
UC Davis
UC Davis Electronic Theses and Dissertations

Title

Change-point Detection for Modern Data

Permalink

https://escholarship.org/uc/item/5tz3s3vg

Author

Liu, Yi-Wei

Publication Date

2022
 
Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5tz3s3vg
https://escholarship.org
http://www.cdlib.org/


Change-point Detection for Modern Data

By

YI-WEI LIU

DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Statistics

in the

OFFICE OF GRADUATE STUDIES

of the

UNIVERSITY OF CALIFORNIA

DAVIS

Approved:

Hao Chen, Chair

Alexander Aue

Jane-Ling Wang

Committee in Charge

2022

i



c© 2022 by Yi-Wei Liu. All rights reserved.



To Li Hu, Hsiang Liu and Qin Ding.

ii



Abstract

Change-point detection investigates whether there are abrupt changes in distributions in sequences of observations. The

goal is to partition a sequence of observations into homogeneous subsequences, which provides essential screening

information for follow-up studies. As we enter the era of big data, it is commonplace to encounter sequences of

high-dimensional/non-Euclidean observations. Parametric methods are often limited to those data where the parametric

assumptions are reasonable. Nonparametric methods are usually more broadly applicable, but it is often hard to conduct

theoretical analysis on them, such as to provide an analytic p-value approximation to facilitate the application to large

datasets. The graph-based framework, which utilizes the edge-count information on the similarity graphs constructed on

the observations, is the first kind that can be applied to these data with analytic p-value approximates. In this dissertation,

we work out three advancements of the graph-based framework to meet the needs for modern data analysis. First, we

improve the time efficiency of the algorithms by incorporating the approximate directed k-Nearest Neighbor (k-NN)

graphs into the framework. Our new method is many folds faster to run and has power higher than or competitive with

state-of-the-art nonparametric methods under various settings. The effectiveness of the new method is illustrated by real

applications to fMRI and Neuropixels data sequences. Second, when data are autocorrelated, existing methods that

assume independence could result in a higher false discovery rate. Therefore, we use the circular block permutation

(CBP) framework that preserves the locally dependent structure among observations. The new framework provides

proper controls on the false discovery rate when data have weak serial correlations. Third, we investigate the problem of

multiple sequences of high-dimensional/non-Euclidean observations. We propose a new scan statistic that is powerful

in detecting changes in all or a subset of the sequences. The new test has much higher power than existing methods and

is sensitive to a wide range of alternatives. We illustrate the performance of our new test by applying to the New York

Taxi Data over multiple calendar years. For all three new tests, we derive analytic formulas for p-value approximations

to make them fast applicable.
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Chapter 1

Introduction

1.1 Motivation

Change-point detection studies whether there are abrupt changes in distributions in sequences of data observations.

Many parametric change-point approaches have been proposed with focuses on various applications. For example,

motivated by the problem of detecting recurrent DNA copy number variants in multiple samples, Zhang et al. (2010)

studies the changes in mean vector for multivariate Gaussian observations with identity covariance matrix; assuming the

changes are in the second-order structure, Barigozzi et al. (2018) used the piecewise stationary time series factor models

for multivariate observations; Wang et al. (2018) investigated the change-point detection and localization problem in

dynamic networks under the assumption that the entries of the adjacency matrices are from inhomogeneous Bernoulli

models. These methods work under certain parametric models. However, as we enter the era of big data, there are many

challenging tasks that require change-point analysis for large and complex datasets, such as the authorship debate of

Tirant lo Blanc (Girón et al., 2005), fMRI sequences analysis (Visconti di Oleggio Castello et al., 2020), the study of

brain activities with Neuropixels recordings (Jun et al., 2017), etc.

For the aforementioned and many more modern data analysis problems, the tasks usually involve sequences of

high-dimensional/non-Euclidean data observations, and there are no universal parametric models that tackle all these

problems. In the realm of nonparametric change-point detection, methods based on various frameworks were proposed,

such as kernel methods (Harchaoui and Cappé, 2007; Harchaoui et al., 2009; Arlot et al., 2019), distance-based methods

(Matteson and James, 2014), graph-based methods (Chen and Zhang, 2015; Chu and Chen, 2019), etc. Nevertheless,

many of the existing nonparametric methods could be very slow to run when either the data dimensionality is high or

the sequence is long (Liu and Chen, 2022). In Chapter 2, we improve the time efficiency upon the graph-based methods

by utilizing the directed approximate k-Nearest Neighbor information. Our new method is much faster than the fastest
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state-of-the-art methods, while having power better than or on par with its competitors under a variety of settings.

Most of the graph-based methods assume that the observations are sampled independently (Chen and Zhang, 2015;

Chu and Chen, 2019; Liu and Chen, 2022). However, when the observations are autocorrelated, which is usually

the case for many real applications, methods that assume independence could result in a higher false discovery rate

(Chen, 2019a). To tackle this problem, the circular block permutation (CBP) framework is proposed in Chen (2019a)

to approximate the distribution of the test statistic under the null hypothesis. Chen (2019a) worked out the analytic

expression of the original edge-count test statistic under CBP. However, the procedure depends on the edge-count

two-sample test, and could lead to biased estimates of the location of the change-point for some types of changes and

low efficiency when the change-point is away from the center of the sequence. In Chapter 3, we further extend the three

other edge-count statistics (weighted/generalized/max-type) to the CBP framework. In particular, we find that a new

optimal weight function should be adopted in the weighted edge-count test statistic under CBP, and the construction of

the generalized/max-type edge-count statistics should hence be modified accordingly. The modified tests under CBP

have proper type I error control for autocorrelated data, and the weighted edge-count test after modification exhibits

power higher than the one in Chu and Chen (2019) under CBP through simulation studies.

In many applications, researchers may also be interested in detecting simultaneous change-points in multiple

sequences of observations. A parametric method was proposed in Zhang et al. (2010), with a focus on detecting

common shifts in mean in multiple sequences of univariate Gaussian variables. However, there were few literatures

that explore this area over the past decade, whereas the demand for change-point analysis in multiple sequences of

high-dimensional/non-Euclidean observations has increased. For example, the dataset in Visconti di Oleggio Castello

et al. (2020) consists of the fMRI sequences from 25 patients with each of them watching six selected pieces of the

movie “The Grand Budapest Hotel” by Wes Anderson. In Chapter 4, we design a new MS-statistic that accumulates

signals from each of the sequences. The new test can be applied to high-dimensional/non-Euclidean data, and is

powerful in detecting various types of changes. We also derive the analytic formulas to approximate the p-value, making

the new test fast-applicable to large datasets.

In this thesis, we discuss in detail the aforementioned three evolutions of the nonparametric graph-based change-

point detection methods. The three versions serve as better solutions to the demand of modern change-point analysis for

large datasets with complex data structure. The innovations include improving the time efficiency of the algorithms,

controlling type I error for locally dependent data, and accomplishing change-point analysis for multiple sequences of

high-dimensional/non-Euclidean data.
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1.2 Thesis Outline and Contributions

Build upon the discussions in Section 1.1, this thesis is arranged as follows:

In Chapter 2 - “A Fast and Efficient Change-point Detection Framework based on Approximate k-NN

Graphs,” we propose a new approach making use of the approximate k-nearest neighbor information from the

observations. We derive an analytic formula to control the type I error. The time complexity of our proposed method

is O
(
dn(log n+ k log d) + nk2

)
for an n-length sequence of d-dimensional data. The test statistic we consider

incorporates a useful pattern for moderate- to high- dimensional data so that the proposed method could detect various

types of changes in the sequence. The new approach is also asymptotic distribution free, facilitating its usage for a

broader community. We apply our method to fMRI and Neuropixels data sequences to illustrate its effectiveness.

In Chapter 3 - “Graph-based Change-point Detection for Locally Dependent Data,” we study the circular block

permutation framework combined with weighted/generalized/max-type edge-count test statistics to resolve the issue

of the original edge-count test. To handle the difficulties caused by the circular block permutation, we propose new

edge-count test statistics and provide theoretical treatments to study the asymptotic properties of these new tests, which

further leads to analytic formulas to control the family-wise error rates, making them easy to be applied to large datasets.

These new tests outperform the existing tests in various ways as reflected by extensive simulation studies.

In Chapter 4 - “Change-point Detection in Multiple Sequences of High-dimensional/non-Euclidean Data,”

we study the change-point detection problem in the presence of multiple sequences. We propose a new nonpara-

metric method under the graph-based framework, called the MS-statistic, which can be applied efficiently to high-

dimensional/non-Euclidean sequences of observations with a proper control on the type I error. The MS-statistic utilizes

the edge-counts information from the similarity graphs for each of the sequences, and is useful in detecting various

types of changes in multiple sequences. In particular, the types of changes could be different in different sequences. To

approximate the p-values of our test, we derive an analytical formula that is asymptotically distribution-free, making

our method fast-applicable to large datasets. Simulation studies show that our new test has significant higher power

than existing methods when applied to multiple sequences. The performance and effectiveness of our new method is

illustrated by a real data application of the NYC taxi data.

Finally, we conclude the thesis and discuss some future plans and endeavors in Chapter 5. Besides, Chapter A, B,

and C are appendices to Chapter 2, 3, and 4, respectively.
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Chapter 2

A Fast and Efficient Change-point Detection

Framework based on Approximate k-NN

Graphs

2.1 Introduction

With advances in technologies, scientists in many fields are collecting massive data for studying complex phenomena

over time and/or space. Such data often involve sequences of high-dimensional measurements that cannot be analyzed

through traditional approaches. Insights on such data often come from segmentation/change-point analysis, which

divides the sequence into homogeneous temporal or spatial segments. They are crucial early steps in understanding

the data and in detecting anomalous events. Change-point analysis has been extensively studied for univariate and

low-dimensional data (see Basseville et al. (1993); Brodsky and Darkhovsky (1993); Carlstein et al. (1994); Csörgö

et al. (1997); Chen and Gupta (2011) for various aspects of classic change-point analysis). However, many modern

applications require effective and fast change-point detection for high-dimensional data. For example, Neuropixels

recordings Jun et al. (2017), microarrays Zeebaree et al. (2018a), healthcare data Lee et al. (2017), etc.

Let the sequence of observations be {yt : t = 1, . . . , n}, indexed by some meaningful order, such as time or

location. Then the change-point detection problem can be formulated as testing the null hypothesis of homogeneity:

H0 : yt ∼ F0, t = 1, . . . , n, (2.1)

4



against the alternative that there exists a change-point τ :

H1 : ∃1 ≤ τ < n, yt ∼


F0, t ≤ τ

F1, otherwise
(2.2)

Here, F0 and F1 are two different probability measures. When there are multiple change-points, wild binary seg-

mentation Fryzlewicz (2020); Fryzlewicz et al. (2014) or seeded binary segmentation Kovács et al. (2020) can be

incorporated.

Recently, there were quite a number of progresses on parametric change-point detection. For example, Barigozzi

et al. (2018) used the piecewise stationary time series factor models for multivariate observations, and assumed the

changes are in their second-order structure. Reference Wang et al. (2018) studied the change-point detection and

localization problem in dynamic networks by assuming the entries of the adjacency matrices are from inhomogeneous

Bernoulli models. Reference Bhattacharjee et al. (2018) considered the change-point detection problem in networks

generated by a dynamic stochastic block model mechanism. Reference Londschien et al. (2021) addressed the change-

point problem with missing values, and focused on detecting the covariance structure breaks in Gaussian graphical

models. These methods work under certain parametric models. However, in many applications, we have little knowledge

on F0 and F1.

In the context of nonparametric change-point detection for high-dimensional data, kernel-based methods were

first explored Harchaoui and Cappé (2007); Harchaoui et al. (2009), and continued to be improved Arlot et al. (2019).

However, this kernel approach is difficult to use practically. As we will show in Section 2.4, this method is very sensitive

to the choice of a tuning parameter and it is time-consuming to apply the method with a proper type I error control,

where type I error is the event that a change-point is falsely detected when the sequence is actually homogeneous.

Reference Li et al. (2019) proposed the scan B-statistic for kernel change-point detection, which is computationally

efficient and has a fast formula for type I error control; however, it requires a large amount of reference data. In recent

years, distance-based methods Matteson and James (2014) and graph-based methods Chen and Zhang (2015); Chu

and Chen (2019) were proposed for high-dimensional change-point detection. The distance-based method (ecp) uses

all pairwise distances among observations to find change-points, which could also be computationally heavy for large

datasets because computing all pairwise distances needs O(dn2) time for d-dimensional data. In addition, there is no

fast analytic formula for type I error control, and thus one needs to draw random permutations to approximate the

p-value. The graph-based methods Chen and Zhang (2015); Chu and Chen (2019) utilize the information of a similarity

graph constructed on observations to detect change-points. The authors also provided analytic formulas for type I error

control, making them faster to run. In addition, the graph-based methods can detect more types of changes compared to

5



ecp. The ecp method is very sensitive to changes in mean but its performance decays when the changes come in many

other forms (see Section 2.4.5).

In this work, we seek further improvement on graph-based methods, especially from an efficiency perspective.

Existing graph-based methods for offline change-point detection utilize an undirected graph constructed among

observations. Some common choices are the minimum spanning tree (MST), where all observations are connected with

the total distance minimized; the minimum distance pairing (MDP), where the observations are partitioned into n/2

pairs with the total within-pair distance minimized; the undirected nearest neighbor (NN) graph, where each observation

connects to its nearest neighbor; and their denser versions, k-MST, k-MDP, and undirected k-NN graphs. Take the

k-MST for example, it is the union of the 1st, . . ., kth MSTs, where the 1st MST is the MST, and the jth MST is a

spanning tree connecting all observations such that the sum of the edges in the tree is minimized under the constraint

that it does not contain any edge in the 1st, . . ., (j − 1)th MSTs. Among these graphs, k-MST is preferred as it in

general has a higher power than others Chen and Zhang (2015). Nevertheless, it requires O(dn2) time to compute the

distance matrix among n d-dimensional observations, so it takes at least O(dn2) time to construct the k-MST from the

original data when the pairwise distances were not provided in the beginning, which is usually the case. This could be

inefficient when either n or d is large.

Hence, we seek other ways to construct the similarity graph. There are fast existing algorithms to construct the

directed approximate k-NN graph Beygelzimer et al. (2019), where each observation finds k other nearby points that

might not be the k closest ones. We use the kd-tree algorithm to search for approximate nearest neighbors. A kd-tree is

a space-partitioning data structure for organizing points in a high-dimensional space, which is a binary tree constructed

through splitting the points by the values on alternating coordiantes as the tree grows. It takes O(dn log n) time to

preprocess a set of n points in Rd Arya et al. (1998). The nearest neighbor for any given query point can be searched

efficiently with the kd-tree. To approximate the nearest neighbors, first traverse the tree to the leaf node that contains

the query point, and then search for the nearest neighbors only in nearby areas. It requires only O(d log d+ log n) time

to result in a good approximate nearest neighbor per query Ram and Sinha (2019), so the total computational cost for

obtaining a directed approximate k-NN graph with the kd-tree can be achieved at O (dn(log n+ k log d)). Simulation

studies show that this new approach has power on par with the existing method on k-MST (Section 2.4.5), and the new

approach is much faster (Section 2.4.2).

Since the existing offline graph-based change-point detection framework needs the graph to be an undirected graph,

we further work out a framework that can deal with the directed approximate k-NN graph, i.e., all the following steps

after the graph is constructed: the exact analytic formulas to compute the test statistic, the limiting distribution of the

new statistic, and the analytic formula to supervise the false discovery rate efficiently. The time complexity of the

method after the directed approximate k-NN graph is obtained is O(nk2). Thus, the overall time complexity of the
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new method is O
(
dn(log n+ k log d) + nk2

)
. We illustrate the new approach on the analyses of fMRI datasets and

Neuropixels datasets (Section 2.5). The former ones have very large dimensions and moderate sample sizes, whereas

the latter ones feature very large sample sizes with moderate dimensions.

2.2 Proposed Statistic

Let G = {(i, j) : yj is among yi’s k approximate nearest neighbors} be the directed approximate k-NN graph,

RG,1(t) be the number of edges on G connecting observations both before t, and RG,2(t) be the number of edges on G

connecting observations both after t:

RG,1(t) =
∑

(i,j)∈G

1{i≤t,j≤t}, RG,2(t) =
∑

(i,j)∈G

1{i>t,j>t};

with 1A being the indicator function for event A. Here, we use the notations similar to those in Chu and Chen (2019).

A key difference is that the graph in Chu and Chen (2019) is undirected, whereas here G is directed. Fig. 2.1 illustrates

the computation of RG,1(t) and RG,2(t) on a toy example. We will use these two quantities to construct the test

statistics. The rationale is as follows: When all observations are from the same distribution, the distributions of

RG,1(t) and RG,2(t) can be figured out under the permutation null distribution that places 1/n! probability on each

of the n! permutations of {yi : i = 1, . . . , n}. With no further specification, we use P, E, Var, and Cov to denote

probability, expectation, variance, and covariance, respectively, under the permutation null distribution. When there

is a change-point at τ , one typical outcome is that observations from the same distribution tend to form edges within

themselves, making both RG,1(τ) and RG,2(τ) larger than their null expectations. Another common but somewhat

counter-intuitive outcome is that observations from one distribution tend to connect within themselves, but observations

from the other distribution tend not to connect within themselves, casuing one of RG,1(τ) and RG,2(τ) to be larger

than its null expectation, and the other smaller than its null expectation. This happens commonly under moderate to

high dimensions when the variances of the two distributions differ. The underlying reason is the curse of dimensionality

(see Chen and Friedman (2017) for detailed explanations on this phenomenon under the two-sample testing setting).

To cover both possible outcomes under the alternative, we focus on a max-type test statistic in the main context.

Three other test statistics (original/weighted/generalized) are discussed in Appendix A.6.

For each candidate t of the true change-point τ , the max-type edge-count statistic is defined as

M(t) = max(Zw(t), |Zdiff(t)|); (2.3)
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Figure 2.1: The computation of RG,1(t) and RG,2(t) at three different values of t. Here y1, . . . ,y10
i.i.d.∼

N((−0.5,−0.5)T , I2), and y11, . . . ,y20
i.i.d.∼ N((0.5, 0.5)T , I2), where I2 is the 2×2 identity matrix. The graph

G here is the directed 2-NN on the Euclidean distance. Each t divides the observations into two groups: one
group for observations before t (red squares) and the other group for observations after t (blue circles). Red edges
connect observations before t and the number of red edges is RG,1(t); blue edges connect observations after t
and the number of blue edges is RG,2(t). Notice that as t changes, the group identities change but the graph G
does not change.

where

Zw(t) =
Rw(t)− E(Rw(t))√

Var(Rw(t))
,

Zdiff(t) =
Rdiff(t)− E(Rdiff(t))√

Var(Rdiff(t))
;

with

Rw(t) =
n− t− 1

n− 2
RG,1(t) +

t− 1

n− 2
RG,2(t),

Rdiff(t) = RG,1(t)−RG,2(t).

The null hypothesis of homogeneity (2.1) is rejected if the test statistic

max
n0≤t≤n1

M(t); (2.4)

with n0 and n1 pre-specified, is larger than the critical value for a given significance level, which measures the strength

of the evidence that must be presented in the sample to reject the null hypothesis, and has to be determined before

conducting the experiment. Statistically, significance level is the probability of rejecting the null hypothesis when it is

true, usually set to be 5% or 1%.

Here, the two components, Zw(t) and |Zdiff(t)|, capture the aforementioned two possible outcomes under the
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alternative. For better understanding, we illustrate the outcomes through a toy example (Fig. 2.2). When {y1, . . . ,yt}

and {yt+1, . . . ,yn} are from the same distribution, they are well mixed and RG,1(t) and RG,2(t) would be close

to their null expectations (Fig. 2.2 (a)). When they are from different distributions, one common exhibition is that

observations from the same distribution are more likely to be connected in G. Fig. 2.2 (b) plots a typical directed

2-NN graph under this alternative and we see that there are more edges connecting within each group. When this

happens, Zw(t) is large. For moderate- to high- dimensional data, another exhibition of the graph is common under the

alternative shown in Fig. 2.2 (c). Here, the dimension is d = 100, and the blue circles are from a distribution with a

larger variance than that of the red squares. We see that RG,1(t) is much larger than its null expectation but RG,2(t) is

much smaller than its null expectation (very few blue edges). This happens due to the curse of dimensionality. As the

volume of a d-dimensional ball increases exponentially in d, the blue circles from a distribution with a larger variance

are sparsely scattered and tend to find their nearest neighbors in red squares. The Zdiff(t) part in our statistic is effective

in capturing this pattern. The absolute value is to cover the two possible scenarios in opposite directions showcased in

Fig. 2.2 (c) and (d).

(a) (b) (c) (d)

Figure 2.2: Directed 2-NN graphs on 100-dimensional data visualized by the ggnet2 function. Here, y1, . . . ,y20 (red
squares) are randomly drawn from a 100-dimensional Gaussian distribution with zero mean and identity covariance
matrix, and y21, . . . ,y40 (blue circles) are randomly drawn from N100(µ, aI100) with (a) µ = 0 × 1100, a = 1; (b)
µ = 0.8 × 1100, a = 1; (c) µ = 0 × 1100, a = 1.4; (d) µ = 0 × 1100, a = 0.8, where 1100 is a length-100 vector
whose elements are all one’s. The same edge coloring scheme as in Fig. 2.1 is used here.

We next provide the exact analytic formulas for the expectation and variance of (RG,1(t), RG,2(t))
T that are

required to compute M(t) so that we do not need to perform the time-consuming permutations to obtain them.

Theorem 1. The expectation, variance, and covariance of RG,1(t) and RG,2(t) under the permutation null distribution

are:

E (RG,1(t)) = nkp1(t), E (RG,2(t)) = nkq1(t),

Var (RG,1(t)) = d1p1(t) + d2p2(t) + d3p3(t)− (nkp1(t))
2
,

Var (RG,2(t)) = d1q1(t) + d2q2(t) + d3q3(t)− (nkq1(t))
2
,
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Cov (RG,1(t), RG,2(t)) = d3r(t)− (nkp1(t)) (nkq1(t)) ,

where

p1(t) =
t(t− 1)

n(n− 1)
, p2(t) =

t(t− 1)(t− 2)

n(n− 1)(n− 2)
, p3(t) =

t(t− 1)(t− 2)(t− 3)

n(n− 1)(n− 2)(n− 3)
,

q1(t) =
(n− t)(n− t− 1)

n(n− 1)
, q2(t) =

(n− t)(n− t− 1)(n− t− 2)

n(n− 1)(n− 2)
,

q3(t) =
(n− t)(n− t− 1)(n− t− 2)(n− t− 3)

n(n− 1)(n− 2)(n− 3)
, r(t) =

t(t− 1)(n− t)(n− t− 1)

n(n− 1)(n− 2)(n− 3)
,

and d1 = c(1) + c(2), d2 = c(3) + c(4) + c(5) + c(6), d3 = c(7), where c(1), . . . , c(7) are quantities on the graph G,

defined as:

c(1) = nk, c(2) =

n∑
i=1

∑
j∈Di

1{(i,j)∈G}, c(3) = c(4) =

n∑
i=1

∑
j∈Di

(k − 1{(i,j)∈G}),

c(5) = nk(k − 1), c(6) =

n∑
i=1

(
|Di|2 − |Di|

)
, c(7) = (nk)2 −

6∑
m=1

c(m).

Here, Di is the set of indices of observations that point toward observation yi, and |Di| is the cardinality of set Di, or

the in-degree of observation yi.

Remark 1. The time complexity of computing c(1), . . . , c(7) in Theorem 1 is O(nk). One only has to construct a list of

in-degrees for each observation in order to compute these seven quantities, which takes O(nk) time.

Theorem 1 can be proved by combinatorial analysis. The expectations can be obtained easily by the linearity of

expectation. For the variances and the covariance, we have to figure out the numbers of the seven possible configurations

of pairs of edges as plotted in Fig. 2.3. The quantities c(1), . . . , c(7) in Theorem 1 correspond respectively to the

numbers of the seven configurations on a directed approximate k-NN graph. For such graphs, the out-degree of every

observation node is a constant k, while the in-degree could vary from node to node, which requires one to scan through

every edge to obtain the information. A detailed proof of Theorem 1 is in Appendix A.1.

This max-type edge-count statistic M(t) in (2.3) is well-defined under very mild conditions (Theorem 2). The proof

is in Appendix A.2.

Theorem 2. The max-type edge-count statistic {M(t)}t=1,...,n−1 on a directed approximate k-NN graph is well-defined

when n ≥ 5 and not every observation has the same in-degree (i.e., there exists an i, 1 ≤ i ≤ n, such that |Di| 6= k).

The conditions in Theorem 2 ensure that the variances of Rw(t) and Rdiff(t) are not zero. If all the observations

have the same in-degree k, then Rdiff(t) is a constant. As the distribution of in-degrees could vary, we examine the most
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Figure 2.3: Seven possible configurations of two edges (i, j), (u, v) randomly chosen with replacement from a directed
graph: (1) two edges degenerate into one ((i, j) = (u, v)); (2) two opposite edges (the two end nodes point to each
other); (3)-(6) four different configurations with the two edges sharing one node; (7) two edges without any node
sharing.

extreme case of which on the directed k-NN graph. Under the worst scenario, n ≥ 5 ensures that the variance of Rw(t)

is positive.

2.3 Analytic type I error control

Given the max-type edge-count statistic, the next question is how large does the critical value need to be to constitute

sufficient evidence against the null hypothesis of homogeneity (2.1). This is usually achieved by computing the p-value,

which is defined as the probability of observing a more extreme or as extreme test statistic when the null hypothesis is

ture. Here, the p-value is defined under the permutation null distribution of the max-type edge-count statisitc. As a

relatively large value is the evidence for potential change-points, we are concerned with the tail probability of the test

statistics under H0:

P
(

max
n0≤t≤n1

M(t) > b
)

(2.5)

For a small n, the probability (2.5) can be obtained directly by permutation. However, when n is large, doing

permutations could be very time-consuming. Hence, we derive analytic formulas to approximate the probability based

on the asymptotic properties of the test statistic (2.6). We first work out the limiting distributions of {Zw([nu]1) :

0 < u < 1} and {Zdiff([nu]) : 0 < u < 1} jointly. On a directed graph, we use e = (e−, e+) to denote an edge

connected from e− to e+. Let Ae = Ge− ∪Ge+ be the subgraph in G that connect to either node e− or node e+, and

Be = ∪e∗∈AeAe∗ be the subgraph in G that connect to any edge in Ae. In the following, we write an = O(bn) when

an has the same order as bn, and write an = o(bn) when an has order smaller than bn.

Theorem 3. For a directed k-NN graph, if k = O(nβ), β < 0.25,
∑
e∈G |Ae||Be| = o(n1.5(β+1)),

∑
e∈G |Ae|2 =

o(nβ+1.5), and
∑n
i=1 |Di|2 − k2n = O(

∑n
i=1 |Di|2), as n → ∞, {Zw([nu]) : 0 < u < 1} and {Zdiff([nu]) : 0 <

u < 1} converge to independent Gaussian processes in finite dimensional distributions.

1For a scalar x, we use [x] to denote the largest integer no greater than x.
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The covariance functions of the limiting processes {Zw([nu]) : 0 < u < 1} and {Zdiff([nu]) : 0 < u < 1} are

provided in Appendix A.4.

The complete proof for Theorem 3 is in Appendix A.3. The key idea of the proof is to decouple the dependency

resulted from the permutation null distribution and the dependency caused by the graph. More specifically, there are

weak dependencies caused by the permutation as one observation appear at one time cannot appear at another time under

permutation. To solve this, we take a step back and work on the bootstrap null distribution in which the probability of

an observation appearing at one time does not affect by whether it appears at other time(s) or not. Thus, we could focus

on dealing with the dependency caused by the graph, and the Stein’s method is used to deal with the dependency. The

bootstrap null distribution is then connected to the permutation null distribution by conditioning. Based on Theorem 3,

the probability (2.5) can be approximated by

P
(

max
n0≤t≤n1

M(t) > b
)
≈ 1− P

(
max

n0≤t≤n1

Zw(t) < b
)

P
(

max
n0≤t≤n1

|Zdiff(t)| < b
)

(2.6)

= 1−
(

1− P
(

max
n0≤t≤n1

Zw(t) > b
))
×
(

1− P
(

max
n0≤t≤n1

|Zdiff(t)| > b
))

.

The two probabilities in (2.6) can be computed similarly as in Chu and Chen (2019):

P
(

max
n0≤t≤n1

Zw(t) > b
)
≈ bφ(b)

∫ n1

n0

Sw(t)Cw(t)ν
(√

2b2Cw(t)
)
dt (2.7)

P
(

max
n0≤t≤n1

|Zdiff(t)| > b
)
≈ 2bφ(b)

∫ n1

n0

Sdiff(t)Cdiff(t)ν
(√

2b2Cdiff(t)
)
dt (2.8)

where the function ν(·) can be estimated numerically as ν(x) ≈ (2/x)(Φ(x/2)−0.5)
(x/2)Φ(x/2)+φ(x/2) with φ(·) and Φ(·) being the

probability density function and cumulative distribution function of the standard normal distribution, respectively;

Cw(t), Cdiff(t) the partial derivative of the covariance function of the process; Sw(t), Sdiff(t) the time-dependent

skewness correction terms, i.e., for j = w, diff,

Cj(t) = lim
s↗t

∂ρj(s, t)

∂s
, ρj(s, t) = Cov(Zj(s), Zj(t)),

Sj(t) =
exp

(
1
2 (b− θ̂b,j(t))2 + 1

6γj(t)θ̂
3
b,j(t))

)√
1 + γj(t)θ̂b,j(t)

;

where

γj(t) = E
(
Z3
j (t)

)
, θ̂b,j(t) = (−1 +

√
1 + 2bγj(t))/γj(t).
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Moreover, in the above expressions, Cw(t) and Cdiff(t) can be derived and simplified to be (details in Appendix A.4)

Cw(t) =
n(n− 1)(2t2/n− 2t+ 1)

2t(n− t)(t2 − nt+ n− 1)
, Cdiff(t) =

n

2t(n− t)
.

To compute Sw(t) and Sdiff(t), we need the third moments of Zw(t) and Zdiff(t), respectively. Comparing to that under

undirected graphs, the computation here is much more complicated. For an undirected graph, there are 8 possible

configurations (Fig. 2.4). However, for a directed graph, there are 24 possible configurations (Fig. 2.5). With brute

force, it would take O(|G|3) time to compute the numbers of those configurations for a generic directed graph, which is

very computationally expensive. To tackle this problem, we work out efficient formulas that can provide the results in

O(nk2) time for directed k-NN graphs.

Figure 2.4: Eight possible configurations of three edges randomly chosen with replacement from an undirected graph.

Figure 2.5: Twenty-four possible configurations of three edges randomly chosen with replacement from a directed
graph.

LetG(m) be the set of pairs of edges inG having themth configuration as shown in Fig. 2.3,m = 1, . . . , 7. LetN (l)

be the number of occurrence for each of the configurations illustrated in Fig. 2.5, l = 1, . . . , 24, then
∑24
l=1N

(l) = |G|3.

We can obtain N (l)’s with effort:
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N (1) = nk,

N (2) = 3c(2),

N (3) = 3c(3),

N (4) = 3c(6),

N (5) = 6c(2)(k − 1),

N (6) = 3
∑

(i,j),(u,v)∈G(2)

(|Di|+ |Dj | − 2),

N (7) = 3c(5),

N (8) = 3c(3),

N (9) = 2
∑

(i,j),(u,v)∈G(3)

1{(v,i)∈G},

N (10) = 6
∑

(i,j),(u,v)∈G(3)

1{(i,v)∈G},

N (11) = 3c(7),

N (12) = 3c(2)(nk − 2)− (N (5) +N (6)),

N (13) = 6kc(3) − (N (6) + 3N (9)),

N (14) = 6
∑

(i,j),(u,v)∈G(3)

(|Dv| − 1)−N (10),

N (15) = 6(k − 1)c(6) −N (10),

N (16) = 6kc(5) − (N (5) +N (10)),

N (17) = 6

n∑
i=1

(
|Di|

3

)
,

N (18) = 6n

(
k

3

)
,

N (19) = 3
∑

(i,j),(u,v)∈G(5)

|Di| −N (5),

N (20) = 3kc(6) −N (6),

N (21) = 6c(3)(nk − 2)−
(
N (5) +N (6) +N (10) +N (14)

+N (16) + 3N (9) + 2N (13) + 2N (19) + 2N (20)
)
,

N (22) = 3c(5)(nk − 2)
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−
(
N (5) +N (10) +N (15) +N (16) +N (19) + 3N (18)

)
,

N (23) = 3c(6)(nk − 2)

−
(
N (6) +N (10) +N (14) +N (15) +N (20) + 3N (17)

)
,

N (24) = (nk)3 −
23∑
l=1

N (l).

In the above formulas, it takes at most O(nk2) time to compute c(2), c(3), c(5), and c(6), and there are at most nk2

elements in the sets G(2), G(3), and G(5), so the numbers of the 24 configurations can be calculated within O(nk2)

time. Indeed, as the rest of the computation is relatively straightforward (see Appendix A.5), the whole analytic p-value

approximation procedure for a directed k-NN graph can also be done within O(nk2).

Now, let’s check the performance of (2.6) through simulation studies.

Table 2.1: Critical values for the statistic max
n0≤t≤n1

M(t) based on 3-NN’s graph at α = 0.05.

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

d Ana Per Ana Per Ana Per Ana Per

(C1) 10 3.26 3.26 3.31 3.35 3.39 3.43 3.52 3.60
100 3.29 3.29 3.36 3.40 3.45 3.52 3.62 3.78
1,000 3.31 3.31 3.40 3.42 3.51 3.60 3.70 3.94

(C2) 10 3.26 3.26 3.32 3.34 3.39 3.44 3.51 3.60
100 3.30 3.30 3.35 3.39 3.44 3.51 3.60 3.79
1,000 3.30 3.30 3.46 3.54 3.59 3.75 3.80 4.27

(C3) 10 3.27 3.28 3.32 3.33 3.40 3.41 3.52 3.58
100 3.28 3.28 3.35 3.37 3.43 3.48 3.58 3.70
1,000 3.36 3.41 3.45 3.58 3.58 3.81 3.72 4.07

Table 2.1 shows the performance of the asymptotic p-value approximation of the max-type edge-count statistic (2.6)

under different settings. We examine three different distributions (multivariate Gaussian (C1), multivariate t5 (C2), and

multivariate log-normal (C3) distributions) with different data dimensions (d = 10, 100, 1000). In Table 2.1, column

“Per” is the critical value obtained from doing 10, 000 permutations. This can be deemed as close to the true critical

value. Column “Ana” presents the analytical critical values given by plugging (2.6) with (2.7) and (2.8). Here, the

length of the sequence is n = 1000, and we present the results in four different choices of n0 with n1 = n− n0. When

n0 = 100 or 75, the analytical approximation works quite well across all distributions and dimensions. As n0 decreases

(n0 = 50 or 25), the analytical critical values become less precise. This is expected as the asymptotic distribution needs

both groups to have O(n) observations. When n0 is small, one group could give a smaller order of observations than

the other group. On the other hand, the accuracy of the analytical critical values is less dependent on the distribution of
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the data.

2.4 Numerical results

2.4.1 Simulation setting and notations

We compare our proposed test with three state-of-the-art methods: graph-based method with the max-type edge-count

statistic on 5-MST (the recommended setting in Chu and Chen (2019), denoted by “5-MST” in the following), the

distance-based method (ecp) Matteson and James (2014), and the kernel-based method Arlot et al. (2019). For our

method, we use the kd-tree algorithm Beygelzimer et al. (2019) to approximate the directed 5-NN graph (d-a5NN).

In the following, we focus on the Euclidean distance. There are implementations for other Minkowski distances in

the ANN library (http://www.cs.umd.edu/~mount/ANN/). We use the directed approximate 5-NN graph as it

contains a similar number of edges to the 5-MST to make the comparison with the existing graph-based method fair.

The proposed method is denoted by “New” in the following.

2.4.2 Computational efficiency

First, we compare the computational cost of these methods through 10 simulation runs. In each simulation, the

observations are generated i.i.d. from a multivariate Gaussian distribution with dimension d = 500. The results are

presented in Table 2.2. Among all the four methods, our proposed method is the fastest, whereas the kernel method is

the slowest to run. For the graph-based methods, in particular, our proposed method on d-a5NN is more than 5 times

faster than the method in Chu and Chen (2019) on 5-MST for n = 2, 000 or above.

Table 2.2: Runtime comparison: Average time cost in seconds (standard deviation) from 100 simulation runs for
each choice of n (10 runs for the cells having average runtime greater than 1k seconds). The environment where the
experiments are conduected: CPU: Intel(R) Xeon(R) CPU E5-2690 0 @ 2.90GHz / RAM: DDR3 @ 1600MHz / OS:
Scientific Linux 6.10 / 2.6.32 Linux.

n New 5-MST ecp kernel

1, 000 0.8 (0.01) 5.2 (0.5) 13 (1.8) 683 (17)

2, 000 2.7 (0.01) 21 (3.2) 52 (6.7) 10,224

5, 000 17 (0.1) 157 (8.3) 482 (87) >10,000

10, 000 76 (1.2) 689 (27) 2,073 (387) -

20, 000 321 (3.7) 2,193 (189) 6,528 (1, 276) -

30, 000 726 (5.9) 4,757 (106) >10,000 -
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2.4.3 Empirical size

Here, we check the empirical size of these methods under three significance levels (α = 0.10, 0.05, and 0.01).

Observations are generated i.i.d. from a d-dimensional multivariate Gaussian distribution with no change-point.

The results are summerized in Table 2.3, where the p-value of the graph-based methods is obtained through their

corresponding analytical formulas, and those for the ecp are based on 999 random permutations. We only report those

for d = 25 here, as the results are very similar for other choices of d (see Appendix A.7). Both the graph-based methods

and ecp could control the type I error well. However, for the kernel method, there is no direct mean to control type I

error. We use the ‘kcpa’ function in the R package ‘ecp’. In this function, the empirical size is supervised by a

tuning parameter C. The larger the C is, the less likely the null is rejected. Unfortunately, it is not straightforward to

link the tuning parameter C with the empirical size. As illustrated in Table 2.4, the relation between C and the empirical

size depends heavily on the dimension of the observations.

Table 2.3: Fractions of simulation runs (out of 10,000 simulations) that the null hypothesis is rejected when there is no
change-point in the sequence (n = 1, 000). Graph-based methods and ecp at level α.

Method α = 0.10 α = 0.05 α = 0.01

New 0.100 0.051 0.011
5-MST 0.096 0.051 0.012
ecp 0.098 0.050 0.011

Table 2.4: Fractions of simulation runs (out of 10,000 simulations) that the null hypothesis is rejected when there is no
change-point in the sequence (n = 1, 000). Kernel method with tuning parameter C under three different dimensions.

kernel method C = 4.8 C = 5.2 C = 5.6

d = 25 0.943 0.821 0.631
d = 30 0.477 0.265 0.134
d = 35 0.094 0.036 0.009

2.4.4 Type II error analysis

To get an idea of the performance of the proposed method, we compare the probability of making the type II error,

which is the event that the null hypothesis is not rejected when it is false, for the three methods that could control the

type I error under some common parametric families. In particular, we consider six scenarios with each coordinate

randomly generated from (1) Chi-square distributions with a change in the degree of freedom, (2) Weibull distribution

with a change in the scale parameter while the shape parameter is fixed, (3) & (4) Gamma distributions with a change

in one of the two parameters, respectively, while the other parameter is fixed, and (5) & (6) Beta distributions with a

change in one of the two parameters, respectively, while the other parameter is fixed. In each simulation run, the length
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of the sequence is n = 1, 000, and the change-point is at a quarter of the sequence τ = 250.

• Setting 1 (Chi-square distribution): F0 = χ2
ν0 ; F1 = χ2

ν1 .

• Setting 2 (Weibull distribution): F0 = Weibull(λ0, k0); F1 = Weibull(λ1, k0). Shape parameter fixed at k0 = 1.

• Setting 3 (Gamma distribution-a): F0 = Gamma(α0, β0); F1 = Gamma(α1, β0). Scale fixed at β0 = 1.

• Setting 4 (Gamma distribution-b): F0 = Gamma(α0, β0); F1 = Gamma(α0, β1). Shape fixed at α0 = 1.

• Setting 5 (Beta distribution-a): F0 = Beta(α0, β0); F1 = Beta(α1, β0). Second parameter fixed at β0 = 0.5.

• Setting 6 (Beta distribution-b): F0 = Beta(α0, β0); F1 = Beta(α0, β1). First parameter fixed at α0 = 0.5.

Table 2.5: Type II error: Numbers of times (out of 100) the null hypothesis is not rejected under α = 0.05 for various
data dimensions and sizes of change.

S1: Chi-square (d.f. ν change, ν0 = 3)
d 25 100 500 1000 2000
ν1 3.27 3.20 3.15 3.12 3.09

New .16 .32 .13 .11 .13
5-MST .19 .37 .13 .10 .11
ecp .95 .95 .95 .95 .96

S2: Weibull (scale λ change, λ0 = 1, k0 = 1)
d 25 100 500 1000 2000
λ1 1.8 2.4 3.2 4.8 6.2

New .19 .17 .11 .18 .23
5-MST .24 .19 .13 .19 .23
ecp .93 .97 .94 .93 .97

S3: Gamma (shape change, α0 = 1, β0 = 1)
d 25 100 500 1000 2000
α1 1.09 1.08 1.05 1.04 1.03

New .12 .15 .34 .28 .33
5-MST .19 .18 .29 .22 .28
ecp .92 .91 .89 .95 .91

S4: Gamma (scale change, α0 = 1, β0 = 1)
d 25 100 500 1000 2000
β1 1.050 1.040 1.030 1.025 1.020

New .32 .29 .25 .11 .12
5-MST .36 .36 .24 .08 .07
ecp .95 .93 .92 .90 .89

S5: Beta (shape 1 change, α0 = 0.5, β0 = 0.5)
d 25 100 500 1000 2000
α1 0.590 0.550 0.530 0.520 0.512

New .23 .19 .05 .03 .19
5-MST .21 .23 .06 .05 .25
ecp .97 .96 .94 .96 .95

S6: Beta (shape 2 change, α0 = 0.5, β0 = 0.5)
d 25 100 500 1000 2000
β1 0.590 0.550 0.530 0.520 0.512

New .25 .14 .04 .05 .16
5-MST .24 .18 .06 .09 .24
ecp .98 .93 .96 .92 .91

The results are shown in Table 2.5. For each dimension, the alternatives are chosen so that the type II error is not

too small to be comparable. We see that the type II error of the new test is on the small end for data from different

distribution families.

2.4.5 Power comparison

Here, we compare the power of the proposed method to the other two methods. Power is the probability of rejecting

the null hypothesis when it is false, i.e., the probability of not making the type II error. We consider six different
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scenarios. They are chosen to cover a variety of change types. Scenarios 1-4 emphasize on the Gaussian distribution

and cover changes in mean and variance, as well as different parts of the covariance matrix. Scenarios 5 and 6 cover

asymmetric distributions and fat-tailed distributions. In the following, a and b are constants. Nd denotes a d-dimensional

multivariate Gaussian distribution, 0d and 1d denote length-d vectors of all zeros and one’s, respectively, Id denotes a

d× d identity matrix, and Σ denotes the covariance matrix with Σij = 0.6|i−j|, where Σij is the element of the ith

row and the jth column of Σ. The L2 norm of the mean vector in F1 is given by ||∆||2 in Table 2.6. In each simulation

run, the length of the sequence is n = 1, 000, and the change-point is at a quarter of the sequence τ = 250.

Table 2.6: Power comparison: Numbers of times (out of 100) the null hypothesis is rejected under α = 0.05 for various
data dimensions and sizes of change.

S1: MG (Mean and Variance)
d 25 100 500 1000 2000
||∆||2 0.10 0.20 0.45 0.63 0.89
b 1.10 1.06 1.03 1.02 1.02

New 75 76 65 58 83
5-MST 71 66 60 56 83
ecp 4 8 10 13 15

S2: MG (5-coordinate)
d 25 100 500 1000 2000
||∆||2 0.20 0.40 0.67 0.63 0.89
b 1.8 2.4 3.2 4.8 6.2

New 94 84 63 64 69
5-MST 92 83 60 65 71
ecp 17 36 33 22 34

S3: MG (Diagonal)
d 25 100 500 1000 2000
b 1.10 1.06 1.03 1.02 1.02

New 69 78 87 90 99
5-MST 60 77 88 88 99
ecp 3 7 4 2 4

S4: MG (Off-diagonal)
d 25 100 500 1000 2000
ρ 0.53 0.50 0.48 0.47 0.46

New 74 88 89 88 89
5-MST 68 83 87 87 88
ecp 4 9 8 4 3

S5: Chi-square distribution
d 25 100 500 1000 2000
||∆||2 0.05 0.10 0.22 0.32 0.45
b 1.10 1.08 1.05 1.04 1.03

New 71 81 85 85 89
5-MST 66 80 85 83 89
ecp 4 10 3 7 2

S6: t-distribution
d 25 100 500 1000 2000
||∆||2 0.20 0.40 0.67 0.63 0.89
b 1.14 1.08 1.05 1.04 1.03

New 85 75 73 86 85
5-MST 81 73 70 87 87
ecp 8 15 18 11 11

• Scenario 1 (MG: mean and variance): F0 = Nd(0d,Σ); F1 = Nd(a× 1d, bΣ).

• Scenario 2 (MG: 5-coordinate): F0 = Nd(0d, Id); F1 = Nd((a× 15,0d−5)T , diag((b× 15,1d−5)T )), where

diag(u) is a diagonal matrix with its diagonal vector u.

• Scenario 3 (MG: Diagonal): F0 = Nd(0d, Id); F1 = Nd(0d, bId).

• Scenario 4 (MG: Off-diagonal): F0 = Nd(0d,Σ); F1 = Nd(0d,Σ
′), where Σ′

ij = ρ|i−j|.

• Scenario 5 (Chi-square distribution): F0 = Σ
1
2 uχ

2
3,c ; F1 = (bΣ)

1
2 uχ

2
3,c + a × 1d. Here, uχ

2
3,c is a length-d

vector with each component i.i.d. from the centered χ2
3 distribution.
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• Scenario 6 (t-distribution): F0 = Σ
1
2 ut5 ; F1 = (bΣ)

1
2 ut5 + a× 1d. Here, ut5 is a length-d vector with each

component i.i.d. from the t5-distribution.

From Table 2.6, we can see that our proposed test has good power under a wide range of alternatives. It is the

best or on par with the best in these simulation studies. In sharp contrast, the ecp method suffers from the curse of

dimensionality, and could have low power when the change contain sources other than the mean shift.

2.4.6 Types of changes the new method can detect

Here, we check the types of changes the proposed method can detect. We investigate five types of changes: mean,

variance, covariance, skewness and kurtosis. All experiments are conducted under the setting with n = 1, 000, τ = 250

and d = 1, 000. Below describes in details the five scenrios:

• Change in mean: Before the change, all coordinates are from independent standard Gaussian distributions. After

the change, the L2-norm of the mean vector is specified by the x-axis in Fig. 2.6. We study the power for changes

in all coordinates (dc = 1, 000), one coordinate (dc = 1), and some subsets of the coordinates (dc = 200, 50, 10).

We can see from Fig. 2.6 that our test has good power to mean change regardless of the number of coordinates

that has a mean shift.

Figure 2.6: Fraction of times (out of 100) that a change-point is detected at a given size of mean change for the changes
in various coordinates (dc).

• Change in variance: Before the change, all coordinates are from independent standard Gaussian distributions.
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After the change, the determinant of the variance-covariance matrix becomes a1000, where a is specified by the

x-axis in Fig. 2.7. We study the power for changes in all coordinates (dc = 1, 000), one coordinate (dc = 1), and

some subsets of the coordinates (dc = 200, 50, 10). We can see from Fig. 2.7 that our test is generally sensitive

to variance change in all cases, and the power is higher when the change comes in fewer coordinates.

Figure 2.7: Fraction of times (out of 100) that a change-point is detected at a given size of variance change for the
changes in various coordinates (dc).

• Change in covariance: Before the change, the observations are from multivariate Gaussian distribution with

mean zero and variance-covariance matrix Σij = 0.6|i−j|, denoted as ρ0 = 0.6. After the change, the variance-

covariance matrix becomes Σij = ρ
|i−j|
1 and new correlation coefficent is defined as ρ1 = 0.6−∆ρ. The ten

values of the ∆ρ’s used in the experiment are (0.02, 0.04, . . . , 0.20), corresponding to the x-axis (1, 2, . . . , 10) in

Fig. 2.8. The result shows that our new method is also very sensitive to changes in the covariance structure.

• Change in skewness: Before the change the observations in each coordinate are from independent Gaussian

distributions with mean ν and standard deviation
√

2ν. After the change, observations in each coordinate are from

independent Chi-square distributions with degree of freedom ν. The skewness of a χ2
ν distribution is computed

as
√

8/ν. The ten values of the ν’s used in the experiment are chosen so that the skewness of each variable are

(0.2, 0.4, 0.6, . . . , 2.0), corresponding to the x-axis (1, 2, . . . , 10) in Fig. 2.8. This setting does not change mean

and variance while changing the skewness.

• Change in excess kurtosis: Before the change the observations in each coordinate are from independent standard
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Figure 2.8: Fraction of times (out of 100) that a change-point is detected at a given size of changes in covariance,
skewness and excess kurtosis. The sizes of changes increase as the index in the x-axis grows, but the sizes among the
three scenarios at each index are not comparable. We plot them on the same figure to save space.

Gaussian distributions. After the change, observations in each coordinate are from independent t distributions

with degree of freedom ν. The excess kurtoosis of a tν distribution is computed as 6
ν−4 . The ten values of the ν’s

used in the experiment are chosen so that the excess kurtosis of each variable are (0.01, 0.02, 0.03, . . . , 0.10),

corresponding to the x-axis (1, 2, . . . , 10) in Fig. 2.8. The result shows that our method can also detect changes

in excess kurtosis.

2.5 Real data applications

2.5.1 fMRI data

This fMRI dataset was recorded when the subjects were watching certain pieces of the movie “The Grand Budapest Hotel”

by Wes Anderson. It is publicly available at: https://openneuro.org/datasets/ds003017/versions/

1.0.2. There are in total 25 subjects involved in this experiment, each of them watching 5 pieces of the movie

Visconti di Oleggio Castello et al. (2020). Here, we randomly select two such sequences with subject ID SID-000005

and SID-000024 for illustration.

This piece of the movie is about 10 minutes long. The total length of the sequence is n = 598 with one time unit as

1 second. Each observation is a 3-dimensional fMRI image with size 96× 96× 48. To get an idea of how the fMRI
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data look like, Fig. 2.9 shows the profiles of five observations at t = 150, 250, 350, 450, and 550, from one certain

perspective. There are three different perspectives available, and the other two can be found in Appendix A.8. We

rearrange each observation into a length-d vector (d = 96× 96× 48 = 442, 368).

t = 150 t = 250 t = 350 t = 450 t = 550

Figure 2.9: The snapshots of the fMRI images for subject SID-000005 at different timestamps.

In the first sequence (SID-000005), the signal is strong that all three methods find the change-point at around

435 (see Table 2.7). We can see from the heatmap of the pairwise distances of the observations (Fig. 2.10) that the

existence of a change-point at around 435 is reasonable. In the second sequence (SID-000024), all three methods

find the change-point at around 260, which also appears to be consistent with the heatmap (Fig. 2.11). Among the

three methods, the new test is much more efficient to run (Table 2.7, last column). We can also observe that here the

computation time for 5-MST is similar to that of ecp as constructing the 5-MST dominates the overall runtime when d

is large.

Table 2.7: Results of the estimated change-point locations (τ̂ ), p-values, and the overall runtimes. For the two
graph-based methods, the analytical p-values are reported; for the ecp method, the p-value is based on 999 permutaions.

Subject Methods τ̂ p-value time cost (minutes)

SID-000005
New (d-a5NN) 437 < 0.001 3.8
5-MST 437 < 0.001 120.9
ecp 433 0.001 118.4

SID-000024
New (d-a5NN) 260 < 0.001 3.9
5-MST 260 < 0.001 147.8
ecp 261 0.001 133.1

2.5.2 Neuropixels data

Neuropixels probes are new technology in neuroscience that can record hundreds of sites in the brain simultaneously

Jun et al. (2017); Stringer et al. (2019). Here, we analyze a dataset that records the spiking activities of the neurons

in the brain of a mouse while it is awake in darkness during spontaneous behavior. The dataset is publicly avail-

able at: https://figshare.com/articles/dataset/Eight-probe_Neuropixels_recordings_

during_spontaneous_behaviors/7739750. This dataset contains simultaneous recordings from nine brain
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Figure 2.10: Heatmap of pairwise distances of the observations in the sequence (SID-000005).
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Figure 2.11: Heatmap of pairwise distances of the observations in the sequence (SID-000024).

regions, with each region having hundreds of recording sequences. This dataset was analyzed in Chen et al. (2019), and

we follow the same preprocessing procedure there. The lengths of all the sequences are the same n = 39, 053, and

the dimensions are the numbers of recordings which vary from d = 42 to d = 334. We apply the two graph-based

methods to all the nine sueqences. The results are presented in Table 2.8. The ecp method is not applicable to this

dataset because the memory space is not enough under the same environment as in Table 2.2.

We see that the new method on the directed approximate 5-NN graph is on average ten times faster than the method

in Chu and Chen (2019) on 5-MST. Such improvement can be very imperative especially when analyzing large datasets.
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Table 2.8: Results of the estimated change-point locations (τ̂ ), p-values, and the overall runtimes (in minutes). For the
two graph-based methods, the analytical p-values are reported.

Region Methods τ̂ p-value time

Caudate putamen
(d = 176)

New (d-a5NN) 35,148 < 0.001 7.7
5-MST 35,056 < 0.001 96.1

Frontal motor
(d = 78)

New (d-a5NN) 31,081 < 0.001 6.0
5-MST 32,242 < 0.001 77.8

Hippocampus
(d = 265)

New (d-a5NN) 4,109 < 0.001 20.7
5-MST 4,382 < 0.001 159.1

Lateral septum
(d = 122)

New (d-a5NN) 29,616 < 0.001 11.4
5-MST 29,636 < 0.001 89.3

Midbrain
(d = 127)

New (d-a5NN) 20,580 < 0.001 13.9
5-MST 20,590 < 0.001 105.6

Superior colliculus
(d = 42)

New (d-a5NN) 23,539 < 0.001 4.0
5-MST 31,328 < 0.001 65.4

Somatomotor
(d = 91)

New (d-a5NN) 30,316 < 0.001 7.6
5-MST 30,312 < 0.001 81.9

Thalamus
(d = 227)

New (d-a5NN) 28,613 < 0.001 21.7
5-MST 28,608 < 0.001 146.1

V1
(d = 334)

New (d-a5NN) 30,226 < 0.001 17.5
5-MST 30,338 < 0.001 173.8

2.6 Conclusion

As we enter the era of big data, the importance of the scalibility of statistical methods or data analysis teachniques

cannot be overemphasized. Nowadays we are collecting data with exploding sizes (either the dimensionality gets higher

or the sequence of observations gets longer). To address this problem, we propose a new nonparametric framework

for change-point analysis using the information of approximate k-NN graphs. The time complexity of performing our

proposed test is O
(
dn(log n+ k log d) + nk2

)
, and our method is so far the fastest change-point detection method

available with a proper control on the false discovery rate.

In constructing the test statistic, we take into account a pattern caused by the curse of dimensionality. As a result,

the new test can detect various types of changes (such as change in mean and/or variance, and change in the covariance

structure) in long sequences of moderate- to high- dimensional data. Moreover, our method does not impose any

distributional assumption on the data, making it desirable in many real applications where the distribution could be

heavy-tailed and/or skewed, the dimension of the data could be much higher than the number of observations, and the

change could be global or in a sparse/dense subset of the coordinates.

25



We apply our method to two large real datasets, the fMRI images and the Neuropixels recordings, with the former

having a very large dimension and the latter a very large sample size. Both examples show that our new method

improves the computational efficiency upon the existing methods by a significant amount, while its performance remains

as reliable as other state-of-the-art methods.
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Chapter 3

Graph-based Change-point Detection for

Locally Dependent Data

3.1 Introduction

Change-point analysis is regaining attention as we enter the big data era. Massive amount of data are collected in many

fields for studying complex phenomena over time and/or space. Such data often involve sequences of high-dimensional

or non-Euclidean measurements that cannot be analyzed through traditional approaches. Nowadays it is common

that the observation may appear in various types of forms, such as image or network. For example, network data

have become increasingly popular as information about e-mail, phone call, and on-line chat records can easily be

retrieved. Those information can be used to construct a network of social interactions among individuals (Kossinets

and Watts, 2006; Eagle et al., 2009). Image data are also widely collected in many application areas. For instance, in

neuroscience, fMRI data are collected for studying brain activities (Kay et al., 2008). Insight on such data often come

from segmentation, which divides the sequence into homogeneous temporal or spatial segments. In these data, it is

common that there are local dependency along the sequence. For example, social networks and relationships among

people lasting over a certain time interval often exhibit serial correlations.

Most change-point analysis assume that observations in the sequences are independet (Zhang et al., 2010; Siegmund

et al., 2011). In the field of time series data analysis, most work assume the data to follow a certain parametric model,

such as the ARCH and GARCH models are widely used for studying univariate time series data (Bollerslev, 1987,

1988; Akgiray, 1989). For multivariate time series data, there are many generalizations of the original one-dimensional

ARCH, GARCH models (Bauwens et al., 2006; Aue et al., 2009). These models are useful for detecting specific types
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of changes when the dimension of the data is low. For high-dimensional data, tests based on those parametirc models

may have low power or even could not be applied unless strong assumptions are made on the data. Moreover, such

parametric models may not work well for detecting more general types of changes, in which case one could refer to

non-parametirc methods for change-point detection.

Recently, Chen (2019a) proposed a universal non-parametric framework for dealing with locally dependent data.

This framework builds upon an earlier work by Chen and Zhang (2015), in which the authors developed a nonparametric

framework for change-point detection for generic data types under the assumption that the observations are independent.

This framework is also known as graph-based change-point detection because it utilizes the information on a similarity

graph G constructed on observations. When there is local dependence in the data, the method in Chen and Zhang (2015)

could result in higher false discovery rates than pre-specified levels. To address this problem, Chen (2019a) proposed to

use a new way of permutation - circular block permutation with a random starting point. This new way of permutation

retains the local structure and could control type I error correctly when the sequence is locally dependent. The method

in Chen (2019a) also retains the same level of power when the observations in the sequence are independent. The author

provided a data-driven way to select the blocksize L in circular block permutation. In addition, the author provided

analytic formula for controlling type I error, making the approach easy to be applied to large data sets.

In Chen (2019a), the author used the original edge-count two-sample test as the underlying test statistic for change-

point detection. It was shown in Chen and Friedman (2017), and Chen et al. (2018) that the edge-count test could be

problematic under some common scenarios for high-dimensional data. The issue of the edge-count two-sample test was

further studied under the change-point setting in Chu and Chen (2019). In particular, there are two drawbacks of the

original edge-count test. First, when the change-point is away from the middle of the sequence, the original edge-count

test could have very low power. Second, when the change is not only in mean, the original edge-count test would lead

to a biased estimation of change-points. To deal with these problems, Chu and Chen (2019) studied three new scan

statistics, the weighted/generalized/max-type edge-count scan statistics, to improve upon the original one. In Chu and

Chen (2019), the observations are assumed to be independent, which is insufficient for many applications. However, due

the the natural of the circular block permutation (CBP), integrating the circular block permutation framework with the

better edge-count test statistics is not straightforward. In Chu and Chen (2019), the generalized edge-count scan statistic

was decomposed into two asymptotically independent components: S(t) = Z2
w0(t) + Z2

diff(t). In addition, they also

showed that {Zw0([nu]) : 0 < u < 1} and {Zdiff([nu]) : 0 < u < 1} converge in finite dimensional distributions to

two independent Gaussian processes, which made possible the analytic approximation to the p-value of the generalized

edge-count test. However, the decomposition in Chu and Chen (2019) no longer holds under CBP, making the follow-up

theoretical analysis extremely different.
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3.1.1 Our contribution

In this work, we work out a new decomposition for the generalized edge-count scan statistic under CBP. The main

result is stated in Theorem 4 below, where RG,1(t) and RG,2(t) are edge-counts obtained from the similarity graph G,

and ECBP(·) and VarCBP(·) are expectation and variance taken under circular block permutation, which are formally

defined in Section 3.2.

Theorem 4. Let SCBP(t) be the generalized edge-count test statistic under CBP, then

SCBP(t) = Z2
w,CBP(t) + Z2

diff,CBP(t)

where

Zw,CBP(t) =
Rw(t)− ECBP(Rw(t))√

VarCBP(Rw(t))
with Rw(t) = q(t)RG,1(t) + p(t)RG,2(t)

Zdiff,CBP(t) =
Rdiff(t)− ECBP(Rdiff(t))√

VarCBP(Rdiff(t))
with Rdiff(t) = RG,1(t)−RG,2(t)

with p(t) = 1− q(t), and q(t) = cG,L(2t− n) + 1
2 is the weight function whose slope cG,L is given by

cG,L =

1
2L

(
2c

(sub)
5 |G|

m2(m−1) −
1

m(m−1)(m−2) (c6 + 2c7 + 2c9)

)
−4
m2 |G|2 + 1

m(m−1)

(
2(c2 + c3 + c5) + 3c6 + 4(c4 + c9)

)
+ 1

m(m−1)(m−2)

(
(7m− 8)c7 + (m− 8)c8

)
where L is the block size of circular block permutation, m = n/L, and c1, · · · , c9, c(sub)5 are defined in Definition 1 in

Section 3.3.1.

We further show that Zw,CBP(t) and Zdiff,CBP(t) are asymptotically independent under mild conditions of the graph. The

details are stated in Theorem 7 in Section 3.3.3. Based on the above results, we could derive an analytic formula to

approximate the p-value of the generalized edge-count test under CBP, facilitating fast application of the test. We could

also define a max-type edge-count test statistic under CBP, based on Zw,CBP(t) and Zdiff,CBP(t):

MCBP(t) = max(Zw,CBP(t), |Zdiff,CBP(t)|).

The scan statistics

max
n0≤t≤n1

SCBP(t), max
n0≤t≤n1

MCBP(t) (n0, n1 pre-specified)

are used to assess the homogeneity of a locally dependent sequence and estimate the location of the change-point if

the sequence is deemed to be not homogeneous. They have similar performance while the latter has a more accurate
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p-value approximation (details seen in Section 3.5).

The rest of the chapter is organized as follows. In Section 3.2, we define notations and introduce the circular block

permutation (CBP) framework. In Section 3.3, we discuss in detail the generalized edge-count scan statistic under CBP.

Section 3.4 includes other useful edge-count scan statistics under this new framework. We then study the analytical

p-value approximations for those scan statistics in Section 3.5. Section 3.6 uncovers the performances, including type I

error control and power comparison, of those new tests with simulation studies. The methods are illustrated in analyzing

the NYC taxi data in Section 3.7, and we conclude with discussion in Section 3.8.

3.2 Notations and the CBP framework

Graph-based change-point detection was first proposed in Chen and Zhang (2015). It constructs an undirected similarity

graph, such as minimum spanning tree (MST), among obsevations and uses the edge count as test statisitc to detect

change-points. The graph-based framework utilizes permutation as the null distribution of test statistic. After the

original edge-count scan statistic was studied in Chen and Zhang (2015), Chu and Chen (2019) proposed three new

scan statistics: weighted/generalized/max-type edge-count scan statistic to imporve on the original edge-count scan

statistic. We breifly review the four edge-count scan statistics in this section.

Let the sequence of observations be {yi : i = 1, · · · , n}. We use e = (i, j) ∈ G to denote the edge on a similarity

graph G connecting observations yi and yj . (Note that the notation G was used to represent a directed approximate

k-NN graph in Chapter 2, but here we use G to denote an undirected similarity graph.) Also, we use 1A to denote the

indicator of event A. Then for every candidate t of the ture change-point τ , we define RG,0(t), RG,1(t), and RG,2(t):

RG,0(t) =
∑

(i,j)∈G

(
1{i≤t,j>t} + 1{i>t,j≤t}

)
, RG,1(t) =

∑
(i,j)∈G

1{i≤t,j≤t}, RG,2(t) =
∑

(i,j)∈G

1{i>t,j>t}.

Here, RG,0(t) is the number of between-group edges, which connects one observation indexed before t and the

other after t. On the contrary, RG,1(t) and RG,2(t) are the numbers of within-group edges, which are similar to the

edge-count quantities defined in Chapter 2 but here on undirected graphs. The former counts the edges that connect

both observations before t and the latter counts the edges that connect both observations after t. In the following, we

use EP(·) and VarP(·) to denote the expectation and variance, respectively, under the permutation null distribution.

• The original edge-count scan statistic (Chen and Zhang, 2015): max
n0≤t≤n1

Z0(t)

Z0(t) = −RG,0(t)− EP(RG,0(t))√
VarP(RG,0(t))

.
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• The weighted edge-count scan statistic (Chu and Chen, 2019): max
n0≤t≤n1

Zw0(t)

Zw0(t) =
Rw0(t)− EP(Rw0(t))√

VarP(Rw0(t))
with Rw0(t) =

n− t− 1

n− 2
RG,1(t) +

t− 1

n− 2
RG,2(t).

• The generalized edge-count scan statistic (Chu and Chen, 2019): max
n0≤t≤n1

S(t)

S(t) =
(
RG,1(t)− µ1(t), RG,2(t)− µ2(t)

)
Σ−1

R,P(t)

(
RG,1(t)− µ1(t)

RG,2(t)− µ2(t)

)

where µ1(t), µ2(t) are the expectations of RG,1(t) and RG,2(t), and ΣR,P(t) is the covariance matrix of(
RG,1(t), RG,2(t)

)
under permutation. Equivalently, S(t) = Z2

w0(t) + Z2
diff(t), where

Zdiff(t) =
Rdiff(t)− EP(Rdiff(t))√

VarP(Rdiff(t))
with Rdiff(t) = RG,1(t)−RG,2(t).

In addition, Zw0(t) and Zdiff(t) are asymptotically indpendent.

• The max-type edge-count scan statistic (Chu and Chen, 2019): max
n0≤t≤n1

M(t)

M(t) = max(Zw0(t), |Zdiff(t)|)

For each of the above four scan statistics, with n0 and n1 pre-specified, the null hypothesis is rejected if the scan

statistic is greater than a threshold based on a pre-specified significance level.

3.2.1 Circular block permutation

When the sequence of observations are autocorrelated, using the edge-count scan statistics under permutation null

could lead to a higher false discovery rate (Chen, 2019a). One reason is that doing permutation could break the locally

dependent structure among observations. Therefore, Chen (2019a) proposes to use circular block permutation with

a random starting point to generate a pool of sequences that approximate the sample space from which the original

sequence under the null hypothesis of no change-point is drawn. In this new framework, observations are assigned into

blocks with block size L, and only those blocks are permuted. We use the same recipe in Chen (2019a):

1. Check if the length of the sequence n is a multiple of L. If not, augment the sequence by x pseudo observations

so that the length of the augmented sequence is divisible by L. (i.e., x = L(dn/Le)− n, with dn/Le being the

smallest integer no smaller than n/L.) Those pseudo observations are isolated points on the graph, forming no

edge with any other observation.
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2. A starting point is randomly selected from the (n+ x) observations. We use k0 to denote the index number of

the selected observation. If k0 > 1, then the first k0 − 1 observations are moved to the end of the sequence:

{yk0 , · · · ,yn,y1, · · · ,yk0−1}.

3. Divide the new sequence into (n+ x)/L non-overlapping blocks of size L, starting from the first observation

yk0 , and only the (n+ x)/L blocks are randomly permuted. Then the outcome is obtained after the permutation.

For simplicity, we use n to denote the length of the augmented seqeunce (n + x) in the following, and use circular

block permutation or CBP to denote the above permutation procedures. We use PCBP(·), ECBP(·), and VarCBP(·) to

denote the probability, expectation and variance, respectively, under the circular block permutation null distribution.

3.2.2 Edge-count scan statistics under CBP

The following are the edge-count scan statistics (original/weighted/generalized) under the circular block permutation

null distribution:

• The original edge-count scan statistic under CBP: max
n0≤t≤n1

Z0,CBP(t)

Z0,CBP(t) = −RG,0(t)− ECBP(RG,0(t))√
VarCBP(RG,0(t))

.

• The weighted edge-count scan statistic under CBP: max
n0≤t≤n1

Zw0,CBP(t)

Zw0,CBP(t) =
Rw0(t)− ECBP(Rw0(t))√

VarCBP(Rw0(t))
.

• The generalized edge-count scan statistic under CBP: max
n0≤t≤n1

SCBP(t)

SCBP(t) =

(
RG,1(t)− ECBP(RG,1(t))

RG,2(t)− ECBP(RG,2(t))

)T
Σ−1

R,CBP(t)

(
RG,1(t)− ECBP(RG,1(t))

RG,2(t)− ECBP(RG,2(t))

)
(3.1)

where ΣR,CBP(t) is the covariance matrix of
(
RG,1(t), RG,2(t)

)
under circular block permutation, and

Zdiff,CBP(t) =
Rdiff(t)− ECBP(Rdiff(t))√

VarCBP(Rdiff(t))
.

However, under CBP with L > 1, SCBP(t) 6= Z2
w0,CBP(t) + Z2

diff,CBP(t). In addition, Zw0,CBP(t) and Zdiff,CBP(t)

are not asymptotically indpendent. (This can be easily shown using the approach in Appendix C.1 of Chu and

Chen (2019) with the covariance matrix of
(
RG,1(t), RG,2(t)

)
being replaced by the results in Theorem 6.)
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For each of the above scan statistics, with n0 and n1 pre-specified, the null hypothesis is rejected if the scan statistic

is greater than a threshold based on a pre-specified significance level.

The analytic expressions for ECBP(RG,0(t)) and VarCBP(RG,0(t)) for any pre-specified block size L are derived in Chen

(2019a). It has been shown that under CBP, the original edge-count scan statistic has a better control of type I error

when the observations are autocorrelated, while maintaining substaintial power when the observations are independent,

compared to itself under the permutation null. In the next section, we discuss the other three edge-count scan statistics

under circular block permutation.

3.3 Generalized edge-count test under CBP

In this section, we study the generalized edge-count scan statistic under the CBP framework as define in (3.1). In

particular, Section 3.3.1 provides analytic expressions for the key components in SCBP(t) to efficiently compute the

test statisitc. Note that SCBP(t) can no longer be decomposed into Z2
w0,CBP(t) + Z2

diff,CBP(t). We work out a new

decomposition of SCBP(t) in Section 3.3.2, which is essential in deriving the analytic formulas for type I error control

of the scan statistic maxt SCBP(t).

3.3.1 Analytic expressions for key quantities in SCBP(t)

To compute SCBP(t) efficiently, we need analytic formulas for ECBP(RG,1(t)),ECBP(RG,2(t)), and ΣR,CBP(t), where

ΣR,CBP(t) =

 VarCBP(RG,1(t)) CovCBP(RG,1(t), RG,2(t))

CovCBP(RG,1(t), RG,2(t)) VarCBP(RG,2(t))

 .

In other words, we need analytic expressions for the following five quantities:

ECBP(RG,1(t)),ECBP(RG,2(t)),VarCBP(RG,1(t)),VarCBP(RG,2(t)),CovCBP(RG,1(t), RG,2(t)).

First, we discuss how to derive the analytic expressions for ECBP(RG,1(t)) and ECBP(RG,2(t)). Let πCBP(i) be the

index of observation yi after circular block permutation. That is, the original index of observation yi is i, and after

circular block permutation, new index number πCBP(i) ∈ {1, · · · , n} is assigned to observation yi. Also, we define

gπCBP(i)(t) = 1{πCBP(i)>t}, the indicator that the index number of yi after circular block permutation is greater than t.

Further, we use e = (i, j) to denote the edge connecting observations yi and yj , and let δij = min(|i− j|, n− |i− j|)

be the index difference between yi and yj . In particular, for any given edge e = (i, j) ∈ G, when the block size is L,
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we are interested in the following L events: {δij = 1}, · · · , {δij = L− 1}, and {δij ≥ L}.

In the following, we use [x] to denote the largest integer no greater than x, use (x)+ to denote max(0, x), and use

|A| to denote the number of elements in set A.

Theorem 5. Let m = n/L. For each t ∈ {1, · · · , n}, where t can be written as t = aL + b with a = [t/L] and

b = t− aL, then

ECBP(RG,1(t)) =

L∑
h=1

p1(h, a, b)|Eh|,

ECBP(RG,2(t)) =

L∑
h=1

p2(h, a, b)|Eh|,

with

p1(h, a, b) = (min(b, L− h)− (b− h)+)
a(m+ a− 1)

n(m− 1)
+ (b− h)+

a+ 1

n

+(h− b)+
a(a− 1)

n(m− 1)
+ (L− b− h)+

a

n
+ (b+ h− L)+

a(a+ 1)

n(m− 1)
,

p2(h, a, b) = (min(b, L− h)− (b− h)+)
(m− a− 1)(2m− a− 2)

n(m− 1)
+ (b− h)+

m− a− 1

n

+(h− b)+
(m− a)(m− a− 1)

n(m− 1)
+ (L− b− h)+

m− a
n

+(b+ h− L)+
(m− a− 1)(m− a− 2)

n(m− 1)
,

Eh = {(i, j) ∈ G : δij = h}, h = 1, · · · , L− 1,

EL = {(i, j) ∈ G : δij ≥ L}.

Similar to how ECBP(RG,0(t)) is derived in Chen (2019a), we partition the edges in G into L categories according to

the index difference of the two observations connected by the edge. For each of the L categories, Chen (2019a) studies

the probability of having the two nodes in an edge being separated by an index t after CBP. To derive ECBP(RG,1(t))

and ECBP(RG,2(t)), we compute the probability that after CBP, both nodes in an edge are placed before t, denoted as

p1(h, a, b), for the former, and the probability that both nodes in an edge are placed after t, denoted as p2(h, a, b), for

the latter. The proof of Theroem 5 is provided in Appendix B.1.

Next we derive the analytic expressions for ΣR,CBP(t). Following Chen (2019a), we only derive ΣR,CBP(t)

analytically for those t’s that are multiples of L. For other t’s that are not divisible by L, we use interpolation (plug-in

estimators) to fill in the values. We later compare the variances approximated by the plug-in estimators with those

obtained from circular block permutation directly. When t is divisible by L, we further simplify the formulas for the

exepctations, ECBP(RG,1(t)) and ECBP(RG,2(t)), as stated in Theorem 4 in the following lemma.
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Lemma 1. Let c(sub)1 = 1
L

∑
(i,j)∈G

(L − δij)+, and c
(sub)
5 = 1

L

∑
(i,j)∈G

min(δij , L), then for each t = aL, a ∈

{1, · · · ,m− 1}, where m = n/L, we have

ECBP(RG,1(t)) = c
(sub)
1

a

m
+ c

(sub)
5

a(a− 1)

m(m− 1)
,

ECBP(RG,2(t)) = c
(sub)
1

m− a
m

+ c
(sub)
5

(m− a)(m− a− 1)

m(m− 1)
.

Note that c(sub)1 + c
(sub)
5 = |G|.

Deriving the variances and covariance of RG,1(t) and RG,2(t) under circular block permutation means that for

each pair of edges, we have to compute the probability that after CBP, all the nodes involved are placed before or

after an index t. In an undirected graph, each pair of edges, denoted by (i, j), (u, v) ∈ G, can be classified into three

different configurations as illustrated in Figure 3.1: (a) (i, j) and (u, v) represent the same edge, (b) (i, j) and (u, v)

share only one node, denoted as (i, j), (i, u) ∈ G, and (c) (i, j) and (u, v) are separated edges in the graph, denoted as

(i, j), (u, v) ∈ G. The notation (i, j), (u, v) ∈ G means the first edge connecting node yi and node yj , and the second

edge connecting node yu and node yv. In addition, under circular block permutation, we have to figure out how the

nodes of a pair of edges are blocked. Therefore, we have to consider all the nine possible ways to do the blocking, as

illustrated in Figure 3.2. In constrast to Chen (2019a), deriving VarCBP(RG,0(t)) requires only the probability that the

nodes connecting both edges are separated by t under CBP. This probability is positive only when any two nodes of an

edge are assigned into different blocks when t is a multiple of L, so there are only three scenarios (scenario 5, 6, 9 in

Figure 3.2) to consider in Chen (2019a).

Figure 3.1: Three possible configurations for (i, j), (u, v) ∈ G

Figure 3.2 plots the nine scenarios that the four nodes of a pair of edges (i, j), (u, v) ∈ G could be blocked into.

For simplicity, we plot all the four nodes every time, but the nodes could degenerate into one as long as they are in the

same block and not the end points of the same edge. For example, in scenario (1), it could only have two distinct nodes

with i = u, j = v.
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Figure 3.2: Nine scenarios the nodes could be blocked into.

(1) One block: All four nodes are in the same block.

(2) Two blocks: Node u and v are in the same block; node i and j are not.

(3) Two blocks: Node i and j are in the same block; node u and v are not.

(4) Two blocks: Node (i, j) are in one block; node (u, v) are in the other.

(5) Two blocks: Neither (i, j) nor (u, v) is in the same block.

(6) Three blocks: Neither (i, j) nor (u, v) is in the same block.

(7) Three blocks: Node i and j are in the same block; node u and v are not.

(8) Three blocks: Node u and v are in the same block; node i and j are not.

(9) Four blocks: All four nodes are in different blocks.

For circular block permutation with block size L, there are L different ways to block the observations. Also, there

are |G|2 pairs of edges in a similarity graph G. Among the L ways to do the blocking, we compute the probability of

having each of the nine scenarios for all pairs of edges, and the sum of probabilities of having scenario i is denoted by

ci, i = 1, · · · , 9. The analytic expressions for c1, · · · , c9 are given in Definition 1.
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Definition 1. We here define c1, · · · , c9, representing the sums of probabilities that each of the |G|2 pairs of edges

being blocked into scenario i, i = 1, · · · , 9.

c1 =
1

L

L∑
h=1

(L− h)|Eh|

+
1

L

∑
(i,j),(i,u)∈G,j 6=u

I(h0(i, j, u) = 3)(L−max(δij , δiu, δju))

+
1

L

∑
(i,j),(u,v)∈G,i6=j 6=u6=v

I(h1(i, j, u, v) = 6)(L− δmax(i, j, u, v))

c2 =
1

L

∑
(i,j),(i,u)∈G,j 6=u

(I(h0(i, j, u) ≤ 2, δiu < L)(L− δiu)

+I(h0(i, j, u) = 3,max(δij , δiu, δju) 6= δiu)(L− δiu))

+
1

L

∑
(i,j),(u,v)∈G,i6=j 6=u6=v

I(h1(i, j, u, v) = 3)(I(δuv, δiu, δiv) + I(δuv, δju, δjv))(L− δmin,2(i, j, u, v))

+I(h1(i, j, u, v) = 4)((I(δij , δiu ≥ L) + I(δij , δiv ≥ L))(L− δmax(i, j, u, v) + min(δiu, δiv))

+(I(δij , δju ≥ L) + I(δij , δjv ≥ L))(L− δmax(i, j, u, v) + min(δju, δjv))

+(I(δiu, δiv ≥ L) + I(δju, δjv ≥ L))(L− δmax(i, j, u, v) + δij))

+I(h1(i, j, u, v) = 5)(I(δij ≥ L)(2L− δij − δuv)

+I(δiu ≥ L)(I(δij = δiv + δjv)(L− δuv) + I(δiv = δij + δjv)(L− δju))

+I(δiv ≥ L)(I(δij = δiu + δju)(L− δuv) + I(δiu = δij + δju)(L− δjv))

+I(δju ≥ L)(I(δij = δiv + δjv)(L− δuv) + I(δjv = δij + δiv)(L− δiu))

+I(δjv ≥ L)(I(δij = δiu + δju)(L− δuv) + I(δju = δij + δiu)(L− δiv)))

+I(h1(i, j, u, v) = 6)(I(δmax(i, j, u, v) = δij)(δij − δuv)

+I(δmax(i, j, u, v) = δiu)(I(δij = δiv + δjv)δiv + I(δiv = δij + δjv)δij)

+I(δmax(i, j, u, v) = δiv)(I(δij = δiu + δju)δiu + I(δiu = δij + δju)δij)

+I(δmax(i, j, u, v) = δju)(I(δij = δiv + δjv)δjv + I(δjv = δij + δiv)δij)

+I(δmax(i, j, u, v) = δjv)(I(δij = δiu + δju)δju + I(δju = δij + δiu)δij))

c3 =
1

L

∑
(i,j),(i,u)∈G,j 6=u

I(h0(i, j, u) ≤ 2, δij < L)(L− δij)

+I(h0(i, j, u) = 3,max(δij , δiu, δju) 6= δij)(L− δij))

+
1

L

∑
(i,j),(u,v)∈G,i6=j 6=u6=v

I(h1(i, j, u, v) = 3)(I(δij , δiu, δju) + I(δij , δiv, δjv))(L− δmin,2(i, j, u, v))

+I(h1(i, j, u, v) = 4)((I(δiu, δuv ≥ L) + I(δiv, δuv ≥ L))(L− δmax(i, j, u, v) + min(δiu, δiv))
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+(I(δju, δuv ≥ L) + I(δjv, δuv ≥ L))(L− δmax(i, j, u, v) + min(δju, δjv))

+(I(δiu, δju ≥ L) + I(δiv, δjv ≥ L))(L− δmax(i, j, u, v) + δuv))

+I(h1(i, j, u, v) = 5)(I(δuv ≥ L)(2L− δij − δuv)

+I(δiu ≥ L)(I(δij = δiv + δjv)(L− δij) + I(δiv = δij + δjv)(L− δiv))

+I(δiv ≥ L)(I(δij = δiu + δju)(L− δij) + I(δiu = δij + δju)(L− δiu))

+I(δju ≥ L)(I(δij = δiv + δjv)(L− δij) + I(δjv = δij + δiv)(L− δjv))

+I(δjv ≥ L)(I(δij = δiu + δju)(L− δij) + I(δju = δij + δiu)(L− δju)))

+I(h1(i, j, u, v) = 6)(I(δmax(i, j, u, v) = δuv)(δuv − δij)

+I(δmax(i, j, u, v) = δiu)(I(δij = δiv + δjv)δju + I(δiv = δij + δjv)δuv)

+I(δmax(i, j, u, v) = δiv)(I(δij = δiu + δju)δjv + I(δiu = δij + δju)δuv)

+I(δmax(i, j, u, v) = δju)(I(δij = δiv + δjv)δiu + I(δjv = δij + δiv)δuv)

+I(δmax(i, j, u, v) = δjv)(I(δij = δiu + δju)δiv + I(δju = δij + δiu)δuv))

c4 =
1

L

∑
(i,j),(u,v)∈G,i6=j 6=u6=v

I(h1(i, j, u, v) = 2)I(δij , δuv < L)(L− δij − δuv + x(ij, uv))

+I(h1(i, j, u, v) = 3)I(δij , δuv < L)(2L− δmax(i, j, u, v))+

+I(h1(i, j, u, v) = 4)((I(δiu, δiv ≥ L) + I(δju, δjv ≥ L))(L− δij)

+(I(δiu, δju ≥ L) + I(δiv, δjv ≥ L))(L− δuv))

+I(h1(i, j, u, v) ≥ 5)(I(δmax(i, j, u, v) = δiu)I(δiv = δij + δjv)δjv

+I(δmax(i, j, u, v) = δiv)I(δiu = δij + δju)δju

+I(δmax(i, j, u, v) = δju)I(δjv = δij + δiv)δiv

+I(δmax(i, j, u, v) = δjv)I(δju = δij + δiu)δiu)

c5 =
1

L

L∑
h=1

h|Eh|

+
1

L

∑
(i,j),(i,u)∈G,j 6=u

(I(h0(i, j, u) < 3, δju < L)(L− δju)

+I(h0(i, j, u) = 3)I(max(δij , δiu, δju) 6= δju) min(δij , δiu))

+
1

L

∑
(i,j),(u,v)∈G,i6=j 6=u6=v

I(h1(i, j, u, v) = 2)(I(δiu < L, δjv < L)(L− δiu − δjv + x(iu, jv))

+I(δiv < L, δju < L)(L− δiv − δju + x(iv, ju)))

+I(h1(i, j, u, v) = 3)(I(δmin,2(i, j, u, v) 6= δ4(i, j, u, v))(1− I(δij , δuv < L))(2L− δmin,3(i, j, u, v))+)

+I(h1(i, j, u, v) = 4)(I(δij ≥ L)(L+ δuv −max(δiu, δiv, δju, δjv))
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+I(δuv ≥ L)(L+ δij −max(δiu, δiv, δju, δjv)))

+I(h1(i, j, u, v) ≥ 5)(I(δmax(i, j, u, v) = δij)δuv + I(δmax(i, j, u, v) = δuv)δij

+I(δmax(i, j, u, v) = δiu)I(δij = δiv + δvj)δjv

+I(δmax(i, j, u, v) = δiv)I(δij = δiu + δuj)δju

+I(δmax(i, j, u, v) = δju)I(δji = δjv + δvi)δiv

+I(δmax(i, j, u, v) = δjv)I(δji = δju + δui)δiu)

c6 =
1

L

∑
(i,j),(i,u)∈G,i 6=u

(I(h0(i, j, u) = 0)L+ I(h0(i, j, u) = 1) min(δij , δiu, δju)

+I(h0(i, j, u) = 2)(max(δij , δiu, δju)− L))

+
1

L

∑
(i,j),(u,v)∈G,i6=j 6=u6=v

I(h1(i, j, u, v) = 1)I(δij ≥ L, δuv ≥ L)(L− δmin(i, j, u, v))

+I(h1(i, j, u, v) = 2)((L− δiu)+ + (L− δiv)+ + (L− δju)+ + (L− δjv)+

+I(δiu < L, δjv < L)(2δiu + 2δjv − 2L− 2x(iu, jv))

+I(δiv < L, δju < L)(2δiv + 2δju − 2L− 2x(iv, ju)))

+I(h1(i, j, u, v) = 3, δmin,2(i, j, u, v) 6= δ4(i, j, u, v))(I(δij < L, δuv < L)(L−min(δiu, δiv, δju, δjv))

+I(δij < L, δuv ≥ L)(δij − |δuv − 2L|) + I(δij ≥ L, δuv < L)(δuv − |δij − 2L|)

+I(δij ≥ L, δuv ≥ L)(δmin,3(i, j, u, v)− L− 2(δmin,3(i, j, u, v)− 2L)+))

+I(h1(i, j, u, v) = 3, δmin,2(i, j, u, v) = δ4(i, j, u, v)) min(δij , δuv)

+I(h1(i, j, u, v) = 4)((I(δij ≥ L) + I(δuv ≥ L))(max(δiu, δiv, δju, δjv)− L)

+(I(δiu, δiv ≥ L) + I(δju, δjv ≥ L))δuv + (I(δui, δuj ≥ L) + I(δvi, δvj ≥ L))δij)

+I(h1(i, j, u, v) = 5)(1− I(δij ≥ L)− I(δuv ≥ L))(δmax(i, j, u, v)− L)

c7 =
1

L

∑
(i,j),(u,v)∈G,i6=j 6=u6=v

I(h1(i, j, u, v) = 1, δij < L)(L− δij)

+I(h1(i, j, u, v) = 2, δij < L)(L− δij + I(δuv < L)(δuv − x(ij, uv) + δij − L))

+I(h1(i, j, u, v) = 3, δij < L)(I(δmin,2(i, j, u, v) 6= δ4(i, j, u, v))((L− δij)

+I(δuv < L, δmax(i, j, u, v) < 2L)(δmin,3(i, j, u, v)− 2L))

+I(δmin,2(i, j, u, v) = δ4(i, j, u, v))(δ4(i, j, u, v)− δij))

+I(h1(i, j, u, v) = 4)

(I(δmax(i, j, u, v) = δuv)(I(δiu ≥ L)δiv + I(δiv ≥ L)δiu + I(δju ≥ L)δjv + I(δjv ≥ L)δju)

+(I(δiu, δju ≥ L) + I(δiv, δjv ≥ L))(δmax(i, j, u, v)− δij − L))
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+I(h1(i, j, u, v) = 5, δuv ≥ L)(δuv − L)

c8 =
1

L

∑
(i,j),(u,v)∈G,i6=j 6=u6=v

I(h1(i, j, u, v) = 1, δuv < L)(L− δuv)

+I(h1(i, j, u, v) = 2, δuv < L)(L− δuv + I(δij < L)(δij − x(ij, uv) + δuv − L))

+I(h1(i, j, u, v) = 3, δuv < L)(I(δmin,2(i, j, u, v) 6= δ4(i, j, u, v))((L− δuv)

+I(δij < L, δmax(i, j, u, v) < 2L)(δmin,3(i, j, u, v)− 2L))

+I(δmin,2(i, j, u, v) = δ4(i, j, u, v))(δ4(i, j, u, v)− δuv))

+I(h1(i, j, u, v) = 4)

(I(δmax(i, j, u, v) = δij)(I(δiu ≥ L)δju + I(δiv ≥ L)δjv + I(δju ≥ L)δiu + I(δjv ≥ L)δiv)

+(I(δiu, δiv ≥ L) + I(δju, δjv ≥ L))(δmax(i, j, u, v)− δuv − L))

+I(h1(i, j, u, v) = 5, δij ≥ L)(δij − L)

c9 =
1

L

∑
(i,j),(u,v)∈G,i6=j 6=u6=v

I(h1(i, j, u, v) = 0)L+ I(h1(i, j, u, v) = 1)δmin(i, j, u, v)

+I(h1(i, j, u, v) = 2)((1− I(δij , δuv < L)− I(δiu, δjv < L)− I(δiv, δju < L))(δmin,2(i, j, u, v)− L)

+I(δij , δuv < L)x(ij, uv) + I(δiu, δjv < L)x(iu, jv) + I(δiv, δju < L)x(iv, ju))

+I(h1(i, j, u, v) = 3)(δmin,3(i, j, u, v)− 2L)+

with

Eh = {(i, j), (u, v) ∈ G : i = u, j = v, δij = h}

EL = {(i, j), (u, v) ∈ G : i = u, j = v, δij ≥ L}

h0(i, j, u) = I(δij < L) + I(δiu < L) + I(δju < L)

h1(i, j, u, v) = I(δij < L) + I(δiu < L) + I(δiv < L) + I(δju < L) + I(δjv < L) + I(δuv < L)

δmax(i, j, u, v) = max {δij , δiu, δiv, δju, δjv, δuv}

δr(i, j, u, v) = the rth largest value among {δij , δiu, δiv, δju, δjv, δuv}, r = 2, 3, 4, 5

δmin(i, j, u, v) = min {δij , δiu, δiv, δju, δjv, δuv}

δmin,2(i, j, u, v) = the sum of the two smallest values among {δij , δiu, δiv, δju, δjv, δuv}

δmin,3(i, j, u, v) = the sum of the three smallest values among {δij , δiu, δiv, δju, δjv, δuv}

s(i, j) = I(|i− j| < L) min(i, j) + I(n− |i− j| < L) max(i, j)

δij,uv = s(u, v)− s(i, j)
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bij,uv = δij,uv modL

x(ij, uv) = (min(δij , bij,uv + δuv)− bij,uv)+ + (min(δij , bij,uv + δuv − L))+

Note that c1 + · · ·+ c9 = |G|2. The definition for those c1, · · · , c9 are completed.

Combining Lemma 1 and Definition 1, the following theorem gives the analytic expressions for ΣR,CBP(t). The proof

of Theroem 6 is provided in Appendix B.2.

Theorem 6. Let d1 = c1, d2 = c2 + c3 + c4 + c5, d3 = c6 + c7 + c8, and d4 = c9, where c1, · · · , c9 are graph

coefficients as defined in Definition 1, for each t = aL, a ∈ {1, · · · ,m− 1}, where m = n/L, we have

VarCBP(RG,1(t)) = d1p1(a) + d2p2(a) + d3p3(a) + d4p4(a)− ECBP(RG,1(t))2

VarCBP(RG,2(t)) = d1p
∗
1(a) + d2p

∗
2(a) + d3p

∗
3(a) + d4p

∗
4(a)− ECBP(RG,2(t))2

CovCBP(RG,1(t), RG,2(t)) = c4p11(a) + c7p12(a) + c8p21(a) + c9p22(a)− ECBP(RG,1(t))ECBP(RG,2(t))

where ECBP(RG,1(t)) and ECBP(RG,2(t)) are from Lemma 1, and

p1(a) =
a

m
, p2(a) =

a(a− 1)

m(m− 1)
, p3(a) =

a(a− 1)(a− 2)

m(m− 1)(m− 2)
, p4(a) =

a(a− 1)(a− 2)(a− 3)

m(m− 1)(m− 2)(m− 3)
,

p∗1(a) =
(m− a)

m
, p∗2(a) =

(m− a)(m− a− 1)

m(m− 1)
, p∗3(a) =

(m− a)(m− a− 1)(m− a− 2)

m(m− 1)(m− 2)
,

p∗4(a) =
(m− a)(m− a− 1)(m− a− 2)(m− a− 3)

m(m− 1)(m− 2)(m− 3)
,

p11(a) =
a(m− a)

m(m− 1)
, p12(a) =

a(m− a)(m− a− 1)

m(m− a)(m− 2)
, p21(a) =

a(a− 1)(m− a)

m(m− a)(m− 2)
,

p22(a) =
a(a− 1)(m− a)(m− a− 1)

m(m− 1)(m− 2)(m− 3)
.

3.3.2 Decomposition of SCBP(t)

It was shown in Chu and Chen (2019) that the generalized edge-count test statistic, S(t), under permuation null

distribution can be decomposed as

S(t) = Z2
w0(t) + Z2

diff(t)

where Zw0(t) and Zdiff(t) are uncorrelated. However, this decomposition no longer holds under CBP. In other words,

when L > 1,

SCBP(t) 6= Z2
w0,CBP(t) + Z2

diff,CBP(t).
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Moreover, Zw0,CBP(t) and Zdiff,CBP(t) are not uncorrelated: CovCBP(Zw0,CBP(t), Zdiff,CBP(t)) 6= 0.

We work out a new decomposition of SCBP(t) as stated in Theorem 4. Under CBP, SCBP(t) can be decomposed into the

sum of squares of two asymptotcially independent quantities, Zw,CBP(t) and Zdiff,CBP(t), where the former is similar to

Zw0,CBP(t), but adopting a different weight function q(t) that depends on the similarity graph. The result is stated in

Lemma 2 below with its proof given in Appendix B.3. The new weight function q(t) is in fact the variance-minimizing

weight across all weight functions on RG,1(t) and RG,2(t).

Lemma 2. The weight function q(t) minimizing VarCBP(Rw(t)(t)) is linear in t and is given by

q(t) = cG,L(2t− n) +
1

2

where

cG,L =

1
2L

(
2c

(sub)
5 |G|

m2(m−1) −
1

m(m−1)(m−2) (c6 + 2c7 + 2c9)

)
−4
m2 |G|2 + 1

m(m−1)

(
2(c2 + c3 + c5) + 3c6 + 4(c4 + c9)

)
+ 1

m(m−1)(m−2)

(
(7m− 8)c7 + (m− 8)c8

)
with m = n/L, c(sub)5 as defined in Lemma 1, and c1, · · · , c9, as defined in Definition 1. In particular, when L = 1,

q(t) degenerates to q0(t) = n−t−1
n−2 .

3.3.3 Asymptotic properties of SCBP(t)

In this section, we derive the limiting distributions of {Zw,CBP([nu]) : 0 < u < 1}, and {Zdiff,CBP([nu]) : 0 < u < 1}

under circular block permutation with block size L.

We first introduce some more notations. For an edge e = (e−, e+), where e− < e+ are the indices of nodes connected

by the edge e, and let δ(e−, e+) be the index difference between two nodes e− and e+. We define the following

notations:

Ae,L,0 = {e∗ : min(δ(e∗−, e−), δ(e∗−, e+), δ(e∗+, e−), δ(e∗+, e+)) < L},

Ae,L,1 = Ae,L,0 ∪

(
∪{e′:e′∈Ge∗−∪Ge∗+ ,∀e∗∈Ae,L,0}Ae′,L,0

)
,

Ae,L,2 = Ae,L,1 ∪

(
∪{e′:e′∈Ge∗−∪Ge∗+ ,∀e∗∈Ae,L,1}Ae′,L,1

)

so that Ae,L,0 is the subgraph in G that connect to any node which is within L index difference from either node of
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edge e; and we say that Ae,L,1 ⊃ Ae,L,0 contains all edges that is first-degree related to the edges in Ae,L,0, and

Ae,L,2 ⊃ Ae,L,1 contains all edges that is first-degree related to the edges in Ae,L,1, or second-degree related to the

edges in Ae,L,0. Further, we define

Ai,L,0 = {e∗ : min(δ(e∗−, i), δ(e
∗
+, i)) < L},

Ai,L,1 = Ai,L,0 ∪

(
∪{e′:e′∈Ge∗−∪Ge∗+ ,∀e∗∈Ae,L,0}Ae′,L,0

)
,

Ai,L,2 = Ai,L,1 ∪

(
∪{e′:e′∈Ge∗−∪Ge∗+ ,∀e∗∈Ae,L,1}Ae′,L,1

)
.

so that Ai,L,0 is the subgraph in G that connect to any node which is within L index difference from node i; and we say

that Ai,L,1 ⊃ Ai,L,0 contains all edges that is first-degree related to the edges in Ai,L,0, and Ai,L,2 ⊃ Ai,L,1 contains

all edges that is first-degree related to the edges in Ai,L,1, or second-degree related to the edges in Ai,L,0.

Second, we introduce five conditions on the graph that ensure the convergence of the two basic processes: {Zw,CBP([nu]) :

0 < u < 1}, and {Zdiff,CBP([nu]) : 0 < u < 1}. In the following, we write an = O(bn) when an has the same order as

bn, and write an = o(bn) when an has order smaller than bn. Theorem 7 states the convergence of the two processes.

Condition 1.
∑

(i,j)∈G

I(δij < L) = o(|G|)

Condition 2.
∑

(i,j),(i,u)∈G

I(δij < L, δiu < L) = o(|G|)

Condition 3.
∑

(i,j),(i,u)∈G

1 = O(|G|β1), β1 ≥ 1

Condition 4.
∑

(i,j),(u,v)∈G

I(min{δiu, δiv, δju, δjv} < L) = O(|G|β2), 0 < β2 ≤ 2

Condition 5.
∑

(i,j),(u,v)∈G

I(max{δij , δuv, δiu, δiv, δju, δjv} < L) = o(|G|)

Theorem 7. When |G| = O(na), 1 ≤ a < 1.5,
∑
e∈G |Ae,L,1||Ae,L,2| = o(n|G|1/2),

∑n
i=1 |Ai,L,1||Ai,L,2| =

o(n3/2), and under Conditions 1-5, as n → ∞, {Zw,CBP([nu]) : 0 < u < 1} and {Zdiff,CBP([nu]) : 0 < u < 1}

converge in finite dimensional distributions to two independent Gaussian processes. which we denote as {Z∗w,CBP(u) :

0 < u < 1} and {Z∗diff,CBP(u) : 0 < u < 1}, respectively.

Let ρ∗w(u, v) = CovCBP(Z∗w,CBP(u), Z∗w,CBP(v)) and ρ∗diff(u, v) = CovCBP(Z∗diff,CBP(u), Z∗diff,CBP(v)) be the covariance

functions of the limiting Gaussian processes, {Z∗w,CBP(u) : 0 < u < 1} and {Z∗diff,CBP(u) : 0 < u < 1}.
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3.4 Other edge-count tests under CBP

Here, we discuss two more edge-count scan statistics that are derivatives (byporducts) of the generalized edge-count

scan statistic (3.1) under CBP. They are the modified weighted edge-count scan statistic, and the modified max-type

edge-count scan statistic.

3.4.1 The modified weighted edge-count scan statistic

This scan statistic transforms from the weighted edge-count scan statistic proposed in Chu and Chen (2019), which

uses a universal weight q0(t) = n−t−1
n−2 . Under CBP, the optiaml weight should depend the the block size L and the

similarity graph G, as shown in Lemma 2. Hence, the modifed weighted edge-count scan statistic adopts the weight

q(t) given by Theorem 4. Let

Zw,CBP(t) =
Rw(t)− ECBP(Rw(t))√

VarCBP(Rw(t))
with Rw(t) = q(t)RG,1(t) + p(t)RG,2(t),

then the null hypothesis of homogeneity is rejected if the scan statistic

max
n0≤t≤n1

Zw,CBP(t)

with n0 and n1 pre-specified, is larger than the critical value for a given significance level. The power comparison

between Zw,CBP(t) and Zw0,CBP(t) will be discussed in Section 3.6.2.

3.4.2 The modified max-type edge-count scan statistic

As it is Zw,CBP(t), rather than Zw0,CBP(t), together with Zdiff,CBP(t) that are the elementary components of SCBP(t), it is

obvious that M0
CBP(t) is not the best way to define the max-type edge-count scan statistic under CBP. Therefore, we

propose the modified max-type edge-count test statistic as

MCBP(t) = max(Zw,CBP(t), |Zdiff,CBP(t)|).

The null hypothesis of homogeneity is rejected if the scan statistic

max
n0≤t≤n1

MCBP(t)

with n0 and n1 pre-speicified, is larger than the critical value for a given significance level.
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Under CBP, the performance of the modified max-type edge-count test is similar to the generalized edge-count test.

Moreover, the former could achieve more accurate analytic p-value approximations. The type I error control for those

new edge-count tests are discussed in Section 3.5.

3.5 Analytical p-value approximations

Given the scan statistics, the next question is how large do they need to be to constitute sufficient evidence against the

null hypothesis of homogeneity. In other words, we are concerned with the tail probability of the scan statistics under

H0. For the generalized, the modified weighted, and the modified max-type edge-count tests, respectively, they are

PCBP

(
max

n0≤t≤n1

Zw,CBP(t) > b
)

(3.2)

PCBP

(
max

n0≤t≤n1

SCBP(t) > b
)

(3.3)

PCBP

(
max

n0≤t≤n1

MCBP(t) > b
)

(3.4)

Following the methods in Chu and Chen (2019), we derive asymptotic formulas to compute the three underlying

probabilities. The formulas use the results from Theorem 7, which says that the rescaled versions of Zw,CBP(t) and

Zdiff,CBP(t) converge in finite dimensional distributions to two independent Gaussion processes. Following similar

derivations in Chu and Chen (2019), we approximate (3.2)-(3.4) by equations (3.5)-(3.7):

PCBP

(
max

n0≤t≤n1

Zw,CBP(t) > b
)
≈ bφ(b)

∫ n1
n

n0
n

h∗w(x)ν(b
√

2h∗w(x)/n)dx (3.5)

PCBP

(
max

n0≤t≤n1

SCBP(t) > b
)
≈ be−b/2

2π

∫ 2π

0

∫ n1
n

n0
n

u∗(x, ω)ν(
√

2bu∗(x, ω)/n)dxdω (3.6)

PCBP

(
max

n0≤t≤n1

MCBP(t) > b
)

= 1−PCBP

(
max

n0≤t≤n1

Zw,CBP(t) < b
)
PCBP

(
max

n0≤t≤n1

|Zdiff,CBP(t)| < b
)

(3.7)

with

PCBP

(
max

n0≤t≤n1

Zw,CBP(t) < b
)
≈ 1− bφ(b)

∫ n1
n

n0
n

h∗w(x)ν(b
√

2h∗w(x)/n)dx

PCBP

(
max

n0≤t≤n1

|Zdiff,CBP(t)| < b
)
≈ 1− 2bφ(b)

∫ n1
n

n0
n

h∗diff(x)ν(b
√

2h∗diff(x)/n)dx

and the function ν(·) can be approximated by

ν(x) ≈ (2/x)(Φ(x/2)− 0.5)

(x/2)Φ(x/2) + φ(x/2)
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where Φ(·) and φ(·) denote the cumulative distribution function and the probability density function of the standard

normal distribution, respectively, and u∗(x, ω) = h∗w(x) sin2(ω) + h∗diff(x) cos2(ω), with h∗w(x) and h∗diff(x) defined

as below

h∗w(x) = lim
u↗x

∂ρ∗w(u, x)

∂u
≡ − lim

u↘x

∂ρ∗w(u, x)

∂u
,

h∗diff(x) = lim
u↗x

∂ρ∗diff(u, x)

∂u
≡ − lim

u↘x

∂ρ∗diff(u, x)

∂u
.

In practice, we use the finite-sample equivalent, hw(n, x) and hdiff(n, x), in place of h∗w(x) and h∗diff(x):

hw(n, x) = n lim
s↗nx

∂ρw(s, nx)

∂s
with ρw(s, t) := CovCBP(Zw,CBP(s), Zw,CBP(t)),

hdiff(n, x) = n lim
s↗nx

∂ρdiff(s, nx)

∂s
with ρdiff(s, t) := CovCBP(Zdiff,CBP(s), Zdiff,CBP(t)),

for any s, t ∈ Z, 0 < s ≤ t < n. Let Cw(nx) = hw(n, x)/n and Cdiff(nx) = hdiff(n, x)/n, then for t = aL, Cw(t)

and Cdiff(t) can be derived to be (see Appendix B.5 for the proof)1:

Cw(t) =

∑9
i=1 ciλi(a)

L
(∑9

i=1 ciVi(a) +Res(a)
)

Cdiff(t) =
4m(m− 1)c1 + 2m(m− 2)(2c2 + c5) +m(m− 4)c6 − 4m(c4 + 2c7 + c9)

2La(m− a)
(

(m− 1)(4c1 + 4c2 + 2c5 + c6)−
(
2(2c2 + c5) + 3c6 + 4(c4 + 2c7 + c9)

))
where

V1(a) =
(
aq(t)2 + (m− a)(1− q(t))2

)
/m

V2(a) =
(
q(t)2a(a− 1) + (1− q(t))2(m− a)(m− a− 1)

)
/
(
m(m− 1)

)
V3(a) = V2(a)

V4(a) = V2(a) +
(

2q(t)(1− q(t))a(m− a)
)
/
(
m(m− 1)

)
V5(a) = V2(a)

V6(a) =
(
q(t)2a(a− 1)(a− 2) + (1− q(t))2(m− a)(m− a− 1)(m− a− 2)

)
/
(
m(m− 1)(m− 2)

)
V7(a) = V6(a) +

(
2q(t)(1− q(t))a(m− a)(m− a− 1)

)
/
(
m(m− 1)(m− 2)

)
V8(a) = V6(a) +

(
2q(t)(1− q(t))a(a− 1)(m− a)

)
/
(
m(m− 1)(m− 2)

)
V9(a) =

(
q(t)2a(a− 1)(a− 2)(a− 3) + (1− q(t))2(m− a)(m− a− 1)(m− a− 2)(m− a− 3)

1Note that Cw(t) and Cdiff(t) here in Chapter 3 are defined under CBP, hence are different from those defined in Chapter 2 and Chapter 4.
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+ 2q(t)(1− q(t))a(a− 1)(m− a)(m− a− 1)
)
/
(
m(m− 1)(m− 2)(m− 3)

)
Res(a) = −

(aq(t)(|G|(m− 1)− c(sub)5 (m− a)
)

m(m− 1)
+

(m− a)(1− q(t))
(
|G|(m− 1)− c(sub)5 a

)
m(m− 1)

)2

λ1(a) =
(

2q(t)− 1
)2

/
(
2m
)

λ2(a) =
(

(2q(t)− 1)(2aq(t)− 2q(t) + 1)
)
/
(
2m(m− 1)

)
λ3(a) =

(
(2q(t)− 1)(2a− 2m− 2q(t)− 2aq(t) + 2mq(t) + 1)

)
/
(
2m(m− 1)

)
λ4(a) = −4

(
2q(t)− 1

)2
/
(
8m(m− 1)

)
λ5(a) = −

(
2a− 2m− 4q(t)− 4aq(t) + 4mq(t)− 2mq(t)2 + 4q(t)2 + 1)/

(
2m(m− 1)

)
λ6(a) =

(
a2 + 2amq(t)− 2am− 8aq(t) + 4a+m2q(t)2 − 2m2q(t) +m2 − 6mq(t)2

+ 10mq(t)− 4m+ 8q(t)2 − 8q(t) + 2
)
/
(
2m(m2 − 3m+ 2)

)
λ7(a) =

(
− 2a2q(t) + a2 − 2amq(t)2 + 4amq(t)− 2am+ 8aq(t)2 − 12aq(t) + 4a+m2q(t)2 − 2m2q(t)

+m2 − 8mq(t)2 + 12mq(t)− 4m+ 8q(t)2 − 8q(t) + 2
)
/
(
2m(m2 − 3m+ 2)

)
λ8(a) =

(
2a2q(t)− a2 + 2amq(t)2 − 4amq(t) + 2am− 8aq(t)2 + 4aq(t)−m2q(t)2 + 2m2q(t)

−m2 + 8q(t)2 − 8q(t) + 2
)
/
(
2m(m2 − 3m+ 2)

)
λ9(a) = −

(
2a2 + 4amq(t)− 4am− 12aq(t) + 6a+ 2m2q(t)2 − 4m2q(t) + 2m2 − 10mq(t)2 + 16mq(t)

− 6m+ 12q(t)2 − 12q(t) + 3
)
/
(
m(m3 − 6m2 + 11m− 6)

)

3.5.1 Numerical results for p-value approximation under CBP

Here, we check how the p-value approximations based on asymptotic results work for finite samples. To do so, we

compare the critical values obtained from analytic formulas against the critical values obtained from doing 10,000

circular block permutations directly, under various simulation settings. In each simulation, sequences of length

n = 1, 000 are generated from a given distribution F0 in Rd. We consider three distributions (multivariate normal,

multivariate exponential, and multivariate log-normal) under various dimensions (d = 10, d = 100, and d = 1, 000). In

Table 3.1, 3.2, and 3.3, we present the results of one selected dimension for each of the three distributions. (C1) denotes

multivariate normal with d = 10, (C2) denotes multivariate exponential with d = 100, and (C3) denotes multivariate

log-normal with d = 1, 000. The complete tables showing all three distributions under these three dimensions with

more cases are in Appendix B.4. The analytical approximations depend on constraints on the sequence in which the

change-point is searched over (from n0 to n1). For simplicity, we let n1 = n− n0.
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Table 3.1: Critical values for the scan statistics maxn0≤t≤n1 Zw,CBP(t) based on MST at α = 0.05

Critical Values Graph
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 A2 Per A1 A2 Per A1 A2 Per A1 A2 Per
∑
|Gi|2 dmax

(C1) 2.99 3.05 3.06 3.03 3.12 3.12 3.08 3.22 3.27 3.15 3.40 3.53 5360 7
2.99 3.05 3.04 3.03 3.12 3.12 3.08 3.22 3.26 3.14 3.40 3.51 5396 7

(C2) 2.99 3.05 3.07 3.03 3.12 3.15 3.08 3.22 3.30 3.15 3.40 3.59 11750 32
2.98 3.05 3.05 3.03 3.12 3.14 3.08 3.22 3.27 3.14 3.39 3.57 11572 35

(C3) 2.99 3.04 3.13 3.03 3.11 3.23 3.08 3.21 3.40 3.15 3.39 3.76 41500 113
2.98 3.04 3.16 3.03 3.11 3.26 3.08 3.20 3.47 3.14 3.37 3.87 65694 164

Table 3.2: Critical values for the scan statistics maxn0≤t≤n1
SCBP(t) based on MST at α = 0.05. (For the same reason

as in Chu and Chen (2019), we do not perform skewness correction on SCBP(t).)

Critical Values Graph
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 Per A1 Per A1 Per A1 Per
∑
|Gi|2 dmax

(C1) 13.11 12.86 13.39 13.29 13.71 14.07 14.12 15.32 5360 7
13.10 13.03 13.39 13.43 13.71 13.95 14.12 15.38 5396 7

(C2) 13.10 13.26 13.39 13.87 13.71 14.84 14.12 17.39 11750 32
13.10 13.50 13.38 14.22 13.70 15.29 14.11 18.20 11572 35

(C3) 13.10 14.47 13.39 15.89 13.71 17.85 14.12 22.54 41500 113
13.10 15.06 13.38 16.56 13.70 19.35 14.11 25.12 65694 164

Table 3.3: Critical values for the scan statistics maxn0≤t≤n1
MCBP(t) based on MST at α = 0.05

Critical Values Graph
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 A2 Per A1 A2 Per A1 A2 Per A1 A2 Per
∑
|Gi|2 dmax

(C1) 3.23 3.27 3.26 3.28 3.33 3.33 3.32 3.41 3.44 3.38 3.56 3.64 5360 7
3.23 3.27 3.25 3.28 3.33 3.34 3.32 3.41 3.42 3.38 3.56 3.63 5396 7

(C2) 3.23 3.29 3.30 3.28 3.37 3.38 3.32 3.47 3.51 3.38 3.65 3.82 11750 32
3.23 3.30 3.32 3.27 3.38 3.43 3.32 3.48 3.56 3.38 3.67 3.92 11572 35

(C3) 3.32 3.35 3.42 3.28 3.44 3.57 3.32 3.56 3.78 3.38 3.78 4.24 41500 113
3.32 3.37 3.41 3.27 3.46 3.57 3.32 3.59 3.88 3.38 3.82 4.34 65694 164

The analytical p-value approximation and the permutation p-value both depend on certain characteristics of the

structure of the graph G. In the simulations, we use MST constructed on Euclidena distance. As the structure of

MST depends on the observations, the critical values vary by simulation runs. We show results for two randomly

simulated sequences in each setting. Two characteristics of the graph are reported: the sum of squared node degrees

(
∑
i |Gi|2) and the maximum node degree (dmax). These quantities give some intuitions on the size and density of the

hubs in the graph. In Table 3.1, 3.2, and 3.3, A1 presents the analytical critical values without skewness correction, A2

presnets the skewness corrected critical values, and Per presents critical values obtained through 10, 000 circular block

permutations.

48



3.5.2 Skewness corrected p-value approximation

From Table 3.1, 3.2, and 3.3, we see that when n0 is small, approximations on analytical p-value formulas (A1) are not

that close to the critical values obtained through permutations directly (Per). This is because Zw,CBP(t) and Zdiff,CBP(t)

converge to normal distributions slowly when t is close to 1 or n (Figure 3.3). Following Chu and Chen (2019), we

adopt skewness correction to improve the p-value approximations (A2). The analytic formulas for skewness corrected

p-value approximations are:

PCBP

(
max

n0≤t≤n1

Zw,CBP(t) > b
)
≈ bφ(b)

∫ n1

n0

Sw(t)Cw(t)ν
(√

2b2Cw(t)
)
dt (3.8)

PCBP

(
max

n0≤t≤n1

|Zdiff,CBP(t)| > b
)
≈ 2bφ(b)

∫ n1

n0

Sdiff(t)Cdiff(t)ν
(√

2b2Cdiff(t)
)
dt (3.9)

where Cw(t) = ∂ρw(s,t)
∂s

∣∣∣
s=t

, Cdiff(t) = ∂ρdiff(s,t)
∂s

∣∣∣
s=t

,

Sw(t) =
exp

(
1
2 (b− θ̂b,w(t))2 + 1

6γw(t)θ̂3
b,w(t))

)√
1 + γw(t)θ̂b,w(t)

with θ̂b,w(t) = (−1 +
√

1 + 2bγw(t))/γw(t),

Sdiff(t) =
exp

(
1
2 (b− θ̂b,diff(t))

2 + 1
6γdiff(t)θ̂

3
b,diff(t))

)√
1 + γdiff(t)θ̂b,diff(t)

with θ̂b,diff(t) = (−1 +
√

1 + 2bγdiff(t))/γdiff(t),

and γw(t) = ECBP(Z3
w,CBP(t)), γdiff(t) = ECBP(Z3

diff,CBP(t)).

Figure 3.3: Plots of skewness of Zw,CBP(t) and of Zdiff,CBP(t) against t for a sequence of 1, 000 points randomly
generated from N(0, I100). The graph is MST constructed on Euclidean distance. The dots are the estimated
ECBP(Zw,CBP(t)) and ECBP(Zdiff,CBP(t)) based on 10, 000 CBP’s with L = 5; the lines represent the analytic values
computed by the EP(Zw(t)) and EP(Zdiff(t)) surrogates.

Performing skewness correction requires the computation of ECBP(Z3
w,CBP(t)) and ECBP(Z3

diff,CBP(t)), which could

be very complicated because it invovles the analysis of every set of three edges on the graph. Fortunately, it turns out
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that EP(Z3
w(t)) and EP(Z3

diff(t)) are good approximations of ECBP(Z3
w,CBP(t)) and ECBP(Z3

diff,CBP(t)), while the former

are much easier to be derived. Therefore, we may use EP(Z3
w(t)) and EP(Z3

diff(t)) to replace ECBP(Z3
w,CBP(t)) and

ECBP(Z3
diff,CBP(t)) in the skewness correction procedure. Figure 3.3 compares the analytic EP(Z3

w(t)) and EP(Z3
diff(t))

with ECBP(Z3
w,CBP(t)) and ECBP(Z3

diff,CBP(t)) estimated by 10, 000 CBP’s, which shows the feasibility of such approxi-

mation. The analytic expressions for EP(Z3
w(t)) and EP(Z3

diff(t)) are provided in Appendix B.6.

3.6 Performance of new edge-count scan statistics under CBP

This section studies the performace of the new edge-count scan statistics under CBP with various simulation settings.

3.6.1 Type I error control

Figure 3.4, 3.5, and 3.6 show the histograms of p-values in testing the homogeneity of autocorrelated sequences when

the sequence has no change-point. For each sequence, the p-value is obtained through doing 1,000 CBP’s. Two

histograms of p-values for each test statistic are presented: one with permutation and the other CBP with L = 5.

Here, each sequence is generated from multivariate autoregression model: yt = ρyt−1 + εt, t = 1, · · · , n, with

y0 ∼ N(0, 1
1−ρ2 Σ), ε1, · · · , εn

i.i.d.∼ N(0,Σ), where Σij = 0.6|i−j|, and ρ = 0.05, d = 25, n = 100. The block size

L = 5 used to account for the autocorrelation is determined by the data-driven method as proposed in Chen (2019a).

Figure 3.4: Histograms of p-values usingZw(t) (left) andZw,CBP(t) with block sizeL = 5 (right) in testing homogeneity
of autocorrelated sequences with no change-point.
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Figure 3.5: Histograms of p-values using S(t) (left) and SCBP(t) with block size L = 5 (right) in testing homogeneity
of autocorrelated sequences with no change-point.

Figure 3.6: Histograms of p-values using M(t) (left) and MCBP(t) with block size L = 5 (right) in testing homogeneity
of autocorrelated sequences with no change-point.

It’s clear from Figure 3.4, 3.5, and 3.6 that under the null hypothesis of homogeneity, when the observations are

autocorrelated, all three tests with CBP would yield approximately uniformly distributed p-values, while the same tests

using permutation could lead to higher false discovery rates. Therefore, with circular block permutation, the edge-count

scan statisitcs have good control of type I error when the observations are locally dependent.
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3.6.2 Power comparison between Zw0,CBP(t) and Zw,CBP(t)

We compare the power of the two edge-count tests: the weighted edge-count test, Zw0,CBP(t), which adopts weight

function q0(t) for any L under circular block permutation, against the modified weighted edge-count test, Zw,CBP(t),

which uses the optimal weight function, q(t) depending on L and the graph G. Note that the larger L is, the more

different the two scan statistics are from each other. As a result, to make the comparison meaningful, in each simulation,

we randomly generate autocorrelated observations where the block size is chosen to be L = 20, and the length of the

sequence is n = 1000.

Table 3.4 reports the number of times (out of 100) that the null is rejected under α = 0.05 for both tests, under

various settings of τ , the location of the ture change-point. The numbers in the parentheses indicate the number of times

that the change-point is estimated within 20 around the true one, i.e., τ̂ ∈ [τ − 20, τ + 20], where τ̂ is the estimated

change-point. The amount of change is chosen so that both tests have moderate powers. Since the weights q0(t) and

q(t) are more close to each other near the middle of the sequence (i.e., t close to n/2), and are more separated from

one another when t is away from the middle (i.e., t close to 1 or n). We can see that Zw,CBP(t) has higher power than

Zw0,CBP(t) especially when τ is away from 500.

Table 3.4: Power Comparison: Number of times (out of 100) that the null is rejected under α = 0.05

τ 150 200 250 300 350 400 450 500

Zw,CBP(t)
68 76 86 94 94 98 98 99

(30) (29) (47) (48) (48) (48) (59) (56)

Zw0,CBP(t)
65 69 85 93 94 98 98 99

(26) (25) (43) (46) (47) (47) (59) (56)

To further examine the different between the two test, we restrict our τ within 120 to 260. From Table 3.5, we see that

in addition to having higher power, the modified weighted edge-count test can estimate the locations of change-points

more accurately. Hence we conclude that when τ is near the middle of the sequence, the two tests perform similarly;

while Zw,CBP(t) outperforms Zw0,CBP(t) in the situations where τ is away from the middle.

Table 3.5: Power Comparison: Number of times (out of 100) that the null is rejected under α = 0.05

τ 120 140 160 180 200 220 240 260

Zw,CBP(t)
66 65 75 68 77 83 86 90

(27) (24) (33) (30) (36) (37) (32) (40)

Zw0,CBP(t)
59 59 73 68 75 83 83 88

(23) (18) (27) (26) (32) (35) (30) (37)
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3.6.3 Power comparison among Z0,CBP(t), Zw,CBP(t), SCBP(t), and MCBP(t)

Finally, we study the power of all the four edge-count scan statistics (original / modified weighted / generalized /

modified max-type) under CBP. Here, a total of six scenarios are investigated, including three types of changes (mean

only, mean and variance, and covariance only) at two different locations (center, quarter) of the sequence.

The following simulations use n = 1000, n0 = 100, n1 = 900, with observations from multivariate normal

distribution. The critical values are determined by 10,000 circular block pemutations. The simulations are studied

across various data dimensions, d = 10, 50, 100, 200, 500. The baseline parameters before the change happens are

µ = 0 and Σij = ρ
|i−j|
0 with ρ0 = 0.6. Here Σij denotes the ith row, jth column of the covariance matrix Σ. The

detection is considered a success if the change-point is estimated within 25 from the ture change-point. The significance

level is α = 0.05.

Table 3.6: Change in mean vector only. Observations are generated from multivariate normal distribution with the
mean vector changes from 0 to µ after the change-point. The numbers of trials (out of 100) that the null is rejected are
reported, and in the parentheses below are the numbers of times the locations of the change-points are sussessfully
detected.

Change happens at the center: τ = 500
d 10 50 100 200 500
||µ||2 0.6 0.8 1.0 1.2 1.5

Z0,CBP(t)
73 63 91 94 89

(33) (38) (73) (78) (76)

Zw,CBP(t)
60 56 88 90 88

(30) (21) (62) (69) (72)

SCBP(t)
65 51 74 81 75

(20) (12) (40) (48) (36)

MCBP(t)
59 51 82 78 77

(24) (16) (49) (64) (44)

Change happens at a quarter: τ = 250
d 10 50 100 200 500
||µ||2 0.7 1.0 1.3 1.5 1.8

Z0,CBP(t)
85 58 87 64 78

(54) (23) (38) (23) (16)

Zw,CBP(t)
77 80 91 92 82

(46) (53) (63) (66) (48)

SCBP(t)
71 62 89 66 74

(41) (38) (59) (39) (35)

MCBP(t)
75 70 87 83 78

(39) (50) (62) (59) (39)

From Table 3.6, we can see that when the change is only in mean vector, and is at the middle of the sequence, the

original edge-count scan statistic performs the best. The modified weighted edge-count scan statistic is nearly as good.

On the other hand, the generalized / modified max-type edge-count tests have lower power and are less accurate in

estimating the change-points under this scenario. However, when the mean change is away from the middle of the

sequence, the modified weighted edge-count scan statistic performs the best, and followed by the generalized / modified

max-type edge-count tests, while the original edge-count test is relatively not as good as its counterparts.
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Table 3.7: Change in both mean and variance. Observations are generated from multivariate normal distribution with
the mean vector changes from 0 to µ, and variance changes from Σ to σΣ after the change-point. The numbers of trials
(out of 100) that the null is rejected are reported, and in the parentheses below are the numbers of times the locations of
the change-points are sussessfully detected.

Change happens at the center: τ = 500
d 10 50 100 200 500
||µ||2 0.5 0.5 0.5 0.5 0.5
σ 1.05 1.04 1.03 1.02 1.02

Z0,CBP(t)
78 81 87 89 93

(28) (5) (2) (0) (0)

Zw,CBP(t)
70 48 42 36 34

(25) (8) (5) (10) (0)

SCBP(t)
69 88 93 98 98

(30) (52) (62) (51) (79)

MCBP(t)
73 91 93 86 98

(38) (48) (70) (56) (78)

Change happens at a quarter: τ = 250
d 10 50 100 200 500
||µ||2 0.5 0.5 0.5 0.5 0.5
σ 1.05 1.04 1.03 1.02 1.02

Z0,CBP(t)
36 48 39 41 64
(0) (0) (0) (0) (0)

Zw,CBP(t)
52 62 46 26 27

(21) (3) (7) (11) (4)

SCBP(t)
63 92 91 82 100

(30) (67) (63) (61) (88)

MCBP(t)
63 95 92 86 99

(24) (74) (72) (74) (93)

Table 3.8: Change in covariance matrix only. Observations are generated from multivariate normal distribution with the
covariance matrix changes from Σij = 0.6|i−j| to Σij = (0.6−∆ρ)|i−j| after the change-point. The numbers of trials
(out of 100) that the null is rejected are reported, and in the parentheses below are the numbers of times the locations of
the change-points are sussessfully detected.

Change happens at the center: τ = 500
d 10 50 100 200 500

∆ρ 0.10 0.05 0.06 0.07 0.08

Z0,CBP(t)
65 55 52 61 70
(5) (5) (0) (3) (0)

Zw,CBP(t)
40 16 19 12 30
(8) (5) (0) (2) (0)

SCBP(t)
93 79 77 88 85

(74) (31) (26) (61) (32)

MCBP(t)
98 82 91 91 90

(88) (45) (45) (70) (49)

Change happens at a quarter: τ = 250
d 10 50 100 200 500

∆ρ 0.10 0.05 0.06 0.07 0.08

Z0,CBP(t)
22 23 34 51 32
(0) (0) (0) (0) (0)

Zw,CBP(t)
21 28 20 41 21
(0) (6) (0) (16) (5)

SCBP(t)
88 67 78 92 90

(41) (38) (46) (61) (54)

MCBP(t)
88 73 75 91 94

(53) (39) (37) (68) (51)

From Table 3.7, we can see that when the change is in both mean and variance, regardless of where the change is, the

modified max-type edge-count scan statistic performs the best, followed closely by the modified generalized edge-count

scan statistic. On the contrary, the original edge-count test and the modified weighted edge-ocunt test not only have

significatly lower power, but could also lead to a biased estimate of change-point. From Table 3.8, we see that even

when the change is in covariance matrix, the modified max-type edge-count scan statistic performs very well, and so

does the modified generalized edge-count scan statistic. Under this scenario, the other two tests are not recommended.

Through this simulation study, one can clearly observe that the modified weighted edge-count test is designed for

the changes in mean while the generalized / modified max-type edge-count tests are used for detecting various types of

changes.
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3.7 A real data example

We demonstrate our new methods on the yellow taxi trip records, which is publicly available on the NYC Taxi &

Limousine Commission (TLC) website (cite website). Tons of detailed information on the taxi trip recoreds are provided

on the website, including taxi pickup and drop-off date/times, longitude and latitude coordinates of pickup and drop-off

locations, trip distances, fares, rate types, payments types, and driver-reported passenger counts.

Given the abondance of the yellow taxi dataset, there are lots of questions and topics we can pose and explore. Here,

we illustrate our methods in detecting changes in travel departing from John F. Kennedy International Airport for a

one-year time period from Oct. 1, 2014 to Sep. 30, 2015. For simplicity, the boundary of JFK airport was set to be

-73.80 to -73.77 longitude and 40.63 to 40.66 latitude. We restrict our study on trips that began with a pickup location

within the territory of JFK airport.

We then extract information on the longitude and latitude drop-off coordinates for those trips departing from JFK

airport. The range of their drop-off locations are chosen to be -85.00 to -64.00 longitude and 34.50 to 49.50 latitude.

Using longitude/latitude coordinates, we create a 30 by 30 grid on the range of drop-off locations and count the number

of daily taxi drop-offs that fall within each cell, where each cell represents a longitude/latitude coordinate range. Then

for each day, we have a 30 by 30 matrix such that each element represents the number of taxi drop-offs within each area.

To test whether there are significant changes within the time period, we apply the three new edge-count tests together

with the original edge-count test in Chen (2019a) to the taxi data under the CBP framework. Let Ai be the 30× 30

matrix on day i, and we denote νi to be the vector form of Ai, which is then 900× 1. The L2 norm is used to construct

the MST graph representing similarity between days. We first apply the data driven method proposed in Chen (2019a)

to determine the size of L to account for the local dependency of the dataset. Figure 3.7 shows the paths of MCBP(t)

from L = 1 to L = 10. We can see that as L increases, the path of MCBP(t) moves downward. The figure suggests that

L = 8 is sufficient for this dataset, because there is a big jump of the paths from L = 7 to L = 8 and after L = 8 the

path begins to move slowly. Though such choice of L could be somewhat subjective, it accounts roughly for the locally

dependent structure among the data within a week.

For the 365 days period from Oct. 1, 2014 to Sep. 30, 2015, the three new tests (modified weighted/generalized/modified

max-type) report a change-point on Day 187, which corresponds to Apr. 5, 2015. Similarly, the original edge-count test

reports a change-point on Day 186, Apr. 4, 2015 (Table 3.9). One explanation of this result may lie in weather. Demand

for taxi in cold days could be different from that in warm days, so a change-point happened as winter came to an end.

We may compare the results with the methods in Chu and Chen (2019). Instead of circular block permutation with

L = 8, we use pure permutation, or CBP with L = 1 as the null distributions of the scan statistics. When the methods

are applied to the whole one-year period or the second segment, all tests agree with the results under CBP framework
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Figure 3.7: Paths for MCBP(t) with block size L = 1, . . . , 10 and its zoom-in version.

with L = 8.

Table 3.9: Change-point results and corresponding p-values (reported in parentheses) for NYC taxi pickups from JFK
over the whole one-year period. (Top table: CBP with L = 8. Bottom table: Permutation.)

Time period Z0,CBP(t) Zw,CBP(t) SCBP(t) MCBP(t)

10/1/2014 - 9/30/2015 4/4/2015 4/5/2015 4/5/2015 4/5/2015
(<0.001) (<0.001) (<0.001) (<0.001)

Time period Z0(t) Zw0(t) S(t) M(t)

10/1/2014 - 9/30/2015 4/2/2015 4/5/2015 4/5/2015 4/5/2015
(<0.001) (<0.001) (<0.001) (<0.001)

3.8 Discussion and Conclusion

We propose new graph-based scan statistics for the testing and estimation of change-points that relax independence

assumption of the framework proposed by Chu and Chen (2019). To account for locally dependent data, we incorporate

the circular block permutation scheme proposed in Chen (2019a) into the new edge-count tests. In particualr, we propose

a new decomposition of the generalized edge-count test statistic under CBP. The new component is called the modified

weighted edge-count test that adjusts the weighted edge-count test to the circular block permutation setting. Under

CBP framework, we find that the optimal weight function should depend on the graph and block size L, while when

L = 1, this optimal weight coincides with the original weight as proposed in Chu and Chen (2019). The importance of

this optimal weight is two-fold. First, it makes the modified weighted edge-count test statistic uncorrelated with the

other component in the decomposition, which facilitates the study of the asymptotic distribution of the generalized

edge-count scan statistic. Second, the modified weighted edge-count test could achieve higher power especially when

the observations are autocorrelated.
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The new scan statistics are based on two basic processes, Zw,CBP(t) and Zdiff,CBP(t), with the former sensitive to

locational alternatives and the latter sensitive to scale alternatives. We show that the two basic processes rescaled by

the length of the sequence, {Zw,CBP([nu]) : 0 < u < 1} and {Zdiff,CBP([nu]) : 0 < u < 1}, converge to independent

Gaussian processes in finite dimensional distributions under some mild conditions of the graph. Even though the

covariance functions of the limiting Gaussian processes do depend on the graph when L ≥ 2, simulation studies show

that the limiting processes are robust to the distribution of the observations.

Analytic p-value approximations based on limiting distributions (asymptotic p-value approximation) are derived for

all new statistics and the skewness-corrected versions are derived for the modified weighted edge-count statistic and the

modified max-type edge-count statistic. The asymptotic p-value approximations provides a ballpark estimate of the

p-value. The skewness-corrected versions give more accurate approximations. The modified weighted edge-count scan

statistic is designed for changes in mean that are not close to the center of the sequence, while the modified max-type

edge-count scan statistic is useful for detecting more generic changes. As a result, in practice, when prior knowledge of

the type of changes is unavailable, the modified max-type edge-count test is recommended.
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Chapter 4

Change-point Detection in Multiple

Sequences of

High-dimensional/non-Euclidean Data

4.1 Introduction

We study the problem of detecting simultaneous change-points in multiple sequences of high-dimensional/non-Euclidean

observations. With advance in technology, modern data collected in many fields usually come in various forms (such

as Neuropixels recordings (Jun et al., 2017), microarrays (Zeebaree et al., 2018b), and so on), rendering traditional

change-point detection methods for univariate observations (James et al. (1987), Carlstein et al. (1994)) not very useful

in coping with those datasets. Moreover, in many studies and experiments, there are multiple subjects, with each of

them represented by a sequence of observations. For example, Chen et al. (2019) studies the Neuropixels data collected

from 9 different region of the brain of a mouse; Visconti di Oleggio Castello et al. (2020) records the fMRI sequences

of 25 people watching the movie “The Grand Budapest Hotel” by Wes Anderson; Nakai et al. (2021) collects multiple

fMRI sequences of the brains from 5 participants while they are listening to different music genres. For the Neuropixels

data in the above examples, each observation consists of high-dimensional measurements represented by the probes in

certain region of the mouse brain; for the fMRI data, each observation here is a 3D image. In this work, we focus on the

detection of simultaneous change-points in sequences of such complex observations.

Let {y(m)
1 , . . . ,y

(m)
n : 1 ≤ m ≤ N} be the observations of N sequences of length n. The task of change-point
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detection in multiple sequences can be formulated as the following hypothesis testing problem:

H0 : y
(m)
t ∼ F (m)

0 for t = 1, . . . , n;m = 1, . . . , N (4.1)

against the single change-point alternative:

Ha : For at least one m,∃1 ≤ τ < n,y
(m)
t ∼


F

(m)
0 , t ≤ τ

F
(m)
1 , otherwise

where F (m)
0 and F (m)

1 , m = 1, . . . , N , are different probability measures. When N = 1, the problem reduces to

change-point detection in a single sequecne, which has been well studied both parametrically and nonparametrically

(Heard et al. (2010), Wang et al. (2013), Harchaoui et al. (2009), Matteson and James (2014), Chu and Chen (2019)). In

particualr, the graph-based methods in Chu and Chen (2019) have analytic formulas to control the type I error efficiently,

and can be easily applied to high-dimensional/non-Euclidean sequences of observations. Nevertheless, when there are

multiple sequences (N > 1), one usually has to apply these methods to each of the sequences separately. For those

methods that are applicable to high-dimensional data, another option is to combine those sequences into one sequence

of observations, with each observation a collection of observations from each of the sequences. However, there are

some drawbacks and limitations dealing with multiple sequences of observations with the two approaches. First of all,

by applying the methods to each of the sequences separately, we have the multiple testing problem. When several tests

are performed simultanouesly, it would be difficult to control the real type I error. Second, applying the methods to

each the subjects individually fails to take advantage of the sample size (number of sequences, N ) because in each

subject seuqence, there could be noise that may interfere with the detection of the change-points, and therefore affecting

the power of the tests. This could be improved by applying the methods to all the subject sequences aggregately. An

alternative approach is to apply the methods to the combined sequence of observations. However, this could also dilute

the signals of the change-points, especially when the types or sizes of the changes are different for each sequence of

observations, also resulting in low power (see Section 4.4).

In the context of change-point detection in multiple sequences, Zhang et al. (2010) studied the problem of detecting

common changes in mean vector in sequences of univariate Gaussian variables. Under the same setting, Siegmund

et al. (2011) continued to investigate the scenarios where the mean values of the observations change simultaneously in

only a subset of the sequences. Motivated by the problem of detecting of DNA copy number variants, these parametric

methods work well in specific applications. However, most data analysis tasks in modern times involve sequences of

high-dimensional/non-Euclidean observations, and the types of changes could be very diverse or unpredictable. In such
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cases, some nonparametric approaches could be useful. Candidate methods include distance-based ecp (Matteson and

James, 2014), and graph-based method gSeg (Chu and Chen, 2019). Nevertheless, when there are multiple sequences,

those methods could have low power or even fail to detect some changes in many scenarios (Section 4.4).

In this work, we propose a new edge-count MS-statistic which aims for detecting simultaneous change-points

in multiple sequences of high-dimensional/non-Euclidean observations. The new test with the MS-statistic is a

nonparametric, graph-based method which utilizes the edge-counts informaiton on the similarity graphs for each

sequence of observations. Our MS-statistic improves on the idea of the max-type edge-count test statistic proposed in

Chu and Chen (2019), and is able to detect more types of changes and has higher power in the presence of multiple

sequences. We also work out an analytic formula to approximate the p-values, so that our method can be fast-applicable

to large scale datasets. The performance of our new test is showcased by extensive simulation studies (see Section 4.4),

and a real data example on the yellow taxi trip records (see Section 4.5).

The rest of the chapter is arranged as follows. We define the MS-statistic in Section 4.2. The asymptotic properties

of the test statisitc, as well as the analytic formula for type I error control are discussed in Section 4.3. In Section 4.4

we present the simulation studies on the power of our test. The real data application is included in Section 4.5. We

conclude in Section 4.6.

4.2 The Test Statistics

4.2.1 Test statistic for a single sequence

Let {y1, . . . ,yn} be the length-n sequence of observations, and G = {(i, j) : yi and yj are connected} be the

undirected similarity graph constructed among the observations. Similar to the edge-count quantities defined in Chapter

2, we define the within-group edge counts

RG,1(t) =
∑

(i,j)∈G

1{i≤t,j≤t} ; RG,2(t) =
∑

(i,j)∈G

1{i>t,j>t}.

Here, RG,1(t) is the number of edges in G connecting both observations before t, and RG,2(t) is the number of edges

in G connecting both observations after t. Figure 4.1 is a toy example that shows the counting of RG,1(t), and RG,2(t).

Based on the two quantities, and following the definitions in Chapter 2, we have

Rw(t) =
n− t− 1

n− 2
RG,1(t) +

t− 1

n− 2
RG,2(t) ; Rdiff(t) = RG,1(t)−RG,2(t),
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and Zw(t) and Zdiff(t) be their standardized versions:

Zw(t) =
Rw(t)− E(Rw(t))√

Var(Rw(t))
; Zdiff(t) =

Rdiff(t)− E(Rdiff(t))√
Var(Rdiff(t))

.

Here E and Var denote respectively the expectation and varinace taken under random permutation that places probability

1/n! to each of the possible permutation outcomes of a length-n sequence. Then the max-type edge-count test statistic

in Chu and Chen (2019) is defined as

max
n0≤t≤n1

M(t) (4.2)

where M(t) = max(Zw(t), |Zdiff(t)|). Then with n0 and n1 pre-specified, the null hypothesis of homogeneity (4.1) is

rejected if (4.2) is larger than the threshold for a given significance level.

Figure 4.1: The computation of RG,1(t) and RG,2(t) at three different values of t. Here y1, . . . ,y10
i.i.d.∼

N((−0.7,−0.7)T , I2), and y11, . . . ,y20
i.i.d.∼ N((0.7, 0.7)T , I2), where I2 is the 2× 2 identity matrix. The graph G

here is MST on the Euclidean distance. Each t divides the observations into two groups: one group for observations
before t (purple triangles) and the other group for observations after t (black circles). Red edges connect observations
before t and the number of red edges is RG,1(t); blue edges connect observations after t and the number of blue edges
is RG,2(t). Notice that as t changes, the group identities change but the graph G does not change.

The max-type edge-count test statistic (4.2) is desinged to capture the signals from various possible types of

changes in the alternative. For example, when there is a change in mean at t in the seuqence, observations before t

and observations after t could be separated on the graph. Therefore, there would be more within-group edges, RG,1(t)

and RG,2(t), making Rw(t) larger than its null expectation. On the other hand, when there is a change in variance at

t, then observations with the smaller variance tends to concentrate within in the inner layer - forming edges mostly

within themselves, whereas observations with the larger variance tends to scatter around the outer layer - inevitably

form edges with observations in the inner layer. This phenomenon becomes severe especially when the observations

are in high dimension, which is also known as The Curse of Dimensionality. If the variance increases after t, then
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RG,1(t) would be larger, but RG,2(t) would be smaller compared to their null expectations. Therefore, in this case

Rdiff(t) would be larger than than its null expectation. If the variance decreases after t, then by the same reasoning

Rdiff(t) would be smaller than its null expectation. Hence, the absolute value on Zdiff(t) in (4.2) takes into account the

two possible directions. (See Chu and Chen (2019) for more discussions.)

4.2.2 New test statistic for multiple sequences

The reason why (4.2) is used to detect change-points for single sequence setting is because when there is a change-point

at t, either Zw(t) or |Zdiff(t)| or both tend to be large, thus making M(t) large (see full discussion in Chu and Chen

(2019)). As the size of the edge counts capture the signal of a change-point, when there are multiple sequences, we would

like to add up the signals from each of the sequences to detect common change-points. Therefore, let {y(m)
1 , . . . ,y

(m)
n :

m = 1, . . . , N} be the N sequences of length-n observations, and Gm = {(i, j) : y
(m)
i and y

(m)
j are connected} be

the similarity graph constructed among the m-th sequence of the observations. Then for m = 1, . . . , N , we define

R(m)
w (t) =

n− t− 1

n− 2
RGm,1(t) +

t− 1

n− 2
RGm,2(t) ; R

(m)
diff (t) = RGm,1(t)−RGm,2(t),

and Z(m)
w (t) and Z(m)

diff (t) be their standardized versions:

Z(m)
w (t) =

R
(m)
w (t)− E(R

(m)
w (t))√

Var(R(m)
w (t))

; Z
(m)
diff (t) =

R
(m)
diff (t)− E(R

(m)
diff (t))√

Var(R(m)
diff (t))

.

Let Sw(t) =
∑N
m=1

(
Z

(m)
w (t)

)2

, and Sdiff(t) =
∑N
m=1

(
Z

(m)
diff (t)

)2

. We define the new MS-statistic:

max
n0≤t≤n1

MS(t) (4.3)

where MS(t) = max(Sw(t), Sdiff(t)). With n0 and n1 pre-specified, the null hypothesis of homogeneity (4.1) is

rejected if (4.3) is larger than the threshold for a given significance level.

The MS-statistic is motivated to accumulate the signals from the N sequences. When there is a change in mean at t

in sequence m, Z(m)
w (t) tends to be larger, and Sw(t) sums up those signals. On the other hand, when there is a change

in variance at t in sequence m, Z(m)
diff (t) tends to deviate from zero, and Sdiff(t) sums up those signals. We square the

statistics of each sequence so that the signals will not cancel out if some of the sequences contain changes in variance

with opposite directions.

To illustrate the effectiveness of the MS-statistics, we simulate sample paths for MS(t) with and without a change-

point in a sequence of n = 1, 000 observations. In the setting of no change-point, observations are generated i.i.d. from
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100-dimensional Gaussian distribution with mean zero and covariance Σ, whose element in the i-th row and the j-th

column is Σij = 0.6|i−j|; in the setting with a change-point at t = 500, the first 500 observations are generated from

the same distribution as in the no change-point setting, and the last 500 observations have their mean vector shift from

zero to 0.15× 1100, where 1100 denotes a length-100 vector of all one’s. Figure 4.2 depicts the illustration for MS(t).

Figure 4.2: Sample paths for MS(t) when there is no change-point (left panel); and when there is a change-point at
τ = 500 (right panel).

Another natural formulation of the test statistic would be S(t) = Sw(t) + Sdiff(t), called the S-statistic here. The

MS-statistic and the S-statistic are similar but have slightly different rejection regions. Figure 4.3 shows the comparison

of the performance between the two statistics under locational (change in mean) and scale (change in variance)

alternatives, respectively. We see that under both scenarios, the two tests perform similarly with the MS-statistic having

slightly higher power than the S-statistic. In this work, we focus on the discussion of the MS-statistic. The other reason

for this is that we have derived the analytic formula to approximate type I error for the MS-statistic (see Section 4.3).

4.2.3 Analytic expressions for MS-statistic

To compute the MS-statisitc efficiently, we need analytic expressions for the expectaions and variances for each R(m)
w (t)

and R(m)
diff (t) so that we do not have to perform the time-consuming permutations to obtain them. Given the similarity

graphs for each of the sequences, Gm, m = 1, . . . , N , we have

E
(
R(m)
w (t)

)
= |Gm|

(t− 1)(n− t− 1)

(n− 1)(n− 2)
,

E
(
R

(m)
diff (t)

)
= |Gm|

(2t− n)

n
,

Var
(
R(m)
w (t)

)
=

t(t− 1)(n− t)(n− t− 1)

n(n− 1)(n− 2)(n− 3)

(
|Gm| −

∑n
u=1 |Gm(u)|2

(n− 2)
+

2|Gm|2

(n− 1)(n− 2)

)
,

Var
(
R(m)
w (t)

)
=

t(n− t)
n(n− 1)

(
n∑
u=1

|Gm(u)|2 − 4|Gm|2

n

)
,
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Figure 4.3: Power comparison of MS-statistic and S-statistic. There are N = 4 sequences of length 1, 000 with each
obseravation generated from 10-dimensional Gaussian distribution with covariance Σij = 0.6|i−j|. The critical values
are determined by 10, 000 permutations at α = 0.05. The change-point occurs at τ = 300. Left panel: all the mean
vectors shift by δ; Right panel: variances become aΣ for all sequences.

where |Gm| denotes the total number of edges, and |Gm(u)| denotes the degree of node yu in graph Gm. The above

results follow directly from Chu and Chen (2019). Note that the expectations only depend on the number of edges in

the graphs, when all the graphs have the same numbers of edges, the expectations of R(m)
w (t) for all sequences are

the same, and the expectations of R(m)
diff (t) for all sequences are the same. On the other hand, in addition to |Gm|, the

variances also depend on
∑n
u=1 |Gm(u)|2, the sum of squared degrees of the graph. Therefore, the variances could be

different for each sequence even though the same graph is used (all graphs are k-MST, for example).

4.3 Analytic p-value Approximations

4.3.1 Asymptotic properties of the test statistics

Chu and Chen (2019) shows that under some mild conditions on the graph, the rescaled versions of the two basic

processes, {Zw([nv]1) : 0 < v < 1} and {Zdiff([nv]) : 0 < v < 1} converge in finite dimensional distributions

to two independent Gaussian processes. Here we list those conditions as in Theorem 4.1, Chu and Chen (2019):

(i) |G| = O(nβ), 1 ≤ β < 1.5, (ii)
∑n
u=1 |G(u)|2 − 4|G|2

n = O(
∑n
u=1 |G(u)|2), (iii)

∑
e∈G |Ae||Be| = o(n1.5β),

and (iv)
∑
e∈G |Ae|2 = o(nβ+0.5). These conditions ensure that the graph G is dense enough but not too dense. In

conditions (i) and (ii), |G| denotes the total number of edges in graph G, and |G(u)| denotes the degree of node yu in

graph G. In conditions (iii) and (iv), e = (e−, e+) denotes an edge with e− < e+, Ae = Ge− ∪Ge+ is the subgraph in

G that connect to either node e− or node e+, and Be = ∪e∗∈AeAe∗ is the subgraph in G that connect to any edge in

1For a scalar x, we use [x] to denote the largest integer no greater than x.
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Ae.

Based on this result, the authors in Chu and Chen (2019) derive asymptotic analytical formulas to approximate the

p-value for the max-type test statistic (4.2):

P
(

max
n0≤t≤n1

M(t) > b
)
≈ 1− P

(
max

n0≤t≤n1

Zw(t) < b
)

P
(

max
n0≤t≤n1

|Zdiff(t)| < b
)

(4.4)

= 1−
(

1− P
(

max
n0≤t≤n1

Zw(t) > b
))(

1− P
(

max
n0≤t≤n1

|Zdiff(t)| > b
))

.

where

P
(

max
n0≤t≤n1

Zw(t) > b
)
≈ bφ(b)

∫ n1

n0

Cw(t)ν
(√

2b2Cw(t)
)
dt (4.5)

P
(

max
n0≤t≤n1

|Zdiff(t)| > b
)
≈ 2bφ(b)

∫ n1

n0

Cdiff(t)ν
(√

2b2Cdiff(t)
)
dt (4.6)

where the function ν(·) can be estimated numerically as ν(x) ≈ (2/x)(Φ(x/2)−0.5)
(x/2)Φ(x/2)+φ(x/2) with φ(·) and Φ(·) being the

probability density function and cumulative distribution function of the standard normal distribution, respectively; and

Cw(t), Cdiff(t) are the partial derivatives of the covariance function of their corresponding processes, i.e.,

Cw(t) = lim
s↗t

∂ρw(s, t)

∂s
; ρw(s, t) = Cov(Zw(s), Zw(t)),

Cdiff(t) = lim
s↗t

∂ρdiff(s, t)

∂s
; ρdiff(s, t) = Cov(Zdiff(s), Zdiff(t)).

Moreover, Cw(t) and Cdiff(t) can be further derived and simplified to

Cw(t) =
n(n− 1)(2t2/n− 2t+ 1)

2t(n− t)(t2 − nt+ n− 1)
; Cdiff(t) =

n

2t(n− t)
.

As we can see, both Cw(t) and Cdiff(t) are functions independent of the similarity graph G. In fact, as shown in

Theorem 4.3, Chu and Chen (2019), the covariance functions of Zw(t) and Zdiff(t) are also distribution-free and do not

depend on the graph at all.

In this work, we consider the case when there are multiple sequences. Suppose there are N sequences, then

we have N similarity graphs (G1, . . . , GN ), and their corresponding two processes, Z(1)
w (t), . . . , Z

(N)
w (t), and

Z
(1)
diff (t), . . . , Z

(N)
diff (t). Since both ρw(s, t) and ρdiff(s, t) do not depend on the graph, Z(1)

w (t), . . . , Z
(N)
w (t) share

the covariance function, ρw(s, t); and Z(1)
diff (t), . . . , Z

(N)
diff (t) share the covariance function, ρdiff(s, t).

Use the notation |A| to denote the cardinarity of a set A, Gl(i) to denote the set of edges in Gl that incident to node

i, so |Gl(i)| is the degree of node i in the graph Gl, and VGl :=
∑n
i=1(|Gl(i)| − 2|Gl|

n )2 that represents the variability
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of degrees of the graph Gl. Let G be the union of all graphs G1, · · · , GN (G = ∪Gl), G(i) is the set of edges in G

incident to node i, G(i) to be the set of nodes incident to the node i in the graph G, and Nsq is the number of squares in

the graph G. Define φ(e) :=
∑N
l=1 1{e∈Gl} that is the number of graphs containing edge e. Let

c′i =

N∑
l=1

∣∣∣|Gl(i)| − 2|Gl|
n

∣∣∣√
VGl

, for i = 1, · · · , n

c0 = max
l
{ 1√

Gl
}.

Assume that φ(e) is uniformly bounded for all edges e, we list sufficient conditions to derive the limiting distribution:

n∑
i=1

c′i
3 → 0, (4.7)

c0

n∑
i=1

c′i
2|G(i)| → 0 (4.8)

c30

n∑
i=1

|G(i)|2 → 0 (4.9)

c20

n∑
i=1

j 6=k∑
j,k∈G(i)

c′ic
′
j → 0 (4.10)

c40Nsq → 0, (4.11)

as n goes to infinity.

Liu et al. (2022) proved the following Theorem.

Theorem 8. Given N graphs G1, · · · , GN with the same order of cardinality, and φ(e) =
∑N
l=1 1{e∈Gl} is bounded

for all edges e ∈ G. If for any 1 ≤ i < j ≤ N ,

lim
n→∞

n∑
u=1

|Gi(u)||Gj(u)|
n

− 4|Gi||Gj |
n2

= o(1) and |Gi ∩Gj | = o(|G1|),

and conditions (4.7)-(4.11) hold, then {Z(1)
w ([nv]) : 0 < v < 1}, . . . , {Z(N)

w ([nv]) : 0 < v < 1} and {Z(1)
diff ([nv]) :

0 < v < 1}, . . . , {Z(N)
diff ([nv]) : 0 < v < 1} converge in finite dimensional distributions to 2N independent Gaussian

processes.

Based on Theorem 8, we derive the analytical formulas to approximate the p-values for the MS-statisitc.
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4.3.2 Analytical p-value approximation formula for MS-statistic

Here we derive the analytic p-value approximation formula for the MS-statistic, i.e.,

P
(

max
n0≤t≤n1

MS(t) > b
)
≈ 1− P

(
max

n0≤t≤n1

Sw(t) < b
)

P
(

max
n0≤t≤n1

Sdiff(t) < b
)

(4.12)

= 1−
(

1− P
(

max
n0≤t≤n1

Sw(t) > b
))(

1− P
(

max
n0≤t≤n1

Sdiff(t) > b
))

.

Again, to compute (4.12), all we need is to compute the two probabilities on the right-hand side. Under the conditions

in Theorem 8, we show (Appendix C.1) that the two probabilities can be approximated by

P( max
n0≤t≤n1

Sw(t) > b) ≈ 2b

(
1− N − 1

b

)
fχ

2

N (b)

∫ n1

n0

Cw(x)ν

(√
2bCw(x)

(
1− N − 1

b

))
dx (4.13)

P( max
n0≤t≤n1

Sdiff(t) > b) ≈ 2b

(
1− N − 1

b

)
fχ

2

N (b)

∫ n1

n0

Cdiff(x)ν

(√
2bCdiff(x)

(
1− N − 1

b

))
dx (4.14)

where fχ
2

N (b) = bN/2−1

2N/2Γ(N/2)
exp(− b

2 ) is the density of a chi-square distribution with degree of freedom N .

Remark 2. In the case of single sequence (N = 1), the factor 1− N−1
b = 1 vanishes, then equation (4.13) and (4.14)

reduces to (4.5) and (4.6), respectively, which can be easily verified by a change of variable.

Table 4.1 shows the performance of the analytical p-value approximation formula (4.12) under significance levels

α = 0.05 across various selected data distributions and dimensions based on 10, 000 permutations (multivariate

Gaussian distribution with dimension d = 10, multivariate t5-distribution with d = 100, and log-normal distribution

with d = 1, 000). The critival values given by the asymptotic analytical formula (4.12) are presented in the last row of

Table 4.1, “Analytical.” We report the results for the following seven numbers of sequences (N = 1, 2, 3, 5, 10, 20, 50).

The length of each sequence is n = 1, 000, and we set n0 = 100, n1 = 900. For the multivairate Gaussian and

multivariate t5-distribution, the observations in each sequence are generated i.i.d. from their corresponding distributions

with mean zero and covariance Σ, whose element in the i-th row and the j-th column is Σij = 0.6|i−j|. For the

log-normal distribution, each observation consists of d indepednet log-normal randan variables. Complete results for

different combinations of data distributions and dimensions are provided in Appendix C.2.

Table 4.1: Critical values for test statistic max
n0≤t≤n1

MS(t) based on 5-MST at α = 0.05.

N = 1 N = 2 N = 3 N = 5 N = 10 N = 20 N = 50
Multivariate Gaussian (d = 10) 11.54 14.87 17.45 21.83 31.42 47.68 89.36
Multivariate t5 (d = 100) 11.38 14.81 17.59 22.07 31.64 48.00 90.07
Log-normal (d = 1, 000) 11.98 15.45 18.36 22.99 32.63 49.02 92.19
Analytical 11.31 14.53 17.13 21.59 31.03 47.25 89.54
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From Table 4.1, we see that the analytic p-vlaue approximation formula for the MS-statistic gives very accurate

estimates of the critical values no matter what the underlying distribution of the data is. The accuracy of the p-value

approximation is quite consistent regradless of the number of sequences.

4.4 Power Evaluation

In this section, we study the power of our proposed MS-statistic with three existing methods - the parametric method

proposed in Zhang et al. (2010), the the graph-based max-type statistic (Chu and Chen, 2019), and the distance-based

method (Matteson and James, 2014) - through simulation studies. In the following, we use “New,” “Zhang,” “gSeg,”

and “ecp” to denote the four methods, respectively. Below describes some general settings in the simulations that are

adopted throughout Section 4.4. We generate N sequences, with each sequence having length n = 1, 000, where all

observations are independent and have dimension d = 100. For all but the ecp method, the change-points are searched

over the interval [n0 = 100, n1 = 900]. Moreover, for our new method (MS-statistic), N 5-MST’s are constructed for

each of the N sequences on Euclidean distance; for the gSeg method (max-type statistic), one 5N -MST is consturcted

for the combined sequence on Euclidean distance.

Before we dive into the study of the power performance of these methods, we first examine their ability to control

type I error at a given significance level for high-dimensional data structures. Figure 4.4 plots the rejection rates of the

four methods against various numbers of sequences N . In each scenario, the the rejection rate is computed based on

5, 000 simulations under significance level α = 0.05. The threshold (rejection region) for the MS-statistic is derived by

plugging in (4.13) and (4.14) into formula (4.12), thresholds for other methods are also determined by their associated

techniques.

Figure 4.4: Rejection rates of the four methods in N homogeneous sequences. Left panel: observations are from
multivariate t5 distribution. Right panel: observations are from Exp(1) distribution.
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From Figure 4.4, we see that the method in Zhang et al. (2010) fails to control the type I error at α = 0.05, whereas

the other three methods, including our new MS-statistic, have good control on the false discovery rate. The reason is

that Zhang et al. (2010) views each dimension as a univariate sequence and assumes those sequences are independent

of each other. When the d coordinates in a high-dimensional observation are correlated, the method in Zhang et al.

(2010) could have a higher false discovery rate than expected. In the above simulations, the covariance matrix of each

observation is Σ, where Σij = 0.6|i−j|. For the right-skewed distribution in the right panel of Figure 4.4, let u be the

length-d vector of i.i.d. random variables from Exp(1), the obseravtion is generated as Σ
1
2 u. Figure 4.4 illustrates the

limitation of the method (Zhang et al., 2010) when applied to more generic data structure. Therefore, we exclude this

method in the power comparison below.

4.4.1 Small number of sequences

We then study the power of our proposed MS-statistic (New) with the other two methods that can also control type I

error - the graph-based max-type statistic (gSeg), and the distance-based method (ecp). We generate N = 4 sequences

with length n = 1, 000 and a change-point occurring at τ = 300. Before the change-point, the observations are i.i.d.

from d = 100 multivariate t5 distribution with mean 0 × 1d, and covariance matrix Σ, where Σij = 0.6|i−j|. For

the distributions after the change-point, the mean vector for sequence m (m = 1, 2, 3, 4) becomes ∆m × 1d, and

the covariance matrix for sequence m becomes amΣ. In another setting where only the off-diagonal structure of the

covariance matrix changes, the matrix for sequence m becomes Σ(m) with Σ
(m)
ij = ρ

|i−j|
m . We build the 5-MST on

Euclidean distance for each of the four sequences in constructing our MS-statistic. For the graph-based max-type

statistic (gSeg), we first merge the four sequences into one, and the statistic is computed based on the 20-MST on

Euclidean distance among the merged observations. As we use the 5-MST (k = 5) for the MS-statistic, we adopt the

20-MST (k = 20) for the max-type statistic when there are N = 4 sequences to make the comparison fair.

We study the power of the three tests in two settings. Section 4.4.1 discusses the setting where all N = 4 sequences

have a change-point at τ = 300, while the sizes and types of changes could be differrent. Section 4.4.1 focuses on the

setting where the change only exists in one of the four sequences, while the other three sequences remain homogeneous.

Change occurs in all sequences

The simulations are conducted in the following five scenarios, and the results are presented in Table 4.2.

Scenario I: Change in mean vectors only. The distributions before the change, or F (m)
0 , m = 1, 2, 3, 4, are

stated in Section 4.4.1. After the change, one coordinate of the mean vector in sequence m shifted by ∆m, with

(∆1,∆2,∆3,∆4) = (−δ,−δ, δ, δ), two positive and two negative. We study the power of the three tests across different

values of δ.
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Scenario II: Change in variances in the same direction. The distributions before the change are stated in Section

4.4.1. After the change, the covariance matrix of sequence m changes from Σ to amΣ, with (a1, a2, a3, a4) =

(2 − a, 2 − a, a, a). We study the power of the three tests across different values of a. After the change-point, two

sequences of observations have their variances increase, and the other two decrease.

Scenario III: Change in mean plus change in variances in different directions. The distributions before the change

are stated in Section 4.4.1. After the change, all sequences have a mean change of size 0.5 in one coordinate, and the

covariance matrix of sequence m changes from Σ to amΣ, with (a1, a2, a3, a4) = (2− a, 2− a, a, a). We study the

power of the three tests across different values of a.

Scenario IV: Change in off-diagonal elements of the covariance matrix. The distributions before the change are

stated in Section 4.4.1. After the change, the covariance matrix of sequence m changes from Σij = 0.6|i−j| to

Σ
(m)
ij = ρ

|i−j|
m , with (ρ1, ρ2, ρ3, ρ4) = (ρ, ρ, ρ, ρ). Define ∆ρ = 0.6− ρ. We study the power of the three tests across

different values of ∆ρ.

Scenario V: Change in both mean and variance for asymmetric distribution. The changes in mean and covariance

before and after the change-point are the same as Scenario III. The underlying distribution here is centered chi-square

distribution with degree of freedom 3. That is, χ2
3 − 3. Let u be the length-d vector with each component i.i.d. from χ2

3.

Each observation is generated as Σ
1
2 (u− 3× 1d).

From Table 4.2, we see that wnen the change is only in mean (Scenario I), the ecp performs the best, and the two

graph-based methods (gSeg and our method) are not too bad compared to ecp. This is not a surprise since ecp uses all

the pairwise distances information while the graph-based methods use only the information of the similarity graphs. In

Scenario II to V, we see that ecp has very low power, and our MS-statistic performs significantly better than the other

methods. Especially in Scenario II, III and V, when there are changes in variance in the opposite directions, both ecp

and gSeg fail to detect such changes. On the other hand, the power of the MS-statistic increases as the size of change

increases, meaning that our new method is able to capture the signals of such changes efficiently. Lastly, in Scenario IV,

when the change is in the off-diagonal elements of the covariance matrix, both graph-based methods can detect the

changes successfully, while our new test has a higher power than gSeg for any given size of change.

Change occurs in one sequence

In Section 4.4.1, we have studied the cases where changes occur in all N = 4 sequences. Following the same settings,

here we discuss the cases where the change occurs only in one of the four sequences, whereas the other three sequences

remain homogeneous. In particular, the five settings here are:

Scenario I: Change in mean in one sequence. After the change-point, one coordinate of the mean vector of one

sequence becomes δ.

70



Table 4.2: Numbers of times (out of 100) that the null hypothesis is rejected under significance level α = 0.05. In the
parentheses are the numbers of times the estimated change-point τ̂ is within 50 of the true change-point τ = 300, i.e.,
τ̂ ∈ [275, 325], which can be interpreted as “accuracy.”

Scenario I: Change in mean (only one coordinate: 2 positve 2 negative)
δ 0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

New 9 4 4 5 9 15 19 43 74 90 100
(1) (0) (0) (1) (0) (3) (8) (24) (53) (76) (86)

gSeg 0 4 2 8 14 16 34 60 76 94 100
(0) (0) (0) (0) (1) (6) (16) (37) (45) (70) (79)

ecp 7 5 4 7 13 18 42 91 99 100 100
(0) (0) (0) (0) (4) (4) (29) (77) (85) (95) (98)

Scenario II: Change in variance (different directions)
a 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20

New 6 11 8 20 27 44 60 72 93 96 98
(0) (1) (0) (2) (4) (19) (31) (41) (56) (71) (73)

gSeg 9 4 3 6 8 8 6 6 10 1 7
(0) (0) (0) (0) (0) (0) (1) (0) (0) (0) (0)

ecp 7 6 5 10 10 3 2 7 6 2 4
(0) (1) (0) (2) (1) (0) (1) (0) (0) (0) (0)

Scenario III: Mean change (fixed) + Variance change (different direction)
(mean 0.5 in one coordinate, variance same as Scenario II)

a 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20

New 16 6 11 17 22 49 64 83 96 98 99
(2) (1) (2) (3) (2) (12) (24) (45) (50) (64) (74)

gSeg 15 17 19 16 20 25 11 26 16 32 31
(6) (3) (6) (6) (7) (6) (6) (8) (4) (11) (11)

ecp 19 19 18 13 18 15 16 20 16 22 22
(7) (11) (7) (4) (6) (4) (4) (10) (7) (9) (11)

Scenario IV: Change in off-diagonal elements of the covariance matrix
∆ρ 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

New 6 7 5 17 27 40 63 91 97 100 100
(0) (1) (0) (4) (10) (12) (28) (51) (64) (81) (87)

gSeg 9 4 4 8 9 10 14 31 31 48 60
(0) (0) (0) (0) (1) (2) (5) (12) (12) (21) (28)

ecp 7 6 5 3 5 4 4 5 9 4 9
(0) (1) (0) (0) (1) (0) (1) (0) (1) (0) (0)

Scenario V: Chi-square distribution, changes same as Scenario III
a 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20

New 6 18 62 99 100 100 100 100 100 100 100
(0) (2) (31) (71) (90) (95) (98) (100) (100) (100) (100)

gSeg 4 3 4 6 7 7 11 9 16 13 19
(1) (0) (0) (2) (0) (1) (1) (2) (2) (1) (10)

ecp 3 8 6 10 5 6 9 5 8 8 10
(1) (1) (0) (3) (0) (0) (0) (0) (1) (1) (1)
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Scenario II: Change in variance in one sequence. After the change-point, the covariance matrix of one sequence

changes from Σ to aΣ.

Scenario III: Change in both mean and variance in one sequence. After the change-point, one coordinate of the

mean vector in one sequence shifts by 1.0, and the covariance matrix of the same sequence changes from Σ to aΣ.

Scenario IV: Change in covariance structure in one sequence. After the change-point, the covariance matrix of one

sequence changes from Σij = 0.6|i−j| to Σ′ij = (0.6−∆ρ)|i−j|.

Scenario V: Change in both mean and variance for asymmetric distribution in one sequence. The setting is the

same as Scenario V in Section 4.4.1, but here the change occurs in only one sequence and the other three sequences

remain homogeneous.

From Table 4.3, we see that when the change is in only one of the sequences, our MS-statistic is the best among the

three methods in all scenarios. The new test is sensitive to various types of changes and has the highest power. Even in

Scenario I, when the change is only in mean, our new test has higher power than ecp. In other scenarios where gSeg or

ecp could fail, our MS-statistic demonstrates its effectiveness in detecting different types of changes.

4.4.2 Large number of sequences

Here we study the power performance of the three tests (our method, gSeg, and ecp) under simulations with N = 100

sequences. Other parameters are the same: n = 1, 000, d = 100, n0 = 100, n1 = 900, k = 5. Before the change-point,

the observations are i.i.d. from multivariate t5 distribution with mean zero and covariance Σ as defined before. In

Section 4.4.1, all the sequences have the same type of changes. Here, we allow the sequences to have different types of

chagnes. For each sequence in the simulations, the change could equally likely be in one of the three: change in mean,

change in variance, and change in covariance. If the change is in mean, then after the change-point, one coordinate of

the mean vector becomes ±δ, with plus or minus being assigned randomly with probability a half; if the change is in

variance, the covariance matrix becomes (1±∆a)Σ after the change-point, with plus or minus being assigned randomly

with probability a half; if the change is in covariance, the coefficient ρ changes from 0.6 to 0.6−∆ρ. Table 4.4 below

lists the values of δ, ∆a, and ∆ρ, as the size of change increases. We run the experiments under three scenarios: (i)

change occurs in all 100 seuqences, (ii) change occurs in 20 sequences, and (iii) change occurs in only 1 sequence. The

results are shown in Figure 4.5.

From Figure 4.5, we see that when the changes occur in all N = 100 sequences, all the three methods are able to

detect the changes. In addition, our MS-statistic has the higher power and accuracy at any given size of change. When

the changes occur in 20 of the sequences, or only in one of the sequences, both gSeg and ecp fail to detect such changes.

On the other hand, our new method still has high power and decent accuracy in those two scenarios.

In Section 4.4, we learn from extensive simulation studies that our proposed MS-statistic is capable of detecting
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Table 4.3: Numbers of times (out of 100) that the null hypothesis is rejected under significance level α = 0.05. In the
parentheses are the numbers of times the estimated change-point τ̂ is within 50 of the true change-point τ = 300, i.e.,
τ̂ ∈ [275, 325], which can be interpreted as “accuracy.”

Scenario I: Change in mean in one sequence (only one coordinate)
δ 0.00 0.20 0.40 0.60 0.80 1.00 1.20 1.40 1.60 1.80 2.00

New 3 14 8 10 26 52 86 97 100 100 100
(0) (0) (0) (2) (8) (30) (57) (84) (92) (98) (100)

gSeg 8 3 5 5 9 21 34 74 81 93 99
(0) (1) (0) (0) (0) (5) (18) (41) (52) (71) (87)

ecp 5 9 4 10 5 17 44 86 100 100 100
(0) (0) (1) (1) (0) (6) (33) (71) (94) (94) (97)

Scenario II: Change in variance in one sequence
a 1.00 1.04 1.08 1.12 1.16 1.20 1.24 1.28 1.32 1.36 1.40

New 3 15 9 13 26 47 52 72 87 93 98
(0) (0) (0) (3) (10) (21) (21) (35) (44) (48) (67)

gSeg 8 4 6 6 8 10 15 24 20 36 38
(0) (2) (0) (2) (2) (3) (3) (5) (8) (7) (11)

ecp 5 7 6 11 14 11 15 17 16 18 27
(0) (1) (0) (4) (3) (3) (1) (1) (6) (9) (5)

Scenario III: Mean change + Variance change (one sequence)
(mean 1.0 in one coordinate, variance same as Scenario II)

a 1.00 1.04 1.08 1.12 1.16 1.20 1.24 1.28 1.32 1.36 1.40

New 48 47 51 68 66 75 81 93 97 94 99
(28) (25) (29) (38) (36) (43) (54) (57) (61) (55) (70)

gSeg 19 27 28 32 26 25 35 43 47 52 61
(4) (10) (7) (12) (11) (11) (11) (14) (13) (10) (17)

ecp 19 18 33 25 30 32 40 46 49 57 67
(5) (8) (15) (9) (16) (13) (26) (23) (24) (37) (39)

Scenario IV: Change in covariance structure in one sequence
∆ρ 0.00 0.03 0.06 0.09 0.12 0.15 0.18 0.21 0.24 0.27 0.30

New 3 10 7 8 16 28 46 69 89 99 100
(0) (1) (3) (0) (4) (10) (16) (39) (62) (82) (95)

gSeg 8 5 7 4 4 3 13 14 9 8 18
(0) (1) (0) (0) (0) (0) (0) (2) (4) (0) (0)

ecp 5 10 4 10 4 3 4 7 7 5 3
(0) (0) (0) (0) (1) (0) (0) (1) (1) (1) (0)

Scenario V: Chi-square distribution, change occurs in one sequence
a 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20

New 3 7 12 42 67 87 98 100 100 100 100
(0) (1) (3) (17) (30) (58) (66) (71) (86) (83) (90)

gSeg 7 8 9 18 24 31 46 60 73 81 82
(0) (1) (0) (5) (3) (6) (13) (30) (30) (44) (42)

ecp 4 6 8 6 8 4 7 8 7 8 6
(0) (0) (0) (0) (0) (1) (1) (0) (0) (0) (1)
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Table 4.4: Values of parameters used in each simulation run for Scenario (i) and (ii). Larger values, in particular
(δ → 4δ,∆a→ 3∆a,∆ρ→ 2∆ρ) are used for Scenario (iii).

size index 0 1 2 3 4 5 6 7 8 9 10
δ 0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

∆a 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20
∆ρ 0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20

Figure 4.5: Power of the three methods for changes occur in different number of sequences when the total number of
sequences is N = 100. The power is computed based on 100 simulations at significance level α = 0.05. The dotted
lines represent the number of times that the change-point location is correctly detected. That is, τ̂ ∈ [275, 325] where
the ture change-point is at τ = 300.

various types of changes, from mean to variance to covariance structure. In addition, its performance is robust to

different underlying distributions, symmetric or asymmetric. Our MS-statistic has contant high power no matter the

changes are in all sequences, a subset of the sequences, or only a few of the sequences.

4.5 Real Data Application

To illustrate the effectiveness of the MS-statistic, we apply our method to the dataset of the yellow taxi trip records,

which is publicly available on the NYC Taxi & Limousine Commission (TLC) website (http://www.nyc.gov/

html/tlc/html/about/trip_record_data.shtml). The trip records contain abundant information, such

as taxi pickup and drop-off dates and times, longitude and latitude coordinates of pickup and drop-off locations, trip

distances, fares, rate types, payments types, and driver-reported passenger counts.

The dataset is so rich that many studies can root on. Here, we demonstrate the new approach in detecting changes in

travel to the John F. Kennedy International Airport over the year. The boundary of JFK airport was set to be 40.63 to

40.66 latitude and 73.80 to 73.77 longitude for easy reference. We use the year-end data from 2011 to 2015. The reason

that we include the data up to the year of 2015 is because the longitutde and latitude coordinates are no longer available

in 2016 and after.

For those trips having a destination at JFK airport, i.e., a drop-off coordinates within the boundary of the airport,
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we extract information on where those trips begin, their longitude and latitude pickup coordinates. Using the longi-

tude/latitude coordinates, we create a 30 by 30 grid of New York City and count the number of taxi pickups that fall

within each cell, where each cell represents a rectangular longitude, latitude coordinate range. Then for each day, we

have a 30 by 30 matrix representing the number of taxi pickups in each location. Therefore, we have five sequences,

from year 2011 to 2015, respectively. Each sequence consists of 365 such matrices from January 1st and December

31st. In the year of 2012, which has 366 days, the matrix for Feburary 29th is excluded from the sequence.

We apply the MS-statistic on the five sequences of observations, where each observation is a 30 by 30 matrix. We

use the L2 norm distance among the observations to construct the MST graphs for each sequences. The MS-statistic is

then computed based on those derived graphs.

As there might be more than one change-points in the sequences, if the first change-point is found, we apply the

method again to the two subsequences separated by the first change-point. With significance level α = 0.01, the method

is then applied iteratively until no more change-points can be found. After the initial set of candidate change-points are

determined. A change-point refinement procedure is then performed to prune the quality of the change-points.

Suppose the initial set contains K change-points denoted by 1 < t1 < t2 < · · · < tK < 365. Let t0 ≡ 1 and

tK+1 ≡ 366, we perform the following step to first refine the estiamtes of change-points. For each change-point tk,

k = 1, . . . ,K, the change-point detection approach is applied to the interval [tk−1, tk+1) to refine the estimate, and the

refined change-point is denoted by t(1)
k .

If the set of refined change-points are different from the initial set, we further check if there is any change-point

in each sub-interval [t
(1)
k , t

(1)
k+1), k = 0, 1, . . . ,K, with the type I error being controlled at 0.01/K. Let K(2) be the

number of candidate change-points after the re-searching and we denote these change-points by 1 < t
(2)
1 < t

(2)
2 < · · · <

t
(2)

K(2) < 365. Now we treat this new set of change-points as the initial set and repeat the refinement and re-searching

procedures until the candidate set converges.

After the candidate set is finalized, we do one last step to prune the change-points, that is, t(2)
k , k = 1, . . . ,K(2) is

kept only if the observations in the time interval [t
(2)
k−1, t

(2)
k+1) is significatly non-homonegeous. In particular, here we

use the Benjamini-Yekutieli procedure (Benjamini and Yekutieli, 2001) to control the false discover rate at α = 0.01.

Throughout the process, n0 is chosen to be either 5 or 5% of the sequence length, whichever is larger, and n1 is

chosen symmetrically. That is, let ns be the length of any sequence the graph-based method is applied to, then

n0 = max(5, b0.05nsc), and n1 = ns − n0.

The result of the set of change-points found by the MS-statisitc is presented in Table 4.5. We see that in general

both methods detect similar change-point locations.

To perform sanity check on those change-pooints found. We plot the heatmaps of the five sequences (Figure 4.6) on

L2 norm distance. We further zoom in those heatmaps by partitioning the whole sequences into three non-overlapping
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Table 4.5: Final sets of change-points (and their corresponding dates) found by the MS-statistic after refinement and
pruning, under significance level α = 0.01.

Set of detected change-points

MS-statisitc 44 127 146 183 188 249 301 352 357
Feb.13 May7 May26 Jul.2 Jul.7 Sep.6 Oct.28 Dec.18 Dec.23
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Figure 4.6: Heatmaps of the five seuqences on L2 norm distances, from day 1 to day 365.

subseqeunces to get a closer look at their relative distances. The three subsequences are from day 1 to day 150 (Figure

4.7), day 151 to day 300 (Figure 4.8), and day 301 to 365 (Figure 4.9), respectively.

From the first subsequences (Figure 4.7, day 1 to day 150), we see that the first change-point at Feb. 13 (day 44)

reflects mainly the change in the year of 2011, and the second change-point at May 7 (day 127) possibly reflects weak

changes in the year of 2013, 2014 and 2015. From the second subsequences (Figure 4.8, day 151 to day 300), the

change in the interval July 2 to July 7 (day 183 to 188) is common in all the five years, and the next change-point at

Sep. 6 (day 249) is mostly contributed by the year of 2012 and 2013. Finally in the third subsequences (Figure 4.9, day

301 to day 365), the last change-point of Dec. 23 (day 357) is obvious in all sequences, after which are the Christmas

holidays. The other change-point in this segment Dec. 18 (day 352), though weaker, is also suggested by all the five

sequences.
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Figure 4.7: Heatmaps of the five seuqences on L2 norm distances, from day 1 to day 150. Black lines indicate the
locations of change-points detected by the MS-statistic.
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Figure 4.8: Heatmaps of the five seuqences on L2 norm distances, from day 151 to day 300. Black lines indicate the
locations of change-points detected by the MS-statistic.
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Figure 4.9: Heatmaps of the five seuqences on L2 norm distances, from day 301 to day 365. Black lines indicate the
locations of change-points detected by the MS-statistic.

4.6 Conclusion

We propose a new nonparametric, graph-based change-point detection method using the MS-statistic to detect simulta-

neous change-points in multiple sequences of observations. Our method can be applied to datasets with any number of

sequences in arbitrary dimensions, with a fast type I error control. The method can also be applied to non-Euclidean

data as long as a proper dissimilarity measure can be defined among the observations. In constructing our MS-statistic,

we utilize the edge-counts information from the similarity graphs for each sequence of the data observations so that it is

sensitive to changes that happen simultaneously in all the sequences, as well as in a small subset of the sequences. To

make our method instant-applicable to large scale datasets, we derive the asymptotic analytic fromula to approximate

the p-values of our test. This asymptotic formula is distribution-free and performs well in finite sample as shown by the

simulations in Section 4.3.

Existing change-point detection methods for multiple sequences are limited many ways. For example, the method

in Zhang et al. (2010) is effective in detecting locational alternatives in sequences of univariate Gaussian observations.

The nonparametric ecp method (Matteson and James, 2014) can be applied to high-dimensional observations but is only

effective in detecting changes in the mean vectors. In addition, when the mean changes are only presented in a subset of

the sequences, the ecp method could also have low power. The graph-based (gSeg) max-type statistic (Chu and Chen,

2019) is more flexible than ecp but could fail when the sequences exhibit different types of changes, or the changes
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are only in few of the sequences. Our proposed MS-statistic improves upon those two methods by collecting signals

of changes from individual sequences separately, and hence is more powerful in the presence of multiple sequences.

Moreover, the MS-statistic can detect changes that happen in all of the sequences, as well as in only a small subset of

the sequences. We apply our new method to the yellow taxi trip records in Section 4.5. This example demonstrates the

effectiveness of our method in detecting change-points in multiple sequences of observations.
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Chapter 5

Conclusions

5.1 Summary of Contributions

Graph-based change-point detection is a nonparametric framework that utilizes the edge-count information on a

similarity graph constructed on the observations. It can be easily applied to data of arbitrary dimension or even

non-Euclidean data as long as a proper dissimilarity measure can be defined among the observations. We propose

three versions of the graph-based methods that tackle various difficulties one may encounter in many real applications,

making the methods more flexible and compatible with a wide range of modern change-point analysis tasks.

The first version improves the time efficiency of the algorithms, which makes the method more desirable especially

when dealing with long data sequences or high-dimensional data. In the example of the fRMI sequence of length-598

and dimensionality more than 400 thousands, our new method is more than 30 folds faster than other compelling

nonparametric methods. We incorporates the approximate k-NN information into the graph-based framework and the

total time complexity of our new method can be achieved in O
(
dn(log n+ k log d) + nk2

)
time. We work out the

analytic expressions of the edge-count test statistics, and derive the analytic p-value approximation formulas under

directed k-NN graphs. Our new method has proper control on the false discovery rate, and has power higher than or at

least on par with other competitive nonparametric methods. In addition, out new test is sensitive to various types of

alternatives, such as changes in mean, variance, covariance, skewness and kurtosis.

The second version handles data with local dependency. We incorporates the circular block permutation (CBP)

framework into the three (weighted/generalized/max-type) edge-count test statistics that improve on the original one.

The main finding is that under CBP, a new weight function that depends on the graph and the block size used in CBP

should be adopted. We derive the expression of this new optimal weight, and redefine the three edge-count test statistics

accordingly. To make the methods instant-applicable, we derive the analytic expressions to compute those test statistics
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under CBP, and their corresponding formulas for type I error control. Simulation studies show that the new tests have

good control on the false discovery rate for autocorrelated data, and the power of the new weighted edge-count test is

higher than that of the old one.

The third version provides a new tool for change-point analysis in multiple sequences of high-dimensional/non-

Euclidean observations. We construct similarity graphs for each sequence of observations, and design a new MS-statistic

that collects and accumulates signals from all the graphs. The new test can detect simultaneous changes even if the

types of changes in each of the sequences are different. In addition, the test is powerful in detecting changes that occur

in all or a subset of the sequences. We derive the analytic formulas for type I error control based on the asymptotic

properties of the test statistic. The good performance of the analytic formulas is robust to the number of sequences, data

dimensionality, and the underlying distributions of the data observations.

All three methods embrace the challenges for modern data analysis because they are all sensitive in detecting various

types of changes, and have analytic formulas to control the type I error. The three methods can be adopted individually

or as a combination. For example, in the task of change-point detection in multiple sequences, we may construct the

directed approximate k-NN graphs for each sequence, and compute the MS-statistic under circular block permutation.

Any combination of two is also an option depending on the needs of the applications. Despite the concentration on

single change-point detection, when there are multiple change-points, seeded binary segmentation (Kovács et al., 2020)

or wild binary segmentation (Fryzlewicz et al., 2014; Fryzlewicz, 2020) can be integrated.

5.2 Future Directions

There are lots of studies on the offline change-point detection problems, where the length of the observations is fixed

and the goal is to detect whether there is a change-point within the sequence. However, in many real applications, it is

equally important to consider the online change-point detection problems, where the historical data may not contain any

change-point. However, as new data points are constantly collected, the goal is to detect as soon as possible whenever a

change-point occurs. For example, to monitor whether a machine or device is working properly, we may use sensors

to collect signals from the subjects, hoping that an alert would be made if the signals start behaving abnormally. In

contrast to controlling the type I error in the offline setting, the online change-point detection supervises the average

run length under the null hypothesis. Chen (2019b) has proposed a framework for graph-based online change-point

detection. When new observations come in, the similarity graph changes accordingly. The method models the dynamic

of the similarity graphs under the independence assumption. When data are autocorrelated, the average run length

under the null hypothesis of no change-point could be much shorter than the target length we want to control. My

current endeavors include conducting research on online change-point detection methods for locally dependent data.
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The challenge lies in modeling the graph dynamic with some unknown dependence structure, which we may not have

enough data observations to estimate in the online setting.

Also, for the graph-based change-point detection framework, the choice of dissimilarity measures and similarity

graphs have not been much explored. For the former, in addition to the commonly seeing Euclidean distance or the L1

norm distance, any other proper measures can be adopted as advised by domain experts. Depending on what data we

are working with, and/or what types of changes we are concerned with, a problem-specific similarity measure could

improve the performance of change-point analysis. For the latter, take the directed approximate k-NN as an example.

The choice of k remains an open question. We want the graph to be dense enough to provide substantial information

but not so dense that too many noises may be included. In addition to the unweighted k-NN that treats all the k edges

from a certain node equally. We may also add weights to those edges to enrich the information of similarity graphs.

Besides the above-mentioned research directions that I will explore in the near future, my long-term goal is to

conduct research that provides powerful tools for analyzing modern complex data and investigate their potential in

various fields, including financial data analysis, risk modeling, and applications in bioscience.
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Appendix A

Appendix to Chapter 2

A.1 Proof of Theorem 1

Let π(i) be the index of observation yi after permutation, where i = 1, · · · , n. Then

E(RG,1(t)) = E

 ∑
(i,j)∈G

1{i≤t,j≤t}

 =
∑

(i,j)∈G

P(π(i) ≤ t, π(j) ≤ t) = nk t(t−1)
n(n−1) ,

E(RG,2(t)) = E

 ∑
(i,j)∈G

1{i>t,j>t}

 =
∑

(i,j)∈G

P(π(i) > t, π(j) > t) = nk (n−t)(n−t−1)
n(n−1) .

and for variances, it suffices to derive E(R2
G,1(t)) and E(R2

G,2(t)) since

Var(RG,1(t)) = E(R2
G,1(t))− E(RG,1(t))2,

Var(RG,2(t)) = E(R2
G,2(t))− E(RG,2(t))2.

For a pair of edges (i, j), (u, v) ∈ G, the probability of having {π(i), π(j), π(u), π(v) ≤ t} is equivalent to having all

four nodes being placed before t after permutation. This probability only depends on the number of distinct nodes in

the pair of edges. On a directed approximate k-NN graph, there are c(1) + c(2) pairs of edges that share two nodes, and

the probability of {π(i), π(j), π(u), π(v) ≤ t} is: p1(t) = t(t−1)
n(n−1) . There are c(3) + c(4) + c(5) + c(6) pairs of edges

that share only one node, and for all the three distinct nodes being placed before t after permutation, the probability is:

p2(t) = t(t−1)(t−2)
n(n−1)(n−2) . Finally, there are c(7) pairs of edges that share no node, and the probability of having all the four
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nodes before t is: p3(t) = t(t−1)(t−2)(t−3)
n(n−1)(n−2)(n−3) . Hence,

E(R2
G,1(t)) = E

 ∑
(i,j),(u,v)∈G

1{i,j,u,v≤t}

 =
∑

(i,j),(u,v)∈G

P(π(i), π(j), π(u), π(v) ≤ t)

=
(
c(1) + c(2)

)
t(t−1)
n(n−1) +

(
c(3) + c(4) + c(5) + c(6)

)
t(t−1)(t−2)
n(n−1)(n−2) + c(7) t(t−1)(t−2)(t−3)

n(n−1)(n−2)(n−3) .

For the event {π(i), π(j), π(u), π(v) > t}, we require all the nodes to be placed after t, instead. Therefore, the corre-

sponding probabilities are: q1(t) = (n−t)(n−t−1)
n(n−1) , q2(t) = (n−t)(n−t−1)(n−t−2)

n(n−1)(n−2) , and q3(t) = (n−t)(n−t−1)(n−t−2)(n−t−3)
n(n−1)(n−2)(n−3) ,

respectively. Hence,

E(R2
G,2(t)) = E

 ∑
(i,j),(u,v)∈G

1{i,j,u,v>t}

 =
∑

(i,j),(u,v)∈G

P(π(i), π(j), π(u), π(v) > t)

=
(
c(1) + c(2)

)
(n−t)(n−t−1)

n(n−1) +
(
c(3) + c(4) + c(5) + c(6)

)
(n−t)(n−t−1)(n−t−2)

n(n−1)(n−2)

+ c(7) (n−t)(n−t−1)(n−t−2)(n−t−3)
n(n−1)(n−2)(n−3) .

For the covariance between RG,1(t) and RG,2(t), we have

Cov(RG,1(t), RG,2(t)) = E(RG,1(t)RG,2(t))− E(RG,1(t))E(RG,2(t)).

When (i, j), (u, v) ∈ G share at least one node, it is not possible to have the edge (i, j) connecting both observatiosn

before t and the edge (u, v) connecting both observations after t. Thus,

E(RG,1(t)RG,2(t)) = E

 ∑
(i,j),(u,v)∈G

1{i,j≤t,u,v>t}


=

∑
(i,j),(u,v)∈G

P(π(i), π(j) ≤ t, π(u), π(v) > t) = c(7) t(t−1)(n−t)(n−t−1)
n(n−1)(n−2)(n−3) ,

and Cov(RG,1(t), RG,2(t)) follows accordingly.

A.2 Proof of Theorem 2

Given that Rw(t) = n−t−1
n−2 RG,1(t) + t−1

n−2RG,2(t) and Rdiff(t) = RG,1(t)−RG,2(t), we have

Var(Rw(t)) =
(
n−t−1
n−2

)2

Var(RG,1(t)) +
(
t−1
n−2

)2

Var(RG,2(t))
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+2
(
n−t−1
n−2

)(
t−1
n−2

)
Cov(RG,1(t), RG,2(t)),

Var(Rdiff(t)) = Var(RG,1(t)) + Var(RG,2(t))− 2Cov(RG,1(t), RG,2(t)).

Plugging in the results from Theorem 1, Var(Rw(t)) can be derived and further simplified to be

Var(Rw(t)) =
t(t− 1)(n− t)(n− t− 1)

n(n− 1)(n− 2)2(n− 3)
(A.1)

×
(

2n2k2

n− 1
+ (n− 4)

(
c(1) + c(2)

)
−
(
c(3) + c(4) + c(5) + c(6)

))
.

From Theorem 1, we always have 2c(2) + c(3) + c(4) + c(5) + c(6) = 3nk2 − 2nk +
∑n
i=1 |Di|2 for a directed

approximate k-NN, so we have

2n2k2

n− 1
+ (n− 4)(c(1) + c(2))− (c(3) + c(4) + c(5) + c(6))

=
2n2k2

n− 1
+ (n− 4)c(1) + (n− 2)c(2) −

(
2c(2) + c(3) + c(4) + c(5) + c(6)

)
=

2n2k2

n− 1
+ (n− 4)nk + (n− 2)c(2) −

(
3nk2 − 2nk +

n∑
i=1

|Di|2
)

(A.2)

≥ 2n2k2

n− 1
+ (n− 4)nk + (n− 2)2k2 −

(
3nk2 − 2nk + (n− 1)2k + k2

)
=

(
n2 − 4n+ 5

n− 1

)
k2 − k.

For a directed approximate k-NN, (A.2) is minimized when k nodes has in-degree n− 1, one node has in-degree k, and

all other nodes have in-degree zero. In this case,
∑n
i=1 |Di|2 = (n − 1)2k + k2, and c(2) is at least 2k2. Therefore,

when n ≥ 5, we have

Var(Rw(t)) =
t(t− 1)(n− t)(n− t− 1)

n(n− 1)(n− 2)2(n− 3)

((
n2 − 4n+ 5

n− 1

)
k2 − k

)
> 0.

Plugging in the results from Theorem 1, Var(Rdiff(t)) can be derived and further simplified to be

Var(Rdiff(t)) =
t(n− t)
n(n− 1)

(
n∑
i=1

|Di|2 − nk2

)
. (A.3)

For a directed approximate k-NN, we must have
∑n
i=1 |Di| = nk. Under this constraint,

∑n
i=1 |Di|2 is minimized

when all the observations have the same in-degree, i.e., |Di| = k, ∀i = 1, · · · , n. Thus, Var(Rdiff(t)) > 0 as long as

there exists one i such that |Di| 6= k.
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A.3 Proof of Theorem 3

Here, we show that {Zw([nu]) : 0 < u < 1} and {Zdiff([nu]) : 0 < u < 1} converge to independent Gaussian

processes in finite dimensional distributions under the conditions in Theorem 3. We first show that

(Zw([nu1]), . . . , Zw([nuL]), Zdiff([nu1]), . . . , Zdiff([nuL]))

converges to a multivariate Gaussian distribution as n→∞ for and 0 < u1 < u2 < · · · < uL < 1 and for any fixed L.

We then show that Cov(Zw(u), Zdiff(v)) = 0 for any 0 < u, v < 1 as n→∞. For notation simplicity, let tl = [nul],

l = 1, . . . , L.

To prove (Zw(t1), . . . , Zw(tL), Zdiff(t1), . . . , Zdiff(tL)) converges to a multivariate Gaussian distribution, we revisit

the permutation distribution. In permutation distribution, we permute the order of the observations. Let π(i) be the

observed time of yi after permutation. Then (π(1), π(2), . . . , π(n)) is a permutation of 1, . . . , n. To obtain the

permutation distribution, we can do it in two steps: (1) For each i, π̃(i) is sampled uniformly from 1, . . . , n; (2) only

those (π̃(1), π̃(2), . . . , π̃(n)) such that each value in {1, . . . , n} is sampled exactly once are retained. We can see that

each permutation has the same occurrence probability after these two steps. We call the distribution resulting from only

performing the first step the bootstrap distribution, and use PB,EB,VarB,CovB to denote the probability, expectation,

variance, and covariance under bootstrap distribution, respectively. In this section, the corresponding quantities with the

subscript P are used to denote the equivalences under the permutation distribution.

Let d(1) =
(
c(1) + c(2)

)
, d(2) =

(
c(3) + c(4) + c(5) + c(6)

)
, d(3) = c(7). Given that the π̃(i)’s are independent

under the bootstrap null distribution, we have

EB(RG,1(t)) =
t2

n2
|G|,

EB(RG,2(t)) =
(n− t)2

n2
|G|,

VarB(RG,1(t)) =
t2

n2
d(1) +

t3

n3
d(2) +

t4

n4
d(3) −

(
t2

n2
|G|
)2

,

VarB(RG,2(t)) =
(n− t)2

n2
d(1) +

(n− t)3

n3
d(2) +

(n− t)4

n4
d(3) −

(
(n− t)2

n2
|G|
)2

,

CovB(RG,1(t), RG,2(t)) =
t2(n− t)2

n4
d(3) −

(
t(n− t)
n2

|G|
)2

.

For Rw(t) = n−t−1
n−2 RG,1(t) + t−1

n−2RG,2(t), we have

EB(Rw(t)) =
t2(n− t− 1) + (n− t)2(t− 1)

n2(n− 2)
|G| := µB

w(t)|G|,
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VarB(Rw(t)) =
d(1)

n4(n− 2)2

(
t2(n+ t)(n− t)(n− t− 1)2 −

(
(n− t)4 − n2(n− t)2

)
(t− 1)2

− 2t2(n− t)2(t− 1)(n− t− 1)
)

+
d(2)

n4(n− 2)2

(
t(n− t)(2t2 − 2nt+ n)2

)
+

|G|2

n4(n− 2)2

(
(n− t)2(t− 1)− t2(n− t− 1)

)2
:=
(
σB
w(t)

)2
.

For Rdiff(t) = RG,1(t)−RG,2(t), we have

EB(Rdiff(t)) =
2t− n
n
|G| := µB

diff(t)|G|,

VarB(Rdiff(t)) =
t(n− t)
n2

(
n∑
i=1

|Di|2 + 3nk2

)
:=
(
σB
w(t)

)2
.

Let

ZB
w(t) =

Rw(t)− EB(Rw(t))√
VarB(Rw(t))

,

ZB
diff(t) =

Rdiff(t)− EB(Rdiff(t))√
VarB(Rdiff(t))

,

XB(t) =
nB(t)− t√
t(1− t/n)

, where nB(t) =

n∑
i=1

1{π̃(i)≤t}.

To prove (Zw(t1), . . . , Zw(tL), Zdiff(t1), . . . , Zdiff(tL)) converges to a multivariate Gaussian distribution under the

conditions on the graph in Theorem 1, as n→∞, we only need to prove the following two lemmas:

Lemma 3. When k = O(nβ), β < 0.25,
∑
e∈G |Ae||Be| = o(n1.5(β+1)),

∑
e∈G |Ae|2 = o(nβ+1.5), and

∑n
i=1 |Di|2−

nk2 = O(
∑n
i=1 |Di|2), for 0 < u1, u2, . . . , uL < 1, as n→∞, under the bootstrap distribution,

(
Zw(t1), . . . , Zw(tL), Zdiff(t1), . . . , Zdiff(tL), XB(t1), . . . , XB(tL)

)
(A.4)

is multivariate normal and the covariance matrix of

(
XB(t1), XB(t2), . . . , XB(tL)

)
is positive definite.

Lemma 4. We have,

1.
VarB(Rw(t))

VarP(Rw(t))
→ 1
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2.
VarB(Rdiff(t))

VarP(Rdiff(t))
→ c1

3.
EB(Rw(t))− EP(Rw(t))√

VarP(Rw(t))
→ 0

4.
EB(Rdiff(t))− EP(Rdiff(t))√

VarP(Rdiff(t))
→ 0

where c1 is a positive constant.

From Lemma 3

(
Zw(t1), . . . , Zw(tL), Zdiff(t1), . . . , Zdiff(tL)|XB(t1), XB(t2), . . . , XB(tL)

)
is multivariate normal under the bootstrap distribution. Since

(
Zw(t1), . . . , Zw(tL), Zdiff(t1), . . . , Zdiff(tL)|XB(t1) = 0, . . . , XB(tL) = 0

)
under the bootstrap distribution, and

Zw(t) =
VarB(Rw(t))

VarP(Rw(t))

(
ZB
w(t) +

EB(Rw(t))− EP(Rw(t))√
VarB(Rw(t))

)
,

Zdiff(t) =
VarB(Rdiff(t))

VarP(Rdiff(t))

(
ZB

diff(t) +
EB(Rdiff(t))− EP(Rdiff(t))√

VarB(Rdiff(t))

)
.

Then together with Lemma 4, we conclude that

(Zw([nu1]), . . . , Zw([nuL]), Zdiff([nu1]), . . . , Zdiff([nuL]))

is multivariate Gaussian under the permutation null distribution.

To prove (A.4), we only need to show that
∑L
l=1(alZ

B
w(tl) + blZ

B
diff(tl) + clX

B(tl)) is normal for any fixed al, bl,

and cl for the non-degenerating case that VarB(W ) := VarB(alZ
B
w(tl) + blZ

B
diff(tl) + clX

B(tl)) > 0. We prove the

Gaussianity of
∑L
l=1(alZ

B
w(tl) + blZ

B
diff(tl) + clX

B(tl)) by Stein’s method.

Consider the sums of the form W =
∑
i∈J ξi where J is an index set and ξ are random variables with E(ξ) = 0

and E(W 2) = 1. The following assumption restricts the dependence among {ξi : i ∈ J }.

Assumption 1. (Chen and Shao (2005), page 17) For each j ∈ J , there exists Si ⊂ Ti ⊂ J such that ξi is independent

of ξSci and ξSi is independent of ξT ci .

We will use the following specific form of Stein’s method.
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Theorem 9. (Chen and Shao (2005), Theorem 3.4) Under Assumption 1, we have

sup
h∈Lip(1)

|E(h(W ))− E(h(Z))| ≤ δ

where Lip(1) = {h : R→ R, ||h′|| ≤ 1}, Z has N(0, 1) distribution and

δ = 2
∑
i∈J

(E|ξiηiθi|+ |E(ξiηi)|E|θi|) +
∑
i∈J

E|ξiη2
i |

with ηi =
∑
j∈Si ηj and θi =

∑
j∈Ti θj , where Si and Ti are defined in Assumption 1.

We adopt the same notations with the index set J = {e : e ∈ G} ∪ {1, . . . , n}. Let

ξe,l =
1

σB
w(tl)

(
n−tl−1
n−2 1{π̃(e−)≤tl,π̃(e−)≤tl} + tl−1

n−21{π̃(e−)>tl,π̃(e−)>tl} − µ
B
w(tl)

)
+

1

σB
diff(tl)

(
1{π̃(e−)≤tl,π̃(e−)≤tl} − 1{π̃(e−)>tl,π̃(e−)>tl} − µ

B
diff(tl)

)
and

ξi,l =
1{π̃(i)≤tl} −

tl
n√

tl(1− tl/n)
.

Let ξe =
∑
l alξe,l, and ξi =

∑
l blξi,l. Then W =

∑
j∈J ξj =

∑
l(alZ

B
w(tl) + blZ

B
diff(tl) + clX

B(tl)). We have

EB(W ) = 0 and EB(W 2) = 1. Let a = max(maxl al,maxl bl,maxl cl), σB = min(minl alσ
B
w(tl),minl blσ

B
diff(tl)),

and σ0 = minl(
√
tl(1− tl/n)). Then

|ξe| ≤
2aL

σB
,∀e ∈ G; |ξi| ≤

aL

σ0
,∀i ∈ {1, . . . , n}.

For e ∈ G, let

Se = {Ae, e−, e+},

Te = Be ∪ {Nodes in Ae},

where Ae, Be are defined between line 160 and line 161 in the main context. Then Se and Te satisfy Assumption 1.

For i = 1, . . . , n, let

Si = {e ∈ Gi} ∪ {i},

Ti = {e ∈ Gi,2} ∪ {Nodes in Gi},
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where Gi,2 is the subgraph of G including all edges connect to any node in Gi. Then Si and Ti satisfy Assumption 1.

For a directed graph we have the following relations,

|Se| = |Ae|+ 2,

|Te| ≤ |Be|+ 2|Ae|,

|Si| = |Gi|+ 1,

|Ti| ≤ |Gi,2|+ 2|Gi|.

By Theorem 9, we have suph∈Lip(1) |E(h(W ))− E(h(Z))| ≤ δ for Z ∼ N(0, 1), where

δ =
1√

VarB(W )

2
∑
j∈J

(EB|ξjηjθj |+ |EB(ξjηj)|EB|θj |) +
∑
j∈J

EB|ξjη2
j |


≤ a3L3√

VarB(W )

(
10
∑
e∈G

1

σB

(
|Ae|
σB

+
2

σ0

)(
|Be|
σB

+ 2
|Ae|
σ0

))

+
a3L3√

VarB(W )

(
5

n∑
i=1

1

σ0

(
|Gi|
σB

+
1

σ0

)(
|Gi,2|
σB

+ 2
|Gi|
σ0

))

Since σB is at least of order |G|0.5, and σ0 = O(n0.5), as long as the following results hold, we have δ → 0 as

n→∞. The results we need are

∑
e∈G
|Ae||Be| = o(|G|1.5), (A.5)∑
e∈G
|Ae|2 = o(|G|n0.5), (A.6)∑

e∈G
|Be| = o(|G|n0.5), (A.7)∑

e∈G
|Ae| = o(|G|0.5n), (A.8)

n∑
i=1

|Gi||Gi,2| = o(|G|n0.5), (A.9)∑
e∈G
|Gi|2 = o(|G|0.5n), (A.10)∑

e∈G
|Gi,2| = o(|G|0.5n), (A.11)∑

e∈G
|Gi| = o(n1.5). (A.12)
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To show the above 9 results, recall the conditions in Theorem 1 are

1. k = O(nβ), β < 0.25,

2.
∑
e∈G
|Ae||Be| = o(n1.5(β+1)),

3.
∑
e∈G
|Ae|2 = o(nβ+1.5).

Note that when the third condition holds, β in the first condition must be less than 0.25 because

2
∑
e∈G
|Ae|2 =

n∑
i=1

∑
j∈VGi

(
|Gi|+ |Gj | − 1− 1{(j,i)∈G}

)2
=

n∑
i=1

∑
j∈VGi

(
|Gi|2 + |Gj |2 + 2|Gi||Gj |

)
+ o(

∑
e∈G
|Ae|2)

= 2

n∑
i=1

|Gi|3 + 2

n∑
i=1

∑
j∈VGi

|Gi||Gj |+ o(
∑
e∈G
|Ae|2);

here we use VGi to denote the vertex set of Gi. On the right hand side, the order of the second term is at most that of

the first term, so
∑
e∈G |Ae|2 and

∑n
i=1 |Gi|3 must be of the same order. In addition, by Cauchy-Schwartz, we have

√√√√ n∑
i=1

|Gi|3
n∑
i=1

12 ≥
n∑
i=1

|Gi|3/2 ≥ n
(
cnβ+1

n

)3/2

= O(n1.5β+1);

where c = 2|G|/nβ+1 is a constant, and the second inequality holds because
∑n
i=1 |Gi|3/2 is minimized when all

the nodes have the same degree. Therefore,
∑n
i=1 |Gi|3 is at least O(n3β+1). For condition 3 to hold, we require

β + 1.5 < 1.5β + 1, so β < 0.25.

• Substituting |G| by O(nβ+1), then (A.5), (A.6), and (A.12) follow immediately.

• Since |Be| ≤
∑
e∗∈Ae |Ae∗ |, we have

∑
e∈G |Be| ≤

∑
e∈G

∑
e∗∈Ae |Ae∗ | =

∑
e∈G |Ae|2. So (A.6) ensures

(A.7).

• By Cauchy-Schwartz, we have
∑
e∈G |Ae| ≤

√∑
e∈G |Ae|2

∑
e∈G 12 = o(nβ+1.25). Since (β + 1.25) −

(0.5(β + 1) + 1) = 0.5β − 0.25 < 0 when β < 0.25, (A.8) holds.

• Since |Gi,2| ≤
∑
j∈VGi

|Gj |, we have
∑n
i=1 |Gi,2| ≤

∑n
i=1

∑
j∈VGi

|Gj | ≤
∑

(i,j)∈G(|Gi| + |Gj |) ≤

2
∑
e∈G |Ae|. So (A.8) ensures (A.11).

•
∑
e∈G |Ae| =

∑
(i,j)∈G(|Gi|+ |Gj | − 1− 1{(j,i)∈G}) =

∑n
i=1 |Gi|2 − |G| − c(2). Since |G| = o(n0.5β+1.5)
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when |G| = O(nβ+1) with β < 0.25, (A.8) and (A.10) are equivalent.

• For (A.9), since
∑n
i=1 |Gi||Gi,2| ≤

∑n
i=1 |Gi|

∑
j∈VGi

|Gj | =
∑n
i=1

∑
j∈VGi

|Gi||Gj | ≤ 4
∑

(i,j)∈G |Gi||Gj | ≤

4
∑
e∈G |Ae|2, thus (A.6) ensures (A.9).

Hence, (A.5) - (A.12) can be derived from conditions in Theorem 1.

The proof for the second part of Lemma 3 (showing that the covariance matrix of (XB(t1), XB(t2), . . . , XB(tL))

is positive definite) can be done in the same way as that in the Appendix of Chen and Zhang (2015) and is omitted here.

Now we prove Lemma 4: Note that since
∑n
i=1 |Di|2 ≤ 2

∑
e∈G |Ae|2 = o(nβ+1.5), the leading term in both

VarP(Rw(t)) and VarB(Rw(t)) is only the term with d(1). We have

lim
n→∞

VarP(Rw(t))

VarB(Rw(t))
= lim
n→∞

( tn )2(1− t
n )2d(1)

( tn )2(1− t
n )2
( (

1− ( tn )2
)
− (1− t

n )2 + 1− 2( tn )(1− t
n )
)
d(1)

= 1.

Since, EB(Rw(t))− EP(Rw(t)) = t(n−t)
n2(n−1) |G|, when |G| = O(nβ+1), β < 0.25, we have

lim
n→∞

EB(Rw(t))− EP(Rw(t))√
VarP(Rw(t))

= lim
n→∞

|G|1/2

n
= 0.

Similarly, for Rdiff(t), when
∑n
i=1 |Di|2 − nk2 = O(

∑n
i=1 |Di|2),

lim
n→∞

VarP(Rdiff(t))

VarB(Rdiff(t))
= lim
n→∞

t(n−t)
n(n−1)

(∑n
i=1 |Di|2 − nk2

)
t(n−t)
n2 (

∑n
i=1 |Di|2 + 3nk2)

= lim
n→∞

∑n
i=1 |Di|2 − nk2∑n
i=1 |Di|2 + 3nk2

= c1.

The above limit converges to a positive constant, because
∑n
i=1 |Di|2 − nk2 ≥ 0, and

∑n
i=1 |Di|2 = nk2 if and only

if |Di| = k, ∀i = 1, . . . , n.

Since EB(Rdiff(t))− EP(Rdiff(t)) = 0, we have

lim
n→∞

EB(Rdiff(t))− EP(Rdiff(t))√
VarP(Rdiff(t))

= 0.

Finally, we have to show that as n → ∞, CovP(Zw(s), Zdiff(t)) = 0, ∀s, t. Without loss of generality, let s < t

and limn→∞ s/n = u, limn→∞ t/n = v. Since,

CovP(Zw(s), Zdiff(t)) =
EP(Rw(s)Rdiff(t))− EP(Rw(s))EP(Rdiff(t))√

VarP(Rw(s))VarP(Rdiff(t))
,
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and

EP(Rw(s)Rdiff(t)) = n−s−1
n−2

(
EP(RG,1(s)RG,1(t))− EP(RG,1(s)RG,2(t))

)
+ s−1
n−2

(
EP(RG,2(s)RG,1(t))− EP(RG,2(s)RG,2(t))

)
=

(n− 2t)(s− 1)(s− n+ 1)

n(n− 1)(n− 2)
|G|2,

EP(Rw(s)) =

(
n− s− 1

n− 2

s(s− 1)

n(n− 1)
+
s− 1

n− 2

(n− s)(n− s− 1)

n(n− 1)

)
|G|,

EP(Rdiff(s)) =

(
s(s− 1)

n(n− 1)
+

(n− s)(n− s− 1)

n(n− 1)

)
|G|.

Therefore,

lim
n→∞

(EP(Rw(s)Rdiff(t))− EP(Rw(s))EP(Rdiff(t)))

= (1− 2v)u(u− 1)|G|2 − u(1− u)|G|(v2 − (1− v)2)|G| = 0.

A.4 Derivations of Cw(t) and Cdiff(t)

As Cw(t) and Cdiff(t) are the partial derivatives of the covariances of Zw(t) and Zdiff(t), respectively. We first derive

Cov(Zw(s), Zw(t)) and Cov(Zdiff(s), Zdiff(t)) analytically. We may start with derivingCdiff(t) as it is relatively simple,

and the derivation of Cw(t) follows exactly the same procedure. Notice that

Cov(Rdiff(s), Rdiff(t)) = Cov(RG,1(s), RG,1(t))− Cov(RG,1(s), RG,2(t))

− Cov(RG,2(s), RG,1(t)) + Cov(RG,2(s), RG,2(t)).

We can derive the above four covariances through combinatorial analysis similar to what we have done in proving

Theorem 1:

Cov(RG,1(s), RG,1(t)) = d(1) s(s−1)
n(n−1) + d(2) s(s−1)(t−2)

n(n−1)(n−2) + d(3) s(s−1)(t−2)(t−3)
n(n−1)(n−2)(n−3)

−
(
n2k2p1(s)p1(t)

)
,

Cov(RG,1(s), RG,2(t)) = d(3) s(s−1)(n−t)(n−t−1)
n(n−1)(n−2)(n−3) −

(
n2k2p1(s)q1(t)

)
,

Cov(RG,2(s), RG,1(t)) = d(1) (t−s)(t−s−1)
n(n−1) + d(2) s(t−s)(n−s−1)+(t−s)(t−s−1)(n−s−2)

n(n−1)(n−2)
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+ d(3) s(s−1)(n−s)(n−s−1)+2s(t−s)(n−s−1)(n−s−2)+(t−s)(t−s−1)(n−s−2)(n−s−3)
n(n−1)(n−2)(n−3)

−
(
n2k2q1(s)p1(t)

)
,

Cov(RG,2(s), RG,2(t)) = d(1) (n−t)(n−t−1)
n(n−1) + d(2) (n−t)(n−t−1)(n−s−2)

n(n−1)(n−2)

+ d(3) (n−t)(n−t−1)(n−s−2)(n−s−3)
n(n−1)(n−2)(n−3) −

(
n2k2q1(s)q1(t)

)
.

where d(1) =
(
c(1) + c(2)

)
, d(2) =

(
c(3) + c(4) + c(5) + c(6)

)
, d(3) = c(7). Let |Gi| be the total degree of node i, then

on a directed k-NN, |Gi| = |Di|+k, for i = 1, . . . , n. We can derive the following relations: d(2) =
∑n
i=1 |Gi|2−2d(1),

and d(3) = n2k2 −
∑n
i=1 |Gi|2 + d(1). The above four covariances and be rearranged and simplified to

Cov(RG,1(s), RG,1(t)) = s(s−1)(n−t)(n−t−1)
n(n−1)(n−2)(n−3)

(
d(1) + t−2

n−t−1

(
n∑
i=1

|Gi|2 + t−3
n−tn

2k2

))

−
(
n2k2p1(s)p1(t)

)
,

Cov(RG,1(s), RG,2(t)) = s(s−1)(n−t)(n−t−1)
n(n−1)(n−2)(n−3)

(
n2k2 −

n∑
i=1

|Gi|2 + d(1)

)
−
(
n2k2p1(s)q1(t)

)
,

Cov(RG,2(s), RG,1(t)) = (a1(s, t)− 2a2(s, t) + a3(s, t)) d(1) + (a2(s, t)− a3(s, t))

n∑
i=1

|Gi|2

+ a3(s, t)n2k2 −
(
n2k2q1(s)p1(t)

)
,

Cov(RG,2(s), RG,2(t)) = s(s−1)(n−t)(n−t−1)
n(n−1)(n−2)(n−3)

(
d(1) + n−s−2

s−1

(
n∑
i=1

|Gi|2 + n−s−3
s n2k2

))

−
(
n2k2q1(s)q1(t)

)
,

where a1(s, t) = (t−s)(t−s−1)
n(n−1) , a2(s, t) = s(t−s)(n−s−1)+(t−s)(t−s−1)(n−s−2)

n(n−1)(n−2) , and

a3(s, t) = s(s−1)(n−s)(n−s−1)+2s(t−s)(n−s−1)(n−s−2)+(t−s)(t−s−1)(n−s−2)(n−s−3)
n(n−1)(n−2)(n−3) .

By plugging in and simplifying the expressions, we have

Cov(Rdiff(s), Rdiff(t)) =
s(n− t)
n(n− 1)

(
n∑
i=1

|Gi|2 − 4nk2

)
.

94



Therefore, with the expression of Var(Rdiff(t)) given by (A.3), and note that on a directed k-NN,
∑n
i=1 |Gi|2 =∑n

i=1 |Di|2 + 3nk2, we have

ρdiff(s, t) = Cov(Zdiff(s), Zdiff(t)) =
Cov(Rdiff(s), Rdiff(t))√
Var(Rdiff(s))Var(Rdiff(t))

=

s(n−t)
n(n−1)

(∑n
i=1 |Gi|2 − 4nk2

)√
s(n−s)
n(n−1) (

∑n
i=1 |Gi|2 − 4nk2) t(n−t)

n(n−1) (
∑n
i=1 |Gi|2 − 4nk2)

=
s(n− t)√

st(n− s)(n− t)
.

Since Cdiff(t) = lim
s↗t

∂ρdiff(s, t)

∂s
, by taking the partial derivative and plugging in s = t, we have

Cdiff(t) =
n

2t(n− t)
.

Remark 3. Let ρ∗diff(u, v) = Cov(Z∗diff(u), Z∗diff(v)) be the covariance function of the limiting process, where {Z∗diff(u) :

0 < u < 1} denotes {Zdiff([nu]) : 0 < u < 1}. The expression of ρ∗diff(u, v) does not depend on G at all. For u ≤ v,

we have

ρ∗diff(u, v) = lim
n→∞

Cov(Zdiff(s), Zdiff(t)) =
u(1− v)√

u(1− u)v(1− v)
.

Similarly, for u > v, we have

ρ∗diff(u, v) =
v(1− u)√

u(1− u)v(1− v)
.

For the derivation of Cw(t), notice that

Cov(Rw(s), Rw(t)) = Cov
(
n−s−1
n−2 RG,1(s) + s−1

n−2RG,2(s), n−t−1
n−2 RG,1(t) + t−1

n−2RG,2(t)
)

= (n−s−1
n−2 )(n−t−1

n−2 )Cov(RG,1(s), RG,1(t)) + (n−s−1
n−2 )( t−1

n−2 )Cov(RG,1(s), RG,2(t))

+ ( s−1
n−2 )(n−t−1

n−2 )Cov(RG,2(s), RG,1(t)) + ( s−1
n−2 )( t−1

n−2 )Cov(RG,2(s), RG,2(t)).

We can then derive Cov(Zw(s), Zw(t)) in a similar way, since

Cov(Zw(s), Zw(t)) =
Cov(Rw(s), Rw(t))√
Var(Rw(s))Var(Rw(t))

with the expression of Var(Rw(t)) given by (A.1), and after some simplification, we have

ρw(s, t) = Cov(Zw(s), Zw(t)) =
Cov(Rw(s), Rw(t))√
Var(Rw(s))Var(Rw(t))

95



=

d(1)(n−1)(n−2)−
∑n
i=1 |Gi|

2(n−1)+2n2k2

n(n−1)2(n−2)2 s(s−1)(n−t)(n−t−1)

d(1)(n−1)(n−2)−
∑n
i=1 |Gi|

2(n−1)+2n2k2

n(n−1)2(n−2)2
√
st(s−1)(t−1)(n−s)(n−t)(n−s−1)(n−t−1)

=
s(s− 1)(n− t)(n− t− 1)√

st(s− 1)(t− 1)(n− s)(n− t)(n− s− 1)(n− t− 1)

Since Cw(t) = lim
s↗t

∂ρw(s, t)

∂s
, by taking the partial derivative and plugging in s = t, we have

Cw(t) =
n(n− 1)(2t2/n− 2t+ 1)

2t(n− t)(t2 − nt+ n− 1)
.

Remark 4. Let ρ∗w(u, v) = Cov(Z∗w(u), Z∗w(v)) be the covariance function of the limiting process, where {Z∗w(u) :

0 < u < 1} denotes {Zw([nu]) : 0 < u < 1}. The expression of ρ∗w(u, v) does not depend on G at all. For u ≤ v, we

have

ρ∗w(u, v) = lim
n→∞

Cov(Zw(s), Zw(t)) =
u(1− v)

v(1− u)
.

Similarly, for u > v, we have

ρ∗w(u, v) =
v(1− u)

u(1− v)
.

A.5 Derivations of E(Z3
w(t)) and E(Z3

diff(t))

For the 24 configurations listed in Section 2.3 in the main context, N (1), . . . , N (24), we can further classify then into 8

categories by shape regardless of the directions of the edges. Let

C1 =

2∑
l=1

N (l), C2 =

8∑
l=3

N (l), C3 =

12∑
l=11

N (l), C4 =

16∑
l=13

N (l),

C5 =

20∑
l=17

N (l), C6 =

23∑
l=21

N (l), C7 = N (24), C8 =

10∑
l=9

N (i).

Then we have

E
(
R3
G,1(t)

)
= C1p1(t) + (C2 + C8)p2(t) + (C3 + C4 + C5) p3(t)

+C6

(
p3(t) t−4

n−4

)
+ C7

(
p3(t) (t−4)(t−5)

(n−4)(n−5)

)
E
(
R3
G,2(t)

)
= C1q1(t) + (C2 + C8)q2(t) + (C3 + C4 + C5) q3(t)

+C6

(
q3(t)n−t−4

n−4

)
+ C7

(
q3(t) (n−t−4)(n−t−5)

(n−4)(n−5)

)
E
(
R2
G,1(t)

)
=

(
c(1) + c(2)

)
p1(t) +

(
c(3) + c(4) + c(5) + c(6)

)
p2(t) + c(7)p3(t)
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E
(
R2
G,2(t)

)
=

(
c(1) + c(2)

)
q1(t) +

(
c(3) + c(4) + c(5) + c(6)

)
q2(t) + c(7)q3(t)

and the expectations of all possible cross products of RG,1(t) and RG,2(t):

E
(
R2
G,1(t)RG,2(t)

)
= C3

3 r(t) + C6

3

(
r(t) t−2

n−4

)
+ C7

(
r(t) (t−2)(t−3)

(n−4)(n−5)

)
E
(
RG,1(t)R2

G,2(t)
)

= C3

3 r(t) + C6

3

(
r(t)n−t−2

n−4

)
+ C7

(
r(t) (n−t−2)(n−t−3)

(n−4)(n−5)

)
E (RG,1(t)RG,2(t)) = c(7)r(t)

Then E
(
Z3
w(t)

)
follows as

E
(
Z3
w(t)

)
= E

(Rw(t)− E (Rw(t))

Var (Rw(t))
1/2

)3


=
E
(
R3
w(t)

)
− 3E

(
R2
w(t)

)
E (Rw(t)) + 3E (Rw(t)) E (Rw(t))

2 − E (Rw(t))
3

Var (Rw(t))
3/2

=
E
(
R3
w(t)

)
− 3E

(
R2
w(t)

)
E (Rw(t)) + 2E (Rw(t))

3

Var (Rw(t))
3/2

,

with

E
(
R3
w(t)

)
= (n−t−1

n−2 )3E
(
R3
G,1(t)

)
+ 3(n−t−1

n−2 )2( t−1
n−2 )E

(
R2
G,1(t)RG,2(t)

)
+3(n−t−1

n−2 )( t−1
n−2 )2E

(
RG,1(t)R2

G,2(t)
)

+ ( t−1
n−2 )3E

(
R3
G,2(t)

)
.

Similarly, E
(
Z3

diff(t)
)

follows as

E
(
Z3

diff(t)
)

= E

(Rdiff(t)− E (Rdiff(t))

Var (Rdiff(t))
1/2

)3


=
E
(
R3

diff(t)
)
− 3E

(
R2

diff(t)
)

E (Rdiff(t)) + 3E (Rdiff(t)) E (Rdiff(t))
2 − E (Rdiff(t))

3

Var (Rdiff(t))
3/2

=
E
(
R3

diff(t)
)
− 3E

(
R2

diff(t)
)

E (Rdiff(t)) + 2E (Rdiff(t))
3

Var (Rdiff(t))
3/2

,

with

E
(
R3

diff(t)
)

= E
(
R3
G,1(t)

)
− 3E

(
R2
G,1(t)RG,2(t)

)
+ 3E

(
RG,1(t)R2

G,2(t)
)
− E

(
R3
G,2(t)

)
.
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A.6 Other edge-count statistics on a directed approximate k-NN graph

A.6.1 Generalized edge-count test statistic

The generalized edge-count test statistic is defined as

S(t) =

(
RG,1(t)− E (RG,1(t))

RG,2(t)− E (RG,2(t))

)T
Σ−1(t)

(
RG,1(t)− E (RG,1(t))

RG,2(t)− E (RG,2(t))

)
, (A.13)

where Σ(t) is the covariance matrix of (RG,1(t), RG,2(t)) under permutation. The null hypothesis of homogeneity

(2.1) is rejected if the test statistic

max
n0≤t≤n1

S(t) (A.14)

with n0 and n1 pre-specified, is larger than the critical value for a given significance level.

It can be shown that S(t) = Z2
w(t) + Z2

diff(t), and based on Theorem 3, we can approximate the tail probability

P
(

max
n0≤t≤n1

S(t) > b
)
≈ be−b/2

2π

∫ 2π

0

∫ n1

n0

u(t, θ)ν
(√

2bu(t, θ)
)
dtdθ

where

u(t, θ) = Cw(t) sin2(θ) + Cdiff(t) cos2(θ).

Under the same setting as in Section 2.3, we check the performance of the analytic p-value approximation for the

generalized edge-count test statistic. The results are presented in Table A.1.

A.6.2 Weighted edge-count test statistics

The weighted edge-count test statistic is Zw(t), and the null hypothesis of homogeneity (2.1) is rejected if the test

statistic

max
n0≤t≤n1

Zw(t) (A.15)

with n0 and n1 pre-specified, is larger than the critical value for a given significance level.
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Table A.1: Critical values for the test statistics max
n0≤t≤n1

S(t) on the 3-NN’s graph at α = 0.05.

n0 = 100 n0 = 75 n0 = 50 n0 = 25
Ana 13.10 13.38 13.70 14.11

Distributions and dimensions

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

Per Per Per Per

Multivariate
Gaussian

d = 10
d = 100

d = 1, 000

12.94 13.32 13.91 15.02
13.37 14.07 14.91 16.81
13.39 14.28 15.55 18.62

Multivariate
t with df = 5

d = 10
d = 100

d = 1, 000

13.07 13.37 13.92 15.16
13.32 14.06 15.13 17.43
14.59 16.10 18.13 22.93

Multivariate
log-normal

d = 10
d = 100

d = 1, 000

12.96 13.12 13.66 14.94
13.26 13.81 14.67 16.39
15.00 16.56 18.68 24.30

Based on Theorem 3, the tail probability (with skewness correction) can be approximated by

P
(

max
n0≤t≤n1

Zw(t) > b
)
≈ bφ(b)

∫ n1

n0

Sw(t)Cw(t)ν
(√

2b2Cw(t)
)
dt.

Under the same setting as in Section 2.3, we check the performance of the analytic p-value approximation for the

weighted edge-count test statistic. The results are presented in Table A.2.

Table A.2: Critical values for the test statistics max
n0≤t≤n1

Zw(t) on the 3-NN’s graph at α = 0.05.

Distributions and dimensions

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

Ana Per Ana Per Ana Per Ana Per

Multivariate
Gaussian

d = 10
d = 100

d = 1, 000

3.06 3.05 3.12 3.12 3.21 3.25 3.37 3.46
3.04 3.03 3.10 3.10 3.19 3.20 3.34 3.43
3.03 3.02 3.10 3.10 3.18 3.20 3.32 3.44

Multivariate
t with df = 5

d = 10
d = 100

d = 1, 000

3.06 3.07 3.13 3.15 3.21 3.25 3.37 3.46
3.03 3.03 3.10 3.12 3.18 3.23 3.32 3.47
3.02 3.05 3.08 3.14 3.16 3.26 3.31 3.49

Multivariate
log-normal

d = 10
d = 100

d = 1, 000

3.07 3.06 3.14 3.13 3.23 3.25 3.38 3.44
3.05 3.05 3.12 3.12 3.20 3.22 3.34 3.43
3.02 3.05 3.07 3.19 3.14 3.37 3.29 3.59
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A.6.3 Original edge-count test statistics

Let RG,0(t) be the number of between-group edges on a directed similarity graph G. That is

RG,0(t) =
∑

(i,j)∈G

(
1{i≤t,j>t} + 1{i>t,j≤t}

)

The original edge-count test statistic, which is the prototype of the graph-based change-point detection proposed in

Chen and Zhang (2015), is defined as

Z0(t) = −RG,0(t)− E(RG,0(t))√
Var(RG,0(t))

(A.16)

and the null hypothesis of homogeneity (2.1) is rejected if the test statistic

max
n0≤t≤n1

Z0(t) (A.17)

with n0 and n1 pre-specified, is larger than the critical value for a given significance level.

Similarly, we can approximate (with skewness correction) the tail probability by

P
(

max
n0≤t≤n1

Z0(t) > b
)
≈ bφ(b)

∫ n1

n0

S0(t)C0(t)ν
(√

2b2C0(t)
)
dt

where

S0(t) =
exp

(
1
2 (b− θ̂b,0(t))2 + 1

6γ0(t)θ̂3
b,0(t))

)√
1 + γ0(t)θ̂b,0(t)

,

C0(t) = lim
s↗t

∂ρ0(s, t)

∂s
, ρ0(s, t) = Cov(Z0(s), Z0(t));

with γ0(t) = E
(
Z3

0 (t)
)

and θ̂b,0(t) = (−1 +
√

1 + 2bγ0(t))/γ0(t). Under the same setting as in Section 2.3, we

check the performance of the analytic p-value approximation for the original edge-count test statistic. The results are

presented in Table A.3.
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Table A.3: Critical values for the test statistics max
n0≤t≤n1

Z0(t) on the 3-NN’s graph at α = 0.05.

Distributions and dimensions

Critical Values
n0 = 100 n0 = 75 n0 = 50 n0 = 25

Ana Per Ana Per Ana Per Ana Per

Multivariate
Gaussian

d = 10
d = 100

d = 1, 000

2.90 2.91 2.92 2.94 2.95 2.97 2.97 2.99
2.68 2.63 2.68 2.63 2.68 2.63 2.69 2.63
2.70 2.67 2.72 2.67 2.73 2.67 2.73 2.67

Multivariate
t with df = 5

d = 10
d = 100

d = 1, 000

2.90 2.93 2.92 2.96 2.95 2.98 2.96 3.00
2.65 2.61 2.65 2.61 2.66 2.61 2.66 2.61
2.51 2.47 2.51 2.47 2.51 2.47 2.51 2.47

Multivariate
log-normal

d = 10
d = 100

d = 1, 000

2.90 2.95 2.93 2.98 2.95 3.02 2.97 3.05
2.76 2.72 2.77 2.72 2.78 2.72 2.78 2.72
2.37 2.35 2.37 2.35 2.37 2.35 2.37 2.35

A.7 Additional results on empirical size

Table A.4: Empirical size: Fractions of simulation runs (out of 10,000 simulations) that the null hypothesis is rejected
when there is no change-point in the sequence (n = 1, 000).

(d = 30) α = 0.10 α = 0.05 α = 0.01

New 0.103 0.052 0.011
5-MST 0.098 0.053 0.011
ecp 0.099 0.051 0.012

(d = 35) α = 0.10 α = 0.05 α = 0.01

New 0.097 0.050 0.011
5-MST 0.095 0.055 0.011
ecp 0.103 0.049 0.011
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A.8 The fMRI Data Profiles

Here we show the three perspectives of the images for the two subjects we use in Section 2.5.1 of Chpater 2 (ID

SID-000005 and SID-000024) at t = 150, 250, 350, 450 and 550. The complete sequences of the images are available

at https://openneuro.org/datasets/ds003017/versions/1.0.2.

t = 150 t = 250 t = 350

t = 450 t = 550

Figure A.1: The three perspectives of the fMRI images for subject SID-000005 at t = 150, 250, 350, 450, 550.

t = 150 t = 250 t = 350

t = 450 t = 550

Figure A.2: The three perspectives of the fMRI images for subject SID-000024 at t = 150, 250, 350, 450, 550.
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Appendix B

Appendix to Chapter 3

B.1 Proof of Theorem 5

Since,

RG,1(t) =
∑

(i,j)∈G

1{gπCBP(i)(t)=gπCBP(j)(t)=0}

we have its expectation,

ECBP(RG,1(t)) =
∑

(i,j)∈G

P(πCBP(i) ≤ t, πCBP(j) ≤ t)

Therefore, for each edge in G formed by yi and yj , we have to compute the probability that they are both indexed

before t after circular block permutation, or equivalently, the probability of having the event (πCBP(i) ≤ t, πCBP(j) ≤ t).

To compute this probability, we only need to consider the particular case where δij < L and b > 0. The reason is that

from the proof of ECBP(RG,0(t)) in Chen (2019a), we learn that if δij ≥ L, we can plug in δij = L, and if b = 0, we

can plug in b = 0 to the formula we obtain in this particular case.

For an edge with δij < L and b > 0, there are six configurations that make the event (πCBP(i) ≤ t, πCBP(j) ≤ t)

possible: (1) yi and yj are in the same block with both of them in the left side of the block, (2) yi and yj are in the

same block with yi in the left side and yj in the right side of the block, (3) yi and yj are in the same block with both of

them in the right side of the block, (4) yi and yj are in two consecutive blocks with both yi and yj in the left side of

their blocks, (5) yi and yj are in two consecutive blocks with yi in the right side of its block and yj in the left side of
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its block, and (6) yi and yj are in two consecutive blocks with both yi and yj in the right side of their blocks. (By

symmetry, we can only consider the situation where yi is to the left of yj .)

Table B.1: Different Configurations for δij < L, b > 0 and i to the left of j. For each configuration, Prob.1 is the
probability of having this configuration among L different ways to do the blocking, and Prob.2 is the probability of
having (πCBP(i) ≤ t, πCBP(j) ≤ t) after permutation given the configuration. (In this table, δij is shortened as δ)

B1,l B1,r B2,l B2,r Prob.1 Prob.2
i, j (b−δ)+

L
a+1
m

i j min(b,L−δ)−(b−δ)+
L

a
m

i, j (L−b−δ)+
L

a
m

i j (b+δ−L)+
L

a(a+1)
m(m−1)

i j min(b,L−δ)−(b−δ)+
L

a2

m(m−1)

i j (δ−b)+
L

a(a−1)
m(m−1)

Summing over the products of Prob.1 and Prob.2 in Table B.1, we obtain that

P(πCBP(i) ≤ t, πCBP(j) ≤ t) = (min(b, L− δ)− (b− δ)+)(
a(m+ a− 1)

n(m− 1)
) + (b− δ)+(

a+ 1

n
)

+(δ − b)+(
a(a− 1)

n(m− 1)
) + (L− b− δ)+(

a

n
) + (b+ δ − L)+(

a(a+ 1)

n(m− 1)
)

The proof for ECBP(RG,1(t)) is completed here.

ECBP(RG,2(t)) =
∑

(i,j)∈G

P(πCBP(i) > t, πCBP(j) > t), by the same token, for an edge formed by yi and yj , we have

to compute the probability that both yi and yj are indexed after t under circular block permutation. The same six

scenarios apply, and Prob.1 remains the same, but Prob.2 will differ.

Table B.2: Different Configurations for δij < L, b > 0 and i to the left of j. For each configuration, Prob.1 is the
probability of having this configuration among L different ways to do the blocking, and Prob.2 is the probability of
having (πCBP(i) > t, πCBP(j) > t) after permutation given the configuration. (In this table, δij is shortened as δ)

B1,l B1,r B2,l B2,r Prob.1 Prob.2
i, j (b−δ)+

L
m−a−1
m

i j min(b,L−δ)−(b−δ)+
L

m−a−1
m

i, j (L−b−δ)+
L

m−a
m

i j (b+δ−L)+
L

(m−a−1)(m−a−2)
m(m−1)

i j min(b,L−δ)−(b−δ)+
L

(m−a−1)2

m(m−1)

i j (δ−b)+
L

(m−a)(m−a−1)
m(m−1)
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Summing over the products of Prob.1 and Prob.2 in Table B.2, we obtain that

P(πCBP(i) > t, πCBP(j) > t) = (min(b, L− δ)− (b− δ)+)(
(m− a− 1)(2m− a− 2)

n(m− 1)
) + (b− δ)+(

m− a− 1

n
)

+(δ − b)+(
(m− a)(m− a− 1)

n(m− 1)
) + (L− b− δ)+(

m− a
n

) + (b+ δ − L)+(
(m− a− 1)(m− a− 2)

n(m− 1)
)

The proof for ECBP(RG,2(t)) is completed.

B.2 Proof of Theorem 6

For variances, since

VarCBP(RG,1(t)) = ECBP

(
R2
G,1(t)

)
− (ECBP(RG,1(t)))

2

VarCBP(RG,2(t)) = ECBP

(
R2
G,2(t)

)
− (ECBP(RG,2(t)))

2

we only have to work out

ECBP

(
R2
G,1(t)

)
=

∑
(i,j),(u,v)∈G

P (gπCBP(i)(t) = gπCBP(j)(t) = gπCBP(u)(t) = gπCBP(v)(t) = 0)

=
∑

(i,j),(u,v)∈G

P (πCBP(i), πCBP(j), πCBP(u), πCBP(v) ≤ t)

ECBP

(
R2
G,2(t)

)
=

∑
(i,j),(u,v)∈G

P (gπCBP(i)(t) = gπCBP(j)(t) = gπCBP(u)(t) = gπCBP(v)(t) = 1)

=
∑

(i,j),(u,v)∈G

P (πCBP(i), πCBP(j), πCBP(u), πCBP(v) > t)

To prove VarCBP(RG,1(t)), it suffices to show that

ECBP

(
R2
G,1(t)

)
= d1p1(a) + d2p2(a) + d3p3(a) + d4p4(a)

Since

ECBP

(
R2
G,1(t)

)
=

∑
(i,j),(u,v)∈G

P(πCBP(i), πCBP(j), πCBP(u), πCBP(v) ≤ aL)
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Now, di, i = 1, 2, 3, 4, represent the sum of probability that the four nodes of each of the |G|2 pairs of edges being

blocked into i different blocks. No matter how many distinct blocks the four nodes are blocked into, the probability of

having all four nodes indexed before t, for t = aL, is equivalent to having all blocks containing these four nodes ending

up within the first a blocks after permutation.

Given a pair of edges (i, j), (u, v) ∈ G, it must belong to one the the following fours events, after doing the

blocking, but before permutation:

1. If the four nodes are blocked into one single block (scenario 1), then the probability of having this block within

the first a blocks after permutation is: p1(a) = a
m

2. If the four nodes are blocked into two different blocks (scenario 2,3,4,5), then the probability of having these two

blocks within the first a blocks after permutation is: p2(a) = a(a−1)
m(m−1)

3. If the four nodes are blocked into three different blocks (scenario 6,7,8), then the probability of having these

three blocks within the first a blocks after permutation is: p3(a) = a(a−1)(a−2)
m(m−1)(m−2)

4. If all of the four nodes are three different blocks (scenario 9), then the probability of having these three blocks

within the first a blocks after permutation is: p4(a) = a(a−1)(a−2)(a−3)
m(m−1)(m−2)(m−3)

Denote the above four eventsE1, E2, E3, E4, respectively, and useA to denote the event {πCBP(i), πCBP(j), πCBP(u), πCBP(v) ≤

aL} just for here. Then

ECBP

(
R2
G,1(t)

)
=

∑
(i,j),(u,v)∈G

( 4∑
r=1

P (A|Er)P (Er)
)

The proof for VarCBP(RG,1(t)) is completed here.

The proof for VarCBP(RG,2(t)) can be done in the same way but all the blocks involved should be ended up within the

last (m− a) blocks after circular block permutation. Therefore, here we skip the proof.

To prove CovCBP(RG,1(t), RG,2(t)), it is sufficient to show that

ECBP(RG,1(t)RG,2(t)) = c4p11(a) + c7p12(a) + c8p21(a) + c9p22(a)
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Since

ECBP(RG,1(t)RG,2(t)) =
∑

(i,j),(u,v)∈G

P(πCBP(i), πCBP(j) ≤ aL;πCBP(u), πCBP(v) > aL)

Here we only consider those t’s with t = aL. For the event {πCBP(i), πCBP(j) ≤ aL;πCBP(u), πCBP(v) > aL} to be

possible, any node from the first edge (i, j) cannot be in the same block with any node from the second edge (u, v), for

a given pairs of edges (i, j), (u, v) ∈ G. When the blocking is determined, scenarios 1,2,3,5,6 have zero probability of

having {πCBP(i), πCBP(j) ≤ aL;πCBP(u), πCBP(v) > aL} after permutation. As a result, we only need to take scenarios

4,7,8,9 into consideration.

The probability of having {πCBP(i), πCBP(j) ≤ aL;πCBP(u), πCBP(v) > aL} of each scenarios 4,7,8,9:

1. Scenario 4: Nodes (i, j) are in one block; nodes (u, v) are in another:

In this scenario, the block containing (i, j) must be in the first a blocks and the block containing (u, v) must be

in the last m− a blocks after permutation. Therefore, the probability is: p11(a) = a(m−a)
m(m−1)

2. Scenario 7: Nodes (i, j) are in one block; node u and node v are in two other blocks:

In this scenario, the block containing (i, j) must be in the first a blocks and the other two blocks containing

node u and node v must both be in the last m − a blocks after permutation. Therefore, the probability is:

p12(a) = a(m−a)(m−a−1)
m(m−a)(m−2)

3. Scenario 8: Nodes (u, v) are in one block; node i and node j are in two other blocks:

In this scenario, the block containing (u, v) must be in the last m− a blocks and the other two blocks containing

node i and node j must both be in the first a blocks after permutation. Therefore, the probability is: p21(a) =

a(a−1)(m−a)
m(m−a)(m−2)

4. Scenario 9: All four nodes (i, j), (u, v) are in different blocks:

In this scenario, the two blocks containing node i or node j must be in the first a blocks and the other two block

containing node u and node v must be in the last m− a blocks after permutation. Therefore, the probability is

p22(a) = a(a−1)(m−a)(m−a−1)
m(m−1)(m−2)(m−3)

The proof for CovCBP(RG,1(t), RG,2(t)) is completed here.
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B.3 Proof of Lemma 2

In Chu and Chen (2019), Rw0(t) is defined as Rw0(t) = q0(t)RG,1(t) + (1 − q0(t))RG,2(t) where q0(t) = n−t−1
n−2 ,

which is chosen to minimize VarP(Rw(t)(t)) under permutation. However, under circular block permutation, the weight

function that minimizes VarCBP(Rw(t)(t)) is no longer this q0(t) as proposed in Chu and Chen (2019). Here we derive

analytically the optimal weight function that minimize VarCBP(Rw(t)(t)) for each t = aL, a ∈ {1, · · · ,m− 1}, and

for the other t’s, we use interpolation to fill in the blanks. While the optimal weight function under permutation,

q0(t) = n−t−1
n−2 , is independent of the graph, we will show that the optimal weight function under circular block

permutation indeed depends on the graph when L ≥ 2.

Since, for t = aL, a ∈ {1, · · · ,m− 1}, and any weight function w(t), we have

Rw(t)(t) = w(t)RG,1(t) + (1− w(t))RG,2(t)

Therefore, the variance of Rw(t)(t) under circular block permutation can be expressed as

VarCBP(Rw(t)(t)) = VarCBP(w(t)RG,1(t) + (1− w(t))RG,2(t))

= w(t)2VarCBP(RG,1(t)) + (1− w(t))2VarCBP(RG,2(t)) + 2w(t)(1− w(t))CovCBP(RG,1(t), RG,2(t))

Searching over all possible w(t)’s, we want to find the optimal weight that minimizes VarCBP(Rw(t)(t)). The optimal

weight function q(t) must satisfy the first order condition. Therefore, we have

q(t) =
VarCBP(RG,2(t))− CovCBP(RG,1(t), RG,2(t))

VarCBP(RG,1(t)) + VarCBP(RG,2(t))− 2CovCBP(RG,1(t), RG,2(t))

For t = aL, we can plug in the expressions for VarCBP(RG,1(t)), VarCBP(RG,2(t)), and CovCBP(RG,1(t), RG,2(t)) as

given by Theorem 7 and 5. Then the numerator is a polynomial in a of order 3, and the denominator is a polynomial in

a of order 2. In fact, the optimal weight function is a straight line, linear in a, and can be written as

q(t) =
x1a+ x2a

2 + x3a
3

y1a+ y2a2
= Ca+B

Where C is the slope and B is the intercept of the weight function. For the above fraction to be linear in a, we must

have the following relations:

x1 − y1B = 0
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x2 − y2B

y1
=

x3

y2
= C

With careful calculation, one can derive that

x1 =
3

m

(
c
(sub)
1

)2

+
7m− 6

m(m− 1)
c
(sub)
1 c

(sub)
5 +

4m− 3

m(m− 1)

(
c
(sub)
5

)2

−
(

1

m
c1 +

2m− 1

m(m− 1)
(c2 + c3 + c5) +

3m− 1

m(m− 1)
(c4 + c8) +

3m2 − 6m+ 2

m(m− 1)(m− 2)
c6 +

4m2 − 7m+ 2

m(m− 1)(m− 2)
(c7 + c9)

)
y1 =

4

m
|G|2 −

(
2

m− 1
(c2 + c3 + c5) +

4

m− 1
(c4 + c9) +

3

m− 1
c6 +

5m− 8

(m− 1)(m− 2)
c7 +

3m− 8

(m− 1)(m− 2)
c8

)
x2 =

−2

m

(
c
(sub)
1

)2

− 7m− 4

m2(m− 1)
c
(sub)
1 c

(sub)
5 − 5m− 2

m2(m− 1)

(
c
(sub)
5

)2

+
1

m(m− 1)
(c2 + c3 + c5 + 2c4 + 2c8) +

3

m(m− 2)
c6 +

5m− 4

m(m− 1)(m− 2)
(c7 + c9)

y2 =
−4

m2
|G|2 +

1

m(m− 1)

(
2(c2 + c3 + c5) + 3c6 + 4(c4 + c9)

)
+

1

m(m− 1)(m− 2)

(
(7m− 8)c7 + (m− 8)c8

)
x3 =

2c
(sub)
5 |G|

m2(m− 1)
− 1

m(m− 1)(m− 2)
(c6 + 2c7 + 2c9)

where m = n/L, |G| = c
(sub)
1 + c

(sub)
5 , with c(sub)1 and c(sub)5 being defined in lemma 2, and c1, · · · , c9, as defined in

Definition 1, are coefficients depending on the similarity graph, satisfying c1 + · · ·+ c9 = |G|2.

Note that regardless of the values of those ci’s, q(t) = q(aL) = 1
2 at a = m

2 always holds. Moreover, for t = aL,

a ∈ {1, · · · ,m− 1}, q(t) = q(aL) is linear in a, hence q(t) is automatically defined for every t, t ∈ {1, · · · , n− 1}.

Hence, lemma (2) can be obtained.

B.4 More results on p-value approximation under CBP

1. Multivariate Gaussian Distributions:

Table B.3: Critical values for the scan statistics maxn0≤t≤n1
Zw,CBP(t) based on MST at α = 0.05

Critical Values Graph
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 A2 Per A1 A2 Per A1 A2 Per A1 A2 Per
∑
|Gi|2 dmax

d = 10
2.99 3.05 3.06 3.03 3.12 3.12 3.08 3.22 3.27 3.15 3.40 3.53 5360 7
2.99 3.05 3.04 3.03 3.12 3.12 3.08 3.22 3.26 3.14 3.40 3.51 5396 7

d = 100
2.98 3.05 3.07 3.03 3.12 3.15 3.08 3.22 3.28 3.14 3.40 3.59 13960 44
2.98 3.05 3.03 3.03 3.12 3.12 3.08 3.22 3.26 3.14 3.39 3.54 10732 43

d = 1, 000
2.98 3.05 3.07 3.03 3.12 3.16 3.08 3.22 3.35 3.14 3.39 3.67 20352 82
2.98 3.05 3.02 3.03 3.12 3.13 3.08 3.22 3.27 3.14 3.39 3.55 17236 65
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Table B.4: Critical values for the scan statistics maxn0≤t≤n1 SCBP(t) based on MST at α = 0.05.

Critical Values Graph
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 Per A1 Per A1 Per A1 Per
∑
|Gi|2 dmax

d = 10
13.11 12.86 13.39 13.29 13.71 14.07 14.12 15.32 5360 7
13.10 13.03 13.39 13.43 13.71 13.95 14.12 15.38 5396 7

d = 100
13.10 13.70 13.38 14.30 13.70 15.32 14.11 17.89 13960 44
13.09 13.16 13.38 13.82 13.70 14.93 14.11 17.49 10732 43

d = 1, 000
13.10 13.94 13.38 14.96 13.71 16.93 14.11 21.61 20352 82
13.10 13.55 13.38 14.61 13.70 16.12 14.11 19.76 17236 65

Table B.5: Critical values for the scan statistics maxn0≤t≤n1
MCBP(t) based on MST at α = 0.05

Critical Values Graph
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 A2 Per A1 A2 Per A1 A2 Per A1 A2 Per
∑
|Gi|2 dmax

d = 10
3.23 3.27 3.26 3.28 3.33 3.33 3.32 3.41 3.44 3.38 3.56 3.64 5360 7
3.23 3.27 3.25 3.28 3.33 3.34 3.32 3.41 3.42 3.38 3.56 3.63 5396 7

d = 100
3.23 3.30 3.33 3.27 3.38 3.43 3.32 3.49 3.58 3.38 3.67 3.88 13960 44
3.23 3.30 3.27 3.27 3.38 3.36 3.32 3.48 3.53 3.38 3.67 3.87 10732 43

d = 1, 000
3.23 3.35 3.36 3.28 3.43 3.50 3.32 3.56 3.74 3.38 3.78 4.22 20352 82
3.23 3.32 3.31 3.28 3.41 3.43 3.32 3.52 3.63 3.38 3.72 4.04 17236 65

2. Exponential Distributions:

Table B.6: Critical values for the scan statistics maxn0≤t≤n1
Zw,CBP(t) based on MST at α = 0.05

Critical Values Graph
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 A2 Per A1 A2 Per A1 A2 Per A1 A2 Per
∑
|Gi|2 dmax

d = 10
2.98 3.05 3.03 3.02 3.12 3.12 3.08 3.22 3.21 3.14 3.39 3.46 5212 8
2.99 3.05 3.03 3.03 3.12 3.12 3.08 3.22 3.22 3.14 3.40 3.43 5016 6

d = 100
2.99 3.05 3.07 3.03 3.12 3.15 3.08 3.22 3.30 3.15 3.40 3.59 11750 32
2.98 3.05 3.05 3.03 3.12 3.14 3.08 3.22 3.27 3.14 3.39 3.57 11572 35

d = 1, 000
2.99 3.05 3.12 3.03 3.12 3.25 3.08 3.21 3.42 3.15 3.39 3.83 38302 120
2.98 3.04 3.08 3.03 3.11 3.20 3.08 3.21 3.38 3.14 3.38 3.86 43376 112
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Table B.7: Critical values for the scan statistics maxn0≤t≤n1 SCBP(t) based on MST at α = 0.05.

Critical Values Graph
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 Per A1 Per A1 Per A1 Per
∑
|Gi|2 dmax

d = 10
13.10 12.67 13.38 13.09 13.70 13.64 14.11 14.88 5212 8
13.10 12.97 13.38 13.25 13.70 13.79 14.11 15.10 5016 6

d = 100
13.10 13.26 13.39 13.87 13.71 14.84 14.12 17.39 11750 32
13.10 13.50 13.38 14.22 13.70 15.29 14.11 18.20 11572 35

d = 1, 000
13.10 14.36 13.39 15.61 13.71 17.99 14.12 23.13 38302 120
13.10 14.64 13.38 16.18 13.70 18.43 14.11 23.41 43376 112

Table B.8: Critical values for the scan statistics maxn0≤t≤n1
MCBP(t) based on MST at α = 0.05

Critical Values Graph
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 A2 Per A1 A2 Per A1 A2 Per A1 A2 Per
∑
|Gi|2 dmax

d = 10
3.23 3.27 3.27 3.27 3.33 3.33 3.32 3.41 3.42 3.38 3.55 3.58 5212 8
3.23 3.26 3.25 3.28 3.32 3.32 3.32 3.40 3.41 3.38 3.54 3.64 5016 6

d = 100
3.23 3.29 3.30 3.28 3.37 3.38 3.32 3.47 3.51 3.38 3.65 3.82 11750 32
3.23 3.30 3.32 3.27 3.38 3.43 3.32 3.48 3.56 3.38 3.67 3.92 11572 35

d = 1, 000
3.23 3.35 3.39 3.28 3.44 3.55 3.32 3.57 3.80 3.38 3.79 4.28 38302 120
3.23 3.36 3.41 3.27 3.45 3.59 3.32 3.58 3.81 3.38 3.80 4.32 43376 112

3. Log-normal Distributions:

Table B.9: Critical values for the scan statistics maxn0≤t≤n1
Zw,CBP(t) based on MST at α = 0.05

Critical Values Graph
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 A2 Per A1 A2 Per A1 A2 Per A1 A2 Per
∑
|Gi|2 dmax

d = 10
2.99 3.05 3.02 3.03 3.12 3.12 3.08 3.22 3.23 3.15 3.40 3.51 5028 6
2.99 3.05 3.03 3.03 3.12 3.12 3.08 3.22 3.26 3.14 3.40 3.48 5116 7

d = 100
2.99 3.05 3.06 3.03 3.12 3.14 3.08 3.22 3.25 3.15 3.40 3.55 9436 27
2.98 3.05 3.03 3.03 3.12 3.10 3.08 3.22 3.24 3.14 3.39 3.51 10674 42

d = 1, 000
2.99 3.04 3.13 3.03 3.11 3.23 3.08 3.21 3.40 3.15 3.39 3.76 41500 113
2.98 3.04 3.16 3.03 3.11 3.26 3.08 3.20 3.47 3.14 3.37 3.87 65694 164
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Table B.10: Critical values for the scan statistics maxn0≤t≤n1 SCBP(t) based on MST at α = 0.05.

Critical Values Graph
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 Per A1 Per A1 Per A1 Per
∑
|Gi|2 dmax

d = 10
13.10 12.92 13.39 13.32 13.71 13.97 14.12 15.30 5028 6
13.10 12.88 13.39 13.23 13.71 13.84 14.11 15.07 5116 7

d = 100
13.10 13.43 13.39 13.96 13.71 14.87 14.12 16.98 9436 27
13.10 13.54 13.38 14.25 13.70 15.58 14.11 18.41 10674 42

d = 1, 000
13.10 14.47 13.39 15.89 13.71 17.85 14.12 22.54 41500 113
13.10 15.06 13.38 16.56 13.70 19.35 14.11 25.12 65694 164

Table B.11: Critical values for the scan statistics maxn0≤t≤n1
MCBP(t) based on MST at α = 0.05

Critical Values Graph
n0 = 100 n0 = 75 n0 = 50 n0 = 25

A1 A2 Per A1 A2 Per A1 A2 Per A1 A2 Per
∑
|Gi|2 dmax

d = 10
3.23 3.26 3.26 3.28 3.32 3.34 3.32 3.40 3.43 3.38 3.55 3.65 5028 6
3.23 3.27 3.26 3.28 3.32 3.34 3.32 3.40 3.44 3.38 3.55 3.63 5116 7

d = 100
3.23 3.29 3.30 3.28 3.36 3.38 3.32 3.46 3.52 3.38 3.64 3.80 9436 27
3.23 3.32 3.31 3.28 3.40 3.42 3.32 3.52 3.58 3.38 3.72 3.92 10674 42

d = 1, 000
3.32 3.35 3.42 3.28 3.44 3.57 3.32 3.56 3.78 3.38 3.78 4.24 41500 113
3.32 3.37 3.41 3.27 3.46 3.57 3.32 3.59 3.88 3.38 3.82 4.34 65694 164

B.5 Analytic expressions for Cw(t) and Cdiff(t) under CBP

In this section, we will derive the analytic expressions for Cw(t) and Cdiff(t), in order to compute the asymptotic

p-value approximations. Here we only work in detail with Cw(t), since Cdiff(t) can be derived in a similar way with

the weight functions q(t), p(t) being replaced by 1, −1, respectively. Throughout Section B.5, notations RG,1(·) and

RG,2(·) are abbreviated to R1(·) and R2(·) for simplicity.

We need to derive ∂
∂sCovCBP(Zw,CBP(s), Zw,CBP(t)), which we denote as Cov′CBP(Zw,CBP(s), Zw,CBP(t)), 0 < s ≤

t < n, for the remaining context, in order to compute the asymptotic p-value approximation for extended weighted

edge-count test. As usual, we will compute Cw(t) = ∂
∂sCovCBP(Zw,CBP(s), Zw,CBP(t))

∣∣
s=t

only for those t’s with

t = aL, where a is an integer; for other t’s, we compute the estimation of this quantity by pluggin in t = aL with

non-integer valued a directly. Since

CovCBP(Zw,CBP(s), Zw,CBP(t)) =
CovCBP(Rw(s), Rw(t))√

VarCBP(Rw(s))VarCBP(Rw(t))

Cov′CBP(Zw,CBP(s), Zw,CBP(t)) =
Cov′CBP(Rw(s), Rw(t))√

VarCBP(Rw(s))VarCBP(Rw(t))
− 1

2

CovCBP(Rw(s), Rw(t))√
VarCBP(Rw(s))VarCBP(Rw(t))

Var′CBP(Rw(s))

VarCBP(Rw(s))
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We’ve already derived VarCBP(Rw(a)), for t = aL, where a is an integer. For other t′s that are not mul-

tiples of L, here we compute VarCBP(Rw(t)) by plugging in a = t/L directly, instead of doing interpolation.

To compute Cov′CBP(Zw,CBP(s), Zw,CBP(t)), we have to further derive Var′CBP(Rw(t)), CovCBP(Rw(s), Rw(t)), and

Cov′CBP(Rw(s), Rw(t)).

B.5.1 Var′CBP(Rw(t)) =
d
dt

VarCBP(Rw(t))

We here consider VarCBP(Rw(aL)) and d
daVarCBP(Rw(aL)), where t is a multiple of L, i.e., t = aL.

Note that d
dtVarCBP(Rw(t)) = 1

L
d
daVarCBP(Rw(aL))

VarCBP(Rw(aL)) = (q(aL))2VarCBP(R1(aL)) + (1− q(aL))2VarCBP(R2(aL))

+2q(aL)(1− q(aL))CovCBP(R1(aL), R2(aL))

d

da
VarCBP(Rw(aL)) = 2q(aL)

dq(aL)

da
VarCBP(R1(aL)) + (q(aL))2 d

da
VarCBP(R1(aL))

+2(1− q(aL))(−dq(aL)

da
)VarCBP(R2(aL)) + (1− q(aL))2 d

da
VarCBP(R2(aL))

+2
dq(aL)

da
(1− q(aL))CovCBP(R1(aL), R2(aL)) + 2q(aL)(−dq(aL)

da
)CovCBP(R1(aL), R2(aL))

+2q(aL)(1− q(aL))
d

da
CovCBP(R1(aL), R2(aL))

= 2cq(aL)VarCBP(R1(aL)) + (q(aL))2 d

da
VarCBP(R1(aL))

+2c(q(aL)− 1)VarCBP(R2(aL)) + (1− q(aL))2 d

da
VarCBP(R2(aL))

+2c(1− q(aL))CovCBP(R1(aL), R2(aL)) + 2(−c)q(aL)CovCBP(R1(aL), R2(aL))

+2q(aL)(1− q(aL))
d

da
CovCBP(R1(aL), R2(aL))

Denote d
daVarCBP(R1(aL)), d

daVarCBP(R2(aL)), and d
daCovCBP(R1(aL), R2(aL)) as Var′CBP(R1(aL)), Var′CBP(R2(aL)),

and Cov′CBP(R1(aL), R2(aL)), respectively. The three quantities can be derived by taking derivative w.r.t. a directly.

Var′CBP(R1(aL)) = d1
1

m
+ d2

2a− 1

m(m− 1)
+ d3

3a2 − 6a+ 2

m(m− 1)(m− 2)
+ d4

4a3 − 18a2 + 22a− 6

m(m− 1)(m− 2)(m− 3)

−2ECBP[R1(aL)]E′CBP[R1(aL)]

Var′CBP(R2(aL)) = d1
(−1)

m
+ d2

(−2m+ 2a+ 1)

m(m− 1)
+ d3

−3(m− a)2 + 6(m− a)− 2

m(m− 1)(m− 2)
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+d4
−4(m− a)3 + 18(m− a)2 − 22(m− a) + 6

m(m− 1)(m− 2)(m− 3)
− 2ECBP[R2(aL)]E′CBP[R2(aL)]

Cov′CBP(R1(aL), R2(aL)) = c4
m− 2a

m(m− 1)
+ c7

m2 − 4ma+ 3a2 −m+ 2a

m(m− 1)(m− 2)
+ c8

2ma− 3a2 −m+ 2a

m(m− 1)(m− 2)

+c9
2am2 − 6ma2 + 4a3 + 2ma−m2 +m− 2a

m(m− 1)(m− 2)(m− 3)
− E′CBP[R1(aL)]ECBP[R2(aL)]

−ECBP[R1(aL)]E′CBP[R2(aL)]

In the above expressions, E′CBP[R1(aL)] and E′CBP[R2(aL)] can also be derived simply by taking the derivatives of

ECBP[R1(aL)] and ECBP[R2(aL)] w.r.t. a, and thus we have

E′CBP[R1(a)] = c
(sub)
1

1

m
+ c

(sub)
5

2a− 1

m(m− 1)

E′CBP[R2(a)] = c
(sub)
1

(−1)

m
+ c

(sub)
5

(−2m+ 2a+ 1)

m(m− 1)

Finally, Var′(Rw(t)) can be obtained by d
dtVarCBP(Rw(t)) = 1

L
d
daVarCBP(Rw(aL)).

B.5.2 CovCBP(Rw(s), Rw(t)) and its partial derivative

In this subsection, we derive the covariance of Rw(s) and Rw(t) under circular block permutation, denoted as

CovCBP(Rw(s), Rw(t)), and its partial derivative w.r.t. the first argument s, denoted as ∂
∂sCovCBP(Rw(s), Rw(t)), for

future usage. As what has just been discussed, one need to evaluate this quantitiy at s = t to compute asymptotic

p-value approximation for modified weighted edge-count test.

Since we only compute CovCBP(Rw(s), Rw(t)) analytically at those s’s and t’s that are multiples of L. Let

s = a1L, and t = a2L, then ∂
∂sCovCBP(Rw(s), Rw(t)) = 1

L
∂
∂a1

CovCBP(Rw(a1L), Rw(a2L)). We first derive

CovCBP(Rw(a1L), Rw(a2L)), and then consider its partial derivative ∂
∂a1

CovCBP(Rw(a1L), Rw(a2L)).

Let p(aL) = 1− q(aL), then for 0 < a1 ≤ a2 < m,

CovCBP(Rw(a1L), Rw(a2L))

= CovCBP(q(a1L)R1(a1L) + p(a1L)R2(a1L), q(a2L)R1(a2L) + p(a2L)R2(a2L))

= q(a1L)q(a2L)CovCBP(R1(a1L), R1(a2L)) + q(a1L)p(a2L)CovCBP(R1(a1L), R2(a2L))

+p(a1L)q(a2L)CovCBP(R1(a2L), R2(a1L)) + p(a1L)p(a2L)CovCBP(R2(a1L), R2(a2L))
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∂

∂a1
CovCBP(Rw(a1L), Rw(a2L))

= cq(a2L)CovCBP(R1(a1L), R1(a2L)) + q(a1L)q(a2L)
∂

∂a1
CovCBP(R1(a1L), R1(a2L))

+cp(a2L)CovCBP(R1(a1L), R2(a2L)) + q(a1L)p(a2L)
∂

∂a1
CovCBP(R1(a1L), R2(a2L))

−cq(a2L)CovCBP(R1(a2L), R2(a1L)) + p(a1L)q(a2L)
∂

∂a1
CovCBP(R1(a2L), R2(a1L))

−cp(a2L)
∂

∂a1
CovCBP(R2(a1L), R2(a2L))

From the expressions above, CovCBP(R1(a1L), R1(a2L)), CovCBP(R1(a1L), R2(a2L)), CovCBP(R1(a2L), R2(a1L)),

CovCBP(R2(a1L), R2(a2L)), are in need to compute CovCBP(Rw(a1L), Rw(a2L)); and the four quantities, along with

their partial derivatives w.r.t. a1, are in need to compute ∂
∂a1

CovCBP(Rw(a1L), Rw(a2L))

Lemma 5. With c1, · · · , c9 stated before, then for 0 < a1 ≤ a2 < m,

CovCBP(R1(a1L), R1(a2L)) = c1
a1

m
+ (c2 + c5)

a1(a1 − 1)

m(m− 1)
+ (c3 + c4)

a1(a2 − 1)

m(m− 1)
+ (c6 + c8)

a1(a1 − 1)(a2 − 2)

m(m− 1)(m− 2)

+c7
a1(a2 − 1)(a2 − 2)

m(m− 1)(m− 2)
+ c9

a1(a1 − 1)(a2 − 2)(a2 − 3)

m(m− 1)(m− 2)(m− 3)
− ECBP[R1(a1L)]ECBP[R1(a2L)]

CovCBP(R1(a1L), R2(a2L)) = c4
a1(m− a2)

m(m− 1)
+ c7

a1(m− a2)(m− a2 − 1)

m(m− 1)(m− 2)
+ c8

(m− a2)a1(a1 − 1)

m(m− 1)(m− 2)

+c9
a1(a1 − 1)(m− a2)(m− a2 − 1)

m(m− 1)(m− 2)(m− 3)
− ECBP[R1(a1L)]ECBP[R2(a2L)]

CovCBP(R1(a2L), R2(a1L)) = c1
(a2 − a1)

m
+ c2

(a2 − a1)(a2 − 1)

m(m− 1)
+ c3

(a2 − a1)(m− a1 − 1)

m(m− 1)

+c4
a1(m− a1) + (a2 − a1)(m− a1 − 1)

m(m− 1)
+ c5

(a2 − a1)(a2 − a1 − 1)

m(m− 1)

+c6
a1(a2 − a1)(m− a1 − 1) + (a2 − a1)(a2 − a1 − 1)(m− a1 − 2)

m(m− 1)(m− 2)

+c7
a1(m− a1)(m− a1 − 1) + (a2 − a1)(m− a1 − 1)(m− a1 − 2)

m(m− 1)(m− 2)

+c8
(m− a2)a2(a2 − 1) + (a2 − a1)(a2 − 1)(a2 − 2)

m(m− 1)(m− 2)

+c9
a1(a1 − 1)(m− a1)(m− a1 − 1)

m(m− 1)(m− 2)(m− 3)
+ c9

2a1(a2 − a1)(m− a1 − 1)(m− a1 − 2)

m(m− 1)(m− 2)(m− 3)

+c9
(a2 − a1)(a2 − a1 − 1)(m− a1 − 2)(m− a1 − 3)

m(m− 1)(m− 2)(m− 3)
− ECBP[R2(a1L)]ECBP[R1(a2L)]

CovCBP(R2(a1L), R2(a2L)) = c1
(m− a2)

m
+ (c2 + c4)

(m− a2)(m− a1 − 1)

m(m− 1)
+ (c3 + c5)

(m− a2)(m− a2 − 1)

m(m− 1)

+(c6 + c7)
(m− a2)(m− a2 − 1)(m− a1 − 2)

m(m− 1)(m− 2)
+ c8

(m− a2)(m− a1 − 1)(m− a1 − 2)

m(m− 1)(m− 2)
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+c9
(m− a2)(m− a2 − 1)(m− a1 − 2)(m− a1 − 3)

m(m− 1)(m− 2)(m− 3)
− ECBP[R2(a1L)]ECBP[R2(a2L)]

For the following content we denote ∂
∂a1

CovCBP(R1(a1L), R1(a2L)), ∂
∂a1

CovCBP(R1(a1L), R2(a2L)), ∂
∂a1

CovCBP(R1(a2L), R2(a1L)),

∂
∂a1

CovCBP(R2(a1L), R2(a2L)) as Cov′CBP(R1(a1L), R1(a2L)), Cov′CBP(R1(a1L), R2(a2L)), Cov′CBP(R1(a2L), R2(a1L)),

Cov′CBP(R2(a1L), R2(a2L)), respectively.

Cov′CBP(R1(a1L), R1(a2L)) = c1
1

m
+ (c2 + c5)

2a1 − 1

m(m− 1)
+ (c3 + c4)

a2 − 1

m(m− 1)
+ (c6 + c8)

(2a1 − 1)(a2 − 2)

m(m− 1)(m− 2)

+c7
(a2 − 1)(a2 − 2)

m(m− 1)(m− 2)
+ c9

(2a1 − 1)(a2 − 2)(a2 − 3)

m(m− 1)(m− 2)(m− 3)
− E′CBP[R1(a1L)]ECBP[R1(a2L)]

Cov′CBP(R1(a1L), R2(a2L)) = c4
m− a2

m(m− 1)
+ c7

(m− a2)(m− a2 − 1)

m(m− 1)(m− 2)
+ c8

(m− a2)(2a1 − 1)

m(m− 1)(m− 2)

+c9
(2a1 − 1)(m− a2)(m− a2 − 1)

m(m− 1)(m− 2)(m− 3)
− E′CBP[R1(a1L)]ECBP[R2(a2L)]

Cov′CBP(R1(a2L), R2(a1L)) = c1
(−1)

m
+ c2

(−(a2 − 1))

m(m− 1)
+ c3

(−(m− a1 − 1)− (a2 − a1))

m(m− 1)
+ c4

1− a2

m(m− 1)

+c5
2a1 − 2a2 + 1

m(m− 1)
+ c6

(−a2m+ 2a1a2 +m− a2
2 + 4a2 − 4a1 − 2)

m(m− 1)(m− 2)

+c7
(2m− 4a1 + 3a2 − 2ma2 + 2a1a2 − 2)

m(m− 1)(m− 2)
+ c8

(−(a2 − 1)(a2 − 2)

m(m− 1)(m− 2)

+
c9

m(m− 1)(m− 2)(m− 3)
{(a1 − 1)(m− a1)(m− a1 − 1) + a1(m− a1)(m− a1 − 1)

−a1(a1 − 1)(m− a1 − 1)− a1(a1 − 1)(m− a1) + 2(a2 − a1)(m− a1 − 1)(m− a1 − 2)

−2a1(m− a1 − 1)(m− a1 − 2)− 2a1(a2 − a1)(m− a1 − 2)− 2a1(a2 − a1)(m− a1 − 1)

−(a2 − a1 − 1)(m− a1 − 2)(m− a1 − 3)− (a2 − a1)(m− a1 − 2)(m− a1 − 3)

−(a2 − a1)(a2 − a1 − 1)(m− a1 − 3)− (a2 − a1)(a2 − a1 − 1)(m− a1 − 2)}

−E′CBP[R2(a1L)]ECBP[R1(a2L)]

Cov′CBP(R2(a1L), R2(a2L)) = (c2 + c4)
(−(m− a2))

m(m− 1)
+ (c6 + c7)

(−(m− a2)(m− a2 − 1))

m(m− 1)(m− 2)

+c8
(−2(m− a1) + 3)(m− a2)

m(m− 1)(m− 2)
+ c9

(−2(m− a1) + 5)(m− a2)(m− a2 − 1)

m(m− 1)(m− 2)(m− 3)

−E′CBP[R2(a1L)]ECBP[R2(a2L)]

Finally, Cov′CBP(Zw,CBP(s), Zw,CBP(t)) can be obtained by plugging in everything, and it follows that

Cw(t) = Cov′CBP(Zw,CBP(s), Zw,CBP(t))
∣∣
s=t
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Similarly, replacing q(aL) with 1 and p(aL) with −1, we get the expression for Cdiff(t):

Cdiff(t) = Cov′CBP(Zdiff,CBP(s), Zdiff,CBP(t))
∣∣
s=t

B.6 Approximations for ECBP[Z
3
w,CBP(t)] and ECBP[Z

3
diff,CBP(t)]

We have to compute ECBP[Z3
w,CBP(t)], and ECBP[Z3

diff,CBP(t)] to perform skewness correction. However, analytical expres-

sions for ECBP[Z3
w,CBP(t)], ECBP[Z3

diff,CBP(t)] could be hard to derive, hence we use EP[Z3
w(t)] and EP[Z3

diff(t)], in other

words, circular block permutation with L = 1, as surrogates for the quantities ECBP[Z3
w,CBP(t)] and ECBP[Z3

diff,CBP(t)]

of our interest.

Here we only show in detail the derivation of EP[Z3
w(t)], since EP[Z3

diff(t)] can be derived similarly with the weight

functions being replaced by 1 and −1.

EP[Z3
w(t)] = EP[

(Rw(t)− EP[Rw(t)])3

(VarP(Rw(t))3/2
]

=
EP[R3

w(t)]− 3EP[R2
w(t)]EP[Rw(t)] + 3EP[Rw(t)]EP[Rw(t)]2 − EP[Rw(t)]3

(VarP(Rw(t))3/2

=
EP[R3

w(t)]− 3EP[R2
w(t)]EP[Rw(t)] + 2EP[Rw(t)]3

EP[R2
w(t)]− EP[Rw(t)]2

To compute EP[Z3
w(t)], we need EP[R3

w(t)], EP[R2
w(t)], and EP[Rw(t)].

When L = 1, circular block permutation is equivalent to random permutation, so the weight function q(t) degenerates

to q0(t) = n−t−1
n−2 , the weight function proposed in Chu and Chen (2019). Therefore,

Rw(t) = q(t)RG,1(t) + p(t)RG,2(t)

R2
w(t) = (q(t))2R2

G,1(t) + 2(q(t))(p(t))RG,1(t)RG,2(t) + (p(t))2R2
G,2(t)

R3
w(t) = (q(t))3R3

G,1(t) + 3(q(t))2(p(t))R2
G,1(t)RG,2(t) + 3(q(t))(p(t))2RG,1(t)R2

G,2(t) + (p(t))3R3
G,2(t)

To obtain EP[Z3
w(t)], it suffices to compute the expectations ofRG,1(t),RG,2(t),R2

G,1(t),R2
G,2(t),RG,1(t)RG,2(t),

R3
G,1(t), R3

G,2(t), R2
G,1(t)RG,2(t), and RG,1(t)R2

G,2(t). The expectations of the first five variables can be obtained

directly from the previous formulas with L = 1. Here we further discuss how to compute EP[R3
G,1(t)], EP[R3

G,2(t)],

EP[R2
G,1(t)RG,2(t)], and EP[RG,1(t)R2

G,2(t)].
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When considering the cube of the number of edge-counts, we need to consider each set of edges that consisting

three edges. Those three edges in a set may nor may not share nodes, so there are 8 configurations that those edges can

have. The 8 configurations are:

Figure B.1: The 8 possible configurations for a set of three edges

(1) The three edges consist only two distinct nodes

(2) The three edges consist only three distinct nodes

(3) Two of the edges consist two distinct nodes; the other edge is separated

(4) Chain-shaped: The first two edges share one node; the second and third edges share another node

(5) Star-shaped: The three edges share one node

(6) Two edges share one node, and share no node with the third edge

(7) No pair of the three edges share any node (six distinct nodes)

(8) Triangle: The three edges form a triangle

Denote the number of sets of three edges having configuration 1 to 8 as C1, · · · , C8, respectively. For any undirected

graph G, C1, · · · , C8 can be computed analytically. (Observe that C1 + · · ·+ C8 = |G|3)

C1 = |G|

C2 = 3
∑
i

|Gi|(|Gi − 1)

C3 = 3|G|(|G| − 1)− 3
∑
i

|Gi|(|Gi − 1)

C4 = 6
∑

(i,j)∈G

(|Gi| − 1)(|Gj | − 1)− 6
∑

(i,j)∈G

|{k : (i, k), (j, k) ∈ G}|

C5 =
∑
i

|Gi|(|Gi − 1)(|Gi − 2)

C6 = 3
∑
i

|Gi|(|Gi − 1)(|G| − |Gi|) + 6
∑

(i,j)∈G

|{k : (i, k), (j, k) ∈ G}| − 12
∑

(i,j)∈G

(|Gi| − 1)(|Gj | − 1)
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C7 = |G|(|G| − 1)(|G| − 2) + 6
∑

(i,j)∈G

(|Gi| − 1)(|Gj | − 1)− 2
∑

(i,j)∈G

|{k : (i, k), (j, k) ∈ G}|

−
∑
i

|Gi|(|Gi − 1)(3|G| − 2|Gi| − 2)

C8 = 2
∑

(i,j)∈G

|{k : (i, k), (j, k) ∈ G}|

The expectations can be computed by applying proper probabilities to C1, · · · , C8.

EP[R3
G,1(t)] = C1

t(t− 1)

n(n− 1)
+ (C2 + C8)

t(t− 1)(t− 2)

n(n− 1)(n− 2)
+ (C3 + C4 + C5)

t(t− 1)(t− 2)(t− 3)

n(n− 1)(n− 2)(n− 3)

+C6
t(t− 1)(t− 2)(t− 3)(t− 4)

n(n− 1)(n− 2)(n− 3)(n− 4)
+ C7

t(t− 1)(t− 2)(t− 3)(t− 4)(t− 5)

n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

EP[R3
G,2(t)] = C1

(n− t)(n− t− 1)

n(n− 1)
+ (C2 + C8)

(n− t)(n− t− 1)(n− t− 2)

n(n− 1)(n− 2)

+(C3 + C4 + C5)
(n− t)(n− t− 1)(n− t− 2)(n− t− 3)

n(n− 1)(n− 2)(n− 3)

+C6
(n− t)(n− t− 1)(n− t− 2)(n− t− 3)(n− t− 4)

n(n− 1)(n− 2)(n− 3)(n− 4)

+C7
(n− t)(n− t− 1)(n− t− 2)(n− t− 3)(n− t− 4)(n− t− 5)

n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

EP[R2
G,1(t)RG,2(t)] = C3

t(t− 1)(n− t)(n− t− 1)

3n(n− 1)(n− 2)(n− 3)
+ C6

t(t− 1)(t− 2)(n− t)(n− t− 1)

3n(n− 1)(n− 2)(n− 3)(n− 4)

+C7
t(t− 1)(t− 2)(t− 3)(n− t)(n− t− 1)

n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

EP[RG,1(t)R2
G,2(t)] = C3

t(t− 1)(n− t)(n− t− 1)

3n(n− 1)(n− 2)(n− 3)
+ C6

t(t− 1)(n− t)(n− t− 1)(n− t− 2)

3n(n− 1)(n− 2)(n− 3)(n− 4)

+C7
t(t− 1)(n− t)(n− t− 1)(n− t− 2)(n− t− 3)

n(n− 1)(n− 2)(n− 3)(n− 4)(n− 5)

Finally, EP[Z3
w(t)] can be computed by plugging in everything.
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Appendix C

Appendix to Chapter 4

C.1 Proof of Equation (4.13) and Equation (4.14)

We want to prove:

P( max
n0≤t≤n1

Sw(t) > b) ≈ 2b

(
1− N − 1

b

)
fχ

2

N (b)

∫ n1

n0

hw(x)ν

(√
2bhw(x)

(
1− N − 1

b

))
dx

P( max
n0≤t≤n1

Sd(t) > b) ≈ 2b

(
1− N − 1

b

)
fχ

2

N (b)

∫ n1

n0

hd(x)ν

(√
2bhd(x)

(
1− N − 1

b

))
dx

Here we use hw(x) to denote Cw(x) in Equation (4.13), and hd(x) to denote Cdiff(x) in Equation (4.14). Let

S∗w(t/n) =

N∑
j=1

(
Z∗(j)w (t/n)

)2

; S∗d(t/n) =

N∑
j=1

(
Z
∗(j)
d (t/n)

)2

.

We only show the proof in detail for the result of Sw(t), as the result of Sd(t) can be done in exactly the same way.

First, since Sw(t) is always positive, we may look at its square root, instead:

P( max
n0≤t1≤n1

S∗w(t1/n) > b2) = P( max
n0≤t1≤n1

√
S∗w(t1/n) > b)

=
∑

n0≤t1≤n1

∫ ∞
0

P(
√
S∗w(t1/n) ∈ b+ dx)P( max

t1<t2≤n1

√
S∗w(t2/n) < b|

√
S∗w(t1/n) = b+ x)

≈ fχN (b)
∑

n0≤t1≤n1

∫ ∞
0

(1 +
x

b
)N−1e−bxP( max

t1<t2≤n1

√
S∗w(t2/n) < b|

√
S∗w(t1/n) = b+ x)dx

=
1

b
fχN (b)

∑
n0≤t1≤n1

∫ ∞
0

(1 +
x

b2
)N−1e−xP( max

t1<t2≤n1

√
S∗w(t2/n) < b|

√
S∗w(t1/n) = b+

x

b
)dx
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≈ 1

b
fχN (b)

∑
n0≤t1≤n1

∫ ∞
0

e−x(1−(N−1)/b2)P( max
t1<t2≤n1

√
S∗w(t2/n) < b|

√
S∗w(t1/n) = b+

x

b
)dx

where fχN (·) is the density function of a χ distribution with degree of freedom N .

P(
√
S∗w(t1/n) = b+ x) = fχN (b+ x) =

(b+ x)N−1e−
(b+x)2

2

Γ(N/2)2N/2−1

=
bN−1e−

b2

2

Γ(N/2)2N/2−1
(1 +

x

b
)N−1e−bx−

x2

2 ≈ fχN (b)(1 +
x

b
)N−1e−bx.

Now we focus on the probability inside the integral:

P( max
t1<t2≤n1

√
S∗w(t2/n) < b|

√
S∗w(t1/n) = b+

x

b
)dx

≈ P( max
t1<t2≤n1

b
(√

S∗w(t2/n)−
√
S∗w(t1/n)

)
< −x|

√
S∗w(t1/n) = b)dx

Conditioning on
√
S∗w(t1/n) = b is equivalent to conditioning on

(Z∗(1)
w (t1/n), Z∗(2)

w (t1/n), . . . , Z∗(N)
w (t1/n)) = (b, 0, . . . , 0).

Let r = t2
n −

t1
n and ∆jr = Z

∗(j)
w (t2/n)− Z∗(j)w (t1/n). By Taylor expansion, we have

√
S∗w(t2/n) =

√√√√ N∑
j=1

(
Z
∗(j)
w (t1/n) + ∆jr

)2

=

√√√√S∗w(t1/n) + 2b∆1r +

N∑
j=1

∆2
jr

=
√
S∗w(t1/n) +

1

2
√
S∗w(t1/n)

2b∆1r +

N∑
j=1

∆2
jr

− 1

2

1

4b3

4b2∆2
1r + 4b∆1r

N∑
j=1

∆2
jr

+O(r2)

= b+ ∆1r +
1

2b

 N∑
j=2

∆2
jr

+O(r2)

Therefore, we may use the following approximation:

b
(√

S∗w(t2/n)−
√
S∗w(t1/n)

)
= b

∆1r +
1

2b

 N∑
j=2

∆2
jr

 .

Since each of the Z∗(j)w (·) is a Gaussian process with covariance function ρ∗w(u, v), we have

∆1r ∼ N(bρ− b, 1− ρ2), and ∆jr ∼ N(0, 1− ρ2), for j 6= 1.
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Let h∗w(u) = lim
v↘u

∂ρ∗(u, v)

∂v
, then by Taylor exapansion, we have the following approximation:

ρ∗w(u, v) = 1− h∗w(u)r +O(r2), and (ρ∗w(u, v))2 = 1− 2h∗w(u)r +O(r2).

Therefore, b∆1r is approximately normally distributed with mean b2(1− h∗w(u)r)− b2 = −b2h∗w(u)r and variance

2b2h∗w(u)r; and for j 6= 1, b
2b∆

2
jr has mean h∗w(u)r and variance O(r2). The variability from the (N − 1) ∆2

jr can be

ignored. Finally, let W (t1)
m be a random walk with W (t1)

1 ∼ N(µ(t1), (σ(t1))2), where

µ(t1) =
1

n

(
b2 − (N − 1)

)
h∗w(u), and (σ(t1))2 =

1

n
2b2h∗w(u).

P( max
t1<t2≤n1

b
(√

S∗w(t2/n)−
√
S∗w(t1/n)

)
< −x|

√
S∗w(t1/n) = b)dx

≈ P(max
r

b∆1r +
b

2b

 N∑
j=2

∆2
jr

 < −x)dx ≈ P(min
m≥1

W (t1)
m > x)dx

Using the fact ∫ ∞
0

exp(−2µx/σ2)P(min
m≥1

Wm > x)dx = µν(2µ/σ),

for a random walk W1 ∼ N(µ, σ2) with µ > 0 (Siegmund, 1992), and here we have

2µ

σ2
= 1− N − 1

b2
, and

2µ

σ
=
√

2b2h∗w(u)/n(1− N − 1

b2
).

Therefore,

P( max
n0≤t≤n1

√
S∗w(t/n) > b)

≈ 1

b

(
b2 − (N − 1)

)
fχN (b)

∫ x1

x0

1

n
h∗w(x)ν

(√
2b2h∗w(x)/n

(
1− N − 1

b2

))
dx

=
1

b

(
b2 − (N − 1)

)
fχN (b)

∫ n1

n0

hw(x)ν

(√
2b2hw(x)

(
1− N − 1

b2

))
dx

=
1

b

(
b2 − (N − 1)

)
2bfχ

2

N (b2)

∫ n1

n0

hw(x)ν

(√
2b2hw(x)

(
1− N − 1

b2

))
dx

= 2b2
(

1− (N − 1)

b2

)
fχ

2

N (b2)

∫ n1

n0

hw(x)ν

(√
2b2hw(x)

(
1− N − 1

b2

))
dx

Replace b2 with b we have:

P( max
n0≤t≤n1

Sw(t) > b) ≈ 2b

(
1− N − 1

b

)
fχ

2

N (b)

∫ n1

n0

hw(x)ν

(√
2bhw(x)

(
1− N − 1

b

))
dx.
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C.2 More results on p-value approximation for MS-statistic

Table C.1: Critical values for test statistic max
n0≤t≤n1

MS(t) based on 5-MST at α = 0.05.

Multivariate Gaussian N = 1 N = 2 N = 3 N = 5 N = 10 N = 20 N = 50
d = 10 11.54 14.87 17.45 21.83 31.42 47.68 89.36
d = 100 11.55 14.70 17.16 21.88 31.52 47.59 89.68
d = 1, 000 11.51 14.81 17.35 22.08 31.69 47.58 89.75
Analytical 11.31 14.53 17.13 21.59 31.03 47.25 89.54

Table C.2: Critical values for test statistic max
n0≤t≤n1

MS(t) based on 5-MST at α = 0.05.

Multivariate t5 N = 1 N = 2 N = 3 N = 5 N = 10 N = 20 N = 50
d = 10 11.52 14.63 17.18 21.97 31.28 47.49 89.46
d = 100 11.38 14.81 17.59 22.07 31.64 48.00 90.07
d = 1, 000 12.30 16.04 18.96 23.66 33.69 49.95 92.92
Analytical 11.31 14.53 17.13 21.59 31.03 47.25 89.54

Table C.3: Critical values for test statistic max
n0≤t≤n1

MS(t) based on 5-MST at α = 0.05.

Log-normal N = 1 N = 2 N = 3 N = 5 N = 10 N = 20 N = 50
d = 10 11.62 14.69 17.44 21.80 31.50 47.52 89.64
d = 100 11.34 14.62 17.39 22.02 31.70 47.77 90.01
d = 1, 000 11.98 15.45 18.36 22.99 32.63 49.02 92.19
Analytical 11.31 14.53 17.13 21.59 31.03 47.25 89.54
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