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Abstract: In this study, we consider a residential DR program of incentive-based peak power reduction where 
invitation for participation can be sent selectively. The selective process can be crucial for improving efficiency 
of the program for two reasons. First, there are customers who do not change their behavior at all but take rewards 
due to the natural variations in their life patterns. Second, too many notifications can cause adversarial effects 
where participants turn off the notification channels or make complaint calls. For the selective process, obviously 
the process needs to be made as efficient as possible, but it is also essential to maximize the explainability of the 
selection process such that the operation of the program can be made smooth. To address this problem, we propose 
a customer participation behavior prediction model considering both accuracy and explainability, where the 
accuracy advantage of Machine Learning (ML) and the explainability advantage of Credit Scoring (CS) are 
combined. For the study, data was collected from 15,091 households in Korea for one year in 2016. ML algorithms, 
with up to 56 features, were studied and showed a fairly high prediction performance (AUROC 0.9576), but they 
were too complicated to satisfy explainability. A CS method of classing with a scorecard was adopted, where its 
explainability has been heavily tested and proven in the financial sector already. Direct adoption of general CS, 
however, does not guarantee an acceptable accuracy performance because energy data is quite different from 
financial data. To this end, we define a modified CS method using general CS as the base but with additional rules 
for high prediction performance. While this modified CS method maintains its explainability via a well-defined 
scorecard, it also shows comparable prediction performance as ML’s (AUROC 0.9509). The modified CS method 
is expected to affect residential DR in a positive way. Its high accuracy for predicting customer participation 
behavior means a large potential for improving efficiency. Its explainability means not only an easier interaction 
with customers but also less effort for educating call-center agents who need to deal with the customers. 

Keywords: Incentive-based Peak Reduction, Residential DR, Participation Prediction, Explainability, Machine 
Learning, Credit Scoring 

 

 

 

1. Introduction 

Household sector’s power consumption has been steadily increasing, and it is expected to become 41% of 
overall consumption within the next 20 years [1]. Besides the large share, household sector can be influential 
because the educational activities therein can play a significant role in improving social awareness of energy use. 
In these contexts, residential Demand Response (DR) is considered as an important tool for solving the imbalance 
problem of power supply and demand. The residential DR was first launched in the United States in 2010. Between 
the two types of residential DR programs, Price-Based DR (PBDR) and Incentive-Based DR (IBDR), the latter is 
known to provide both efficiency and reliability in the initial adoption period because it allows a flexibility in 
consumer choice and does not require an extensive investment on dedicated infrastructure. Note that IBDR utilizes 
incentives instead of fines, and therefore it can reduce conflicts during the early introduction of DR [2]. The IBDR 
usually operates in the form of an invitation-based event that is scheduled when a peak reduction is deemed 



required. 

Because the IBDR cannot force a customer to participate or not to participate, a "selective process" can be 
helpful in two ways. First, a selective process can exclude customers who opportunistically take rewards. Because 
of natural variations in people’s life patterns, some can occasionally take rewards without making any power-
reduction efforts simply by participating in all events. This issue is pronounced for residential DR because more 
fluctuations in life patterns can occur for a residential customer than a business customer. Therefore, a DR provider 
can improve its operational efficiency by having an option to detect and exclude such customers. Second, a 
selective process can improve customer satisfaction by adaptively controlling how often invitation and reminder 
notifications should be sent. For IBDR to work, sending invitations is necessary. Furthermore, reminder 
notifications have been shown to be helpful for improving effectiveness of residential DR [3]. More notifications, 
however, can have a downside of irritating some customers, and eventually cause complaint calls or opt-outs. For 
this matter, a selective process can be used to determine and control if a particular customer should receive few 
or many notifications.  

So far, most of the existing studies have focused on rebate amount optimization [4, 5], and not so much on 
selective process. Despite of possible improvement in operational efficiency and customer satisfaction, a selective 
invitation or action also means a discriminatory participation opportunity that can lead to fairness issues. As shown 
in [6, 7], energy customers must be protected whenever fairness can be, and providers have a legal obligation to 
make their processes transparent and take actions that have causal relationships. Furthermore, residential DR 
requires easy and concise explanations because it deals with a large number of customers who do not have 
vocational knowledge on energy industry. Therefore, explainability is an important requirement for residential 
DR.  

In this study, we develop a prediction model that can provide both accuracy performance and explainability. 
Accuracy is an important factor for making selective process effective, and explainability is a basic requirement 
for customer protection and regulation compliance. We study three approaches to understand the tradeoffs. First, 
a simple rule-based approach is considered, where the algorithm is allowed to use only a single feature that can 
be obtained directly from the raw data. This approach provides a high level of explainability. Second, a Machine 
Learning (ML) approach is considered, where the algorithm fully utilizes extensive feature engineering and 
feature selection. This approach is known to provide a high level of accuracy performance. While ML has been a 
popular choice for solving a variety of prediction problems, its black-box nature means very low level of 
explainability [8]. Third, Credit Scoring(CS) approach is considered, where it can provide a superior balance 
between accuracy performance and explainability. CS is a widely adopted method in the finance discipline, and it 
can produce fairly simple models that have been shown to work well in financial sector by incorporating nonlinear 
relationships in an explainable way [8, 9]. For studying the three approaches, a residential DR dataset was used, 
where the dataset is from a pilot study conducted in Korea for one year. 

 

2. Explainability & Credit Scoring 

2.1 Explainability 

2.1.1 Importance of Explainability in Energy Market 

  With the increase in automated decision makings using big data and machine learning, many customers are 
becoming concerned of personal information protection. To address the concerns, legal regulations are being 
implemented starting from EU’s ‘General Data Protection Regulation (GDPR)’ [7] and ‘Communication on 
Delivering a New Deal for energy consumers (New deal)’ [6]. GDPR was passed in May 2016, and it will take 
effect in 2018. It is intended for providing transparency and fairness when personal data is used for an automated 
decision making. According to GDPR, the data subject has the right to monitor all the processes and to receive 
understandable explanations [7]. In other words, the model used in the automated decision making must be 
designed in an explainable way such that an answer can be provided when a customer raises a question or files a 
complaint. According to EU’s New deal (2015) [6], an explainable modeling is required in the energy market for 
the same reason. In the energy market, all the decision processes related to energy services must be transparently 
disclosed to the customers, and the customers have the right to monitor and change their program options freely 
at any time. DR and a selective process also need to follow the same regulations. For residential DR programs, 
general public are the targets, and therefore even simpler explanations need to be made available.  



2.1.2 Definition of Explainability 

Prediction performance is easy to quantify, and a variety of metrics such as accuracy, AUROC (Area Under 
Receiver Operation Characteristics), and AUPRC (Area Under Precision-Recall Curve) are available. On the other 
hand, explainability is not easy to define because its requirements are dependent on the person's background and 
knowledge base. Because of this subjective nature of explainability, most of the existing studies define and 
evaluate explainability indirectly. For instance, explainability is defined as shown in Table 1 in the studies of [10, 
11].  

Table 1. Definition of explainability according to [10, 11] 

Condition Description How to make it more explainable 

Less 
Complex Use less parameters in the model Use less features/classes 

More 
Reliable 

Ensure prediction performance 
above a certain level 

Should be predictable at least 
as much as the simplest model 

More Usable Provide information that assists users 
to accomplish a task in a brief form Use a form that everyone already knows 

More 
Applicable 

Anyone can understand and implement 
in a few seconds/minutes 

Do not need any additional knowledge 
or program to implement 

More 
Transparent 

Do not use sensitive features 
Use a white-box approach 

Provide all information to customers 
in every step 

More 
Trusted Use a convincing method for everyone Must have a reasonable explanation 

in every step 
   

  According to the previous studies, explainability can be defined using heuristics, but it cannot be evaluated 
using a quantitative metric. In particular, [11] points out that the only way to guarantee explainability is to use a 
model that is already known as explainable. Therefore, we adopt two known explainable approaches in this study 
– simple rule-based approach and Credit Scoring approach. Credit Scoring is known as an explainable classifier 
and it is also compatible with the definitions of explainability in [9, 12, 13]. 

2.2 Credit Scoring: Explainable Model 

Credit Scoring(CS), originally devised by Durand in 1941, sets the score for each range through logistic 
regression or linear programming of features that were generated from the customer’s historical data. CS uses a 
scorecard, the simple and familiar form [9, 12, 13], such that customers with no expertise in statistics can 
understand. Primarily, CS is used by banks to minimize the financial risks while providing explainability. For 
example, if a person visits a bank to obtain a mortgage loan, the banker predicts the person’s loan repayment 
possibility through a CS model and decides how much the person can borrow, at what interest rate, and for how 
long. For the score evaluation, an example is to give -10 points for delinquency in the last 3 months, +50 points 
for average salary of $5,000 or more, +20 points for owning a car, etc. In this case, if a customer is denied of a 
loan, the customer might file a complaint on the bank’s fairness. For the purpose of handling this issue, financial 
sector implemented legal regulations such as ‘The National Credit Act of 2005 states in article 62’ where banks 
have a legal obligation to disclose the decision-making process and to clearly explain the causal relationship in 
each process. In other words, an explainable model must be used in situations where fairness can be questioned 
by the customers. 

Besides meeting the explainability requirement, CS has been actively used in the industry for over 60 years 
because of its high prediction performance. There are two reasons for the high prediction performance. First, 
overfitting is controlled by extracting only the features that are necessary for the prediction. Secondly, nonlinearity 
is handled by adaptively choosing the ranges for different scores. Since CS performs classing based on 
probabilistic basis rather than scale or class of raw data, it improves prediction performance compared to the 
simple case of using raw data as it is. To improve the prediction performance of CS, Machine Learning(ML) 
techniques can be applied to the feature selection or feature generation steps. When ML techniques are adopted, 
however, the limitation of simple scorecard should be maintained such that explainability is preserved. In our 



study, we also applied ML techniques in a few steps like feature selection and scoring, but the final model remains 
as an understandable scorecard. 

 

3. Data & Feature Description 

  We used incentive-based residential DR pilot study data of 15,091 households in Korea. The dataset contains 
energy measurement data and DR participation log data for one year (2016.01.01~2016.12.31). For all of 65 DR 
events, a notification was sent out a day before through smartphone app, and 1~2 possible reminders were sent on 
the event day. In the pilot, each event lasted for an hour. Due to the data availability issue, the first 4 events were 
excluded from the study. Datasets for training, validation, and test were fixed and used in the same way for 
evaluating all three approaches. In the pilot, typical participation rate was around 10% because the events were 
not very actively advertised. Because of the skewness in the participation and non-participation ratio, AUROC 
(Area Under Receiver-Operator Curve) was used as the performance metric [14, 15]. 

Raw data consisted of three parts. First dataset included event day information that is common to all customers 
(date, start hour, weather, temperature, and amount of base incentive). Second dataset included each customer's 
personal event records (participation, peak-reduction goal successful, reduction goal, and usage). Third dataset 
contained the 15-minute electricity consumption data of each customer. The data was collected through smart-
meters. Joining of the data was possible using unique customer ID. From the raw datasets, 56 features were 
selected or generated by processing the raw data. The list of features is shown in Appendix A. While the raw data 
of general CS in financial sector has more than 100 independent and user-specific features, DR data is less 
complex and we ended up with only 56 features in the final feature set. As will be shown later, 56 turns out to be 
sufficient to achieve a high accuracy. 

 

4. Modeling 

To compare performance and explainability tradeoffs, we investigate three different approaches with different 
objectives in modeling step. First, a simple rule-based approach uses only the features from the raw data without 
any processing at all. Therefore, a simple rule-based approach serves as the simplest baseline while meeting 
explainability requirement. Secondly, ML approaches freely use many features that were heuristically or 
systematically generated. While ML does not meet the explainability requirement, it serves as a benchmark and 
provides an upper limit of performance. Finally, the CS approach uses only a small number of features with 
scorecard such that the results are still well explainable. In terms of accuracy performance, CS is between simple 
rule-based and ML. 

4.1 Simple rule-based Approach: Focusing on Explainability Only 

As the baseline, the simple rule-based approach is allowed to use only one of the most important features from 
the raw dataset. We used Kolmogorov-Smirnov statistics (KS) in order to define important features for 
participation prediction. KS is a distance measure of the cumulative distribution functions of two groups, and it 
quantifies how well a feature discriminates the two groups [16]. After evaluating KS of all raw data features in 
the training dataset, we selected the top 10 as the important features. Then, the best prediction rule was determined 
according to AUROC of validation dataset as shown in Table 2. It turns out that the best single feature is the 
‘participation of the last event’, and therefore simple rule-based was decided to make a prediction purely based 
on the last event’s participation record.  

 

Table 2. Model Selection in Simple Rule-based approach 

Feature KS 
Rule 

(Predicted to participate in) 
AUROC 

Success of the last event 0.5132 Succeeded 0.6758 



Participation of the last event 0.4937 Participated 0.7674 

Success of the 2nd last event 0.4599 Succeeded 0.6653 

Participation of the 2nd last event 0.4275 Participated 0.7450 

Success of the 4th last event 0.3931 Succeeded 0.6261 

Success of the 3th last event 0.3920 Succeeded 0.6361 

Participation of the 4th last event 0.3837 Participated 0.7017 

Participation of the 3th last event 0.3715 Participated 0.6985 

Success of the 5th last event 0.3455 Succeeded 0.6110 

Rebate of the last event 0.3340 More than 0 won 0.6731 

 

4.2 ML Approach: Focusing on Prediction Performance Only 

ML approach utilizes all the features listed in Appendix A, and it only focuses on performance without 
considering explainability at all. We investigated four popular ML algorithms: Logistic Regression (LR), Gradient 
Boosting Method (GBM), Neural Network (single-hidden-layer, NN), and Naïve Bayes (NB). In the training step, 
5-fold cross validation was employed. Furthermore, we thoroughly investigated six feature selection methods to 
maximize the AUROC performance. Five of them were adopted from general ML feature selection methods – 
Stepwise Forward Selection, Stepwise Backward Elimination, Correlation-based Feature Selection, Chi-square 
Feature Selection, and Best First Search [8, 17, 18, 19]. The sixth one was from Credit Scoring modeling using 
Information Value (IV), and the details are explained in 4.3. 

To understand the important features chosen by the feature selection methods, we define the top 10 features 
chosen by each method as the important features. Table 3 shows which features were frequently chosen as the 
important feature by the six feature selection methods. Not surprisingly, participation rate is chosen as an 
important feature by all six methods, and it is the only feature to be selected by six. ‘Participation of the last event’, 
that was chosen for simple rule-based approach, turns out to be selected five times as important features. 
‘Participation of the 2nd last event’ was also chosen by five. 

Table 3. Important features – ‘important feature count’ is the number of feature selection methods that 
have chosen the feature to be important (top 10). 

Important feature 
count  Features 

6 Participation Rate 

5 Participation of the last event, Participation of the 2nd last event 

4 Cumulative Rebate, Success of the last event, Past Maximum Rebate 

3 Participation of the 3rd last event, The number of maximum consecutive success, 
Consecutive participation rate, Success of the 4th last event 

2 
The number of participation, The number of maximum consecutive participation, 

The number of success 

1 

Event date, The number of events, Consecutive non-participation rate,  

Consecutive success rate, Success rate, Recent rebate, 

Success of the 2nd last event, Success of the 3rd last event, 



Participation of the 4th last event, Success of the 5th last event, 

Success of the 6th last event, Success of the 7th last event 

 

4.3 CS Approach: Focusing on Both Explainability and Prediction Performance 

CS approach’s modeling process is transparent and reasonable because the result is scorecard and because 
simple scorecards have been proven to be quite understandable by general public [9, 12]. CS approaches that are 
typically used in industry have a weakness where they apply a number of heuristics or assumptions. In this study, 
in order to strengthen the explainability for the energy data, we modify the original CS modeling steps in [8, 20] 
and add new rules based on mathematical and statistical perspectives. 

4.3.1 Feature Selection 

Feature selection in CS approach refers to the step of selecting a few important features necessary for achieving 
performance while maintaining explainability. General CS approaches select important features based on 
Information Value (IV) that is defined below as equation (1). IV measures how well two groups (Y=0 or 1) are 
separated by a feature (X). Features with IV value of 0.1 or greater are defined as important features [8, 20]. 

IV = Pr 𝑌 = 1 𝑥) − Pr 𝑌 = 0 𝑥) ∗ log	(
Pr 𝑥 𝑌 = 1
Pr 𝑥 𝑌 = 0

)	3435)
 (1) 

4.3.2 Fine Classing 

Fine classing is the step of binning the continuous feature into 20 classes or less. Missing value is regarded as 
a separate class. For example, if 95% data of the "Annual Income" is between $10,000 and $200,000, it is broken 
down into 20 intervals with step-size of $9,500 (=(200,000-10,000)/20). If a feature has less than 20 distinct values, 
all values are treated as separate classes. We adopted the typical linear binning as the fine classing method, and 
we binned each selected feature into 20 classes with equal intervals for the range of 95% of the data. 

4.3.3 Coarse Classing 

While fine classing provides a simple and linear way to define classes, having a good population count balance 
among the classes is important for explainability. In this way, customers can understand why the person was 
selected or not selected. Coarse classing consolidates classes into more stable and statistically significant classes. 
General CS approach approximates the probability of the two groups by logistic regression, and logit is in linear 
relationship with SCORE variable (2-4). The SCORE variable is the score of each feature. 

𝑃(𝑌 = 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛	|		𝑋 = 𝑟𝑎𝑛𝑔𝑒1) = C3DE FGHFI∗JKLMN
OHC3DE FGHFI∗JKLMN

  (2) 

𝑃 𝑌 = 𝑁𝑜𝑛 − 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛	 	𝑋 = 𝑟𝑎𝑛𝑔𝑒1) =
1

1 + exp− 𝛽V + 𝛽O ∗ 𝑆𝐶𝑂𝑅𝐸
 (3) 

𝑙𝑛
𝑃 𝑌 = 𝑁𝑜𝑛 − 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛	 	𝑋 = 𝑟𝑎𝑛𝑔𝑒1)

𝑃 𝑌 = 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛	 	𝑋 = 𝑟𝑎𝑛𝑔𝑒1)
 

= 𝑙𝑛
𝑛 𝑁𝑜𝑛 − 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛	𝐴𝑁𝐷	𝑟𝑎𝑛𝑔𝑒1

𝑛 𝑃𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑡𝑖𝑜𝑛	𝐴𝑁𝐷	𝑟𝑎𝑛𝑔𝑒1
= 𝛽V + 𝛽O ∗ 𝑆𝐶𝑂𝑅𝐸  

(4) 

  In order to increase the explainability while using fewer classes, the logit values calculated in the fine classing 
step were rounded to integers and the classes with the same values were consolidated. In case of a continuous 
variable, the calculated logit value might not be monotonously increasing or decreasing due to the randomness 
and limited size of the data. To maintain explainability, such classes were consolidated with a nearby classes and 
monotonicity was forced.  

Finally, we estimate the linear regression for the SCORE variable and logit calculated for the integrated class 
(i.e. intercept and slope in (4)). However, not only intercept and slope, but also SCORE variable is also unknown. 



To determine SCORE value from this underdetermined equation, most CS methods apply many heuristic 
assumptions without any mathematical evidence, use empirical methods based on expert intuition, or just use the 
class value as it is without considering difference in features’ importance. These directions are easy to implement, 
but they are not explainable method. Therefore, we set the SCORE value for each feature to an integer between 0 
and 100, and the difference of features’ importance is considered in next step (4.3.4) through the scaling factor.  

4.3.4 Model Development 

Model development can become arbitrary depending on the characteristics of the data and purpose when 
heuristics are used. In order to make model more rational and explainable, we eliminated unreasonable 
assumptions and established four well-founded rules. First, the most important feature from feature selection is 
regarded as the baseline and we use SCORE values derived from coarse classing. Secondly, starting from the 
second important feature, a scaling factor between 1 and 0 with 0.05 step-size is introduced. Accuracy 
performance by adding a new feature is evaluated by the product of SCORE value from coarse classing and scaling 
factor. We reflect the importance of features through the scaling factor. Thirdly, features are tried in ranking order, 
and a feature is added to the model only if it improves AUROC with respect to the previous model. Finally, for 
the purpose of making less complex model, features are admitted only when AUROC is increased by 0.001 or 
more. 

 

5. Results 

The simple rule-based approach using ‘participation of the last event’ only, ML approaches using 56 features, 
and the CS approach developed according to 4.3 were evaluated using test data. For ML, GBM showed the best 
performance and therefore only GBM’s performance is included. For CS, five features were chosen in the final 
scorecard, and the features are shown in Table 4. Because of the enhanced rules in 4.3.4, only features that 
improved AUROC by more than 0.001 were chosen, and only five features were finally reflected in the scorecard. 
Note that each feature uses 2~6 ranges, and the total score can be up to 235. A decimal point means that the scaling 
factor is applied. 

Table 4. Scorecard used for CS approach 

Feature Range Score 

Participation rate 

0~0.05 
0.05~0.1 
0.1~0.25 

0.25~0.45 
0.45~0.7 

0.7~ 

0 
19 
41 
58 
75 

100 

Maximum number of 
consecutive participation 

0 
1 

2~4 
5~ 

0 
19.25 
28.35 

35 

Cumulative rebate 

0 
1~328 

329~3930 
3931~ 

0 
13.25 
17.75 

25 

Maximum number of 
consecutive non-participation 

0 
1 

2~4 
5~6 
7~11 
12~ 

35 
20.3 

15.75 
9.1 
4.2 
0 

Success in the last event Success 
Non-participation or fail 

40 
0 

 



The AUROC for test dataset is shown in Table 5. Even the simple rule-based performs reasonably well, and 
achieves AUROC of 0.7643. This indicates that the participation of the last event is a reasonable indicator for 
predicting if a customer will participate in the immediately next event. An additional investigation showed that 
AUROC can be boosted to around 0.9 by using all the raw data of last 3~10 participation records and forming 
engineered features, but such a use raw data fields through feature engineering should be considered as ML or CS 
depending on the number of features and the level of explainability. ML with full use of 56 features achieved the 
best AUROC, and the value was 0.9576. The value is significantly better than simple rule-based, and it is the best 
performance we have achieved while studying the dataset of pilot DR program. CS approach achieved 0.9509, 
which is only slightly worse than ML approach. Even though CS used only 5 features in an easy-to-explain way 
as shown in Table 4, the DR data’s structure allowed the CS to achieve almost the same performance as the ML’s. 
Furthermore, CS actually performed better than ML when ML was forced to use only 5 features as CS did. Despite 
of fully utilizing feature selection methods and using the 5 features that generate the best AUROC value, still 
ML’s performance was worse than CS. This can be explained as follow. From ML’s perspective, the scorecard 
shown in Table 4 can be understood as the result of an extra feature engineering that followed the particular 
procedures discussed in 4.3. While ML used the 56 features as they are shown in Appendix A, CS had a chance 
to modify the features and then choose only 5. The feature engineering combined with scoring method turned out 
to be slightly better than ML when it was allowed to choose only 5 unmodified features from Appendix A.    

Table 5. Result 

Approach Number of used features AUROC 

Rule-based 1 0.7643 

ML 
5 0.9498 

56 0.9576 

CS 5 0.9509 

 

 

6. Conclusions 

Energy service providers are increasingly relying on energy data for improving visibility and efficiency. To 
improve efficiency, it can be helpful to use data and make selective dissemination of information or customer-
targeted actions rather than applying the same to all the customers. Such a use of data for a selective process, 
however, needs to be sufficiently explainable to the customers for the purpose of protecting customer rights and 
complying with regulations. In this study, we have considered an incentive-based peak-reduction DR program, 
and investigated the tradeoff between accuracy performance and explainability. Simple rule-base, machine 
learning, and credit scoring approaches were inspected, and credit scoring was shown to achieve almost as good 
performance as machine learning while providing sufficient explainability. Our particular implementation of credit 
scoring used a scorecard with five easy-to-explain features. The result indicates that credit scoring might be a 
viable solution for many other selective actions that are based on energy data.  
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Appendix A: Feature Description 

Group1 
(Which 

data used) 

Group2 
(User-specific 

or not) 

Group3 
(Continuous 

or not) 
Feature 

Raw data 

Not User-
specific 

Continuous 
Average temperature of event date (Celcius degree) 
System Marginal Price (SMP, won) 
Base rebate (won) 

Discrete 

Event date (0000-00-00) 
Event start hour (0~23) 
DR Provider (A, B) 
Customer Baseline(CBL) calculation method (A, B, C, D) 
Weather of event date (Sunny, Cloudy, Rainy, Snowy) 
Day of the week of event date (Monday~Sunday) 

User-specific 

Continuous 

Customer Baseline (CBL, Wh) 
Goal reduction amount (Wh) 
Planned rebate (won) 
The number of events (times) 
Rebate in the last event (won) 

Discrete 

Participation/Success of the last event (0, 1, unknown) 
Participation/Success of the 2nd last event (0, 1, unknown) 
Participation/Success of the 3rd last event (0, 1, unknown) 
Participation/Success of the 4th last event (0, 1, unknown) 
Participation/Success of the 5th last event (0, 1, unknown) 
Participation/Success of the 6th last event (0, 1, unknown) 
Participation/Success of the 7th last event (0, 1, unknown) 
Participation/Success of the 8th last event (0, 1, unknown) 
Participation/Success of the 9th last event (0, 1, unknown) 
Participation/Success of the 10th last event (0, 1, unknown) 

Processed 
data User specific 

Continuous 

The number of solicitation (times) 
The number of participation (times) 
The number of success (times) 
Cumulative rebate (won) 
Past maximum rebate (won) 
The number of maximum consecutive participation (times) 
The number of maximum consecutive non-participation (times) 
The number of maximum consecutive success (times) 
The number of maximum consecutive failure (times) 
Average hourly usage for last 4 weeks (Wh) 
Average hourly usage for the same day of the last 4 weeks (Wh) 
Average hourly usage for the same hour of the last 4 weeks (Wh) 
Average hourly usage for the same day&hour of the last 4 weeks (Wh) 
Participation rate ( = Participation / Solicitation) 
Success rate ( = Success / Participation) 
Consecutive participation rate 
( = Maximum consecutive participation / Participation) 
Consecutive non-participation rate 
( = Maximum consecutive non-participation / Non-participation) 
Consecutive success rate 
( = Maximum consecutive success / Success) 
Consecutive failure rate 
( = Maximum consecutive failure / Failure) 

Discrete 
First solicited (True, False) 
Approximated tier using usage data for last 4 weeks in old system(A~F, unknown) 
Approximated tier using usage data for last 4 weeks in revised system(A~C, unknown) 
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