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Efficient Strategies for Genomic Searching Using the
Affected-Pedigree-Member Method of Linkage Analysis

Deborah L. Brown,* Michael B. Gorin,*' and Daniel E. Weeks*

*Department of Human Genetics and 'Department of Ophthalmology, University of Pittsburgh, Pittsburgh

Summary

The affected-pedigree-member (APM) method of linkage analysis is a nonparametric statistic that tests for
nonrandom cosegregation of a disease and marker loci. The APM statistic is based on the observation that if a
marker locus is near a disease-susceptibility locus, then affected individuals within a family should be more
similar at the marker locus than is expected by chance. The APM statistic measures marker similarity in terms
of identity by state (IBS) of marker alleles; that is, two alleles are IBS if they are the same, regardless of their
ancestral origin. Since the APM statistic measures increased marker similarity, it makes no assumptions
concerning how the disease is inherited; this can be an advantage when dealing with complex diseases for which
the mode of inheritance is difficult to determine. We investigate here the power of the APM statistic to detect
linkage in the context of a genomewide search. In such a search, the APM statistic is evaluated at a grid of
markers. Then regions with high APM statistics are investigated more thoroughly by typing more markers in
the region. Using simulated data, we investigate various search strategies and recommend an optimal search
strategy that maximizes the power to detect linkage while minimizing the false-positive rate and number of
markers. We determine an optimal series of three increasing cut-points and an independent criterion for

significance.

Introduction

The development of technology to readily type individ-
uals at molecularly based markers means that the ge-
netic linkage maps of the human genome are rapidly
becoming better in terms of the density of highly poly-
morphic markers (NIH/CEPH Collaborative Mapping
Group 1992; Weissenbach et al. 1992). Thus, it is be-
coming easier and less costly to carry out a genomic
search for a disease gene. In such a search, a large num-
ber of markers throughout the genome are tested for
linkage to the disease. Then those regions with evi-
dence for linkage are explored more thoroughly by typ-
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ing more markers in the region (Elston 1992). When
carrying out such a search, the investigator faces several
choices involving the criteria for determining whether a
region should be investigated further and how thor-
oughly to evaluate the evidence for linkage at each
stage. For example, one could seek to reduce the costs
and computational overhead of the initial stages by typ-
ing a reduced subset of people and by using a relatively
rapid test for linkage, instead of typing everyone and
calculating time-consuming multipoint lod scores. We
investigate here the application of a rapid model-free
test for linkage, the affected-pedigree-member (APM)
method, which requires typing of only the affected indi-
viduals (Weeks and Lange 1988, 1991, 1992; Weeks et
al. 1992). The APM method has the advantage of using
marker information on all the affected relatives in each
family, unlike the sib-pair methods which only use in-
formation on the siblings and their parents.

In addition to reducing the marker-typing require-
ments, the APM method has another advantage over
the traditional lod score approach. The traditional
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methods of linkage analysis, which test for cosegrega-
tion of disease and marker, were developed for Mende-
lian diseases (Morton 1955). These methods may be
misleading or inconclusive when applied to complex
non-Mendelian diseases, because they require simplify-
ing assumptions about the inheritance of the disease in
order to infer disease-gene location. In other words, an
incorrect model of the disease may lead to incorrect
conclusions. Model-free linkage-analysis methods,
such as the APM method, avoid this problem by di-
rectly testing for nonrandom segregation of markers to
affected individuals. The model-free methods have a
crucial and important role in the search for disease-
susceptibility loci involved in genetically complex dis-
eases.

Ideally, an investigation of the statistical properties
of a genomewide search should consider the correla-
tions between closely linked markers. However, this
correlational structure is difficult to define analytically.
As a result, analytical analyses of the problem have
taken two main approaches. In the first approach, the
markers are assumed to be spaced far enough apart so
that the correlations may be ignored (Risch 1991). El-
ston (1992) has developed an analytical approach for
designing an optimal genome-searching strategy using
data from a specific class (e.g., sibs, grandparent-grand-
child, etc.) of pairs of affected relatives. He found that a
two-stage strategy can save 25%-60% in the cost of a
study, over a one-stage strategy (Elston 1992). In the
second approach, there is no space between adjacent
markers (Lander and Botstein 1989; Feingold et al.
1993), so that markers are almost perfectly correlated.
While these approaches generate valuable insights into
mapping with multiple markers, we chose here to use a
simulation-based approach, which should accurately
reflect the marker correlational relationships encoun-
tered in a real study.

Here we explore the power of the APM-method to
detect linkage in the context of a genomewide search
(Weeks and Brown 1993). Using simulated data, we
evaluated various search strategies and found an opti-
mal strategy that maximizes power to detect linkage
while minimizing the false-positive rate and number of
markers. In the optimal strategy, if an APM statistic is
above a certain cut-point, then that region is investi-
gated with more markers. We have investigated differ-
ent spacing of the starting grid of markers, different
numbers of cut-points, and different criteria for when
an area should be further investigated and for declaring
a marker significant. We have found a search strategy
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Figure | Pedigree used for simulation study (Boehnke et al.
1988). The proband, identified by the arrow, is always affected.

that leads to a marked increase in power while keeping
the overall false-positive rate below 5%.

Methods

We simulated data on pedigrees that had 15 members
in three generations (Boehnke et al. 1988) (fig. 1). We
used a disease model with an autosomal dominant
mode of inheritance, full penetrance, and no pheno-
copies. The disease allele had a frequency of .001,
yielding an incidence of .001999. Markers with four
equifrequent alleles were simulated every 2.5 cM on 22
autosomal chromosomes with realistic sex-averaged
lengths, for a total of 1,891 markers. Lengths were ob-
tained from the CEPH /NIH linkage map (NIH/CEPH
Collaborative Mapping Group 1992). These lengths are
believed to provide an upper limit for genetic distances,
since undetected genotyping errors inflate map length.
Note that overestimating the chromosome lengths
would be expected to increase the false-positive rate in
our simulation by providing more unlinked markers
than would be encountered in reality. The disease locus
was halfway between the 40th and 41st markers on
chromosome 10 at 101.25 cM.

For each chromosome, data was simulated as fol-
lows: (1) Assign multilocus genotypes with phase to
every founder in the pedigree. (A founder is a person
whose parents are not in the pedigree.) These assign-
ments are made assuming Hardy-Weinberg and linkage
equilibrium. (2) Generate a gamete for those non-
founders whose parents have already been assigned ge-
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notypes. The gamete is generated by moving locus by
locus down the parental chromosomes, switching from
one to the other when a recombination event occurs. In
each interval, a recombination event is generated if a
uniformly distributed random number is less than the
recombination fraction. Interference is not taken into
account. (3) Repeat step 2 until everyone has been as-
signed a genotype.

As a time-saving measure, the chromosome with the
disease locus was simulated first, and the affected status
of each individual was determined. Families were ascer-
tained through an affected proband (fig. 1) and retained
if there was at least one pair of affected individuals
other than a parent-child pair. (Since a parent and child
must share half their genes in common, they are unin-
formative for the APM method.) We ascertained fami-
lies until at least 300 affected individuals had been col-
lected; this comprised one replicate. Once a replicate
was completed, we calculated and stored the APM sta-
tistic for each marker. We collected 1,000 sets of APM
statistics for 1,891 markers.

Search strategies were then developed to be tested on
the simulated data. Here we define the terms we use to
describe a strategy. A stage is defined by how many
times a region has been examined. The first stage always
consists of a grid of equally spaced markers (fig. 2). The
initial spacing of those first-stage markers must be speci-
fied. For each stage other than the last, a “cut-point”
must be specified. The set of cut-points defines how the
search proceeds: if a marker has an APM statistic above
the cut-point, then its region will be investigated fur-
ther at the next stage. After all the markers are typed,
their APM statistics must be compared to the signifi-
cance threshold; a typed marker is considered to be
positive if its APM statistic is above the threshold. A
positive result is called a “true positive” if it is within a
certain distance from the disease locus and is a false
positive otherwise. A strategy is defined by the spacing
in the initial grid, the number of cut-points and their
values, the significance threshold (which can be defined
to be the last cut-point), and whether we carry out
pairwise or nonpairwise comparisons (described
below).

As an example, consider a nonpairwise two-cut-
point strategy with an initial grid of 20 cM (fig. 24). In
the first stage, we start with a grid of markers every 20
cM and type markers A, B, and C. If B is above the first
cut-point, then we type the two markers 10 cM to ei-
ther side—i.e., markers D and E. In the second stage,
the APM statistic of the originally examined marker, B,

Brown et al.
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Figure 2 Nonpairwise (a) and pairwise (b) (two-cut-point)
strategies. In each stage, lettered markers are the ones newly typed,
shaded markers are evaluated with respect to the cut-point (stage 3
markers are compared with the threshold), arrows indicate those
markers with APM statistics greater than the current cut-point, and
unshaded markers are carried over to the final stage but are not
reevaluated at intervening stages.

and those of the two on either side will then be consid-
ered relative to the second cut-point. If the APM statis-
tic for D is higher than the second cut-point, we then
examine the markers 5 cM to either side—i.e., markers
F and G. Finally, the APM statistic of each marker we
have typed is compared with the threshold, and the
numbers of true positives and false positives are
counted.

In a nonpairwise strategy, a region is explored more if
only a single marker is above the current cut-point. In
contrast, a pairwise strategy requires that two adjacent
markers (in the current stage) both be above the cut-
point. A pairwise strategy may more specifically detect
true-positive regions, since many of the markers in the
region of the disease-susceptibility locus should have
high APM statistics. In addition, on an unlinked chro-
mosome, the odds of more than one high value at
nearby markers should be small. Figure 2b displays an
example of a two-cut-point, pairwise strategy. Markers
A, B, C, and D are examined in the initial grid. If B and
C are both above the first cut-point, then E, F, and G
are typed in the second stage. We then make four pair-
wise considerations: E and B, Band F, F and C, and C
and G. If, for example, only B and F are above the
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Distribution of the APM statistics along two chromosomes. The linked chromosome 10 is on the left, with the disease locus at

101.25 cM (vertical line). On the right is chromosome 11, which is unlinked to the disease.

second cut-point, we then look at H, I, and ] in the
third stage. We compare the APM statistics of A-] to
the threshold to determine which, if any, are true posi-
tives and which are false positives.

We attempted to determine the optimal strategy in
terms of the number of stages, the spacing of typed
markers, the cut-points, and the threshold. In an ideal
strategy, we would like the false-positive rate alpha (a)
low, the power (1—P) high, and the number of markers
typed per replicate low. More precisely, a is the frac-
tion of replicates having a false-positive result,and 1—
is the fraction of replicates having a true-positive result.

Therefore, we constructed a cost function designed
to minimize & and the number of markers while maxi-
mizing power. A strategy is optimal if it has the mini-
mum cost. Note that the results we obtain are optimal
under this particular cost function. If a different cost
function were used, with, for example, more emphasis
placed on power, we would expect different optimal
results. The power, 0, and the number of markers typed
per replicate must be weighted appropriately in the cost
function so that the function value can be used to assess
the strength of a search strategy. We designed our cost
function so that the false-positive rate (o) would be
kept under 5% by imposing a substantial penalty if a is
above 5%. We also defined our cost function so that a
power below 75% was penalized. To make the power
term comparable to the alpha term, the power term was
divided by four. In our cost function, we weight the
marker term [ by a constant k; the magnitude of k
reflects how critical it is to keep the number of markers
low. We report strategies where we weight the number
of markers by differing amounts.

We used the function F(C, T) = y(a) — [&(B)/4]
+ u/ k, where C = the set of cut-points, T = the signifi-
cance threshold,

v(o) = if o < .05
100, ifa= .05,
gB) = 20-Pp)  if 1—P)=.75
(1-B) if 1—-p) <.75,

M = average number of markers over all replicates, and
k = weighting term for the number of markers (40,000).

Optimization Design

For each strategy, a number of selected sets of cut-
points were input to start a downhill simplex optimiza-
tion routine (AMOEBA; Press et al. 1986). The pro-
gram evaluates the function value for each set of
cut-points and iteratively changes each set to minimize
the function value. A direction set method (POWELL;
Press et al. 1986) was also used for confirmation and to
come closer to the global minimum. While the strategy
reported may not yield the global minimum, the differ-
ences in function values among the local minima are
very small. It appears that there are multiple ways to
achieve similar power (1—B) and a and that the truly
optimal cut-points would probably not yield function
values very different from the values obtained.

In the first stage, we type evenly spaced markers
starting at a given marker on each chromosome. In any
real situation, the actual position of the disease locus is
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Table |

Brown et al.

The Best Alpha, Power, Average Number of Markers, and Cost-Function Value for Each Search Strategy,

with Corresponding Cut-Points and Significance Threshold

Grid
No. of  Spacing Independent Cut Cut Cut Function
Strategy Cut-Points  (cM)  Pairwise  Threshold 1 2 3  Thresholdd o  Power Markers  Value
A i 2 10 No No 208 4.22 LCpP 031 521 502.0 —.0867
| B 2 20 No No 196 399 ... LCP .035  .387 260.3 —.0552
Coiiennennns 3 20 No No 1.67 2.08 3.99 LCP .039 651 287.8 —.1166
D...coee 3 20 No Yes 1.67 2.00 226 3.98 044 838 305.4 —.3674
E vevnnnnnn. 3 20 Yes, first Yes 72 85 234 4.00 .046 .814 305.8 -.3534
| U 3 20 Yes, all Yes 72 135 156 4.00 .046  .839 299.9 —.3660
G viveeeennns 3 40 No Yes 73 157 201 3.99 .031 643 2123 —.1244
H............ 3 40 Yes, first Yes -24 128 208 3.99 031 642 216.0 —-.1241
| 3 40 Yes, all Yes 36 1.51 198 3.92 .030 .578 166.2 —.1103

* LCP = last cut-point.

unknown with respect to these first-stage markers.
However, in our simulation study, the disease location
is known and fixed. Therefore, the choice of the start-
ing point for our grid may influence the power esti-
mates. For example, if we start a 10-cM grid at marker
1, then the marker nearest the disease locus is 1.25 cM
away, while if we start the grid at marker 3, then the
nearest marker is 3.75 ¢cM away. In the first case, we
have a marker in the initial grid that is very close to the
disease locus and therefore would expect to have more
power than in the second case, where the closest
marker in the initial grid is 3.75 ¢cM away.

To alleviate this problem, we attempted to pick the
most conservative starting point. However, we found
that the “worst” starting point is actually variable and is
dependent on which cut-points are chosen. Since it is
one of the worst starting points, we start the initial grid
at the second marker on each chromosome. Also, in
some real cases, the disease-susceptibility locus may be
very near the end of a chromosome. In such a case,
there would be fewer flanking markers, and we would
expect the power to be reduced.

A typed marker is considered a true positive if its
APM statistic is above the final threshold and if it is
within a certain distance from the disease locus. This
distance is a critical criterion. One could imagine a situa-
tion where every significant marker syntenic to the dis-
ease locus was scored as a true positive. Allowing this
would obviously inflate the true-positive rate. Alterna-
tively, we could define true positives as only those sig-
nificant results within a very small distance from the
disease locus. However, the high APM statistics do

spread rather far from the disease locus (fig. 3), and thus
it would not be necessary to penalize the positive re-
sults resulting from that spread. We evaluated the effect
of changing the size of the interval in which a significant
result is considered a true positive. For 20-, 30-, and
40-cM intervals, the power was essentially the same,
while the 20-cM interval gave a false-positive rate more
than double the rates generated by the 30- and 40-cM
intervals. On the basis of these results, we chose to call
a significant result a true positive if it was within 30 cM
of the disease locus. While 30 cM is a relatively large
distance in terms of genetic mapping, we felt that it did
not make sense to classify a significant result as a “false
positive” if it was within 30 cM of the true location of
the disease locus.

Experimental Issues

Two-cut-point strategy versus three-cut-point strat-
egy.—Because we observed that the first two cut-
points in a three-cut-point strategy tend to be similar,
we investigated two-cut-point strategies. A two-cut-
point strategy could be beneficial because it would be
simpler to implement and would require fewer markers
than a three-cut-point strategy would require.

Initial grid spacing.—The separation of markers in
the original grid has the greatest effect on how many
markers must be typed for the whole search. The finer
grid would be expected to pick up more true positives
but could also increase the false-positive rate. Optimal
cut-point sets were determined for 10-cM versus 20-
cM initial spacings for a two-cut-point strategy and for
20 cM versus 40 cM for a three—cut-point strategy.
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Figure 4 Comparison of two cut-points vs. three cut-points

in a 20-cM grid, with the threshold-equals-last-cut-point, nonpair-
wise strategy.

Independent threshold versus last cut-point thresh-
old.—Once we type a number of markers, we need to
decide which of them are significant. A typed marker is
considered to be positive if its APM statistic is above
the final threshold. It is customary to use the last cut-
point as that threshold. However, it may be beneficial
to optimize a separate independent threshold in addi-
tion to the cut-points. We examined whether it is better
to use an independent threshold or to use the last cut-
point as the criterion for significance.

Pairwise versus nonpairwise.—We tested a pairwise
strategy in which, at each stage, we simultaneously
looked at two markers. If they were both above a cer-
tain cut-point, then the region was typed with more
markers in the next stage (see example above, fig. 2b).
Another strategy, the first-pairwise strategy, involves
doing the first stage in a pairwise manner but then do-
ing the subsequent stages using the original (single-
comparison) method.

100 :
20 cM
807 @ 10cM
60 52.1 502
22
& 39.9 387
20.8 o
o 56 20
35 a1
0
Cut 1*10 Cut2*10  alpha*100 power*100 markers/10

Figure 5 Comparison of initial grid spacing of 20 ¢cM vs. 10

cM in a two-cut-point, threshold-equals-last-cut-point, nonpairwise
strategy.
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80.0+— [ Independent threshold
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Cut1*10 Cut2*10 Cut3*10 thresh*10 alpha*100 power*100 markers/
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Figure 6 Comparison of a nonindependent threshold vs. inde-
pendent threshold in a 20-cM grid, three-cut-point, nonpairwise
strategy. Note the substantial increase in power with slight effect on
alpha and the number of markers.

Table 1 displays the strategies we evaluated. We
compare the results of these various strategies to those
obtained by performing a complete search in which
every marker is typed and also to those results obtained
by typing only the initial grid of markers.

Results and Discussion

In order to collect at least 300 affected individuals in
each replicate, we ascertained an average of 110 + 18
(mean * SD) probands. Of the families of those pro-
bands, an average of 54 (£ 2) had the required affected-
affected pair other than a parent-child pair. These fami-
lies yielded an average of 302.6 (% 2.1) affected
individuals, with an average number of affected individ-
uals per family of 5.64.

1000 ; -
Pairwise 83.9 83.8
80.09— Bl Non-pairwise
60.0
40.0 40.0 39.8
30.0 30.5
22.6
20.0
20.04——1671 12 o1 15,6
7.2 . 46 44
0.0 _M_J_

Cut1*10  Cut2*10  Cut3*10 thresh*10 alpha*100 power*100 markers/10
Flgure 7 Comparison of pairwise vs. nonpairwise in a 20-cM
grid, three-cut-point, independent threshold strategy. Note the simi-
larity in alpha, power, and the number of markers between the two
strategies. However, there is a substantial difference in the cut-points

used to obtain the same results.
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Table 2

Alpha and Power for One-Stage Grid Searches with Initial
Grid Spacings of 40 cM, 30 cM, 20 cM, and 10 cM, Respectively

ALPHA (power) FOR

127 166 243 474
THRESHOLD Markers Markers Markers Markers
1.644 ...... 999 (.827) 1.000 (.956) 1.000 (.989) 1.000 (1.000)
2.32...... .839 (.527) 914 (.789) 973 (.928) 999 (.992)
3.09...... 256 (184)  .351(482)  .431(.626)  .669 (.845)
3981...... 017 (.034) .025 (.163) 035 (.256) 076 (.397)

The APM statistics at unlinked loci should be asymp-
totically normally distributed with a mean of 0.0 and a
variance of 1.0. Results in figure 3 show the distribu-
tion of the statistics on the linked chromosome and a
representative unlinked chromosome. The probabili-
ties of obtaining statistics greater than certain values are
illustrated. We would expect 0.1% of the random APM
statistics to be greater than 3.090 in a normal distribu-
tion, 1% to be above 2.326, and 5% to be above 1.644;
this is approximately what we observed. Note that the
peak of elevated APM statistics has a 25-50-cM spread
around the disease locus.

Two—-Cut-Point Strategy versus Three-Cut-Point
Strategy

The three—cut-point strategy is much more powerful
than the two-cut-point strategy (table 1, strategies B
and C; and fig. 4). The three-cut-point method has
more power than the two-cut-point method because
interesting regions are explored in more detail.

Initial Grid Spacing

In the strategy with a 10-cM grid, the average num-
ber of markers approximately doubles, with a similar
but lower false-positive rate and 35% better power than
the strategy with a 20-cM grid (fig. 5). If we include a
mild penalty for the number of markers, we determine
that the initial grid spacing could be at 10 cM if the
number of markers were not constrained (table 1, strat-
egies A and B). In comparing initial grids of 20 cM and
40 cM in a three-cut-point strategy, we found that the
40-cM grid gives much worse power (table 1, strategies
D and G). The high APM values apparently do not
spread far enough to make 40 cM an effective grid.

Independent Threshold versus Last Cut-Point Threshold

Allowing the significance threshold to vary indepen-
dently greatly increased the power (to 83.8%) and re-

Brown et al.

duced the false-positive rate, compared with fixing the
threshold to be the last cut-point (fig. 6). Note that in
all cases with an independent threshold, the final cut-
point is much lower than the threshold (table 1, strate-
gies D-I). Also, the threshold is similar for all strategies.
This suggests that fixing the threshold to be the last
cut-point will force the last cut-point to be much higher
than optimal. It appears that the fraction of markers
with APM statistic above a certain value is fixed but
that the methodology for finding them can be opti-
mized.

Pairwise versus Nonpairwise

We found it surprising that a pairwise strategy is not
markedly better than a nonpairwise strategy (table 1,
strategies D-F and G-I; fig. 7); a pairwise strategy
should be more powerful, since many of the markers in
the region of the disease-susceptibility locus should
have high APM statistics. In addition, on an unlinked
chromosome, the odds of obtaining more than one
high value at nearby markers should be small. In other
words, we would expect that on the disease chromo-
some there would be correlations between the APM
statistics for adjacent markers and that the pairwise
strategy would take advantage of these. To determine
why the pairwise strategy was not better than the non-
pairwise strategy, we computed the correlations of the
APM statistics across replicates and found that the
correlations were not markedly elevated on the disease
chromosome, as compared with those on the nondis-
ease chromosomes. This is probably due to the fact

Table 3

The Distribution of the 1,000 Replicates in Terms of How
Many True Positives and False Positives Were Obtained

in Each Replicate by the Optimal Strategy (Table |,
Strategy D)

No. OF FALSE POSITIVES

No. oF

TRUE POSITIVES 0 1 2
[ 150 12 0
| 270 7 1
2 i 285 9 3
K I 152 6 0
N 72 4 0
S i 23 1 0
6 i 3 1 0
7 e, 0 0 0
- 1 0 0




Genomic Searching Using the APM Method 551
Table 4
Cut-Point Series, Thresholds, and Results for Various Values of k
No. of
k Cut-Point 1 Cut-Point 2 Cut-Point 3 Threshold Alpha Power Markers
100 ......... 7.6790 4006 9849 4.0037 032 245 243.000
400 ......... 2.4646 .7964 2.4008 3.9983 .038 757 271.644
1,000 ........ 2.2298 1.2907 2.4412 3.9914 .039 796 279.506
40,000 ...... 1.6727 1.9993 2.2578 3.9814 .044 .838 305.387
100,000 ..... 1.6593 1.9992 2.2178 3.9912 .042 .834 306.949
Infinity ...... 1.8119 1.7484 2.3777 4.0118 .044 822 303.782

NOTE.—A low value of k emphasizes the number of markers in the cost function, while a value of infinity ignores the number of markers.
These are evaluated in the context of a nonpairwise strategy with a 20-cM grid, three cut-points, and an independent threshold.

that, for a rare dominant disease, affected individuals
tend to share one marker allele, while the nonshared
marker allele tends to enter into the pedigree at ran-
dom. Thus, the value of the APM statistic can change
quite a bit from one marker to the next, even in the
absence of recombination. For a rare recessive disease,
affected individuals should tend to share both marker
alleles, and the sharing at the next adjacent marker
should be similar except for recombination. Therefore,
for a recessive disease, the correlations between adja-
cent statistics are much (4-20 times) higher in the dis-
ease region (as verified by a small simulation study).
Thus we would expect that a pairwise strategy would
be better than a nonpairwise strategy for diseases that
are recessive in nature. Since a pairwise strategy is not
markedly different from a nonpairwise strategy (table 1,
strategies D-F and G-I; fig. 7), we chose the nonpair-
wise strategy for simplicity.

The Optimal Strategy

Among the strategies considered here, the optimal
strategy is a nonpairwise strategy with 20-cM initial
grid, three cut-points at 1.67, 2.00, 2.26, and an inde-
pendent threshold of 3.98 (table 1, strategy D). On
1,000 replicates of simulated data, the optimal strategy
yields a false-positive rate of .044 and a true-positive
rate of .838, and it requires the typing of an average of
305.4 markers. Note that this is a genomic search strat-
egy and assumes that all areas of interest are explored
further.

It is useful to compare the performance of the opti-
mal strategy to a naive strategy of simply evaluating
only the markers in the initial grid. If only the 20-cM
grid of 243 markers is examined, power drops to .256

with an average reduction of only 62.4 markers and
.009 in alpha (table 2). If we evaluate all 1,891 markers
and use the same threshold, 3.981, then alpha rises to
.248, while power reaches only .866.

The probabilities of finding true and false positives
were determined experimentally for several sets of
equally spaced markers by using standard significance
levels and the optimal strategy threshold (table 2). The
optimal strategy is clearly both more specific and more
sensitive than any one-stage method. Also, we deter-
mined the threshold required to maintain an overall
false-positive rate below 5% for one-stage grid strate-
gies of various size. For a 40-cM grid of 127 markers, a
threshold of 3.65 is required, while for a 10-cM grid of
474 markers, the threshold must be 4.10.

In an ideal strategy, we would hope to have no false
positives. However, we may not be bothered as much
by false positives as long as we find a true positive (if it is
assumed that there is, in fact, a true disease-susceptibil-
ity locus to be found). Table 3 displays the relationship
between the number of true positives detected and the
number of false positives obtained in the optimal strat-
egy D (table 1). As might be desired, it is rare to have a
false positive without at least one true positive: of the
replicates with one or more false positives, 73% have
one or more true positives. There are only 12 replicates
with just one false positive and no true positives, and
only 4 with more than one false positive. Note that of
1,000 replicates, the vast majority of replicates (838)
have at least one true positive. An average of 1.5 true
positives were detected per replicate.

Within the context of the optimal strategy, we inves-
tigated the effect of changing the weighting term, k, for
the average number of markers (table 4). As expected,
with decreasing penalty on the average number of
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markers, the number of markers typed in the optimal
strategy increases and then plateaus.

Using a large-scale simulation study, we have investi-
gated several strategies for mapping a disease gene by a
genomic search. We found that the optimal strategy is a
nonpairwise, 20-cM initial grid, three-cut-point strat-
egy with an independent threshold. While the disease
model we investigated here is definitely simple, the best
strategy may also be optimal for mapping more com-
plex diseases. However, we would not expect that the
exact numerical values of the cut-points and the signifi-
cance threshold would apply to different modes of in-
heritance. For example, we carried out exactly the same
simulation study on a dominant disorder with markedly
reduced (50%) penetrance (results not shown) and
found that a nonpairwise, 20-cM initial grid, three-cut-
point strategy with an independent threshold is again
the optimal strategy. In the future, we plan to investi-
gate optimal strategies for mapping more complex dis-
eases, such as diseases due to the interaction of two or
more susceptibility loci. Also, this simulation study
used only the single-locus APM statistic. A more power-
ful strategy, which we plan to investigate, may be to
first use the single-locus statistic for the initial grid of
markers and then to use multilocus APM statistics in
subsequent stages.
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