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Goal Inference asInverse Planning

Chris L. Baker, Joshua B. Tenenbaum & Rebecca R. Saxe
{cl baker, j bt, saxe}@it.edu
Department of Brain and Cognitive Sciences
Massachusetts Institute of Technology

Abstract many authorseg. Nichols and Stich (2003); Baker, Tenen-
i 4 adul g et s baum, and Saxe (2006)) have argued that the qualitative de-
nfants and adults are a ept atin erring agents’ goals frem Ho Hp 7 H
complete or ambiguous sequences of behavior, We propose scriptions (_)f the_p_r|nC|pIe of rationality that have _b_eem-pr
a framework for goal inference based @werse planning, posed are insufficient to account for the complexities of hu-
in which observers invert a probabilistic generative maafel man goal inference. Further, the qualitative predictiohs o

goal-dependent plans to infer agents’ goals. The inveime pl ; ; o radi
Ring framework encompasses many specific models and rep- noncomputational models lack the resolution for fine-ggdin

resentations; we present several specific models and testth ~ comparison with people’s judgments.
in two behavioral experiments on online and retrospectns g Here, we propose a computational version of this approach
inference. to goalinference, in terms of inverse probabilistic plangnilt
Keywords: theory of mind; action understanding; Bayesian s often said that “vision is inverse graphics”: computaib
inference; Markov Decision Processes - . : . .
models of visual perception — particularly in the Bayesian t
. dition — often posit a causal physical process of how images
Introduction are formed from scenes.€ “graphics”), and this process
A woman is walking down the street, when suddenly shemust be inverted in perceiving scene structure from images.
pauses, turns, and begins running in the opposite directioBy analogy, in inverse planning, planning is the process by
Why? Is she crazy? Did she complete an errand unknown tehich intentions cause behavior, and the observer infers an
us (perhaps dropping off a letter in a mailbox) and rush off toagent’s intentions, given observations of an agent’s behav
her next goal? Or did she change her mind about where sher, by inverting a model of the agent’s planning process.
was going? These inferences derive from attributing gaals tLike much work in computer vision, the inverse planning
the woman and using them to explain her behavior. framework provides a rational analysis (Anderson, 1990) of
Adults are experts at inferring agents’ goals from obsergoal inference. We hypothesize that people’s intuitive the
vations of behavior. Often these observations are ambgguowpry of goal-dependent planning approximates scientific-mod
or incomplete, yet we confidently make goal inferences fromels of human decision making proposed by economists and
such data many times each day. Developmental psychologisgsychologists, and that bottom-up information from iniegt
have shown that infants also perform simple forms of goathis theory, given observations of behavior, is integravét
inference. In experiments using live-action stimuli, Weod top-down prior knowledge of the space of goals to allow ra-
ward found evidence that 6-month old infants attribute goal tional Bayesian inference of goals from behavior.
to human actors, and look longer when subsequent behav- The inverse planning framework includes many specific
ior is inconsistent with the old goal (1998). Meltzoff (1995 models that differ in the complexity they assign to the be-
showed that 18-month olds imitate intended acts of humafiefs and desires of agents. Prior knowledge of the space of
actors rather than accidental ones, and Csibra and colsaguother agents’ goals is necessary for induction, and in this p
found evidence that infants infer goals from incomplete tra per, we will present and test several models that differdirth
jectories of moving objects in simple two-dimensional amim representations of goal structure. Our experimental pgnad
tions (Csibra, Bird, Koos, & Gergely, 2003), both suggest  tests each model with a wide range of action trajectories in a
that children infer goals even from incomplete actions. simple space for which our models make fine-grained predic-
The apparent ease of goal inference masks a sophisticatéions. (Our stimuli resemble those of Gergely et al. (1995))
probabilistic induction. There are typically many goalgilto = Some of these stimuli display direct paths to salient g@ad,
cally consistent with an agent’s actions in a particulatesth ~ have simple intentional interpretations. Other stimusipdiay
and the apparent complexity of others’ actions invokes a conmore complex behaviors, which may not have simple inten-
fusing array of explanations, yet observers’ inductivpte  tional interpretations. These sorts of trajectories allsato
likely goals occur effortlessly and accurately. How is fieiat ~ distinguish between alternative models that differ inrthep-
of induction possible? resentation of complex goal structure. By varying the langt
A possible solution, proposed by several philosophers andf the trajectories, we measure how subjects’ goal infezenc
psychologists, is that these inferences are enabled bytan in change over time, and by eliciting both online and retrospec
itive theory of agency that embodies threncipleof rational-  tive inferences, we measure how subjects integrate informa
ity: the assumption that rational agents tend to achieve thefion over time.
desires as optimally as possible, given their beliefs (2&nn To illustrate the space of models we present, consider the
1987; Gergely, Nadasdy, Csibra, & Bird, 1995). However,introductory example. Each of the three queries raisedtabou
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the woman'’s goals correspond to a particular representatioincurs a cost as well). The goal state is absorbing and cost-
of goal structure that we test. The first model (M1) assume$ree, meaning that the agent incurs no cost once it reaches th
a single invariant goal across a trajectory, and explailys angoal and stays there. Thus, rational agents will try to reach
deviation from the optimal behavior as noise, or bounded rathe goal state as quickly as possible.

tionality. The second model (M2) assumes that agents can The value functiovg),(s) is defined as the infinite-horizon
have subgoals along the way to their final goal, and is ablexpected cost to the agent of executing poficstarting from

to explain indirect paths. The third model (M3) assumes thastates (with no discounting):

agents’ goals can change over time, and can also explain in-

direct paths or changes in direction. i
g ; Vau (S)=En[ZlZPn(atlst,g7w)C(aust) ss=s|. (1)
=

The plan for the paper is as follows. We first describe gw ¥
our framework for inverse planning, and present three spe-
cific inverse planning models for goal inference. We thenQT, (s,a) = yg , P(Str1/s,a)Vgw(Si1) + Cow(a. ) is
describe two new behavioral experiments designed to distinthe state-action value function, which defines the infinite-
guish between our specific inverse planning models, and prahorizon expected cost of taking actianfrom states, with
vide quantitative results of our model for each experiment. goalg, in world w, and executing policyt afterwards. The
agent'’s probability distribution over actions associatéth
Inver se planning framework policy T is defined asPq(a|s,g,w) O exp(BQFw(s,a)),

Although the definition of rationality has been left inforima someUmgs called Boltzmann pthy. The opnmal Boltz-
in prior work on intentional reasoning, formal models of ra- mann policy and the value function of this policy can be com-

tionality have been well developed in the field of decisionput_ed efficient_ly using value_ite_ration (Be_rtsek_as, 200)s
theory. Markov Decision Problems (MDPs) are the standarcﬁ’OIICy embodies a *soft prmmple of rathnallty, whereeth
formalism for sequential decision making, or planning, un_param_eteB controls how I|kel>/ the agent is to deviate from
der uncertainty. Solving an MDP entails finding an optimalthe rational path for unexplained reasons. Thparameter

policy, or rule of action, that leads to the maximum expecteooIays an important role in each of our models, weighing ran-

discounted reward, given the environment. A rational agengomness against high-level goal struct_ure,_ and we vary its
is one that follows an optimal policy. value for each of our models to determine its effect on pre-

At its core, the inverse planning framework assumes tha&jl ) . .
. Next, we describe three candidate representations for peo-
human observers represent other agents as rational ptanner , ™" !
. . le’s prior knowledge about goals in our framework, roughly
solving MDPs. The causal process by which goals cause be- . g :
.2 . S .. corresponding to the three kinds of explanations we offered
havior is generated by probabilistic planning in MDPs with

goal-dependent reward functions. Using Bayesian infemencfor the woman'’s anomalous behavior in our introductory ex-
this causal process can be integrated with prior knowlefige Oample. These cand|d§te models, denot(_ad ALKI2(B ),
likely goal structures to yield a probability distributiaver and M3@,y), are formalized in the subsections below.
agents’ goals given their behavior. Our framework builds om\ odel 1: single underlying goal
Eerg\(gIg)lfSwvxgrlgrg}pl)oiaekiirmeiltaﬁlingzeegg)p?:r?ni\;zrrpr;r?g\?vo?l?sour f_irst candidate_ model assumes that_the agent has one un-
Here we consider a wider range of hypothesis spaces for godFrIylng goal that it pursues across all timesteps. We @enot

structures, and present the first quantitative tests ofrdmise- ﬁ1||§ m(l)lddel Ml_ﬁ). l;nllkerll\/lz ﬁnd M3, thr|]s m(;]del mllj.St ex-
work as an account of human goal inference. plain all deviations from the shortest path to the goal imter

Let Sbe th f Witbe th fenvi of unlikely choices by the agent, governed by the parameter
etSbe the set of agent states, Wibe the set of environ- B. Given a state sequence of len@ththe distribution over
mental states, l&b be the set of goals, and latbe the set of

. ) the agent’s goal in this model is obtained using Bayes' rule:
actions. Lets € She the agent's state at timgletw € W be
the world state (assumed constant across trialsj &G be P(g|si.T,w) O P(st7|g,w)P(glw), @)
the agent’s goal, and lef € A be the agent’s action at tinte
Let P(s+1|s,a,w) be the state transition distribution, which where P(s;.1|g,w) = ﬂtT:_ll P(s;1/s,9,W). The probabil-
specifies the probability of of moving to state; from state ity of the next states.:, given the current stats, the
&, as a result of actioa, in world w. In general, the dynam- goal g, and the environmenw, is computed by marginal-
ics of state transitions depend on the environment, butir t izing over actions, which are only partially observable
stimuli considered in this paper, state transitions arerassl  though their effect on the agent’s state(s 11|s,0,W) =
to yield the desired outcome deterministically. S achg P(st11]s,a,W)Pr(a]s,9,w). M1(B) is a special case
Let Cyw(a,s) be the cost of taking actioa in states for  of both M2(3,k) and M3@,y), with k andy equal to 0.
an agent with goadj in world w. In general, cost functions
may differ between agents and environments. For our 20V10del 2: complex goals
motion scenarios, action costs are assumed to be propalrtionThe next model we consider is based on the complex goal
to the negative length of the resulting movement (stayiitig st model of Baker et al. (2006). We denote this model MgY.

ction in our experiments.
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In this model, with prior probabilitk, the agent picks acom- The marginal probability of goal given the state sequence
plex goal, which includes the constraint that the agent muss$; .t is the product of the forward and backward messages:
pass through a particular “via-point” on the way to its end
goal. With prior probability £k the agent picks a simple P(gtIs1:) O P(GtIS11+1)P(S+2:7 |G, Sta+1)- (6)
goal, which is just a single goal point, as in M1. Giventhe ]
agent's type of goal (simple or complex), the distributioeo 1 NiS distribution allows us to infer what the agent's goawa
goals within each type is assumed to be uniform. Inference8t timet, given its past movements fromt2:1, and future
about an agent's end goal are obtained by marginalizing ovdpovements from time+1:T, allowing us to model subjects’
goal types, and within the complex goal type, marginalizing'€trospective inferences in Experiment 2. The parameter
over possible via-points. plays a key role in how information from the past and future
The evidence that people represent and reason about cof§-integrated into the distribution over current goals. Whe
plex goals (Baker et al., 2006) has lead us to consider M2 as¥%= (k—1)/k, past and future movements carry no informa-
hypothesis for explaining people’s goal inferences. Hagy fion about the current goal. When= 0, changing goals is
in the stimuli we consider, there may be less evidence foProhibited, and future information constrains the probibi
complex goals than in the experiments of Baker et al. (2006)0f all past goals to be equal ®(gr1|s.T). For each exper-
Thus, we vary the parameteto assess the effect of greater a Iment, we tested the range of predictions of M3 across this
priori probability of complex goals. The next model we con- Parameter space.
sider also represents sequences of goals, but in a way that is

more generic, and only depends on the agent's tendency to Experiments

“change its mind”. As candidate models for our experiments, we tested each of
) M1, M2, and M3 withp values in{0.25,0.5,1.0,1.5,2.0,4}0

Model 3: changing goals For M2 and M3, which each have an additional free parame-

Our final model assumes that agents’ goals can change oveir, we tested a range of values for these parameters as well.
time for reasons unknown to observers. This model takes th&hese values are listed in Tables 1 and 2. For M2, we omit
form of a Dynamic Bayes net, which we denote as B  the full range of values from Tables 1 and 2 for readability.
wherey is the probability of changing goals. (In this section, )

we omit the conditional dependence of probability distribu EXPeriment 1

tions onw for readability). Letk be the number of goals, and Our first experiment tested the power of our alternative mod-
letP(g1) be the prior over initial goals attime=1. P(gi+1/0t)  els to predict people’s judgments in a task of inferring aglen

is the conditional distribution over changing to ggal; at  goals from observations of partial action sequences.

timet-+1 given the goay at timet: Participants Participants were 16 members of the MIT

1-y if i = j community.

(3)

y/(k—1) otherwise Materials and Procedure Subjects were told they would
) watch 2D videos of intelligent aliens moving around in sim-
Wheny = 0, this model reduces to M1. When= (k—1)/k,  ple environments with visible obstacles, with goals marked
the conditional distributiof(g:+1|g:) is uniform; in this case by capital letters.
the model is equivalent to choosing a new goal at random " there were 100 stimuli in total. An illustrative subset is
at each time step. Intermediate valuesydfetween O and  ghown in Fig. 1(a). Each stimulus contained 3 goals. There
(k—1)/kinterpolate between these extremes. were 4 different goal configurations, and two different abst
_To compute the posterior distribution over goals at time  ¢je conditions: gap and solid, for a total of 8 different envi
given a state sequensgy1, we recursively define thir- 5 nments. There were 11 different complete paths: two paths
ward distribution: headed toward ‘A, two paths headed toward ‘B’, and 7 paths
P(gt|s11+1) O P(saa|gr, &) z P(gt|g_1)P(g_1|s11), (4) headed toward ‘C’ (to account for_C’s varying Ioca_tior?).-Par
e tial segments of these paths starting from the beginning wer
S ) ) shown in each different environment. Because many of the
where the recursion is initialized witR(g1). This allows us  paths were initially identical, and because many of the path
to model subjects’ online inferences in Experiment 1. - were not possible in certain environments (i.e. collidethwi
_To compute the marginal probability of a goal at titne \yais), the total number of unique stimuli was reduced to.100
givensT, t<T, we use a variant of the forward-backward  gtimyji were presented shortest lengths first in order to not
algorithm. The forward distribution is defined by Eq. 4 above 55 subjects toward particular outcomes. Stimuli of theesa

P(gt+1=i|gt=]) —{

Thebackward distribution is recursively defined by: length were shown in random order. After each stimulus pre-
sentation, subjects were asked to rate which goal they titoug
P(s+2(0S1+1) = was most likely (or if two or more were equally likely, to pick
z P(s+2/0t+1,5%+1)P(S+37T|0t+1,5+2)P(dt+1/0t). (5)  one of the most likely). After this choice, subjects weresakk
Gt+1 to rate the likelihood of the other goals relative to the most
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Figure 1: Experiment 1. (a) Example stimuli. Plots show ajlo&l conditions and both obstacle conditions. Both ‘A’ jgadine shown, one
of two ‘B’ paths is shown and 2 of 7 ‘C’ paths are shown. Darkotetl numbers indicate displayed lengths. (b) Average sulj¢ings with
standard error bars for above stimuli. (c) Model prediiddodel predictions closely match people’s ratings. Rigptl model: M3(1.5,.5).

Model
M1(B) M2(1.5K) M2(2.0K) M3(B,0.67) | M3(B,0.50) | M3(B,0.25) | M3(j3,0.10)
Bl r T «k [ r T« [ r T BT r | B[ r | BJ[r [ B r

02570820107 0.89]] 0.I0] 0.89]] 0.25] 092 0.25] 0.92] 0.25] 0.92 0.25 0.91
05 083025090 025]091] 05 1093 05 094 05 [ 095 05 [ 0.94
10 | 082|050 092] 050|093 1.0 | 095 1.0 [ 095 1.0 [ 096 1.0 | 0.96
15 1082|067 092] 067|093 15 096 15 [ 096 15 [ 097 1.5 | 0.97
20 [ 081 0751 093] 0.75| 0.94 || 2.0 | 0.96 2.0 | 0.97 2.0 | 0.98 2.0 | 0.98
40 [ 078 090 | 093 || 0.90 | 0.4 40 [ 096 40 [ 096 40 [ 096 40 | 0.96

Table 1: Experiment 1 results. M1, M2 and M3 were tested Bitralues in{0.25,0.5,1.0,1.5,2.0,4;0 Odd columns contain parameter
settings for the various models. Even columns contaialues of the various models’ correlations with peoplatngs. For M2 and M3,
which each have an additional free parameter, we testedja @rvalues for these parameters as well. We omit the fufeai values for
M2 for readability. The M38,0.67) column corresponds to the condition in which a new gosaimapled at random at each time step.

likely goal, on a 9-point scale from “Equally likely”, to “Hfa  viable model for people’s judgments in this experiment.

as likely”, to “Extremely unlikely”. Ratings were normadid

to sum to 1 for each stimulus, then averaged across all sullexperiment 2

jects and renormalized to sum to 1. Example subject ratings

are plotted with standard error bars in Fig. 1(b). Our second experiment sought to provide a context within
Each model makes strong predictions about people’s ratvhich predictions of M2 and M3 could be distinguished. We

ings in this experiment. If M1 is correct, then people shoulgshowed subjects long trajectories and asked them to make ret

weigh evidence from old and recent movements equally, anfPSPective judgments about the agent's goal at severaéearl

react slowly to new evidence that conflicts with past evi-Points in the action sequence. As explained below, in cases

dence. Conversely, M2 and M3 predict that people shouldvhere the early and late stages of a trajectory are locadly be

react quickly to recent movements strongly indicating a parexplained by different goals, only the changing goal model

ticular goal. M2 achieves this by inferring that a subgoal ha (M3) predicts that people’s retrospective goal infereneiis

been reached, and that recent movements reflect the end godry accordingly.

M3 achieves this by inferring that the agent has changed itparticipants Participants were 16 members of the MIT

goal. Example model predictions from M35,0.5) are plot-  community (distinct from the first group).

ted in Fig. 1(c); these match subjects’ ratings very clasely Materials and Procedure The procedure of Experiment 2
Results The results of Experiment 1 are summarized in Ta-was similar to that of Experiment 1, except now subjects were
ble 1. All instances of M3 correlate highly with subjects’ told they would see an alien’s movement, and that after this
ratings, indicating that subjects were quick to respond/to e movement, an earlier point along the alien’s path would be
idence of a new goal. Because of this, M2 also correlatesnarked. Subjects were told they would then be asked to indi-
highly with people’s judgments. M1 clearly does a poorercate “which goal the alien had in mind” at the marked point,
job of predicting people’s judgments. Fig. 3(a) shows scatin light of the entire subsequent path they observed.

ter plots of model predictions versus subject ratings fer th  There were 95 stimuli in this experiment. Stimuli were
model with the highest correlation from each class. Altioug taken from Experiment 1 as follows. Each path from each en-
the predictions of M3 correlate slightly higher with suliggc  vironment was used. However, only paths of maximal length
ratings than the predictions of M2, only M1 is ruled out as awere displayed. The marked points were taken to be evenly
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Figure 2: Experiment 2. (a) Example stimuli. Dashed lingegponds to the movement subjects saw prior to rating teéHidod of each
goal at the marked point. Black +'s correspond to test paintise stimuli. Compare to corresponding column of Fig. 3.§bbjects’ ratings:
compare to Fig. 1. (c) Model predictions. Displayed modeB(M5,0.5).

Model
M1(B) M2(1.5kK) M2(2.0K) M3(B,0.67) | M3(B,0.50) | M3(B,0.25) | M3(j3,0.10)
Bl r T «k [ r T« [ r T BT r | B[ r | B[r [ B r

0257060 ][ 0.I0] 0.78] 0.10[ 0.77]] 0.25] 0.91[J 0.25] 0.95f 0.25] 0.94 || 0.25 0.87
05 | 058 025|078 0.25| 0.77]] 05 | 091 0.5 | 0.95 05 | 093 05 | 0.86
10 [ 057|050 078 050 0.77] 1.0 | 0.92 10094 1.0 [ 092 1.0 | 0.84
150561 067|078 067 077] 15 092 15 [ 093] 15 [ 090 1.5 | 0.83
20 [ 056 0751 0.78] 0.75| 0.77 ]| 2.0 | 091 2.0 [ 092 2.0 | 0.88] 2.0 | 0.82
40 [ 055 0.90] 0.78 || 0.90 | 0.77 40 [ 090 40 [ 090 40 [ 086 40 | 0.78

Table 2: Experiment 2 results. M1, M2 and M3 were tested Bitlalues in{0.25,0.5,1.0,1.5,2.0,440 Odd columns contain parameter
settings for the various models. Even columns contaialues of the various models’ correlations with peoplatngs. For M2 and M3,
which each have an additional free parameter, we testedja @rvalues for these parameters as well. We omit the fujeai values for
M2 for readability. The M38,0.67) column corresponds to the condition in which a new gosaiapled at random at each time step.

spaced points corresponding to shorter path lengths prevM3 continues to correlate most highly with people’s judg-
ously displayed in Experiment 1. Thus, each rating in Experments. Interestingly, as predicted earlier, the cormefatf
iment 2 had a corresponding rating in Experiment 1. Fig. 2(apeople’s ratings in Experiment 2 with people’s ratings from
shows illustrative stimuli that directly correspond to #tien-  the corresponding stimuli from Experiment 1 wa89) fairly
uliin Fig. 1(a). high given the difference in tasks. Fig. 3(b) shows scat-
In this experiment, M2 and M3 make opposite predictionster plots of model predictions versus subject ratings fer th
M2 (and M1) predict that the strong evidence provided formodel with the highest correlation in each class.
particular end goals by the long paths shown in Experiment 2
will have a large effect on people’s inferences about agents Discussion
goals earlier in their paths. This is because both M1 and M2 _ ) ) ;
assume the agent’s goal (simple or complex) to be constar:,:[he _h|_gh correlations _between our mode_ls and SUbJe_CtS
throughout its path. Thus, if an agent gives a strong indicapreoncmnS from Expgrlmentll and Experlment 2 provide
tion of pursuing a particular goal at the end of its path, ¢hes st.rong guantitative evidence in support o_f the inverse plan
models assume that it must have been headed for this goal ang framework. These result_s also provide s_upport for the
along. M3, however, uses Eq. 6 to compute the probability mgoal §tructures of M3 as plausible represent_atlons for '““T"a
the agent's goal at the marked point. As discussed eatiier, t goa_l mfeyrence_. However, the onver correlations of M2 with
parametely controls how much information the distribution subjects predlct!ons from Experiment 2 do not rule out sub-
over goals in the future provides about goals in the past. M$C@lS as a possible goal structure representation. Subgoal
predicts that people’s prior assumptions about the likelih could be useful in some cases:, suqh as in our earlier work,
of changing goals will have a large effect on theirjudgmentsWhere we showed that people’s act|_on predictions are well-
If yis close to(k— 1)/k, M3 predicts that people’s ratings explained by M2 when an agent persistently pursues complex

in Experiment 2 will correlate highly with the corresponglin 9‘?5"5 (Ba_lker etal., 2006). As ment_ioned previpusly, thesti
ratings from Experiment 1. uli used in the current paper provide less evidence for sub-

goals than the stimuli used in Baker et al. (2006). People’s
Results The results of Experiment 2 are summarized in Ta-use of different models to explain and reason about difteren
ble 2. M1 continues to perform poorly. Now, however, M2 is data might be captured by a hierarchical Bayesian model that
also a relatively poor predictor of people’s judgments,l&hi incorporates both M2 and M3 as submodels, as well as many
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Figure 3: Example scatter plots of model predictions agaunbject ratings. Plots of model predictions use the paransettings with the
highest correlation from each model column of Tables 1 an{d)2Experiment 1 results. (b) Experiment 2 results.
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