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A B S T R A C T

Purpose
The association of deficient DNA mismatch repair (dMMR) with prognosis in patients with
colon cancer treated with adjuvant fluorouracil, leucovorin, and oxaliplatin (FOLFOX) chemo-
therapy remains unknown.

Patients and Methods
Resected, stage III colon carcinomas from patients (N � 2,686) randomly assigned to FOLFOX �
cetuximab (North Central Cancer Treatment Group N0147 trial) were analyzed for mismatch repair
(MMR) protein expression and mutations in BRAFV600E (exon 15) and KRAS (codons 12 and 13).
Association of biomarkers with disease-free survival (DFS) was determined using Cox models. A
validation cohort (Cancer and Leukemia Group B 88903 trial) was used.

Results
dMMR was detected in 314 (12%) of 2,580 tumors, of which 49.3% and 10.6% had
BRAFV600E or KRAS mutations, respectively. MMR status was not prognostic overall (adjusted
hazard ratio [HR], 0.82; 95% CI, 0.64 to 1.07; P � .14), yet significant interactions were found
between MMR and primary tumor site (Pinteraction � .009) and lymph node category (N1 v N2;
Pinteraction � .014). Favorable DFS was observed for dMMR versus proficient MMR proximal
tumors (HR, 0.71; 95% CI, 0.53 to 0.94; P � .018) but not dMMR distal tumors (HR, 1.71; 95%
CI, 0.99 to 2.95; P � .056), adjusting for mutations and covariates. Any survival benefit of
dMMR was lost in N2 tumors. Mutations in BRAFV600E (HR, 1.37; 95% CI, 1.08 to 1.70; P �
.009) or KRAS (HR, 1.44; 95% CI, 1.21 to 1.70; P � .001) were independently associated with
worse DFS. The observed MMR by tumor site interaction was validated in an independent
cohort of stage III colon cancers (Pinteraction � .037).

Conclusion
The prognostic impact of MMR depended on tumor site, and this interaction was validated in an
independent cohort. Among dMMR cancers, proximal tumors had favorable outcome, whereas
distal or N2 tumors had poor outcome. BRAF or KRAS mutations were independently associated
with adverse outcome.

J Clin Oncol 31:3664-3672. © 2013 by American Society of Clinical Oncology

INTRODUCTION

Colorectal cancer (CRC) is the third most common
cancer and is a leading cause of cancer death world-
wide.1 The majority of newly diagnosed patients
present with local or regional disease2 and can po-
tentially be cured by a combination of surgery and
chemotherapy. However, differences in clinical out-
comes exist that depend on tumor biology. CRCs
can be divided into those with microsatellite insta-
bility (MSI) and those that are microsatellite sta-
ble but show chromosomal instability. MSI is a
consequence of deficient DNA mismatch repair

(dMMR)3,4 that results in an accumulation of errors
within microsatellite regions producing high muta-
tion rates. Most MSI/dMMR CRCs are sporadic and
are associated with the CpG island methylator phe-
notype (CIMP)5,6 and have frequent BRAFV600E

mutations.7 The BRAF oncogene encodes a serine/
threonine kinase and is a downstream effector of the
Ras/Raf/MAPK signaling pathway.8,9 BRAFV600E or
KRAS mutations predict nonresponse to anti–epider-
mal growth factor receptor antibody therapy in meta-
static CRCs, although only KRAS has been validated.10

In metastatic CRCs, BRAFV600E mutations11 have been
associated with adverse clinical outcome.12
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CRCs with MSI/dMMR have distinct clinicopathologic features
including a propensity for the proximal colon.13,14 Most studies have
shown that MSI/dMMR is associated with a favorable prognosis in
patients with CRC.14-17 An important limitation of these studies is that
patients were not treated with the current standard adjuvant chemo-
therapy regimen of fluorouracil (FU), leucovorin, and oxaliplatin
(FOLFOX).18 This issue is complex in that MSI/dMMR is associated
with resistance to FU in vitro19 and in vivo,20,21 whereas in vitro
chemotherapy sensitivity to oxaliplatin seems to be independent of the
mismatch repair (MMR) system.22

We determined the association of MMR status with disease-free
survival (DFS) in prospectively collected, stage III colon carcinomas
from patients treated in a phase III trial of FOLFOX alone or com-
bined with cetuximab as adjuvant chemotherapy (North Central Can-
cer Treatment Group N0147 trial).23 In this trial, the addition of
cetuximab to FOLFOX failed to improve DFS overall or in patients
with wild-type KRAS tumors.23 We examined the prognostic impact
of MMR on DFS adjusting for the mutation status of BRAFV600E or
KRAS genes. Given that dMMR tumors are located primarily in the
proximal colon and show a reduced propensity for metastases,24-26 we
also examined the prognostic impact of MMR stratified by tumor site
and lymph node category (N1 v N2). An independent cohort of
patients with stage III colon cancer from another phase III adjuvant
study was used for validation.27

PATIENTS AND METHODS

Study Population

Patients (N � 2,686) with resected, stage III (any T, N1 or N2, M0)
adenocarcinoma of the colon participated in a phase III randomized trial of
modified FOLFOX6 (n � 1,337) or modified FOLFOX6 � cetuximab
(n � 1,349).23 The trial was modified after initiation to restrict random
assignment to patients whose tumors expressed wild-type KRAS.23 Biospeci-
mens were prospectively collected and required for study participation. A
central pathology review was performed. Patients received chemotherapy
within 10 weeks of surgery. Stratification factors included the following: num-
ber of metastatic lymph nodes (one to three v � four nodes), histologic grade
(high [poorly differentiated or undifferentiated] v low [well or moderately
differentiated]), and T stage (T1-2 v T3 v T4). Proximal tumor sites included
cecum and ascending and transverse colon; distal sites included splenic flexure
and descending and sigmoid colon. The study was approved by the Mayo
Clinic Institutional Review Board and the North Central Cancer Treatment
Group (now part of Alliance for Clinical Trials in Oncology).

DNA MMR Proteins

MMR protein (MLH1, MSH2, and MSH6) expression was analyzed in
formalin-fixed, paraffin-embedded tumor sections using an immunoperoxi-
dase method.28 Monoclonal antibodies included mouse antihuman MLH1
(clone G168-15; Biocare Medical, Concord, CA), antihuman MSH2 (clone
FE11; Biocare Medical), and antihuman MSH6 (clone BC/44; Biocare Medi-
cal). MMR protein loss was defined as the absence of nuclear staining in tumor
cells in the presence of positive nuclear staining in normal colonic epithelium
and lymphocytes. Expression was scored by one GI pathologist (T.C.S.). Tu-
mors were classified as dMMR (v proficient MMR [pMMR]) if loss of one or
more MMR proteins was detected.

BRAF and KRAS Gene Mutations

Mutation status was determined using genomic DNA extracted from
macrodissected tumor tissue. Testing for the BRAFV600E hotspot mutation in
exon 15 was performed using a multiplex allele-specific, real-time polymerase
chain reaction–based assay and an automated sequencing technique.29 Primer
sequences included the following: wild-type forward, NED-TGATTTTGGT-

CATGCTACAGT; mutant forward, 6-Fam-CAGTGATTTTGCTCTAGCT
TCAGA; and reverse, GTTTCTTTCTAGTAACTCAGCAGC. KRAS muta-
tion status was analyzed in extracted DNA using the DxS mutation test kit
KR-03/04 (DxS, Manchester, United Kingdom), assessing for seven different
mutations in codons 12 and 13.30 For both genes, mutational analysis was
performed in a Clinical Laboratory Improvement Amendments–compliant
laboratory at the Mayo Clinic. All biomarker data were analyzed with investi-
gators blinded to patient outcomes.

Validation Cohort

The validation cohort consisted of patients with stage III colon cancer
(N � 1,264) randomly assigned to receive FU plus leucovorin or FU, leuco-
vorin, and irinotecan as adjuvant chemotherapy (Cancer and Leukemia
Group B [CALGB] 89803 trial).27 No differences in survival were observed
between the treatment arms. MMR status was retrospectively determined in
available tissues (n � 891) by analysis of MLH1 and MSH2 protein expression
and/or by MSI, as previously described.27 The mutation status of KRAS and
BRAFV600E was previously analyzed in a subset (n � 571) of the cohort.31,32

Statistical Analysis

Analysis of the primary study end point of DFS was previously reported
for the treatment arms.23 All patients were censored for DFS at 5 years after
random assignment; intent-to-treat principles were used. The two treatment
arms were pooled given the lack of statistically significant differences in DFS
rates and the lack of significant interactions between any of the biomarkers and
treatment. Median follow-up time for 2,213 surviving patients was 4.1 years
(range, 0.0 to 7.5 years). Kaplan-Meier methods were used to describe the
distributions of DFS.33 Univariate Cox proportional hazards models34 were
used to explore the associations of patient characteristics and biomarkers with
outcome. Thereafter, multivariable models were used, and unless otherwise
specified, all models were adjusted for stratification factors (T stage, nodal
category, and grade), primary tumor site, age, sex, treatment, and status of
MMR, BRAFV600E, or KRAS. Interactions between biomarkers or biomarkers
with treatment were assessed. Analyses were reported using a validation cohort
and to evaluate the robustness of the results. Two-sided P values are reported;
P � .05 was considered statistically significant. Analyses were performed using
SAS version 9.2 (SAS Institute, Cary NC) and R version 2.14.35

RESULTS

Study Population and Biomarkers

Characteristics of the patient population with stage III colon
carcinomas (N � 2,686) are listed in Table 1 stratified by MMR,
BRAFV600E, or KRAS status. In the full cohort, dMMR was detected in
314 (12%) of 2,580 tumors, and mutations were present in BRAFV600E

or KRAS in 14% (346 of 2,515 tumors) and 28% (716 of 2,579 tu-
mors), respectively (Table 1). Of note, our clinical trial population was
enriched with wild-type KRAS tumors based on study eligibility crite-
ria.23 BRAFV600E and KRAS mutations were mutually exclusive.

The number of cancers located in the proximal or distal colon
was equal in the study population. Patients with proximal versus distal
tumors were significantly older (median age, 61 v 56 years, respec-
tively; P � .001) and more often women, and their tumors were more
likely to have high histologic grade and increased T stage (T4 v T3 v
T1-2; all P � .02; Table 1). Furthermore, proximal versus distal can-
cers were significantly more likely to show dMMR (21% v 2.8%,
respectively; P � .001) and mutations in BRAFV600E (23.3% v 4.3%,
respectively; P � .001) or KRAS (32.8% v 22.6%, respectively;
P � .001; Table 1).

DNA MMR Status

dMMR was detected in 12% of tumors that exhibited loss of
MLH1 (n � 264; 84%), MSH2 (n � 46), or MSH6 (n � 53) protein
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expression by immunohistochemistry. Three tumors with MLH1 loss
also lacked MSH6. Consistent with prior studies,14-17,24 dMMR was
significantly associated with older age, female sex, proximal site, high-
grade histology, and higher T stage (all P � .008; Table 1). The
proportion of patients with N2 nodal classification (� four positive
lymph nodes)36 did not differ by MMR status (dMMR v pMMR: 127
[40%] v 950 [42%], respectively). Among dMMR tumors, 150
(49.3%) carried BRAFV600E mutations and 33 (10.6%) had KRAS
mutations (Table 1).

BRAFV600E and KRAS Mutational Status

As with dMMR, mutated BRAFV600E was significantly associated
with older age, female sex, proximal site, high-grade histology, and
higher T stage (all P� .002; Table 1). In contrast to dMMR, BRAFV600E

mutations were significantly more frequent in N2 versus N1 tumors
(P � .001). KRAS mutations were detected in only 4.7% of dMMR
tumors (P � .001) and were significantly associated with proximal
site, low-grade histology, and N1 stage (all P � .02; Table 1).

Prognostic Impact of Clinicopathologic Variables

and Biomarkers

Proximal tumor site and higher T or N stage were each signifi-
cantly associated with inferior DFS and were independent of other
covariates (Table 2). For the biomarker analyses, we combined pa-
tients from both treatment arms because we did not find any statisti-
cally significant interactions between MMR, BRAFV600E, or KRAS
status and cetuximab treatment. In the full cohort, MMR status was
not significantly associated with DFS by univariate analysis (hazard
ratio [HR], 1.04; 95% CI, 0.83 to 1.29; P � .7547; Table 2) or after
adjustment for clinical variables, BRAFV600E, or KRAS status (HR,
0.82; 95% CI, 0.64 to 1.07; P � .14; Fig 1). Mutated versus wild-type
BRAFV600E and KRAS were each significantly associated with worse
DFS in univariate and multivariate analyses (Table 2; Fig 1).

Analysis of MMR status by tumor site revealed that dMMR
versus pMMR tumors in the proximal colon were associated with
better DFS (HR, 0.78; 95% CI, 0.61 to 1.00; P � .053); this association
was statistically significant after adjustment for BRAFV600E, KRAS, and
clinicopathologic variables (HR, 0.71; 95% CI, 0.53 to 0.94; P � .018;
Fig 2). In contrast, dMMR versus pMMR tumors in the distal colon
were associated with significantly worse DFS by univariate analysis
(HR, 1.91; 95% CI, 1.11 to 3.26; P � .018); this association was
marginally significant in a multivariable analysis (HR, 1.71; 95% CI,
0.99 to 2.95; P � .056; Fig 2). Consistent with these findings, we found
a statistically significant interaction between MMR status and primary
tumor site (Pinteraction � .0089; Table 2). Within MMR categories,
pMMR tumors of the proximal versus distal colon were associated
with a significantly worse DFS (adjusted HR, 1.27; 95% CI, 1.08 to
1.52; P � .0047).

Among patients with dMMR, those with N2 versus N1 disease
had significantly worse DFS (HR, 3.24; 95% CI, 2.12 to 4.95; P � .001;
adjusted HR, 3.49; 95% CI, 2.19 to 5.54; P � .001; Fig 3). A similar yet
weaker association for the effect of N stage on DFS was observed
among pMMR tumors (HR, 2.26; 95% CI, 1.93 to 2.63; P � .001;
adjusted HR, 2.05; 95% CI, 1.74 to 2.41; P � .001; Fig 3). Further
analysis revealed a statistically significant interaction between MMR
status and lymph node category (Pinteraction � .0135).

Among patients with dMMR tumors, those with mutated versus
wild-type BRAF had similar DFS rates (HR, 1.33; 95% CI, 0.87 to 2.04;

Table 2. Univariate and Multivariate Cox Proportional Hazards Regression
Models for Disease-Free Survival

Variable
No. of

Patients
No. of
Events HR 95% CI P�

Univariate analysis
T stage (reference: T1/T2) 2,685 773

T3 2.75 2.06 to 3.69 � .001
T4 4.97 3.59 to 6.89 � .001

Histologic grade: high v
low 2,686 773 1.37 1.17 to 1.60 � .001

Lymph node status: N2 v
N1 2,686 773 2.35 2.04 to 2.72 � .001

Tumor site: distal v
proximal 2,649 764 0.70 0.61 to 0.81 � .001

Study arm: mFOLFOX6
�cetuximab v
mFOLFOX6 2,686 773 1.06 0.92 to 1.22 .4010

Sex: male v female 2,686 773 1.13 0.98 to 1.31 .0802
Age (per year) 2,686 773 1.01 1.00 to 1.01 .0294
KRAS: mutant v wild

type 2,579 749 1.34 1.15 to 1.55 � .001
BRAFV600E: mutant v wild

type 2,515 731 1.34 1.11 to 1.63 .0028
MMR: dMMR v pMMR 2,580 752 1.04 0.83 to 1.29 .7536
MMR/BRAF (reference:

pMMR and wild-type
BRAF) 2,480 724
dMMR and mutant
BRAFV600E 1.17 0.87 to 1.57 .2958
dMMR and wild-type
BRAF 0.89 0.64 to 1.23 .4742
pMMR and mutant
BRAFV600E 1.50 1.18 to 1.91 � .001

BRAF/KRAS (reference:
wild-type BRAF and
wild-type KRAS) 2,510 729
Mutant BRAFV600E and
wild-type KRAS 1.52 1.24 to 1.87 � .001
Wild-type BRAF and
mutant KRAS 1.47 1.25 to 1.73 � .001

Multivariate analysis
T stage (reference: T1/T2)

T3 2.26 1.66 to 3.07 � .001
T4 4.08 2.90 to 5.76 � .001

Histologic grade: high v
low 1.14 0.97 to 1.35 .1133

Nodal status: N2 v N1 2.17 1.86 to 2.52 � .001
Study arm: modified

FOLFOX6 � cetuximab
v modified FOLFOX6 1.07 0.93 to 1.24 .3559

Sex: male v female 1.16 1.00 to 1.35 .0530
Age (per year) 1.00 1.00 to 1.01 .4146
KRAS: mutant v wild type 1.44 1.21 to 1.70 � .001
BRAFV600E: mutant v wild

type 1.37 1.08 to 1.74 .009
MMR/site (reference:

pMMR and proximal) .0089†
dMMR and distal 1.28 0.75 to 2.20
dMMR and proximal 0.73 0.55 to 0.96
pMMR and distal 0.79 0.67 to 0.93

Abbreviations: dMMR, deficient mismatch repair; FOLFOX6, fluorouracil,
leucovorin, and oxaliplatin; HR, hazard ratio; MMR, mismatch repair; pMMR,
proficient mismatch repair.

��2 test.
†P value for the test of the interaction of MMR and tumor site includes all of

the covariates shown (ie, KRAS, BRAFV600E, T stage, histologic grade, No. of
positive nodes, age, arm, sex, and MMR � site).
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P � .19; adjusted HR, 1.58; 95% CI, 0.88 to 2.82; P � .12; Fig 4). A
similar outcome was also seen for dMMR tumors with mutated versus
wild-type KRAS (Fig 4). Among patients with pMMR tumors, mu-
tated BRAFV600E was associated with significantly worse DFS (HR,
1.51; 95% CI, 1.19 to 1.92; P� .001; adjusted HR, 1.32; 95% CI, 1.01 to
1.73; P � .044) compared with wild-type cases (Fig 4). Similarly,
pMMR tumors with mutated versus wild-type KRAS were associated
with significantly poorer DFS (HR, 1.37; 95% CI, 1.17 to 1.60;
P � .001; adjusted HR, 1.45, 95% CI, 1.22 to 1.73; P � .001; Fig 4).
However, neither the MMR by BRAFV600E (adjusted P � .93) nor the
MMR by KRAS (adjusted P � .38) interaction tests were statistically
significant. Compared with tumors with wild-type copies of both
genes, those with mutation in either BRAFV600E or KRAS showed
significantly worse DFS (Table 2; Appendix Figure A1, online only).

Validation Cohort

We attempted to validate the interaction between MMR, tumor
site, and nodal status in patients with stage III colon cancer from a

phase III clinical trial of FU and leucovorin � irinotecan where no
difference in survival by adjuvant treatment arm was found (CALGB
89803 trial).27 Consistent with findings in our study cohort, a statisti-
cally significant interaction was observed between MMR status and
tumor site for DFS (Pinteraction � .037), adjusted for clinical factors but
not BRAFV600E or KRAS status because mutation data were available in
only 64% of patients in the validation cohort. The interaction for MMR
and tumor site was similar and remained statistically significant when
adjusting for an MMR and treatment arm interaction in addition to
covariates. Among patients from the validation cohort with proximal
cancers, dMMR was significantly associated with improved DFS (HR,
0.59; 95% CI, 0.41 to 0.86; P � .0039) after adjusting for N category, T
stage, histologic grade, age, sex, and study arm. Among distal cancers,
DFS did not differ significantly by MMR status (adjusted HR, 1.58;
95% CI, 0.72 to 3.46; P � .2817), although only 14 of 378 patients
were in the distal dMMR subgroup. The statistically significant
interaction between MMR and nodal status seen in our cohort was
not confirmed in the validation cohort (adjusted P � .7010).
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DISCUSSION

We determined the prognostic impact of MMR status in prospectively
collected stage III colon cancers from patients treated in an adjuvant
study of FOLFOX � cetuximab.23 Study arms were combined for the
analysis because the addition of cetuximab did not improve outcome
and no interaction between treatment and any of the biomarkers was
observed. Among 314 dMMR tumors (12%), 49% carried BRAFV600E

mutations, and 10.6% had KRAS mutations. Although MMR status
was not prognostic in the overall cohort, its association with DFS
depended on tumor site as shown by a statistically significant interac-
tion. Whereas dMMR versus pMMR was associated with a statistically
significant DFS advantage in proximal tumors, dMMR was unexpect-
edly associated with worse DFS in distal tumors. Patients with distal (v

proximal) dMMR tumors were significantly more likely to be younger
(age 52 v 63 years, respectively; P � .001) and to have lower rates of
mutation in BRAFV600E (20% v 54%, respectively; P� .001) but higher
rates of mutation in KRAS (28% v 8%, respectively; P � .001). We
validated our finding for the dependence of MMR on tumor site for
DFS in an independent cohort of patients with stage III colon cancer
randomly assigned to FU/leucovorin � irinotecan in another adju-
vant trial (CALGB 8980327). In that cohort, a statistically significant
interaction was also found between MMR and tumor site for DFS.
Taken together, these data indicate that the tumor site dependence of
MMR for prognosis seems unrelated to the chemotherapy regimen
used but is likely a result of intrinsic biologic factors.

We found a similar frequency of N2 disease in dMMR and
pMMR tumors that was unexpected because dMMR has been
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consistently associated with lower tumor stage at diagnosis and is
uncommon in advanced CRCs.16,24-26 In our cohort, a statistically
significant interaction was found between MMR and nodal cate-
gory for their impact on DFS. N2 versus N1 tumors showed signif-
icantly worse outcome in both dMMR and pMMR tumors, with a
stronger effect in the former. This interaction, however, was not
validated in the independent cohort. Although this may be related
to an inability to adjust for BRAFV600E and KRAS status, which was
not available in the full validation cohort,31,32 we did validate the
interaction between MMR and tumor site despite this limitation.

The lack of association of MMR status with DFS in the overall
cohort deserves comment. Most prior studies examining the prognos-
tic impact of MMR have not adjusted for BRAFV600E or KRAS status.
Furthermore, we identified poor prognostic subgroups among
dMMR tumors (ie, distal and N2 tumors). Although our cohort was
restricted to stage III cancers, studies demonstrating a favorable out-
come for dMMR versus pMMR colon cancers have generally com-
bined stage II and III tumors,14-17,25,27 suggesting that the favorable
survival impact of dMMR may be stronger in earlier stage disease.16,25,37

Another factor is treatment with the FOLFOX regimen because, in con-
trastwithFU,19 oxaliplatinchemotherapysensitivityseemstobeindepen-
dent of the MMR system because oxaliplatin forms platinum adducts
with DNA that cannot be repaired in MMR-deficient cells.22 A study in
stage II and III colon cancers (National Surgical Adjuvant Breast and
Bowel Project C-07) found that the survival benefit of adding oxaliplatin
to adjuvant FU/leucovorin was unrelated to MMR status.38 Therefore, a
survival benefit from oxaliplatin in both dMMR and pMMR tumors
could attenuate any prognostic difference based on MMR status.

Although BRAFV600E mutations are strongly associated with
dMMR, BRAFV600E mutations were significantly more frequent in N2
versus N1 cancers. In the overall cohort, BRAFV600E and KRAS muta-
tions were each independently associated with a statistically significant
reduction in DFS compared with wild-type tumors. When analyzed
by MMR status, the prognostic impact of BRAFV600E or KRAS was
limited to pMMR tumors, although the dMMR subgroups were ad-
mittedly smaller and the interaction test was not significant. Neither
BRAFV600E nor KRAS mutations were associated with relapse-free
survival in stage II or III colon cancers in the Pan-European Trials in

A

0

Di
se

as
e-

Fr
ee

 S
ur

vi
va

l (
%

)

Time (years)

100

80

60

40

20

1 2 3 4 5

wt BRAF
mut BRAF

U.HR (95%CI): 1.51 (1.19 to 1.92); P < .001
M.HR (95%CI): 1.32 (1.01 to 1.73); P = .0437

No. at risk
wt BRAF
mut BRAF

1,451
125

1,104
97

727
97

246
24

1,753
155

1,986
190

B

0

Di
se

as
e-

Fr
ee

 S
ur

vi
va

l (
%

)

Time (years)

100

80

60

40

20

1 2 3 4 5

wt BRAF
mut BRAF

U.HR (95%CI): 1.33 (0.87 to 2.04); P = .1895
M.HR (95%CI): 1.58 (0.88 to 2.82); P = .1220

No. at risk
wt BRAF
mut BRAF

115
105

80
89

47
60

17
25

132
119

154
150

C

0

Di
se

as
e-

Fr
ee

 S
ur

vi
va

l (
%

)

Time (years)

100

80

60

40

20

1 2 3 4 5

wt KRAS
mut KRAS

U.HR (95%CI): 1.37 (1.17 to 1.60); P < .001
M.HR (95%CI): 1.45 (1.22 to 1.73); P < .001

No. at risk
wt KRAS
mut KRAS

1,142
471

834
399

533
282

182
98

1,371
586

1,554
676

D

0

Di
se

as
e-

Fr
ee

 S
ur

vi
va

l (
%

)

Time (years)

100

80

60

40

20

1 2 3 4 5

wt KRAS
mut KRAS

U.HR (95%CI): 0.98 (0.51 to 1.89); P = .9527
M.HR (95%CI): 0.91 (0.40 to 2.10); P = .8338

No. at risk
wt KRAS
mut KRAS

199
24

151
20

94
15

35
8

226
29

277
33

Fig 4. Impact of (A and B) BRAFV600E or (C and D) KRAS mutations on disease-free survival according to DNA mismatch repair (MMR) status. MMR status is defined
as (A and C) proficient MMR (pMMR) or (B and D) deficient MMR (dMMR; see Patients and Methods). Cox models are adjusted for KRAS, BRAFV600E, T stage,
histologic grade, nodal category, age, sex, treatment, and tumor site. HR, hazard ratio; M, multivariate; mut, mutant; U, univariate; wt, wild type.

Sinicrope et al

3670 © 2013 by American Society of Clinical Oncology JOURNAL OF CLINICAL ONCOLOGY



Adjuvant Colon Cancer-3,25 National Surgical Adjuvant Breast and
Bowel Project C-07/C-08,38 or CALGB 8980331,32 adjuvant studies;
however, BRAFV600E mutations were associated with shorter overall
survival in these trials. In metastatic CRCs where dMMR is relatively
uncommon, BRAFV600E mutations have been associated with worse
survival rates12 (Medical Research Council FOCUS trial).39

In FOLFOX-treated stage III patients, our data indicate that any
favorable impact of dMMR is restricted to proximal tumors or those
that are N1. Dependence of the prognostic impact of MMR status on
primary tumor site has implications for risk stratification and clinical
decision making, particularly if our findings are found to apply to
patients with stage II colon cancer. The potential for more selective use
of adjuvant chemotherapy in patients with stage III disease does exist,
as suggested by data from the Pan-European Trials in Adjuvant Colon
Cancer-3 trial where a recursive partitioning analysis identified a tu-
mor subgroup with dMMR and intact SMAD4 expression that had a
clinical outcome similar to patients with stage II disease.40,41 Strengths
of our study include the prospective analysis of MMR and molecular
markers using uniform assay methodology in a Clinical Laboratory
Improvement Amendments–certified laboratory at a single tertiary
medical center. We report the largest number of dMMR tumors from
a single clinical trial. Study limitations include the limited median
follow-up time of 4.1 years, although 3-year DFS has been shown to be
a reliable surrogate for 5-year overall survival in adjuvant studies in
colon cancer.42

In conclusion, the prognostic impact of dMMR on DFS was
dependent on the primary tumor site in patients with stage III colon
cancer, and this finding was validated in an independent cohort. Poor
prognostic subgroups were observed within dMMR cancers that in-
cluded distal site and N2 disease, which may have contributed to the
nonsignificant overall impact of dMMR on DFS. Mutations in
BRAFV600E or KRAS were each independently associated with reduced
DFS and may therefore provide clinically useful prognostic informa-
tion in FOLFOX-treated patients.
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■ ■ ■

GLOSSARY TERMS

CIMP: The CpG island methylator phenotype is characterized
by widespread, concordant promoter CpG island methylation
resulting in silencing of many tumor suppressor genes. CIMP-
high (high degree of CIMP) in colorectal cancer is associated with
old age, female sex, proximal colon, BRAF mutation and MSI
(microsatellite instability), and inversely with chromosomal in-
stability, TP53 mutation, WNT/�-catenin (CTNNB1) activation,
and genome-wide DNA hypomethylation.

DNA methylation: Methylation of bases contained in the
DNA double helix, resulting in a loss of gene function. Generally
occurring on cytosine residues in the DNA, methylation is im-
portant in regulating cell growth and differentiation and has re-
sulted in the testing of DNA methyltransferase inhibitors as anti-
cancer agents and differentiation agents.

Microsatellite instability: Microsatellites are repeating units in
DNA of 1-5 basepairs that are ubiquitous, abundant, and repeated sev-
eral times in eukaryotic genomes. The presence of microsatellites is asso-
ciated with genomic instability, giving rise to mutations that involve the
addition or subtraction of one or two repeat units.

Mismatch repair: One of four major pathways of DNA repair in
mammalian cells. Mismatch repair recognizes and corrects errors in
DNA replication leading to single base-pair mismatches or insertions/
deletions in small repetitive tracts of DNA known as microsatellites.
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Fig A1. Association of BRAF V600E or KRAS mutation status as a combined variable with disease-free survival in stage III colon carcinomas. Cox models are adjusted
for T stage, histologic grade, nodal category, age, sex, treatment, tumor site, and mismatch repair status. HR, hazard ratio; M, multivariate; mut, mutant; U, univariate;
wt, wild type.
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