taking the derivative
of Rtot with respect to P tot,i gives

∂Rtot

∂P tot,i

= P tot,i
∂αp,i

∂P tot,i

+ αp,i + P tot,j
∂αp,j

∂P tot,i

. (35)

At (P tot,1 = 0, P tot,2 = 0), this reduces to ∂Rtot/∂P tot,i =
αp,i > 0.

C. Proof of Theorem 4

To compare UOC with UNE we need the following Lemma.
Lemma 2: At the NE, limP→∞ αp,iP=C where 0≤C <∞.
Proof: For large P , σ2 becomes negligible in the defini-

tion of Ai(r) in (1). Combining with the expression for P tot,i

in (13), we can write∣∣∣∣∣∣1 − K

M(1 − d0)

1∫
d0

h(2 − r)
h(r)

V −1

[
αp,iPh(2 − r)

h(r)

]
dr

∣∣∣∣∣∣ → 0

i = 1, 2 (36)

as P → ∞. By assumption, limx→∞ V −1(x) = 0, hence,
αp,iP must converge to a constant as P → ∞. �
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As P → ∞, Lemma 2 implies that the SINR for a user at
distance r converges to

ξ∞(r) = V −1

(
Ch(2 − r)

h(r)

)
. (37)

At the NE, Utot,1 = Utot,2, and from (7) and (14), the total
utility satisfies

∣∣∣∣∣∣UNE − 2K

M(1 − d0)

1∫
d0

U

[
V −1

(
Ch(2 − r)

h(r)

)]
dr

∣∣∣∣∣∣ → 0

(38)

as P → ∞.
For the one-cell solution, P tot,1 = P , P tot,2 = 0, and from

(1) and (13), we have

P tot,1 = P =
K

M(1 − d0)

1∫
d0

σ2

h(r)
V −1

(
αp,1σ

2

h(r)

)
dr. (39)

Since Utot,2 = 0, the total utility is

UOC =
K

M(1 − d0)

1∫
d0

U

[
V −1

(
αp,1σ

2

h(r)

)]
dr. (40)

As P → ∞ (39), the price αp,1 → 0, and by assumption, the
received SINR V −1(αp,1σ

2/h(r)) → ∞ for d0 < r < 1, so
that

lim
P→∞

UOC =
K

M
U(∞). (41)

To find a condition for which UNE < UOC, we can write

2K

M(1 − d0)

1∫
d0

U [ξ∞(r)] dr <
2K

M(1 − d0)

1∫
d0

U [ξ∞(d0)] dr

=
2K

M
U [ξ∞(d0)] . (42)

Since U(·) is monotonically increasing, (38) and (42) imply that
UNE < UOC when U(∞) > 2U [ξ∞(d0)].

D. Proof of Theorem 5

Considering cell 1, we have

P =
L1

1 − d0

1∫
d0

A1(r)ξ∗1(r)dr

Utot,1 =
L1

1 − d0

1∫
d0

U [ξ∗1(r)] dr. (43)

Taking derivatives with respect to L1 gives

0 =
1

1 − d0

1∫
d0

A1(r)ξ∗1(r)dr

+
L1

1 − d0

1∫
d0

A1(r)
∂ξ∗1(r)
∂L1

dr (44)

∂Utot,1

∂L1
=

1
1 − d0

1∫
d0

U [ξ∗1(r)] dr

+
L1

1 − d0

1∫
d0

U ′ [ξ∗1(r)]
∂ξ∗1(r)
∂L1

dr (45)

and combining these with (7) gives

∂Utot,1

∂L1
=

1
1 − d0

1∫
d0

(U [ξ∗1(r)]−U ′ [ξ∗1(r)] ξ
∗
1(r)) dr. (46)

Since U(·) is increasing concave, we have U [ξ∗1(r)]/ξ∗1(r) >
U ′[ξ∗1(r)], so that ∂Utot,1/∂L1 > 0. That is, the utility in each
cell increases with load.

E. Proof of Lemma 1

For the power-law and log utility functions, from (20), (13),
and (28), the elasticities are, respectively

epl(P tot,i, αp,i)=
1

β − 1
(47)

elog(P tot,i, αp,i)= − 1

1− αp,i

u0(1−d0)

∫ 1

d0
Ai(r)dr

< −1. (48)

By assumption, β < 1, hence, epl(P tot,i, αp,i) < −1, or
equivalently, ∂Rtot,1/∂P tot,1 > 0 so that the revenue is max-
imized by setting Ptot,1 = P . For the log-utility function,
from (13)

P tot,i =
K

M(1 − d0)

1∫
d0

Ai(r)
(

αp,iAi(r)
u0β

) 1
β−1

dr > 0

(49)

hence, elog(P tot,i, αp,i) < −1.
For the exponential utility function, we can compute

∂Rtot,1

∂P tot,1

= αp,1

(
1 − M(1 − d0)P tot,1

K
∫ r∗

i

d0
λA1dr

)
(50)

where r∗i = min(1, r′i) and Ai(r′i)αp,i = 1. If the power con-
straint is not binding, then we must have ∂Rtot,1/∂P tot,1 = 0,



ZHOU et al.: UTILITY-BASED POWER CONTROL FOR A TWO-CELL CDMA DATA NETWORK 2775

which gives

P
∗

=
K

M(1 − d0)

r∗
1∫

d0

λA1(r)dr. (51)

If P
∗

> P , then ∂Rtot,1/∂P tot,1 > 0 for 0 < P tot,1 < P , so
that to maximize revenue, P tot,1 = P .

F. Proof of Theorem 9

Suppose the two-cell maximum revenue is achieved at
the interior point P tot,1 = P ∗

1 < P and P tot,2 = P ∗
2 < P .

Since the total revenue Rtot is differentiable, we must
have ∂Rtot/∂P tot,i = 0 at (P tot,1 = P ∗

1 , P tot,2 = P ∗
2 ), where

∂Rtot/∂P tot,i is given by (35). Combining (7), (13), and (28)
with (35) gives

∂Rtot

∂P tot,i

=
1

u0(1 − d0)

×


α2

p,i

1∫
d0

Ai(r)dr − α2
p,jP tot,j

1∫
d0

h(2 − r)
h(r)

dr




>
α2

p,i − α2
p,j

u0(1 − d0)
P tot,j

1∫
d0

h(2 − r)
h(r)

dr. (52)

Setting ∂Rtot/∂P tot,i = 0 implies αp,i < αp,j , which cannot
be true for each i = 1, 2, hence, at least one cell must be
power limited.

To prove the second statement in the theorem, in analogy
with the proof of Theorem 4, we again compare the revenue at
the NE with the one-cell solution, corresponding to P tot,1 = P
and P tot,2 = 0. According to Lemma 2, as P → ∞,
Rtot,i = αp,iP converges to a constant, which satisfies (36).
At the NE, Rtot,1 = Rtot,2, and the total revenue is RNE =
((2Ku0/M)/(1 + (K/M(1 − d0))

∫ 1

d0
(h(2 − r)/h(r))dr)).

For the one-cell solution, Rtot,2 = 0, and Rtot,1 is given by
(22). As P → ∞, αp,1 → 0, and the total revenue is ROC =
Ku0/M . If (K/(M(1 − d0)))

∫ 1

d0
(h(2 − r)/h(r))dr > 1,

then RNE < ROC.

G. Proof of Theorem 10

The derivatives ∂αp,i/∂P tot,i and ∂αp,j/∂P tot,i can be
computed from (28), and combining it with (35) gives

∂Rtot

∂P tot,i

= −M(1 − d0)αp,iP tot,i

K
∫ r∗

i

d0
λAi(r)dr

+ αp,i

−
αp,jP tot,j

∫ r∗
i

d0

λh(2−r)
h(r)

[
ln

(
λAj(r)αp,j

u0

)
+ 1

]
dr∫ r∗

j

d0
λAj(r)dr

.

At the NE, we have αp,i = αp,j and P tot,i = P tot,j = P .
Letting P → ∞, Ai(r) → Ph(2 − r)/h(r) and

∂Rtot

∂P tot,i

→ − M(1 − d0)αp,i

K
∫ r∗

i

d0
λh(2−r)

h(r) dr
+ αp,i

−
αp,i

∫ r∗
i

d0

h(2−r)
h(r)

[
ln

(
λAi(r)αp,i

u0

)
+ 1

]
dr∫ r∗

i

d0

h(2−r)
h(r) dr

. (53)

When λ is small enough, the first term on the right dominates,
and ∂Rtot/∂P tot,i < 0. We therefore conclude that for large
enough P , the revenue decreases with P , and the maximum
revenue does not occur when the two cells are power limited.
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