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AFFINE PERMUTATIONS AND RATIONAL SLOPE PARKING FUNCTIONS

EUGENE GORSKY, MIKHAIL MAZIN, AND MONICA VAZIRANI

ABSTRACT. We introduce a new approach to the enumeration of ratidopesparking functions with respect to the
area and a generalizedinv statistics, and relate the combinatorics of parking fumdtito that of affine permutations.
We relate our construction to two previously known comtonat constructions: Haglund’s bijectiof exchanging

the pairs of statistic§area, dinv) and(bounce, area) on Dyck paths, and the Pak-Stanley labeling of the regions of
k-Shi hyperplane arrangements byparking functions. Essentially, our approach can be vita® a generalization
and a unification of these two constructions. We also relatecombinatorial constructions to representation theory.
We derive new formulas for the Poincaré polynomials ofaiaraffine Springer fibers and describe a connection to the
theory of finite dimensional representations of DAHA andsymmetric Macdonald polynomials.

1. INTRODUCTION

Parking functions are ubiquitous in the modern combinesofThere is a natural action of the symmetric group
on parking functions, and the orbits are labeled by the rnexrehsing parking functions which correspond natu-
rally to the Dyck paths. This provides a link between parKumctions and various combinatorial objects counted
by Catalan numbers. In a series of papers Garsia, Hagluricharaet al. [[18] 19], related the combinatorics of
Catalan numbers and parking functions to the space of dadmmmonics. There are also deep connections to
the geometry of the Hilbert scheme.

Since the works of Pak and Stanley][29], Athanasiadis anddsan[[5] , it became clear that parking functions
are tightly related to the combinatorics of the affine synrioefroup. In particular, they provided two different
bijections between the parking functions and the regionStofhyperplane arrangement. It has been remarked
in [2,11,[27] that the inverses of the affine permutationglialy the minimal alcoves in Shi regions belong to a
certain simplexD™*!, which is isometric to thén + 1)-dilated fundamental alcove. As a result, the alcoves in
D™+ can be labeled by parking functions in two different ways.

In this paper we develop a “rational slope” generalizatibthis correspondence. A functiofi: {1,...,n} »

Zs is called anm/n-parking function if the Young diagram with row lengths ebjeaf(1),..., f(n) putin the
decreasing order, fits under the diagonal imanm rectangle.

Recall that a bijection : Z — Z is called an affine permutationdf(xz + n) = w(x) +n forall z and }, w(i) =
i=1

) - Given a positive integem, we call an affine permutatiom-stable if the inequalityw(x + m) > w(x)

holds for allz. All constructions in the present paper are based on thewialg basic observation (see Section
[2.3 for detalils).

Proposition 1.1. If m andn are coprime thenn-stable affine permutations label the alcoves in a certain-si
plex D] which is isometric to then-dilated fundamental alcove. In particular, the numbemefstable affine
permutations equals:™*.

The simplexD]" (first defined in [[10[_27]) plays the central role in our studie show that the alcoves
in it naturally label various algebraic and geometric of§esuch as cells in certain affine Springer fibres and
nonsymmetric Macdonald polynomials@t = ¢t". We provide a clear combinatorial dictionary that allowon
to pass from one description to another.

We define two mapsi, PS between then-stable affine permutations amd/n-parking functions and prove
the following results about them.

Theorem 1.2. Maps.A andPS satisfy the following properties:
(1) The mapA is a bijection for allm andn.
(2) The mapPS is a bijection form = kn + 1. Form = kn + 1, itis equivalent to the Pak-Stanley labeling of
Shi regions.
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(3) The mapPSo A~ generalizes the bijectiod constructed by Haglund ifL8]. More concretely, if one
takesm = n + 1 and restricts the mapd and’PS to minimal length right coset representativessgf\ S,
thenPS o A~ specializes to Haglunds.

Remark 1.3. Form = n + 1 the bijectionA is similar to the Athanasiadis-Linussan [5] labeling of &gjions,
but actually differs from it.

Conjecture 1.4. The mapPS is bijective for all relatively primen andn.

The mapPS has an important geometric meaning. [In][24] Lusztig and Sowisidered a certain Springer
fibre 7., in the affine flag variety and proved that it can be pavedby ' affine cells. In[[14/15] a related
subvariety of the affine Grassmannian has been studied timeleame of Jacobi factor, and a bijection between
its cells and the Dyck paths i x n rectangle has been constructed.[In [20] Hikita generalizisccombinatorial
analysis and constructed a bijection between the cellsaraffine Springer fiber and./n-parking functions (in
slightly different terminology). He gave a quite involvednsbinatorial formula for the dimension of a cell. We
reformulate his result in terms of the m&s.

Theorem 1.5. The affine Springer fibeF,,,,, admits a paving by affine cells, naturally labeled by then-stable
affine permutations. The dimension of such a cell equals

dim ¥, = Y PS8, (i)

Corollary 1.6. If the mapPS is a bijection (in particular, ifm = kn + 1), then the Poinca polynomial of7,,/,
is given by the following simple formula:

MR dimHY (F,,,) = Y £2EIO.
k=0 FEPF /m
It had been proven by Varagnolo, Vasserot and Yun([32, 33ktieecohomology of affine Springer fibefs, ,,
carry the action of double affine Hecke algebra (DAHA). Irtfadl finite-dimensional DAHA representations can
be constructed this way. On the other hand, Cherednik, ihe tlamed author and Suzukil [7,]30] gave a com-
binatorial description of DAHA representations in termgefiodic standard Young tableaux and nonsymmetric
Macdonald polynomials.

Theorem 1.7. There is a basis (of nonsymmetric Macdonald polynomialff)érfinite-dimensional DAHA repre-
sentation naturally labeled by the alcoves of thalilated fundamental simplex. By Propositionl1.1, thesews
can be identified with the:-stable permutations. The weight of such a nonsymmetric Macdonald polynomial
can be explicitly computed in terms of the parking function

The maps4 andPS can be used to define two statisticsiapstable permutations (or, equivalently, otyn-
parking functions):

(ml (ml

- > Au(i), dinv(w) := - > PS8, (i

For the casen =n + 1 Armstrong showed in 2] (in slightly different terms) thatea anddinv statistic agrees
with the statistics defined in[19] as a part of “Shuffle Cohjee”.

area(w) =

Conjecture 1.8. The combinatorial Hilbert series

Hm/n(q,t) _ anrea(w)tdinv(w)

is symmetric iy andt¢ for all m andn:

To support this conjecture, let us remark that the “weak setyh i,,,/,,(¢,1) = H,,;,(1,q) would follow
from the bijectivity of the mapPS . Indeed,

(m=1)(n-1) _ ) (m=1)(n-1) _ ) (m=1)(n-1) _ )
Hypulg,1) =Yg 2 A0 3 g7 IO Sy m i P o g (1,).
w fGPFWL/n w

The second equation follows from the bijectivity of the mdpand the third one follows from the bijectivity of
the mapPS. In particular, the “weak symmetry” holds fot = kn + 1.
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FIGURE 1. The labeled diagram for the parking functipr: (2040).

Surprisingly enough, we found a version of the nRag§ for the finite symmetric group,,. A permutation
w € S, is calledm-stable, ifw(i + m) > w(i) for all i < n —m. It is easy to see that the numberrafstable
permutations is given by a certain multinomial coefficiafe definePS,, (w(i)) as the number of inversions of
height at mostn in w, containing; as the right end.

Theorem 1.9. The restriction of the maPS to the finite symmetric grou§,, is injective for allm andn.

For example, forn = 2 the mapPS provides a bijection between the sete$table permutations ii,, and the
set of lengthn Dyck paths with free right end. We also discuss a relatiomisffinite version of our construction
to the theory of Springer fibers.

The rest of the paper is organized as follows. In Sedfion 2ntreduce and review the main ingredients of
our construction: rational slope parking functions, affieemutations, and Sommers regions. In Sedfion 3 we
construct the mapsgl andPS from the set ofim-stable affine permutations to the set of rational slopeipgrk
functions and prove thad is a bijection. We also discuss the statistics arising fraimoonstruction and introduce
the combinatorial Hilbert polynomial. In Sectibh 4 we stubg casen = kn + 1 and its relation to the theory of
extended Shi arrangements and Pak-Stanley labeling. lio8&twe discuss the specializations of the maps
andPS to minimal length coset representatives and their relabdraglund’s bijectiorC. In Sectior[6 we relate
our construction to the theory of finite dimensional repnégons of Cherednik’'s DAHA and nonsymmetric
Macdonald polynomials. In Sectién 7 we discuss a versiomefrhapPS for the finite symmetric group and
prove its injectivity. In Sectiofill8 we discuss how our coustions are related to the theory of Springer fibers.
Finally, we consider some examples for+ kn + 1 in Sectior 9.

Itis worth to mention that the combinatorial structure & thlated fundamental alcove has been recently inves-
tigated in [31], where the alcoves in it were labeled by éers@quences of numbers (but not parking functions).
We plan to investigate the connections of our work td [31hia future.
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2. TOOLS AND DEFINITIONS

We start with a brief review of the definitions and basic resialvolving parking functions, affine permutations,
and hyperplane arrangements, which will play the key roleunconstructions.

2.1. Parking Functions.

Definition 2.1. A function f : {1,...,n} — Zyo is called anm/n-parking functionif the Young diagram with
row lengths equal tg (1), ..., f(n) putin the decreasing order, bottom to top, fits under theadiabin ann x m
rectangle. The set of such functions is denote®,,,, -

We will often use the notatioyi = (f(1)f(2) ... f(n)) for parking functions.

Example 2.2. Consider the functiorf : {1,2,3,4} — Z,o given by f(1) =2, f(2) =0, f(3) =4,andf(4) =0
(i.e. f = (2040)). The corresponding Young diagram fits under the diagonalin 7 rectangle, but it does not fit
under the diagonal in &x 5 rectangle. Thereforef, ¢ PF7;/, but f ¢ PFy,, (see Figuréll).

Equivalently, a functiorf : {1,...,n} —» Z, belongs toPF,,, ,, if and only if it satisfies one of the following
two equivalent conditions:
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V0e{0,....m—-1}, ({ke{l,...,n}| f(k) <{} > E—n,
m
or )
. my
Vie{0,...,n-1}, {ke{l,...,n}| f(k)<—}>i+1.
n
Let P : PF,./n — Y, denote the natural map from the set of parking functions ¢osttY,, ,, of Young
diagrams that fit under diagonal in anx m rectangle. To recover a parking functighe PF,, , from the
corresponding Young diagraf( /) one needs some extra information. Lengths of the rowB(gf) correspond
to the values off, but one needs also to assign the preimages to them. Thatishounld label the rows d?(f)
by integersl, 2, ...,n. Note that if P(f) has two rows of the same length, then the order of the corneipg

labels does not matter. One should choose one of the possi#es. We choose the decreasing order (read from
bottom to top).

Definition 2.3. Let }A/m_,n denote the set of couplé®, 7) of a Young diagranD ¢ Y;,, ,, and a (finite) permutation
7 € Sy, such that ifkth and(k + 1)th rows of D have the same length, tha(k + 1) < 7(k). We will refer tor as
the row-labeling ofD.

Note thatr € S,, is the permutation of maximal length such tifat r is non-increasing.
Example 2.4. In Exampld 2.2, one has=[3,1,4,2],s0f o 7 = (2040) o [3,1,4, 2] = (4200).
We get the following lemma:

Lemma 2.5. The set ofin/n-parking functionsPF,,, is in bijection with the set of labeled Young diagrams
Yin

Remark 2.6. Note that form = n + 1 the setPF,,,,, is exactly the set of classical parking functighg, and for
m = kn + 1 itis the set ofk-parking functions®? 7y, (e.g. [18]).

From now on we will assume that andn are coprime, so there are no lattice points in the diagonal of
n x m rectangle. By abuse of notation, we will call a non-decmgpiarking function increasing. The number of
increasing parking functions equals to the generalizedl@amnumbeg Y, , = njm("jlm) The number of all
parking functions equats™!.

2.2. Affine Permutations.

Definition 2.7. Theaffine symmetric grouf,, is generated by elements, . . ., s,_1, so Subject to the relations
() s?=1,
(b) sisj =s;s; fori—j# +1 modn,
(C) sisjsi =sjsisjfori—j=+x1modn (if n>2).

Let

T
x=|: , Vi={XeR"|z1+...+2,=0} cR"
)
and IetHfj be the hyperplanéx ¢ V' | z; — x; = k} c V. The hyperplane arrangemetht,, = {Hfj :0<i<j<

n,k € Z} is called theaffine braid arrangemeniThe connected components of the complement to the affing brai
arrangement are calledcoves The groupS,, acts onl/ with the generators; acting by reflections in hyperplanes
HSM for ¢ > 0, andsq acting by reflection in the hyperplatﬂéll_’n. The action is free and transitive on the set of
alcoves, so that the map— w(Ag), where Ag :={XeV |21 > a2 > ... >z, > x1 — 1} is thefundamental
alcove gives a bijection between the grodp and the set of alcoves.

ObserveHi’fj = Hj‘f so we may always take< j. It is convenient to extend our notation to allow subscripts
in Z via Hikthn.,jthn = Hfj andHl-’fj = Hffﬁn- In this way, we can uniquely write each hyperplandsin asHy,
with 1 < i < n,i < £, ¢ € Z. Then we can define theeightof the hyperplanéfﬁe to bel - i. Observe, in this
manner, the reflecting hyperplanesefis H{ ,, = HY , = H , of heightl. Note that with this notation, the action

~ .
of the groupS,, on the hyperplane;’; is given by
k k
W(Hi,j) = Hw(i),w(j)'
There is another way to think about the affine symmetric group
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Definition 2.8. A bijectionw : Z — Z is called an affine,,-permutation, ifw(xz + n) = w(x) + n for all x, and

Y1 w(i) = M,

In this presentation the operation is composition and tmeggorssy, . . ., s,,-1, So are given by
(@) s;(x) =z +1forz=imodn,
(b) si(z)=x—-1forz =i+ 1 modn,
(c) s;(z) = x otherwise.
It is convenient to use list avindow notatiorfor w € S, as the listiw(1),w(2), -, w(n)]. Sincew(z +n) =

w(zx) + n, this determiness. The bijection betwee,, and the set of alcoves can be made more explicit in the
following way.

Lemma 2.9. Every alcoveA contains exactly one poirftzy, ..., z,)T € A in its interior such that the numbers
"T“ -nry,..., "T“ - nx, are all integers. Moreover, ik € w(Ay) is such a point, then in the window notation
one has

4 n+l n+1
(1) w=] 5 L - nTy].

These points are called centroids of alcoves.

Proof. Window notation for the identity permutation id = [1,2,...,n]. By (@), the corresponding point is
+(n-1,n-3,...,1-n). Note that it belongs to the fundamental alcovig= {X ¢ V | z1 > z2 > ... > z, >
x1 — 1}. Moreover, it is the unique point € A, such that the number%;—1 - nx,; are all integers. Indeed, let

a; =2 —ng; forall 1 <i<n.Sincex; >xo >...>x, > — 1 We geta; <as <...<a, <a; +n. Moreover,

2
sincexy +...+x, =0, we havea; +...+a, = @ There is a unique collection of integers satisfying these
conditions:a; = 1,a2 =2,...,a, = n.

SinceS,, acts freely and transitively on the set of alcoves, all wedrtegrove is thaf{1) is preserved under the
action of the generatoss, ... ., s,,. Indeed, forl < i < n we have

(siw) P =wls; = [w(si(1)),...,w  (si(n))]
=[w(1),...,w G+ 1),wt(0),...,w  (n)],
and fori = 0 we have
(sow) ™ = [w(n) —n,w™(2),..., w0 (n-1),w (1) +n].

On the other side, generatars,. .., s, € S, simply permute the coordinates of pointstih while sy acts by
sending(z1,...,x,) 10 (z, + 1,22,...,2,-1,71 — 1). Therefore, Equationl1 is preserved by the action of the
groups,,. O

The minimal length left coset representatives S,,/S,,, also known as affine Grassmannian permutations,
satisfyw(1) <w(2) < --- <w(n), so that their window notation is ancreasindist of integers (summing t@@
and with distinct remaindersmod n). Their inverses,™! are the minimal length right coset representatives and
satisfy that the centroid of the alcoue!(A,) are precisely those whose coordinatesdeereasing That is to
say,w ™ (Ap) is in the dominant chambd& ¢ V | 21 > 25 > - > 2, }.

By a slight abuse of notation, we will refer to the set of mialntength left (right) coset representatives as
S,./S., (respectivelyS,,\S,,).

2.3. Sommers region. The notions of an inversion and the length of a permutatioregdizes from the symmet-
ric groupS,, to the affine symmetric groug,,. However, the sef(i, j) € Z2 | i < j,w(i) > w(j)} is infinite for
allw € S,, except identity. That is why it makes more sense to consit@rsions up to shifts by multiples of:

Definition 2.10. Letw be an affine permutation. The set of its inversions is defised a
Inv(w) ={(i,j) e ZxZ|1<i<n, i<jw(i)>w(j)}.

The length of a permutatian is then defined a&(w) = § Inv(w). We shall say théeightof an inversion(i, j) is
j —i. We will also use the notation

Inv(w) = {(i,§) € ZxZ| i< j,w(i) >w(j)}

for unnormalized inversions.
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Remark 2.11. If (¢,5) € Inv(w), then obviouslyi + kn < j + kn andw(i + kn) > w(j + kn) for any integelk.
Essentially, these couples of integers represent the saraesion ofv. The conditionl < i < n allows us to count
each inversion exactly once. Alternatively, one could atspiirel < j <n,1<w(i) <n,orl <w(j) < n.

Example 2.12. Considew = [-3,2,3,8] € §4/54, whose inverse is~! = [5,2,3,0]. The centroid ofs' (Ag) is
£(11,1,-1,-11)". Notew is translation by the vectgr = (-1,0,0,1)”, asw = [1 - 1(4),2+0(4),3+0(4),4 +
1(4)] and likewisew™" is translation by-x. One can see the centroid above is the centroid of the functaine
alcove translated by . In terms of Coxeter generators, = 515253525150 andw™! = s9s152535251. Note
Inv(w) ={(4,5),(4,6),(4,7),(4,9),(3,5),(2,5)} and¢(w) = 6 which is also its Coxeter length. The inversions
are of height, 2,3, 5,2, 3 respectively. Additionallyinv(w™) = {(1,2),(1,3), (1,4), (1,8),(2,4), (3,4)}.

Geometricallyw has an inversion of height. if and only if the alcoves™!(Ao) is separated from, by a
(corresponding) hyperplane of height More precisely, that hyperplanelﬁgim if the inversion is(i, i + m).
The following definition will play the key role in our consttions:

Definition 2.13. An affine permutation € S, is calledm-stableif for all z the inequalityw(z + m) > w(zx)
holds, i.e.w has no inversions of height. The set of alin-stable affine permutations is denoted$jy.

Definition 2.14. An affine permutationo € S,, is calledm-restrictedif w™' ¢ S™. We will denote the set of
m-restricted permutations BY.S,,. Notew € ™S, if and only if for alli < j, w(i) - w(j) = m.

Lemmd 2.0 implies an important corollary for the $&t:

Lemma 2.15. Letm = kn + r, where0 < r < n. The set of alcove&u(Ay) : w € ™S, } coincides with the set of
alcoves that fit inside the regiai?)* c V defined by the inequalities:

Q) z; -z 2-kforl<i<n-r,

2) ziyp—pn—x; <k+1forn-r+1<i<n.

Proof. Remark thatD]* is precisely the region cut out by the hyperplanes of heaizghasH;l’i,. = HEH,.HM =
HY;,,, and likewiseH (", ;= HY,\ . ci1yni = Him,i = Hliumy- This means that alcove™ (Ao) is inside

Dy if and only if the permutatior has no inversions of height. O

The regionD;" was considered by Sommers in [27], therefore we call itSeenmers regianlt is known
that D) is isometric to thenth dilation of the fundamental alcove. This was proven fotyges by Fan[[10,
Lemma 2.2] and Sommels [27, Theorem 5.7], based on an eanlierblished observation of Lusztig. It is worth
emphasizing that in typd the construction of the isometry is very clear.

Lemma 2.16. Letc = MQ(”“) The affine permutation,,, := [m - ¢,2m —c¢,...,nm - ¢] induces an isometry
betweenD™ and the simplexn D} = mA, in the dominant region cut out by the hyperplane- z,, = m:

Wi, (mD}l) =D

Proof. By the proof of Lemm&2.15, the regidi™ is cut out by the hyperplang$,

.+m fOr all integeri. Since
m andn are coprime, one can equivalently say that it is cut out byngiperplanes

H’S’L*C,Q’ITL*C’ Hgm—c,Bmfc’ ce 7H’2m—c,(n+1)m—c'
On the other hand, the hyperplang- x,, = m can be written aﬂg,mml, so the simplexn D}, is cut out by the
hyperplanesdi},, H3 5,..., H, ., H) ,.,.... Remark that,, (i) = mi - ¢ for 1 <i < n, and

wm(mn+1)=wnp(l)+mn=m-c+mn=m(n+1)-c

Thereforev,,, (HY,,,) = H. forl<i<n,and

mi-c,m(i+1)-c

wm(Hg,mn+1) = HO

mn—c,m(n+l)-c>

hencev,,(mD}) = D™. O

Observe that, sincer andn are coprime, the image of the origin under this isometry bélthe unique vertex
of D;* with all integer entries (in other words, in the root lat)ice
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“[s21] L [132] 4 (143

[-226] [312] [-134] - [4-13]

HQO_Vg HQO,G
FIGURE 3. Dilated fundamental alcoves (left) and Sommers regiaght] for m = 4, w4 = [-226]

Example 2.17. Forn = 3 andm = 2 we havews = [024]. The dilated fundamental alcove is bounded by the
hyperplanedis ;, HY , and H? 5, the Sommers regio; is bounded by the hyperplanés’ ;, HY , and H3 ;.
Note that

W2(Hg,3) = HSA, w2(H10,2) = Hg,z = H??.,Ew w2(H12,3) = H§74 = H10,3-
Similarly, for m = 4 we havew, = [-226]. The dilated fundamental alcove is bounded by the hypeeglan
H3 5, HY , andH{ 5, the Sommers regiofv; is bounded by the hyperplangs ;, HY ; and Hy ;. Note that

W4(HS,3) = HS,Ga w4(H?72) = H(—)Q,Q = H{),5a w4(Hf3) = Hil2,6 = H§,7-
All these hyperplanes are shown in Figlite 2 and Fiflire 3.

3. MAIN CONSTRUCTIONS

3.1. Bijection A : §,T — PF - We define the mapd : §,T — PF,.m by the following procedure. Given
w e S, consider the seh,, := {i € Z: w(i) > 0} c Z and let)M,, be its minimal element. Note that the s&f, is
invariant under addition af: andn. Indeed, ifi € A, thenw(i+m) > w(i) > 0andw(i+n) =w(i) +n>n>0.
Thereforeg + m e A, andi +n € A,,.

Consider the integer lattiogZ )2. We prefer to think about it as of the set of square boxes, réltia® the set of
integer points. Consider the rectangtg, ,, := {(z,y) € (Z)* | 0 < = < m,0 < y < n}. Let us label the boxes of
the lattice according to the linear function

I(z,y) = (mn-m-n)+ M, -nx-my.

The functioni(z, y) is chosen in such a way that a box is labeled\y if and only if its NE corner touches the
line containing the NW-SE diagonal of the rectanflg .., sol(x,y) > M,, if and only if the box(z, y) is below
this line. The Young diagram,, defined by

D, := {(:I:,y) €Rmn | l(:c,y) € Aw}-
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I
[ _
2,-2|-6 1
40 5/|1]-3]-7 |

— -4
112 0|-4|-8 ;
319 -1|-5|-9| |
- |
| | | | | | | =21 |
Lodo oL Jo oLl ___L_J

FIGURE 4. The labeled diagram corresponding to the permutatierj0, 6,3, 1].

If (x,y) € Dy, thenw(I(xz,y)) > 0, hence
CLJ(l(ZE - 17y)) = W(l(ZE,y) + TL) > 05
and
w(l(z,y-1)) =w(l(z,y) + m) > w(l(z,y)) > 0.

Therefore, ifzr—1 >0, then(z-1,y) € D, and ify -1 > 0, then(z,y — 1) € D,,. We conclude thab,, c Ry, ,
is indeed a Young diagram with the SW corner H6x0). Note also thaD,, fits under the NW-SE diagonal of
Ry,.n. ThereforeD,, € Yy, 1.

Observe that the boxes in tti& row of the diagram correspond to coordinates withi — 1.

The row-labelingr,, is given byr,, (i) = w(a;), wherea; is the label on the rightmost box of thh row of D,

(if a row has length) we take the label on the bagx1,i — 1), just outside the rectangle in the same row). Note
that if ith and(i + 1)th rows have the same length, then; = a; — m and

To(i+1) =w(ai1) = w(a; —m) <w(a;) = 7,(7).
Therefore(D,,, 7,,) € Ym,n. We defineA(w) € PF,,, to be the parking function corresponding(td,,, 7, ).
Example 3.1. Letn = 4, m = 7. Consider the affine permutatian= [0,6, 3,1] = s150825352 :

r ... -3 -2 -1 0 1 2 3 45 6 7 8
wx) ... -4 2 -1 -3 06 3 1 4 10 7 5 ...,

The inversion set i$nv(w) = {(2,3),(2,4),(2,5),(2,8),(3,4)}. Note that there are no inversions of height
sow is 7-stable. Equivalently,™ = [4,-2,3,5] is 7-restricted. The seh,, = {-2,2,3,4,...} is invariant under
the addition oft and7, andM/,, = —2. The diagranD,, is shown in FigurEl4. Note that the lab8lst, 5, and-2 on
the rightmost boxes of the rows &%, are thet-generators of the sét,,, i.e. they are the smallest numbersip
in the corresponding congruence classesd 4. It follows then that the corresponding value§3), w(4),w(5),
andw(-2) are a permutation of, 2,3, 4. Indeed, read bottom to tofw(3),w(4),w(5),w(-2)) = (3,1,4,2).
This defines the row-labeling, := [3,1,4,2]. Note that the last (top) two rows of the diagram have the same
length0. Therefore, the difference between the correspondingdabgl (-2) = 7. The7-stability condition then
implies thatr(3) = w(5) > w(-2) = 7(4), which is exactly the required monotonicity condition on thkeling.
Using the bijection from Lemnia2.5, one obtains the parkimgfionA,, = (2040).

Equivalently, one can start directly fromT! = [4,-2,3,5] ¢ ™S, and form the same labeled rectangle, noting
M, =min{w™ (i) | 1 <i<n}. ThenA, (i) = 1 + x wherez is thex-coordinate of the box labeled™ (7).

Alternatively, one can define the mapin a more compact, but less pictorial way:
Definition 3.2. Letw € §,T. We define the corresponding parking functidp as follows. Let
M, :=min{ieZ:w(i)>0}.

Givena ¢ {1,...,n}, there is a unique way to express' (a) - M,, as a linear combinationm — kn with the
conditionr € {0, ...,n — 1}. Note that one automatically gets> 0. Indeed, otherwise

a=w(M,+rm-kn) >2w(M,)-kn>—-kn>n,
which contradicts the assumptiore {1,...,n}. We setA, («) = k.

Lemma 3.3. The two above definitions of the mapare equivalent.
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Proof. Let (z,i — 1) be the rightmost box in th&h row of the diagranD,,. Let
a=w(l(z,i-1))=w(M,+(mn-m-n)—an-(i—1)m) =71,(4).
We need to check thad,, («) is equal to the length of thigh row, which isz + 1. Indeed,
wl(a) =M, + (mn-m-n)—-zn-(i-1)m,
or
w(a) =M, =(n-i)m-(z+1)n,
withn —i€{0,...n—1}. Therefore A, (a) =z + 1. O

Theorem 3.4. The mapA : S™* — PF,,,, is a bijection.

Proof. Injectivity of the mapA : §,T -~ PF i immediate from the construction. Indeed, the diagdam
completely determines the sAt,, while the row-labelingr,, determines the values af on then-generators of
A, which suffices to determine. This gives an injective map : PF,,;, — S,, such thatp o A = idggl. To
prove thatA is also surjective, it suffices to show thg(f) is m-stable for anyf € PF,,, .

Indeed, letf € PF,,,,, be a parking function,D;, ;) be the corresponding Young diagram with row labeling,
andw := ¢(f). Suppose thatl, ! +m) is an inversion of height, i.e. w(l) > w(l+m). By shifting! by a multiple
of n if necessary, one can assume thét) € {1,...,n}, so that! labels the rightmost box of one of the rows of
Dy. Suppose thatlabels the boXz, y) with y > 0, i.e. itis not in the first row. Theh+ m = I(x,y — 1), which
is the label on the box just below the béx,y). SinceD; is a Young diagram(z,y — 1) € D;. Suppose that
(z,y - 1) € Dy is the rightmost box in theth row. Then

wl+m)=w(l(z,y-1)+(z—x)n) =14(y) + (z —x)n.

If 2>z, we getw(l + m) >n > w(l). Contradiction. Ifz = z, then theyth and(y + 1)th rows are of the same
length and, by the condition on the row labelingf + m) = 7,(y) > 77 (y + 1) = w(l). Contradiction.

Suppose now thdtlabels the rightmost box in the first row:= [(2,0) = M + mn — m —n — zn. Then
l+m=M+(m-1-z)nand

w(l+m)=w(M)+(m-1-z)n>(m-1-2)n>n,

becausél/ labels the rightmost box in theth (top) row and, thereforey(M) = 7/(n) > 0,andm -1 -z > 1,
because the first row of the diagrddy has length: + 1, which has to be less than. We conclude that (1 +m) >
n > w(l). Contradiction. Thereforey e S™ andA: S - PF,,,, is a bijection. O

We call A the Anderson map, since if we restrict the domain to minireabth right coset representatives
(which correspond to partitions callée:, n)-cores), and then project to increasing parking functignsdating,
the map agrees with one constructed by Andersbn [1].

Remark 3.5. Forw,, as in Lemm&2.16 we havé,, = (00---0).

Example 3.6. Consider the case = 5,m = 3. Letid = [1,2,3,4,5], s1 = [2,1,3,4,5], s1s2 = [2,3,1,4,5]
which are all3-restricted. The images of their inverses under the Anatersap are therf = 44 = (01201),
As, = (10201) = f o s1, andAs,s, = (12001) = f o s182. Indeed the3-restricted permutations in the shuffle
14w25w3 correspond in a similar manner to the entire fintte orbit of f. The precise statement is in the
following proposition.

Proposition 3.7. Letw € ST, f = A, € PF,,/,, and writeu = w™' € ™S,,. LetH = {he S, | foh = f}. Let
V={veS,|uve™S,}. IfveVthen
A1, = Ay ov.

In particular V are a complete set of coset representativesSiptH .
Proof. We first consider the case = s;. Noteus; = [u(1),---,u(i + 1),u(i),---,u(n)], so in particular as
u,us; € ™Sy, [u(i) = u(i +1)| # m; and in fact this difference cannot be a multiplenaf We observed at the end
of Exampld 3.1 thatd,, (k) = 1 + = where(z,y) are the coordinates of the box labele@:). Multiplication by
s; € S, does not chang#/,, nor the function that labels the boxes of the rectangle. Hehg, (k) = 1 + 2 where
(x,y) are the coordinates of the box labeleg (k). In other words

A (k) k#i,0+1

Agiw(k) =3 AL +1) k=1 =A,08;=fos,.
A () k=i+1
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Further, note thatl, os; + A, otherwise the boxes labeled:), «(: + 1) would be in the same column and hence
differ by a multiple ofm. Conversely, given < i <n with f o s; # f, we seeu, us; € ™S,,.

Hence we may assumgis chosen so thakll is a standard parabolic subgroup, in which case thé’sgill
correspond to minimal length coset representatives. bhdepeating the above argument, we see that for any
v e S, with uv e S and/(uv) = £(u) + £(v) thatA, 1, = A, ov. O

3.2. Map PS: 5™ » PF /.
Definition 3.8. Letw € ™. Then the maPS,, : {1,...,n} — Zis given by:
PS,(a):= H{ﬁ | 8> a0 <w‘1(a) —w"l(ﬁ) < m}

= {z |w(i) > a,w(a) -m<ic< wil(a)} .
In other wordsPS,,(«) is equal to the number of inversiofis j) € Inv(w) of height less tham: and such that
w(j) = a modn.
Definition 3.9. LetSP : S, — PFmn be defined by = PS,,-1.
ObserveSP,, (i) = §{j >i|0 < u(i) —u(j) <m}.

Example 3.10. Using the same permutation as in Exaniplé 3.1, one®éts(1) = 3 = §{(2,4), (3,4),(-2,4)},
PS.,(2)=0,PS,(3) =1=1{(2,3)},andPS,(4) =1 = 4{(2,5)}, soPS,, = (3011).

Likewise, w™ = [4,-2,3,5] andSP,-1(1) = 3 = ${(1,2),(1,3),(1,6)} ¢ Inv(w™), 1 = §{(3,6)}, and
1=4{(4,6)}.
Example 3.11. Consider(n,m) = (5,3) andu = [0,3,6,2,4]. ThenInv(u) = {(2,4),(3,4),(3,5),(3,6)} and
s0SP, = (01200). Noteu(3) —u(4) = 4 > m so this inversion does not contribute§®,, (3).

Let us prove thaPS,, is indeed ann/n-parking function. We will need the following definition al@mmas.
Definition 3.12. A subsetK c Z is called+n-invariantif for all x € K onehast +ne K andx - n e K.

Lemma 3.13. Let K’ be anxn-invariant set, and (KX n [1,n]) = k. Then there existse Z such that
k
f(Knli-m+1,i]) < =
n

Proof. Consider an interval in Z of lengthmn. On one hand, it is covered by intervals of lengtm, containing
k points of K each, hencg(K n I) = km. On the other hand, it is covered hyintervals of lengthn, hence one
of these intervals should contain at méﬁ% points of K. O

Lemma 3.14. Letw € S™, let K be anzn-invariant set, and (K n[1,n]) = k. There exist$ € Z \ K such that
the following conditions hold:

a) If j<landw(y) >w(l) thenj e K
by f{je K:l-m<j<lw(j)>w(l)}<im
Proof. By Lemmd3.1B there existsc Z such thatj (K n[i —m +1,]) < ’“Tm Sincew(z + n) = w(x) +n, the
set of values ofv on the half line(-0, 4] is bounded from above. Let us chodse: such that:
) w(1) = max{w(z) : v € (~o0,i] N K},
and prove that thig satisfies (a) and (b). if <l andj ¢ K then by [2) one has(j) < w(l), hence (a) holds. To
prove (b), define
Tl K) = {j e K i l=m < j < Lw(j) > w(l)}.
Givenj € J,, (I, K), there exists a unique(j) € Zs such that - m < j + a(j)m < ¢, and for differentj the
numbersj + a(j)m are all different. Sincev is m-stable, we have
w(l)<w()<w(+m)<...<w(j+a(fj)m).
By (2) we conclude that + a(j)m € K.
Therefore we constructed an injective map frég(l, K) to K n [i —m + 1,4], and

f Jm (LK) < (Knli-m+1,i]) < %ﬂ
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Theorem 3.15. For anym-stable affine permutation, the functiorPS,, is anm/n-parking function. Thus one
getsamapPsS: Sy = PF -

Proof. Let us construct a chain aefn-invariant subsets
d=KocKic...K, =27,

with §{K; n [1,n]} = i for all 7, by the following inductive procedure. Givefd; for somei, we use Lemma
312 to find an integet;,; satisfying Lemmd_3.14 (a,b). Sind€; was +n-invariant andl;,; ¢ K;, the sets
K; andl;,; + nZ do not intersect, hence we can 9€t.1 := K; u (l;41 + nZ). By shifting the numbel,;,,
by a multiple ofn if necessary, we can assume thdi;.1) € {1,...,n} forall i € {0,...,n - 1}. Note that
{w(ly),w(l2),...,w(ly)} ={1,...,n}.

Let us estimatéP S, (w(li+1))- If lis1 —m < § < i1 andw(j) > w(l;+1), then by Lemma3.14(a) we have
j € K; and by Lemm&3.14(b) the number of suyiis at most“2. Therefore,

f{a: PS,(a) < %m} >i+1,

because for any € {0,1,...,i} one hasPS,,(w(lps1)) < 22 < “ Therefore,PS(w) is anm/n-parking

n

function. O

Conjecture 3.16. The mapPS : w — PS,, is a bijection betweeg,’f andPF,,/p -

In the special cases = kn + 1, we prove thafS is a bijection in the next Section.

Itis convenient to extend the domains of the functi®#, andSP,, to all integers by using exactly the same
formula. Note that in this caseS,, (a+n) = PS, («). We have the following results, which should be considered
as steps towards Conjectlire 3.16:

Proposition 3.17. Letw € ™S, and letl <i<n, i< j.
Q) w@) <w(i+1) = SP,(i) <SP,(i+1)
2) (4,7) elnv(w) = SP,(i) >SP,(j)

Proof. We first show that i{¢, j) € Inv(w), thenw has a unique inversioft, J) with
3) j<J,w(j)=w(J) modm, and0 <w(i) —w(J) < m.

Sincew € ™S, in the listw(1),w(2),--, we have thats(j) occurs to the left ofu(5) + rm for all ~ > 1.
Hence, we can pick > 0 such thatm < w(i) —w(j) < (r+1)m, i.e. 0 < w(i) - (w(j) + rm) < m, and set
J=w H(w(j) +rm).

Now suppose(i) < w(i+1). Let(i,5) € Inv(w) with 0 < w(i)-w(j) < m. Then sincev(i+1) > w(i) > w(j)
we also havei + 1,7) € Inv(w). Observe + 1 < j as(i,7 + 1) ¢ Inv(w). We pick(i + 1, J) € Inv(w) asin [3)
above. The magi,j) — (i +1,.J) is clearly an injection, yieldingP,, (i) < SP, (i + 1).

For ease of exposition, we recall Remark2.11 which lets usiegan inversiofi, j) with (i + tn,j + tn).

Next if i < j with w(i) > w(j), suppose we havg, k) € Inv(w) with 0 < w(j) - w(k) < m. Then(i, k) €
Inv(w) too. We can pickK > k according to[(B) yieldindi, K) € Inv(w) with 0 < w(i) - w(K) < m and
w(k) = w(K) mod m. Again the map(j,k) ~ (i, K) is an injection, yieldingSP.(j) < SP.(i). Further
there is an extra inversion of the forth J) € Inv(w), showingSP, (i) > SP.(j). The casg =i + 1 gives the
converse off{11). O

Note that if(n,n + 1) € Inv(w) then the above proposition impli&P, (n) < SP, (1), as we havsP,, (1) =
SP.,(n+ 1) by our convention. As a consequence of this, we have thedoipcorollary.

Corollary 3.18. Let1 <i,j <n. SP,(i) =SP,(j) = |w(@) -w(j)|<n
Proof. Without loss of generality < j. By Propositiof.3.3]7 iteni{2)y(7) < w (7). Ifalsow(i) +n < w(j) then as
j<i+n, (j,i+n) € Inv(w) so by the propositio8P,,(j) > SP,(i+n) = SP, (i) which is a contradiction. [J
Proposition 3.19. Letw € ™ S,,.
SPus; (i) =SP,(i+1),
(1) fO<w(i)-w(i+1)<m, then {SP, (i+1) =8P, (i) -1,
SPus;(4) =SP,(5)forj#4,i+1 modn
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SPusi (i) = SPu(i+1),
(2) Ifm<w(i)-w(i+1), then {SP.,. (i +1) = SP, (i),
SPus;(4) =8P, (y)forj#i,i+1 modn
Proof. Write u = ws;. Since0 < w(i) - w(i + 1), we havelnv(u) = s;(Inv(w)) ~ {(i,7+ 1)}. In other words,
(4,7) € Inv(u) iff (:+1,7) € Inv(w). Sinceu(i) —u(j) = w(i +1) —w(y) this yieldsSP,, (i) = SP,(i + 1)
Similarly, fork #i,i+ 1, (k,j) € Inv(u) iff (k,7) € Inv(w), yieldingSP, (k) = SP,, (k).
Finally (i + 1,7) € Inv(w) iff j #4+1and(é,j) € Inv(w). Againu(i+1) —u(j) = w(z) —w(j). Hence in the
casew(i) —w(i+ 1) < m, so that(i,7 + 1) € Inv(w) contributes taSP,, (i), we seeSP,, (i) = SP,(i+1) + 1.
Whenm < w(i) —w(i + 1) this inversion does not contribute, §&,(i) = SP, (i + 1). O

As a corollary to this proposition, we see ti® is injective on{w € ™S, | (4,) € Inv(w) = w(i)-w(j) <
m}. Another interpretation of Theoreim 3]17 is ti&#® not only respects descents but also respects (weakly)
increasing subsequences.

Example 3.20. Let (n,m) = (3,4). Consider these three affine permutatigns [1,5,0], w = ys2 = [1,0,5],
andws; = [0,1,5] € 4S5. The corresponding parking functions &®,, = (120),SP,, = SPys, = (102) (note
5 -0 > 4 so their second and third values have swapped)S#d,, = (002) (notel - 0 < 4).
Remark 3.21. The mapsPS andSP preserve a kind of cyclic symmetry, as follows. (Compare thiProposition
[3.1 for the mapA.) Let the shift operator : Z — Z be defined by

m(i)=i+1.
Clearlyn(i + tn) = w(i) + tn, butz ¢ S,, asy™, 7(i) = "(7”3) . (In other contextsy lives in theextendeaffine
symmetric groupP x Sy, 2 @ x Sy, =~ S,. It corresponds to the generatorBfQ WhereP and(@ are the weight
and root lattices of typel, respectively.) The conjugation map, — S, w — mwn ! interacts nicely with the
mapsSP andPS.

In window notation, conjugation by corresponds to sliding the “window” one unit to the left, bugn renor-
mallzmg so the sum of the entries is s "”) Je.mwr ! = [w(0) + 1,w(1) + 1, ,w(n-1) +1]; equivalently
nwr (i) = w(i+1) + 1. ltis clear thaﬂnv(www*) ={(i+1,5+1) ]| (4,5) € Inv(w)}, and so conjugation
by 7 preserves heights of inversions. In particular, it presetwoth set§'S,, andS)". Itis also clear from the
definition of SP that

SPrur1(i+1) = SP,(4) forue™S, andhence
,PSﬂ'qufl (Z + 1) = PSW(Z) w € mS?n

Consider Examplg=3:10, for whieh= [4,-2,3,5] andSP, = (3011). We getrur~' = [2,5,-1,4] (for which
Inv(rur~t) = {(1,3),(2,3),(2,4),(2,7),(4,7)}) andSP 1 = (1301).
3.3. Two statistics. Our work was partially motivated by some open questions gpbiseArmstrong inl[2]. He
managed to describerea anddinv statistics on parking functions appearing in “Shuffle Conjee” of [19] in
terms of the Shi arrangement.

We present two natural generalizations of these statistite rational case. Both were introduced in a different
form in [20], but they can be best written in terms of mapandPS.

Definition 3.22. Letw € S be an affine permutation labeling an alcwé(Ao) e D;". We define:
(m-=1)( (m- 1) Y PS.

Proposition 3.23. The statisticmea(w) can be computed as follows. Recall thag := {i € Z: w(i) > 0}, then

(4) area(w) = ZA ( dlIlV w) =
area(w) = f ([min A,,, +00) N Ay).

Proof. Indeed, there aré% boxes in the rectangl®&,, ,, below the diagonal. The ones labeled by the
elements of the s¢{min A,,, +o0) \ A,,) are in 1-to-1 correspondence with the boxes outside of hgrdin of

A(w), so their number equa@% - Y Aj(w) = area(w). O
One can also check that the statistica agrees with the statistidsh ™ of [2].

Example 3.24. For the fundamental alcov®S;q(i) = 0, sodinv(id) = W On the other hand);q =
{1,2,3,...}, so by Proposition 3.23rea(id) =
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Example 3.25. Consider the permutatian,, = [m—c¢,2m-c...,nm—c] € m§,. Here the constantis uniquely
determined by the conditio& W (1) = @ In fact,c = % Let us comput&SP,,,, = PS,-1 .
i=1
Since the entries in the window notation foy, are increasing, i.ev,, € §n/Sn, if (k,t) € Inv(w,, ) this forces
t =1+ jn forsomel <i < k andj > 1. Since it is an inversion, we haven — ¢ > im — ¢ + jn. To contribute to
SP.,, (k) we must have
O<(km-c)-(im-c+jn)<m <= km>im+jn>(k-1)m
— (k-1-i)m<nj<(k-i)m
1 .
(k i)m <j< (k-i)m
n n
HenceSP.,,, (k) = 4{j.i|j>1,1<i <k, @ <j< @} Since we run over all < i < k this is just
=i{jli>1j< (k‘i)m} = [m(’;‘l)J. By Propositiof 3.17SP,,,, is weakly increasing. The corresponding
diagram is the maximal diagram that fits under the diagonahim x n rectangle. The area of such a diagram

is wém’l), thereforedinv(w;!) = W - ¥ PS,-1(i) = 0. One can also check that(w;,) = 0, so
(m-1)(n-1)
sl

area(w,}) =
Definition 3.26. We define theeombinatorial Hilbert seriess the bigraded generating function:
Hyn(@t) = Y grea() pdinv(w)
weSr
Itis clear thatf,,,/,,(1,1) = m"?, since there arex"~! permutations ir5”".
Conjecture 3.27. (cf. [20]) The combinatorial Hilbert series is symmetricjrandt:
Hppn(q,t) = Hyppn(t,9)-

This conjecture is a special case of “Rational Shuffle Cduojet [16, Conjecture 6.8]. A more general con-
jecture also implies this identity
_(m-1)(n-1)

Hym(a,q ) =g 2 (L+q+...+
Both conjectures are open for generabndn.

qul )nfl .

Example 3.28.Forn = 5 andm = 2, we have (see Examgle 9.3 below for details):
Hys(q,t) =5+ 4(q+1t) + (¢° + gt + %),
and the above properties hold:
(1) Hy5(1,1) =16 =21,
(2) Hy5(q,t) = Hyy5(t,q),
(3) Hys(q,q7") =g +4g7" +6+4g+¢” =g (1 +¢)*.
4. THE CASESm = kn + 1 AND THE EXTENDED SHI ARRANGEMENTS

4.1. Extended Shi Arrangements and Pak-Stanley LabelingRecall the set ok-parking functionsPF, :=

PF (kn+1)/n - Recall the hyperplanaﬁfj = {X eV |z - x; = k} and the affine braid arrangeme, = {Hi’“j

1<i,j < n,keZ}. Theextended Shi arrangemeior k-Shi arrangement[25, 29], is defined as a subarrangement
of the affine braid arrangement:

Definition 4.1. The hyperplane arrangement
Shy = {Hf:1<i<j<n, -k<l<k}
is called thek-Shi arrangementThe connected components of the complemeﬂthﬁb are calledk-Shi regions
The set ofk-Shi regions is denoteﬂegﬁ .
One can use the notations introduced in Se¢tioh 2.2 to retivdtdefinition of thé-Shi arrangement as follows:
Shy = {H{ :1<i<j<n, -k<(<k}
={H;:1<i<j<n, -k<(<O0}u{H:1<i<j<n, 0<l<k}
={H}, ,:1<i<j<n, -k<l<0}u{H]

) J,i+ln

t1<i<j<n, 0<l<k}
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0
H1,2

0
H2,4

FIGURE 5. Pak-Stanley labeling fdr-Shi arrangement fot = 3.

:{H%:ISiSn,i<j<i+kn,j$i modn}.
In other words, the&-Shi arrangement consists of all hyperplanes of heighttlemskn in the affine braid ar-
rangement. The hyperplamﬁfj dividesV into two half-spaces. Leﬂff denote the half-space that contaihg

andHff denote the complementary half-space. Note ﬂiigtseparates;(Ao) from Ag iff w(Ap) C Hfj? iff
(1,7 —€n) or (4,i + £n) € Inv(w™') (when taking the conventionj € {1,...,n}).
Definition 4.2. The Pak-Stanley labeling is the map Regij - PFi, R~ \g defined by the formula

Ar(a) = {Hf; €Sht | Rc H[ 0> 0,i=a}+§{H eShl | Rc H" {<0,j =a}.
In other words, one labels the fundamental alcayédy the parking functiorf = (0. .. 0), and then as one crosses
the hyperplanerj in the positive direction (i.e. getting further away frakg), one addd to f(j) if £ < 0 and
addsl to f (i) if £> 0.

Remark 4.3. One can rewrite this definition as follows:
Ar(a) = f{HY €Skl |Rc H)” ja=i<j}=4{H) 0 |[RCH),,,0<t <kn,t#0 mod n}.

15 aa+t’

We illustrate the Pak-Stanley labeling forE 3, k = 1 (m = 4) in Figure[5.
Theorem 4.4([29]). The map\ : Regﬁ - PF} is a bijection.

4.2. Relation Between Sommers Regions and Extended Shi Arrangeants form = kn+1. Consider the case
m = kn+ 1. One can show that each region of an extended Shi arrangeomatrts a unigue minimal alcove (i.e.
an alcove with the least number of hyperplaﬁ{# separating it from the fundamental alcovg).

Theorem 4.5([11]). An alcoveu(Ay) is the minimal alcove of &-Shi region if and only ifo ™1 (Ag) c DF"*L,

Example 4.6. We illustrate this theorem in Figuké 6, where the minimabsates of thel -Shi region are matched
with the alcoves in the Sommers regid¥. On the left we have the minimal alcovegA,) labeled by the
m-stable permutations € S™ for m = 4,n = 3. On the right we have alcoves™ (A,) that fit inside D3,
labeled by them-restricted permutations™' e ™S,,. Note that[-226] = [420]"%, [150] = [1 - 16]"*, and
[4-13]=[-253]"".

TheoreniZb and Lemnia2]15 imply a bijectidn : S¥"*! —» Reg” .
Theorem 4.7. One has\ o alc = PS in this case. In particularPS is a bijection form = kn + 1.

Proof. As it was mentioned in Sectidn 2.3, an affine permutatiohas an inversior{i,: + k) if and only if
w™(Ap) is separated from by the hyperplanéfﬁm or, equivalently, if and only ifo™1 (Ag) c Hf;jh. Given
a regionR, for any affine permutatiom such thatu='(A,) c R, the number of inversions of the forta, a + h)
of heighth < kn is equal toAg(a).

If w™! € §¥7*1 then the alcove™ (Ay) is the minimal alcove in the regioR andalc(w™") = R. By definition,
PS,,-1(a) is equal to the number of inversio(s, 3) of w™, such thaB-a < kn+1 andw™(3) = a, which is the
same as the number of inversidiasa+h) of w, such thatv(a)-w(a+h) < kn+1. Note thatu(a)-w(a+h) cannot
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[150]

[105]
[-253]\ [015]\ /[204] /[420]

[015j"=._‘_.-"t204]

[
“[321] - [132] - -[-143]
1

(-226]". _,v"v[312] '-.__'[—134‘]'-._ fa-13

FIGURE 6. Minimal alcoves foSh} and Sommers regiob;.

be equal tdn, soPS,,-:(a) is, in fact, equal to the number of inversigas a+h), such thatv(a)-w(a+h) < kn.
To match it withAr(a), one has to prove the following equation for any {1,...,n} and anyw :

(5) f{(a,a+h)elnv(w) |h<kn}=4{(a,a+h)env(w)|w(a)-w(a+h)<kn}.
Givenr € {1,...,n -1}, define
Yaw(r) = f{(a,a+h) eInv(w) | h <kn,h =rmodn}
and
Yoo(r) = t{(a,a+h) e Inv(w) |w(a) —w(a+h) <kn,h =rmodn}.
be the maximal number such that 4], . ) € Inv(w) andh] ... = r modn. Itis not hard to see that

h’r
Yoaw(r) =y o(r) =i (k| 2222 ).

Indeed, the total number of inversio(s, a + h) such that: = r modn equals[h%%J. If it is less than or equal
to k then all of them satisfy both < kn andw(a) - w(a + h) < kn. In turn, if it is greater thark, then the
inversions(a,a +h) for h =r,r+n,...,r+ (k- 1)n satisfy the conditiorh < kn, while the inversionga,a + h)
forh="hl s Prax — s - - -y Ao — (B — 1)n satisfy the conditiow(a) — w(a + h) < kn.

Finally, the sum of identities,, .,(r) = 7, ,,(r) for all r is equivalent to[(5). O

Leth,

max

Example 4.8. When one applies the m&psS to the affine permutations in the left part of Figlife 6 one gegs
Pak-Stanley labeling shown in Figtlire 5.
The casen = kn — 1 is treated similarly. The main difference is that insteadhaf set of allk-Shi regions

Regﬁ one should consider the set of boundefhi regionsRegf;. One can show that every boundedhi region
contains exactly one maximal alcove.

Theorem 4.9([12]). An alcovew(Ay) is the maximal alcove of a bound&eShi region if and only ito ™! (Ag) c
Dyt

As above, we use Lemnia 2115 and Theofem 4.9 to obtain theibijedc : S"~1 — Reg”. We prove the
following theorem:

Theorem 4.10. The image of the subsﬁbgﬁ c Regﬁ under the Pak-Stanley labeling is exacBy- ;,,—1y/n ©
PF (kn+1)/n - Furthermore, one gets o alc = PS in this case. In particularPS is a bijection form = kn - 1.

Proof. It is sufficient to prove the formula o alc = PS. Indeed, this would imply that the restriction of the

Pak-Stanley labeling to the subﬁé@gﬁ c Regﬁ is an injective (and, therefore, bijective) map frdhegf; to
PF (kn-1)/n -

If w=' € §%7~1 then the alcoves™'(A,) is the maximal alcove of a bounded regi@nandalc(w™') = R.
Similarly to Theoreni 4]7, we get th&S,,-: (a) is equal to the number of inversiofs, a + 1) of w such that
w(a)-w(a+h) < kn-1.Sincew € **~15, one hasu(a)-w(a+h) + kn—1foranyh > 0. ThereforePS,,-1 (a)
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is equal to the number of inversiofs, a + h) in w such thatv(a) — w(a + k) < kn. In the proof of Theorem 417
we have shown that this number is equahig(a). O

5. MINIMAL LENGTH REPRESENTATIVES AND THEZETA MAP.

Definition 5.1. Let Mod,, , be the set of subsets c Zq, such thatA + m c A, A+n c A, andmin(A) = 0.
A numberq is called ann-generatorof A, if a € A anda - n ¢ A. EveryA € Mod,, , has exactlyn distinct
n-generators.

In [14,[15] such subsets were call@édormalized semimodules over the semigroup generated &ydn. We
will simply call themm, n-invariant subsets.

There is a natural mafi : S™ — Mod,, , given byw — A, - min(A,,) (here, as befored, = {i € Z : w(i) >
0}). Let Q" be the set ofn-stable minimal length right coset representativesmgn. In other words,

6) O = {we d™ |w (1) <...<w™(n)).

One can check that the restrictidtiom : Q" -~ Mod., 4 is a bijection. Indeed, the integers'(1),...,w™"(n)
are then-generators of\,, and sinces € Q7 we havew=!(1) < ... < w™!(n), so one can uniquely recover
from A,,. Let R := Rlgm : Q7 - Mod,,,, denote the restriction.

Recall thaty;,, ,, is the set of Young diagrams that fit under diagonal imamm rectangle and® : PF,,,/,, ~
Y., » is the natural map. In_[14, 15] the first two named authors tooted two map : Mody, , = Yy, and
G : Modm n = Yo n, proved thatD is a bijection, and related the two maps to the theory, 6fCatalan numbers
in the following way. In the case: = n + 1 one gets

calgty= Y IP@®IHIGA)]

AE1V[0dn+1,n

wherefd = % andc,(g,t) is the Garsia-Haiman, t-Catalan polynomial. It is known that these polynomi-
als are symmetrie,,(¢,t) = ¢, (t,q), although the proof is highly non-combinatorial and usesrtfeehinery
of Hilbert schemes, developed by Haiman. Finding a combiietproof of the symmetry of the, ¢-Catalan
polynomials remains an open problem.

The above consideration motivates the rational slope géimation of they, t-Catalan numbers:

Cm,n(q,t) = Z qé_lD(A)‘ﬁé—‘G(A)t
AeModu

whered = W is the total number of boxes below the diagonal innaxm rectangle. The symmetry of
these polynomials remains an open problem beyond the céssisen = n + 1 and the casemin(m,n) < 4
(see [15] formin(m,n) < 3 and [22] formin(m,n) = 4). It was also shown in_[14] that the composition
GoD™ :Y,, - Y., generalizes Haglund’s zeta map exchanging the pairs déttat(area, dinv) and
(bounce, area) on Dyck paths. It was conjectured that the ndéapand therefore, the generalized Haglund’s zeta,
are also bijections. This would imply a weaker symmetry eroyc,, (¢, 1) = ¢ o (1, ¢). In [15] the bijectivity
of G was proved formn = kn + 1. For more details on this work we refer the readef to [14, 15].

Let » denote the involution 08),: w* () =1 - w(1 - 2).

Lemma 5.2. The mapx preserves the s@l and the sef2)*. The mapx: (i,5) - (1-4,1—1) provides a height
preserving bijection fror (i, j) | i < j, w(¢) > w(j)} to {(4,5) | i < J, w* (i) >w*(j)}-
Proof. Let us check that* is an affine permutationo*(z +n) =1-w(l-z-n)=1-w(l-z) +n,

0

iw*(i):n— > w(i):n—.

1=1l-n

(w(i)=n) = n+n? - n(n+1) _ n(n+1).
+ 2 2
If w(l) < ... <w(n)thenw(l-n) < - <w(0), sow*(1) <... <w*(n). Let(s,7) be such that < j and
w(i) >w(j). Thenl - j<1-4, and

Wwl-4)=1-w(l-(1-j))=1-w()>1-w()=w"(1-1).
Note also that squares to identity. Therefore, sineds an involution,* is a bijection betweed(i,5) | i <
j, w(i) >w(j)}and{(i,5) | i < j, w*(i) > w*(j)}. Furthermore, since preserves height preserves the set
Sm., O

M=

The following Theorem shows that our constructions arectliyeneralizations of those of [14,115]:
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Theorem 5.3. One has the following identities:
(1) PoAoR™ =D,
(2) PoPSoxoR'=G.

Proof. The first statement follows from the definition dfand Lemm&3]3. For the second statement, we need to
recall the definition of the mag@'.

Given anm, n-invariant subsef\ € Mody, », letu; < ... < u, be itsn-generators. The ma@ was defined in
[14,[15] by the formula

Ga(a) = { ([ta, ua +m] N A).

Given a minimal coset representativee ", we can consider am, n-invariant subse?(w) = A, -
min(A,) € Mod,, ». Itsn-generators are,, = w™(a) - min(A, ), and by [6) we havey; < ... < u,. For
everyx € [uq,uq + m] N\ R(w), definez’ := z + min(A,,), then all suchz’ (and hencer) are defined by the
inequalities

wl(a) <z’ <wHa)+m, w(z') <0.
Note that by[(6) the inequality(z’) < 0 can be replaced hy(z’) < «. Indeed, we have (1) <w™(2)<...<
wt(n), and, thereforey(z’) ¢ {1,...,a -1} forw™(a) < 2’ <w™(a) + m. Therefore the sdtuq, uq +m]
R(w) is in bijection with the set

{(4,7) |i<j<i+m, w(i)>w(j), w(i)=a}.
In turn, the mapx bijectively maps this set to the set
{A-j1-9)|(1-j)<l-i<(1-5)+m, w(1-5)>w (1-4), w(1-i)=1-w(i)=1-a},
or, after a shift byn and a change of variables,
{(i,5)|i<j<i+m, w (1) >w (j), w(j)=n+1-a}.
Therefore, according to the definition of the nfag, we get
Grw)(a) =PSu-(n+1-a),

and thus
G(R(w)) = P(PS(w")).
O

The involution could have been avoided in Theorem 5.3 by adjusting the tiefirof the mapPS . However,
in that case one would have to usdéo match the maPS for m = kn + 1 with the Pak-Stanley labeling (see
Sectiori ).

The compositiorPSo A" : PFmm = PFmm should be thought of as a rational slope parking function
generalization of the Haglund zeta mapNote that its bijectivity remains conjectural beyond case= kn + 1,
which follows immediately from Theorerfis 4.7 dnd 4.10.

6. RELATION TO DAHA REPRESENTATIONS

6.1. Finite-dimensional representations of DAHA. It turns out that the mag is tightly related to the represen-
tation theory of double affine Hecke algebras (DAHA). Thisdty is quite elaborate and far beyond the scope of
this paper, so we refer the reader to Cherednik’s bobk [Ghliatetails. Here we just list the necessary facts about
finite-dimensional representations of DAHA.

Let H,, denote the DAHA of typed,,_;. It contains the finite Hecke algebra generated by the elesfign
1 < i < naswell as two commutative subalgebrds/ X ;, 1 <i # j < n, andY;*!, ..., Y,*! subject to commutation
relations betweerX’s andY”’s that depend on two parameterandt. (Alternatively, one can take generators
T;,0 <i<n, mandX;/X;, 1 < i # j <n.) H, admits a (degreé Laurent)polynomial representation
V = C[X:/X;1<i+j<n, WhereX;/X; act as multiplication operators, ad{ act as certain difference operators.
We can also obtait” by inducing a 1-dimensional representation of the subatggbnerated by thg; andY;*!
up toH,,. The producty;Y;--'Y,, (or equivalentlyr™) acts as a constant on this representation. This constant
agrees with the scalar by which the product acts on the liditdimensional representation. We usually take
this constant to bé, or indeed impose the relatidn Y>---Y,, = 1 in H,,. However, to match the combinatorics
developed in this paper, it is convenient to choose thaasmlbeq"T“.

There exists a basis df consisting of nonsymmetric Macdonald polynomi&ls(X;) labeled by minimal
length right coset representatives S,,\S,, such thatv; are diagonal in this basi&; (E,) = a;(c)E,.
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The weightsa; (o) are directly related to the combinatorial content of thipgraand can be described as
follows. Corresponding to the fundamental alceve id we haveE;yq = 1 and its weight equals to:
s

a(id) = (a1 (id), ..., an(id)) = ¢5= (+ 7,725, t"7).

As we cross the walls (fromAg to os;Ag), the weights are transformed as follows:

(7) s-(a1 a ): (al,...,ai+1,ai,...,an), ifi£0
B (an/q,az2,...,an-1,q9a,), ifi=0.

One can check thdtl(7) defines an action of the affine symngawigp on the set of sequences of Laurent mono-
mials ing andt.

If the parameterg andt are connected by the relatigfi* = t" for coprimem andn, the polynomial repre-
sentation/” becomes reducible, and admits a finite-dimensional quiofign,, of dimensionn™!. The basis of
L, is again given by the nonsymmetric Macdonald polynomigajs but now the permutatioa should have
oAy belong to the (dominant) region bounded by the hyperplaner,, = m. In other words, we can cross a wall
if and only if the ratio of the corresponding weights is notiakfot*!. (Seel[7, Theorem 6.5] for a discussion on
these finite-dimensional quotients. See [8, (1.17)] forfdrenula for the intertwiners that take, to E,,,. See
[9] for the nonsymmetric Macdonald evaluation formula thascribes theé”, in the radical of the polynomial
representation.)

6.2. From DAHA weights to Sommers region. For the finite-dimensional representatiop,,, we haveg™ =

t", sot = ¢™/™. This means that every monomiglt¥ can be written ag™ = , SO we can rewrite the DAHA
weights as

a(o) =(a,...,an) = (qbl(o)/", . ,qb"(a)/”).
It turns out that “evaluated weight$; are tightly related to the labeling of the regi®f* by affine permutations.
Letc = M Consider the affine permutation,, = [m - ¢,2m —c,...,nm - c]. By LemmaZIbw,,
identifies the dilated fundamental alcove with the simglék. Recallw € ™S, <= w;'w(Ag) € mD} = mA,.

Theorem 6.1. Under this identification, for every ¢ ™S, one has:
b(w,lw) = w,
by which we mean far = w;!w that (b1(0),...,b.(0)) = (w(1),...,w(n)).

Proof. In the weight picture we start from the fundamental alcove atid, where we have weights
3

a(id) =g (177,02 .., 175 ) = (¢, gCm=aln gLl

)

b(id) = b(w,twm) = (m—c,2m—c,...,nm —c) = (W (1),...,wm(n)).

By Lemmd2.IbA, ¢ mD] corresponds to the alcous,, (Ag) € D™, which we label byv,, = [m—c,...,nm~
c] € ™S,,. Therefore the desired identity holds for= id and can be extended to amywith cAg € mAg = mD),
(equivalentlyw,, o € ™S,,) by rules[(T). O

6.3. From DAHA weights to parking functions. Instead of direct evaluation of DAHA weights as powers of
¢'/", one can instead draw monomiaf&? on the (z,y)-plane. This point of view was used in much wider
generality in [30], where the weights were interpreted mmie of periodic skew standard Young tableaux. Here
we focus on finite-dimensional representations and refiggepicture to parking function diagrams.

Leta = (a1,...,a,) be a DAHA weight. We define a functidfi, : ZZ, — Z, labeling the square lattice
by the following rule. For every, let us presend; = (qré_ﬁltflin)qmityi and definel,, (x;,y;) = i. Under this
renormalization{y,...,yn} = {1,...,n}. Hence we obtaim squares labeled, ..., n in the rowsl,...n in
some order. We can extend this labeling to the whole planéédjailowing two-periodic construction. First, one
can identifyg™ with t™ and writeT, (z + m,y —n) = T, (z,y).

Secondly, recall that thg; that correspond ta can be naturally extended to an affine permutation using the
guasi-periodic conditioh,,,, = b; + n. This means that one can defimgfor all integeri by the rulea,;.,, = qa;,
andT,(x + 1,y) = T.(z,y) + n. Hence the fillings in the boxes @, increase across rows automatically; that
is, Ty, is row-standard. The more interesting question is whén isolumn standard, which in this context means
fillings increase up columns.
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FIGURE 7. DAHA weights forL,,; above. When one evaluates at ¢*/3, the weights become

uw(l) w2  u(3)

(g5 ,q 5 ,q 5 ) for the matching alcove,,uA, which is labeled by € *S5 in Figure[3.
Note for the fundamental alcove(id) = q%(%,l,t) = q%((f%,qo,q%) = (q’é,qé,q%) and
u =[-2,2,6] = w,,id. Compare this to Figufd 3, where the alcavgin the left figure matches

the alcove labelef-2,2, 6] in right figure.

Lemma 6.2. The weightz appears in the finite-dimensional representatioy,,, if and only if7;, is a standard
Young tableau (SYT), that i, (z + 1,y) > T, (z,y) andT,(z,y + 1) > T, (z,y).

Proof. Indeed, in terms ob, this means thai; + m appears aftel;, which is precisely equivalent ta-stability.
O

Corollary 6.3. There is a natural bijection between the alcoves in the Sasmegion and surjective maps
T : 72, — Zs satisfying the following conditions:

(8) T(x+1,y)=T(xz,y)+n, T(x+m,y—n)=T(x,y), T(x,y+1)>T(x,y).

Lemma 6.4. There exists a unique up to shifk m rectangle such that all squares labeled by positive numiers
located above the NW-SE diagonal. The corresponding parkinction diagram coincides with the Anderson-
type labeling up to a central symmetry.

Proof. If (b1,...,b,) corresponds to the weight then its corresponding-invariant subset has n-generatbys
and contains all fillings in squares to the right of labele@grincluding the periodic shift bym,-n). There
exists a unique line with slope:/n which is tangent to the resulting infinite set of squares, #edtangency
points define the: x m rectangle. Now the statement follows from the definitionhef inapA. O

Example 6.5. Consider the weightas, as, as) = ¢% (q%, 1.4q)= (¢°,q%,q%) for t = ¢*/3. We have(by, by, b3) =
(0,1,5) andw = [015]. The corresponding3,4)-invariant subset i&\,, = w(Z.o) = {0,1,3,4,5,...}, and the
parking function diagram is shown in Figure 8 on the right.

On the left side of FigurEl8 is a piece ©f,, showing rows withl < y < 4 and columns with-2 < z < 4.
Rewriting a = ¢5t72(q 23, ¢*t*, ¢*12), we see we put the filling 1 in squate2,3), 2 in square(1,1), and 3
in square(1,2). The periodicity conditions fill in the rest of the squaresIaof The unique NW-SE line has
been drawn, and the corresponding rectangle it determsnesated by 180 to obtain a Young diagram below the

diagonal.
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FIGURE 8. Periodic SYT or(z, y)-plane (left); parking function diagram (right)

To get to the weight, from the trivial weight, we need to apply,!w = [-2,2,6]7' o [0,1,5] = [-3,4,5].
Observgd-3,4,5] = [-2(3)+3,1(3)+1,1(3)+2]. From this we could also read off that the fillings 1,2,3 bglon
squareg-2,3), (1,1), (1,2) respectively. (We remind the reader of Figlie 3, where tbeval labeled-3, 4, 5]
in the left figure, matches the alcove labelédl, 5] in right figure.)

Note, if we had instead normalized in the more standard wahad; Y>Y3 = 1 and the fundamental alcove
had weight’ = (,1,t), then we would have had a shift By= 32 yielding (b, b5, b) = (-2,-1,3) = (0-2,1-
2,5 -2) but stillw = [015] and we would dravl, as above.

7. INJECTIVITY OF PS FOR THE FINITE SYMMETRIC GROUP
In this Section we prove an analogue of Conjecfure]3.16 ffitlite groups,,.

Definition 7.1. Let S™ denote the intersectiofi, n S™. In other wordsw € S™ if for all 1 < 2 < n - m the
inequalityw(z+m) > w(zx) holdsand{1,...,n} = {w(1),...,w(n)}. We call such permutatiorigite m-stable

Proposition 7.2. The number of finiten-stable permutations equals

i Sy = ! Wheren:{lnwiJ+1 Fi<n,
“olo

" H;Z1 ni!,
Proof. The setX = {1,...,n} can be split inton disjoint subsets
X;={zxeX:x=imodm}

of cardinalityn,;. A permutationw is finite m-stable if and only if it increases on eadh), hence it is uniquely
determined by an ordered partition

if 2>n.

{1,...,n}=w(X1)u...vw(Xy).
O

Example 7.3. Forn = 5;m = 3, X; = {1,4}, X2 = {2,5}, X3 = {3}. Observev ¢ S™ iff w~! occurs in the
shuffle14 w25 w3, which are precisely thew-restricted permutations ifis.

Definition 7.4. Given a permutatiow € S;*, let us definegPS,, («) as the number of inversiorgs, y) of w such
thatx < y <z +m, w(x) >w(y) = « (the height of such inversion is less than. Define

PS, = (PS,(1),...,PS,(n)).

In other words, this is just the restrictionS |s,. Hence by Theorein 3.1L5 the integer sequences in the image
of PS arem/n-parking functions.
Observe that ifv € S,, thenPS,,(n) = 0.

Theorem 7.5. The mapPS from the setS;" to PF,,,, is injective.

We provide two proofs of this Theorem, as they are somewlff@rdnt and might both be useful for the future
attempts to proof Conjecture 3116 in the affine case.
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First proof. Given a parking functiofPS,,(1)---PS,(n)) in the image, we need to reconstrucor, equiva-
lently, w™! € S,,. We will first reconstruct the number; = w=!(1), thenzy = w™1(2), and so on, all the way up
to z, = w ' (n). Note thatw™ = [z1,29,...,2,] ANdPS,, (i) = SP,-1(4) = §{j | i < j <n,0 < 2; —xj < m}.
We have used that sinecee S, for all (i,5) € Inv(w), 1 <i < j < n. Also sincew € Sy, for all j > 1 we have
w(j) > 1. For the first step, note that < m + 1, since otherwise;; — m andz; will form an inversion ofw of
heightm, asz; —m > 1 so it occurs to the right of; in w™!. For everyl < y < x1, there is an inversiofy, z; ) of
height less tham and there are no other inversions of the fdrmz, ), hencer; = PS,, (1) + 1. On the next step
we recoverr. Note that for every < zo, there is an inversiofy, z2 ), unlessy = z;. It follows thatx, is either
equal tox; + m or zo < m + 1. It is not hard to see, that all these possible values,oforrespond to different
values ofPS,,(2). Therefore, knowing?S,,(2), one can recover.. Let us show that one can proceed in that
manner inductively all the way to,, .

Suppose that one has already reconstruetedw (i) for all i < k. Define the set

Yici={z1...,op1uf{leZ:1<1}={y:1<y<nw(y)<kiu{leZ:1<1}.

Let us use the notation(y) := (y —m,y] nZ for anyy € Z<,. Consider the functiop (y) == f (1(y) ~ Yi-1) -1
defined on the domaip € Z¢,, \ Yi_1. GivenPS,, (k) = ¢x(x1), we need to reconstruat,. Let us prove that
the functionyy (y) is non-decreasing. Indeed, let> ¢’ andy,y’ € Z., ~ Yi-1. Letz € I(y) = (y-m,y]nZ
andz’ € I(y') = (y' — m,y’] nZ be such that — z’ = 0 modm. It follows that if z € Y;_1, then alsoz’ € Yj,_;.
Otherwise, ifz’ ¢ Y;_; thenl < 2z’ andw(z’) > k. Furthery > ¢’ impliesz > 2’ > 1 andz € Yj_; gives
w(z) < k <w(z"). Therefore(z’,z) is an inversion ofv of height divisible bym, which implies thatv is not
m-stable. Contradiction.
We conclude, that

ere(y) = (T(y) N Y1) =12 (1(y') N Yier) = 1= or(y').

Finally, we remark that, ¢ Yi_1 butz; — m € Yj_1, since otherwiser;, — m > 1 andw(ay — m) > k, and
that produces an inversion of height Therefore, one check there is a strict inequaliff(y) < ¢ (zx) for any
y < xp With y € Ze,, N Yio1. Thus,xy, = min{y € Z \ Yi_1|px(y) = PS,, (k) }. In particular, this set is non-empty.
We illustrate this proof on an example in Figlte 9. O

Second proofDefine the functioy(«, i) by the following formula:
gla,i) = 4{j € (i—m,i] 0 {1,....n} sw(j) > al.
By definition of PS,,, one immediately gets
9(w(i),1) = PSu(w(i)).
Lemma 7.6. The functiory(«, i) is non-decreasing infor any fixedx.

Proof. Indeed, suppose thafa, i) < g(«,i-1). The intervali-m, ] is obtained from the intervgi—1-m, i-1]
by droppingi —m and adding. Therefore, one should haugi-m) > « andw(i) < arto getg(«, i) < g(,i-1).
But that impliesu(i — m) > w(i), producing an inversion of height. Contradiction. O

We will need the following corollary:

Corollary 7.7. Foranyi € {1,...,n}, w(4) is the minimal integery, such thate + w(j) for any;j < ¢, and
PSu(a) ={je(i-m,i)n{l,...,n}:w(j) > a}.

Proof. Fix i. Let « satisfy the above conditions. Notice suchcamust exist sinces(:) satisfies these conditions
as

PSu(w(i)) = g(w(i), 1) = {j € (i —m,i) s w(j) >w(i)}.
By minimality, o < w(i). If @ # w(i) then we must have < w(i), yieldingi € {j € (i - m,i]n{1,...,n} :
w(j) > a}. Howeveri ¢ {j € (i-m,i)n{l,...,n}:w(j) > a} whose cardinality iS?S,,(«) by assumption.
Henceyg(a, i) = PS, () +1. If it were the case that = w(k) for somek > i, then since(«, —) is non-decreasing,
we getPS, (a) = PSy(w(k)) = g(w(k), k) = g(a, k) > g(a,i) > PS.(a). Contradiction. On the other hand,
a was chosen sa # w(y) for anyj < i. Hence it must be that = w(4). O

Now we can complete the proof of Theoréml7.5 and reconswustarting fromw(1), thenw(2), and so
on, using Corollary7]7. Indeed, if we already reconstrdictél),w(2),...,w(i — 1), then we can compute
#{j e (i-m,i)n{l,...,n}:w(j) >a} forall e {1,...,n}. Thenw(?) is the smallest number ¢ {1,...,n}
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k| wii<k ex(y)
1) ------- 0122222
2| 1------ -012222
3| 12----- --01222
4| 12-3---|--0-112
5(11243---| ----012
6| 1243--5| ----01-
711243-65 ----0--
1243765 -------

FIGURE 9. Suppose that = 7, m = 3, andPS,, = (0010210). Let us reconstrueb~ using
the first proof of Theorerh 715. We record on every step the mumthat we have already
reconstructed and the values of the functignfor all other numbers.

k| w@), i<k | PSu(a)-f{je{k-m+1,....k-1}:w(j) >a}
T ------- 0010210
> T------ 010210
3 12----- ~-10210
A1 124---- TT0-210
5] 1243--- TS--210
6| 12437-- ~--10-
71124376- To0--
1243765 ------

FIGURE 10. As in Figuré Pn = 7, m = 3, andPS,, = (0010210). This time we reconstruct

w using the second proof of Theoréml7.5. We record on everyteeepumbers that we have
already reconstructed and the differet8,, (o) —f{j e {k-m+1,...,k-1} :w(j) > o} for
alae{l,...,n} ~{w(l),w(2),...,w(k - 1)}, so that on each step we choose the position of
the leftmost 0 in the second column.

such thaix # w(j) for j < i, andPS, () = f{j € (i —m,i) n {1,...,n} :w(j) > a}. We illustrate this proof on

example on Figurie10.
(I

We do not know how to describe the ima@e& (S)*) for generaln. As an example, let us consider the case
m = 2 for which we do have a complete description. Let us recatl $ifais the set of finite permutations of n
elements with no inversions of heightthat is,w(i + 2) > w(i) for all z. We define the majnv(? from the set
S2 to the set of sequences of 0's and 1's as

1 ifww(a)-1)>a

inv(? () = x (ww ™ (a) -1) > @) = {0 else.

Lemma 7.8. The image ofnv® consists of alln-element sequencesof 0's and 1's, such that for everyy ¢
{1,...,n} atleast half of the subsequengg,, ... f,) are0’s. The image ofov? agrees with that oPS |52

Proof. Let w be a permutation ir62 and letf = inv(®)(w). For everya such thatf, = 1 one can find3 =
w(w™(a) - 1) > a such thatfs = 0 (otherwisew would have an inversion of heigB). In other words, if we
considew™ = [z1,...,2,], f(a) = 1iff 2, =i andi - 1 occurs to the right, i.ei — 1 = 25 with 3 > a. Which
occurs iff PS,, () = 1. And in this case — 2 cannot be to the right af- 1 as that would place it to the right of
i.e. f(B) = PS.(B) = 0. Note that the correspondenee> 3 = w(w™(a) - 1) from 1’s to 0’s in the sequence
f isinjective and increasing. Therefore, for every {1,...,n} at least half of the subsequengcg,, ... f.) are
0’s.

Since we know thainv(® is injective, the lemma now follows from the comparison & ttardinalities of the
two sets. O

The sequences appearing in Lemmd 7.8 have a clear comlighat@aning. Let us read the sequence
backwards and repladks with a vector(1,1) and1’s with a vector(1,-1). We get a lattice path i which
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never goes below the horizontal axis. Such a path may belaal®/ck path with open right end, and Leming 7.8
establishes a bijection between the set of such paths alenand the set of finit@-stable permutations.

7.1. Algorithm to construct SP™* in the affine case.Here we present a conjectural algorithm that inveres
While we have not yet shown the algorithm terminates, whidhis case means it eventually becomegseriodic,
we have checked it on several examples.

Given f € PF,, , extendf to N by f(i + tn) = f(i). Construct an injective functioti : N — N as follows.
Informally, we will think of U as the bottom row in the following table.

) 1 2
fG@) | 1) f(2)
UG) | U1 U@Q)

SinceU is manifestly injective, it will make sense to talk abait!.
We will insert the numbera € N into the table as follows.

(1) Placex = 1 under the leftmosi. In other words, let = min{j € N|f(j) = 0} and then set/ (i) = 1. As
there always exists somie< j < n such thatf(j) = 0, this is always possible.

(2) Assume(1,2,...,a—-1} have already been placed. Placi the leftmost empty position(i.e. U (i) = «,
with i ¢ {U~(B)]1 < B8 < a} for i minimal) such that these two conditions hold.

(I) aisto the right ofa — tm for 1 <t < a/m, t € N. More precisely; > U™ (a - tm).

(IT) If U(3) = o, thenf (i) = 4{B|B € (a« = m, ), U (B) > i}.
In other words, we build/ so thatf (i) = §{j|lj > 1,0 < U(i) - U(j) < m} counts the number af:-
restricted inversions. Note that placings always possible, since a valid (non-minimal) positiondas
under &) of f such that it and all spots to the right of it are as yet unocipi

Conjecture 7.9. For theU constructed aboveél NV such that foralli > N, ¢ e N
(1) U(i +tn) =U(i) + tn, SO in particular
(2) U(N +j) for 1 < j <n have all been assigned values
GivenU constructed frony € PF,,,, as in the algorithm and satisfying the conditions of the eonjre, we
constructy € ™S, as follows: Pickt so1 + tn > N. By the periodicity of/ and thatl/ has no “gaps” aftefV,
{U(i+tn) modn|l <i<n}={1,2,...,n}. Henceb:= ¥, U(i+tn) = @ mod n. Letk be such that
b- @ = kn. Now set
w(@)=U(i+tn) - k.
This forcesy;; w(i) = @ and so we see ¢ S,,. By construction, ) and @I) imply w ¢ ™S, and
SP,=f.
We illustrate the algorithm to construGtandw on the following example.

Example 7.10.Letn = 5,m = 3. Let f = (11002) € PF g5 .

Refer to Figuré 1 for a demonstration of héiis constructed. Note théf(7) + 8 since that would placeé
beforeb, violating being3-restricted.

In the above we can in fact také = 5. Observe{U (6),U(7),U(8),U(9),U(10)} = {6,9,5,8,12} yielding
b =40 andk = 5. Hence we seb = [1,4,0, 3,7]. Now one can easily verify € >S5 andSP,, = (11002).

In practice, we have found to be surjective as well; in other words there are no “gapehéeforeV. Further,
whenf = §P,, for some finite permutation € S,,, we can takeV = 1.
8. RELATION TO SPRINGER THEORY

8.1. Springer fibers for the symmetric group. LetV be a finite-dimensional vector space andiebe a nilpo-
tent transformation of’. Let F1(1") denote the space of complete flagd/inA classical object in the representa-
tion theory is the Springer fiber ([28, 26]) defined as

Xy ={F={V=VioVao...0V,} eFI(V): N(V;) c V;}.

It is known thatX 5 admits an affine paving with combinatorics completely dataed by the conjugacy class of
N (see e.g.[[26] and references therein).
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1|1 2 3 45 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
fGHl1 100 2 11 0 0 2 1 1 o 0 2 1 1 o 0 2
UG)

. 1

2 .1

2 3 1

2 3 1 4

2 3 1 4 . 5

2 3 1 4 . 6 5

2 3 1 4 7 6 )

2 3 1 4 7 6 . 5 8

2 3147 69 5 8 . 10

2 3147 6958 . 11 10

2 3 1 4 7 6 9 5 8 12 11 10

2 3 1 4 7 6 9 5 8 12 11 .10 13

2 3 1 4 7 6 9 5 8 12 11 14 10 13

2 3 1 4 7 6 9 5 8 12 11 14 10 13 . 15
23 1 4 7 6 9 5 8 12 11 14 10 13 16 15
23 1 4 7 6 9 5 8 12 11 14 10 13 17 16 15

FIGURE 11. Algorithm to construct/ from f = (11002 € PF 35 .

We will be interested in a particular case of this constnrttiLet us fix a basige;, ..
consider the operator of shift by:

.,€n) in the spacé/,

t+m<n

N(el) - {ei+ma

0, otherwise
The following theorem describes the structure of the affelksén the varietyX y.

Theorem 8.1. The varietyX y admits an affine paving, where the cells are parametrized by the finite:-
restricted permutations € S™. The dimension af,, is given by the number of inversions.in® of height less
thanm.

Proof. The cells are essentially given by the intersections of Behcells inF1(V') with the subvarietyX y. For
the sake of completeness, let us recall their construcGaren a permutatiow € S,,, we can define a stratum,
in F1(V') consisting of the following flags:

F={V1oV>...o Vn}, V; = Span{vw(i), o 7Uw(n)},

where
v =eq+ ), Ajeg.

B>«

Note that the position af* in the basis equals™ («). After a triangular change of variables, we can assume that
A% = 0for 8> awithw™(B) >w™" (). Therefore one can write

9) vY =eq + Ages = eq + Ages.
B>a,w=1(B)<w 1 (a) (a,B)elnv(w=1)
The parametera3 are uniquely defined by the fldg. They serve as coordinates on the affine spacewhose
dimension is equal to the lengthof i.e. = j Inv(w) = § Inv(w™) .
Let us study the intersecti(ﬁff =Y, N Xy. SinceNv® starts withe,.,,, the vectorn®*™ should go after

v® in the basis, so one needs!(a +m) > w™(a). Thereforex is non-empty if and only ifo~! is m-stable.
Aflag F is N-invariant, if N (v®) belongs taspan{v” : w™1(3) > w ()} for all a. If

B>a+mandw(B) >w Ha),

then the coefficient im®*™ — N (v*) ates can be eliminated by subtracting an appropriate multipte’ofOnce
all these coefficients are eliminated, the remaining caeffts inv®*™ — N(v®), labeled by3 > o + m such that
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wH(B) <w™ () will vanish automatically. Thereforg? is cut out in%,, by the equations:
(10) MG = AG_, + oA if B> a+mw T (B) <w T (a),

whereg(\) are certain explicit polynomials iN! with v — i < 5 — a — m, with no linear terms.

It is clear that such equations are labeled by the invergiang) in w™! of height bigger thamn. Note also
that the linear parts of these equations are linearly indeéget. Therefore the number of free parameterggin
equals to the number of inversionswf! of height less tham. O

Example 8.2. Consider a 2-stable permutation= [2,1,4,3] = w™!. The basis[{9) has the form:
M = e, W@ e+ )\%62, (3 = ey, v = es + )\ie4.
There are two free parameters,dim ©Y = 2. Note that although # A},
N (@) = eg + Aey € span{v® @)},

Example 8.3. Consider &-stable permutation ! = [1,5,3,2,6,4,7], sow = [1,4,3,6,2,5,7] is 3-restricted.
The basis[(9) has a form:

M = e1, w3 = ey, 3 =g 4 )\ie4, @) = eg, 20 = ey + A§e3 + )\ie4 + )\ges,
() = ep + )\266, v = e
SinceN (1)) =26 = (X2 — A\2)eg + A2eq € Vs, and
Vs = span{v”(5), v”(G),UWU)} = span{eg + )\%63 +Mey + )\geﬁ, es + )\266, er},
the coefficient oks must vanish and so we get the relatigh= \3. Thereforedim X7 = 4.

8.2. Springer fibers for the affine symmetric group. We recall the basic definitions of the tydeaffine Springer
fibres, and refer the reader e. g.[tol[13],/21, 24] for more Betai

Let us choose an indeterminateand consider the field( = C((¢)) of Laurent power series and the ring
O = C[[e]] of power series in. LetV = C™((¢)) be aK-vector space of dimension

Definition 8.4. The affine Grassmanniag,, for the groupGL,, is the moduli space oD-submodules\/ ¢ V'
such that the following three conditions are satisfied:

(&) M is O-invariant.

(b) There existsV such that=VC"[[e]] o M > N C"[[¢]].

(c) Let N be an integer satisfying the above condition. Then theioilg normalization condition is satis-

fied:
dimc e NC"[[]]/M = dime M [N C™[[£]].
The affine complete flag variet§,, for the groupGL,, is the moduli space of collectioqs\fy > ... > M, },

where eachV/; satisfies (a) and (bYlim¢ M;/M;.1 = 1, M,, = eMy, and My € G,, i.e. M, also satisfies the
normalization condition (c).

Definition 8.5. Let T be an endomorphism 6f. It is callednil-elliptic if limj_., 7% = 0 and the characteristic
polynomial ofT" is irreducible ovelri.

Given a nil-elliptic operatof’, one can extend its action &, and toF,, and define thalffine Springer fibers
as the corresponding fixed point sets.

Remark 8.6. The conditionlimy_, ., 7% = 0 means that for any e N there exists: € N such that
T*(C*[[e]]) c VT [[e]]-

In [24] Lusztig and Smelt studied the structure of the affipeir®er fibers for a particular choice ®f Given
aC-basis{ey,...,e,} in C", one can consider it asi-basis ofl” = C"((¢)). Consider the operatdy defined
by the equation®V (e;) = e;+1, N(ey) = €e1. The following theorem is the main result 6f [24].

Theorem 8.7. ([24]) Consider the nil-elliptic operatof” := N™, wherem is coprime ton. Then the correspond-
ing affine Springer fibef,,,/, c F,, admits an affine paving by."! affine cells.

It turns out that the affine paving of this affine Springer fitetightly related to the combinatorics of the
simplexD™. This was implicitly stated in [17, 20, 24], but we would like make this correspondence precise
and explicit.
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Theorem 8.8. There is a natural bijection between the affine cellsFip,,, and the affine permutations ins,,.
The dimension of the cell,, labeled by the affine permutatianis equal toy}-; SP,, ().

Proof. Let us introduce an auxiliary variable= £/". We can identify the vector spadé = C"((<)) with the
spacespanc{1,z,...,2" 1 }((2™)) =~ C((z)) of Laurent power series in by sending the basie, ..., e,} to
{1,2,...,2""1}. Note that under this identificatiof;"[[¢]] is mapped teC[[=]]. By construction)V coincides
with the multiplication operator by and henceél’ = N™ coincides with the multiplication operator by”.
ThereforeF,,;,, consists of flag§ Mo > ... o M, } of C[[2",2™]]-modules, such thatim¢ M;/M;1 = 1,
M, = z"M, and M, € G,. Let us extend the notatiol/; to arbitraryi ¢ Z by settingM;., = z*"M;. As a
result, we get an infinite flag... > My o ... > M,, o...} of C[[2", 2™]]-modules satisfying the same conditions
as above and/;,,, = 2" M;.

For f(z) e V =C((z)), let Ord(f) denote the order of (z) in z, i.e. the smallest degree of such that the
corresponding coefficient ifi(z) does not vanish. Given a subggtc V, define

Ord(M) ={Ord(f) : feM,f +0}.
We will need the following lemma, whose proof is standard kficto the reader:
Lemma 8.9. Let L ¢ M c C((z)) be twoC[[z™, 2"]]-submodules in~NC[[z]] for some largeN ¢ N. Then
§ (Ord(M )~ Ord(L)) = dim¢ M/L.

Given aflag{... o My o ... o M,, o ...} as above, sedrd(M;) \ Ord(M;,1) = {w(¢)}. Note that one
automatically get©rd(M;) = {w(i),w(i+1),...}, becausg) Ord(M;) = @. Recall the notation

Inv(w) :=={(4,j) e NxN|1<i<n, i<jw()>w(y)}
and
Inv(w) = {(i,7) e Nx N[ i < j,w(i) >w(j)}
for the inversion sets af. For each there exists a uniqug (z) € M; such that

_ w(i) w(i) w(i).
(11) fi=2"+ Z_ e
(j,3)elnv(w)
Indeed, take any functiofi € M; such thatOrd(f) = {w(4¢)} and use functions from/,,; to eliminate coef-
ficients atz<() for j > i andw(j) > w(i). The resulting function is unique up to a scalar, becauserotbe
dim¢ M;/M;.1 would be at leas2. It follows that f;.,, = 2™ f;.

We claim that is an affine permutation and, moreover ™S,,. Indeed, sincd;,,, = 2" f; we getw(i +n) =
w(i) + n, and sincez™f; € M; we get thatw(i) + m € {w(i),w(i + 1) ..}, and, therefore, for any < i,
w(j) —w(i) # m. Finally, we need to check the normalization condﬂ@m( ) = ”(”“) , which follows form

the normalization condition o/, € G,,. Indeed, it is not hard to see that for dlle gn the sum of elements of
Ord(L) ~ Ord(t" L) should be the same. In particular, o= C[[z]] we haveOrd(C[[z]]) ~ Ord(z"C[[=]]) =
{0,1,...,n—1}, and their sum iél("Q—'l). Therefore, sinc®rd(My) ~ Ord(z"Mp) = {w(0),...,w(n-1)}, we

n—1
ety w(i)= M, which equivalent to the required condition.
g & 2 q q

The above gives us a map: 7/, — ™§S,. Let us prove that the fibeis,, := v~1(w) of this map are affine
cells and compute their dimensions. This is very similah®t¢omputation in the finite case (see Thedremh 8.1).
Let us setf“() := ;. The expansion§(11) can be rewritten as

fe=2%+ Z )\gzﬂ
(a,8)elnv(w=1)
Since fi, = 2" f;, one gets\§i" = Ag. Letus also extend the notation by settmp = 0 whenever(a, ) ¢

- B+n
Inv(w™!), so that one can write

fe=2%+ Z )\gzﬁ
B>«

Let us say that the coefficieng is of height — a. As before, leta = w(i). The conditionz™ f* € M; implies
the following relations on the coefficients. The function

Zm foc+m Z )\a B+m _ Z )\oz+m B _ Z ()\oc . _)\oz+m)

B>« B>a+m B>a+m
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should belong taV/;. TakeB > a +m and letj = w™(B). If j > 4, then the term of degre@ can be eliminated
by subtractingf” = f; € M, with an appropriate coefficient. If < i, thenw (8 -m) < w™(B) < w™(a) <
w™(a+m). Hence(a, B-m) € Inv(w™") and(a+m, 3) € Inv(w™"), so the coefficientd§_, andA3*™ are both
not forced to be zero, i.e. they are parameter&ign The term(A5_,, - )\g*m)zﬁ has to vanish automatically
after we eliminated all lower order terms. As we eliminatene of degreey such thate + m < v < 3, the
coefficient atz® changes, but the added terms can only depend on coefficiesiisatier height. More precisely,
all additional terms are non-linear, and the total heighgaxth monomial is always — o — m. In the end, we get
thatAs_,, — Ag*™™ should be equal to zero modulo the coefficients of smallegtitei

This means that for eadl, 3) € Inv(w™!) of heights — o > m there is an equation that allows one to express
Ag_, In terms of AG*™ and higher order terms in coefficients with lower height. Aopr the linear parts of

these equations can be dependent if fofatl ¢ < n one haga + gm, 8 + ¢gm) € Inv(w™!). However, sincen
andn are relatively prime, this would mean that'(v) > w™!(y + 8 - «) for all v € Z, which is impossible.
Therefore, one can resolve the relations on the coefficigittsrespect to\; such that(«, 3) € Inv(w™) and

(o, B+ m) € Inv(w™!). So, the coordinates oh,, correspond to the inversior{g;, 3) € Inv(w™!), such that
(o, B+m) ¢ Inv(w™?). SinceA = Ag1}, one should count inversions Inv(w™') only. Itis not hard to see
that such inversions are in bijection with inversions ofgieiless thamn. Indeed, the required map (s, 3) ~
(a, B = km), wherek is the maximal integer such that- km > a.

Alternatively, one can also notice that the relations arbijection with inversions of height greater than
Indeed, the relationf = A7 (modulo lower height terms) corresponds to the invergions +m) € Inv(w™)
of height greater tham. Therefore, the dimension &i, is the total number of inversions minus the number of
inversion of height greater than. Since there are no inversions of heightthe dimension is equal to the number
of inversions of height less than. Since}." ; PS-1(¢) is exactly the total number of inversions of height less
thanm, we conclude that

dim(Zy) = Y. SPu(i) = Y. PS,1(i) = W —dinv(w™).
=1 =1
For a more abstract proof see elg./[13] and [20, Theorem §.7Z.8]. O

Remark 8.10. Similar reasoning shows that the Grassmannian versioneoéftine Springer fibeg,,,, c G,
parametrizes appropriately normaliz8f{ =™, 2" ]]-submodules i€ ((z)). This affine Springer fiber was studied
e.g. in [14[15] under the name of Jacobi factor of the planeecsingularity{z"™ = y™}. The cells in it are
parametrized by the subsetsZn, which are invariant under addition of andn, and can be matched to the
lattice points inD;". Note the lattice points in turn correspond to the minimablé left coset representatives
mg A §n/Sn.

Corollary 8.11. If the mapPS is a bijection then the Poincarpolynomial ofF,,,,,, is given by the following
formula:

(12) itkdimHk(]—"m/n): S 2T,
k=0 FEPF rnsn

Proof. Since the variety-,,,,,, can be paved by the even-dimensional cells, it has no oddweolegy and(2k)-th
Betti number is equal to the number of cells of complex din@ms. Therefore by Theorem 8.8:

S dimH (Fpyp) = 3 290 o Y 2EPSGO - SN 2550,
k wem S, weggl" fePF mjn

Equation[(IP) was conjectured in |24, Sec. 10] for all cogrimandn.

9. SOME EXAMPLES FORmM # kn = 1.
In this section we discuss some examples for which kn + 1.

Example 9.1. There are81 = 3* 3/5-parking functions. Thg = 51T3(5;3) increasing parking functions are
(00000), (00001), (00002), (00011)), (00012), (00111), (00112). Grouping them into th&s-orbits {f ow | w €

S5} yields81 =1+5+5+10 +20 + 10 + 30. There are 7 vectors ii> n V n D3. Their transposes are:
(070507050)5 (15070507 _1)7 (07 150705 _1)5 (150705 _170)7 (0705 17 _150)5 (Oa 17 _15070)7 (17 _1705 17 _1)
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. [-30369] p

[-22456] [01248]

H3g HYg H)g HI, HYg
FIGURE 12. 7 permutationg € 33, labelingw™'Aq in the dominant cone

The30 parking functions in th&s-orbit of (00112) correspond under the mapto the30 permutations irbs n3S;
which are those in the support of the shufflie. 25 w 3 (that is to say, the intersection of the Sommers region with
the orbit of the identity permutation).

On the other hand, the parking functi¢@0000) = .A(w,,) corresponds unded to the affine permutatios,,, =
[-3,0,3,6,9] € 355. Anything else in its righSs-orbit lies outside the Sommers region.

Despite the fact many of the above theorems and constrisctieaS””, it is more uniform to study the set
{uAo | ue™S,} andSP than{wA, | w € S™} andPS. One reason is that while the Sommers region can always
be defined fogcd(m, n) = 1, a hyperplane arrangement that is the correct analogue &ttharrangement cannot.
Consider the following example.

Example 9.2.. In the cas€n,m) = (5,3) itis impossibleto find a set of hyperplanes that separate the alcoves
{wAy | w e 8™} and hasﬁ(sgg) = 7 dominant regions, i.e. that there are exagtlgominant regions with a
uniguewA, in each. In other words, the notion Eégf; does not extend well when + kn + 1.

Indeed, 7 dominant regions corresponding to 3-restrictiieapermutations, € 2S5 n S5/S5 are shown in
bold in Figurd IR. Each permutation drawn corresponds talgmeinant alcoves ' A,. Hence the hyperplanes
crossed (by the pictured) correspond exactly thiv(w). The hyperplanerfﬁ, Hgﬁ anng7 separatg¢02346]
from other 3-restricted permutations. To sepafat&1457] from [-11258], one must add eithel$ ; or Hy s to
the arrangement, but this would leave either of the nons&ioted permutations-22456] or [01248] in a region
with no 3-restricted permutations. Therefore any extameidhe classical braid arrangement fywould either
have a region with two 3-restricted permutations or a regiith none of them.

Note there are more hyperpland$y(,, Hy ,,) thatw,, = [-3,0,3,6,9] has crossed that we did not draw on
the picture.

Example 9.3. We list all affine permutations i§52 together with their images under the mapandPS in Figure
[I3. Herew is a2-stable affine permutation (that is(i + 2) > w(7)), andw™! is 2-restricted . Note that fon = 2
one hasA,, (k) =w™ (k) - M, mod 2, where, as abové/,, = min{k : w(k) > 0}.
The combinatorial Hilbert series has a form:
Hys(q,t) =5+4(q+t) + (q2 +qt + t2).

In particular, it is symmetric ig and¢ and thus answers a question posed.in [2, Section 5.4].
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The special vertex ab, 5 corresponding to the fundamental alcove by Lerimal2.16 ieribes! by the affine
permutationuvs = [-1,1,3,5,7].

w wt A area PS dinv
[-1,2,5,3,6]| [0,2,4,6,3]| (0,0,0,0,1 1 0,0,1,1,0 0
[0,2,3,4,6]| [0,2,3,4,6]] (0,0,1,0,0) | T |(0,0,0,0,1) | 1
[0,2,4,3,6]| [0,2,4,3,6]] (0,0,0,1,0) | T |(0,0,1,0,1) | O
[0,3,1,4,7]]| [3,0,2,4,6]] (1,0,0,0,0 1 1,0,0,0,1 0
[0,3,2,4,6]| [0,3,2,4,6]] (0,1,0,0,0) | T |(0,1,0,0,1) | O
[2,0,3,6,4]] [-1,1,3,5,7]| (0,0,0,0,0 2 0,0,0,1,1 0
[1,2,3.45]| [1,.2,3,4,5]] (0,1,0,1,0) | O |(0,0,0,0,0) | 2
[1,2,3,54]] [1,2,3,5,4]]| (0,1,0,0,1 0 0,0,0,1,0 1
[1,2,4,35]| [1,.2,4,3,5]] (0,1,1,0,0) | O |(0,0,1,0,0) | 1
[1,3,2,4,5]| [1,3,2,4,5]] (0,0,1,1,0 0 0,1,0,0,0 1
[1,3,2,5.4]| [1,3,2,5,4][ (0,0,1,0,1) | O |(0,1,0,1,0) | O
[1,4,2,53]] [1,3,5,2,4]]| (0,0,0,1,1 0 0,1,1,0,0 0
[2,1,3.45]| [2,1,3,4,5]| (1,0,0,1,0) | 0 |(1,0,0,0,0) | 1
[2,1,3,54]]| [2,1,3,5,4]] (1,0,0,0,1 0 1,0,0,1,0 0
[2,1,4,35]| [2,1,4,3,5]| (1,0,1,0,0) | O | (1,0,1,0,0) | O
[3,1,4,2,5]| [2,4,1,3,5]] (1,1,0,0,0 0 1,1,0,0,0 0

FIGURE 13. Affine permutations ib2, their inverses i Ss; mapsA andPS to PFy)s;
area anddinv statistics
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