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AFFINE PERMUTATIONS AND RATIONAL SLOPE PARKING FUNCTIONS

EUGENE GORSKY, MIKHAIL MAZIN, AND MONICA VAZIRANI

ABSTRACT. We introduce a new approach to the enumeration of rational slope parking functions with respect to the
area and a generalizeddinv statistics, and relate the combinatorics of parking functions to that of affine permutations.
We relate our construction to two previously known combinatorial constructions: Haglund’s bijectionζ exchanging
the pairs of statistics(area,dinv) and(bounce,area) on Dyck paths, and the Pak-Stanley labeling of the regions of
k-Shi hyperplane arrangements byk-parking functions. Essentially, our approach can be viewed as a generalization
and a unification of these two constructions. We also relate our combinatorial constructions to representation theory.
We derive new formulas for the Poincaré polynomials of certain affine Springer fibers and describe a connection to the
theory of finite dimensional representations of DAHA and nonsymmetric Macdonald polynomials.

1. INTRODUCTION

Parking functions are ubiquitous in the modern combinatorics. There is a natural action of the symmetric group
on parking functions, and the orbits are labeled by the non-decreasing parking functions which correspond natu-
rally to the Dyck paths. This provides a link between parkingfunctions and various combinatorial objects counted
by Catalan numbers. In a series of papers Garsia, Haglund, Haiman, et al. [18, 19], related the combinatorics of
Catalan numbers and parking functions to the space of diagonal harmonics. There are also deep connections to
the geometry of the Hilbert scheme.

Since the works of Pak and Stanley [29], Athanasiadis and Linusson [5] , it became clear that parking functions
are tightly related to the combinatorics of the affine symmetric group. In particular, they provided two different
bijections between the parking functions and the regions ofShi hyperplane arrangement. It has been remarked
in [2, 11, 27] that the inverses of the affine permutations labeling the minimal alcoves in Shi regions belong to a
certain simplexDn+1

n , which is isometric to the(n + 1)-dilated fundamental alcove. As a result, the alcoves in
Dn+1

n can be labeled by parking functions in two different ways.
In this paper we develop a “rational slope” generalization of this correspondence. A functionf ∶ {1, . . . , n} →

Z≥0 is called anm/n-parking function if the Young diagram with row lengths equal to f(1), . . . , f(n) put in the
decreasing order, fits under the diagonal in ann ×m rectangle.

Recall that a bijectionω ∶ Z→ Z is called an affine permutation ifω(x+n) = ω(x) +n for all x and
n

∑
i=1

ω(i) =
n(n+1)

2
. Given a positive integerm, we call an affine permutationm-stable, if the inequalityω(x +m) > ω(x)

holds for allx. All constructions in the present paper are based on the following basic observation (see Section
2.3 for details).

Proposition 1.1. If m andn are coprime thenm-stable affine permutations label the alcoves in a certain sim-
plexDm

n which is isometric to them-dilated fundamental alcove. In particular, the number ofm-stable affine
permutations equalsmn−1.

The simplexDm
n (first defined in [10, 27]) plays the central role in our study.We show that the alcoves

in it naturally label various algebraic and geometric objects such as cells in certain affine Springer fibres and
nonsymmetric Macdonald polynomials atqm = tn. We provide a clear combinatorial dictionary that allows one
to pass from one description to another.

We define two mapsA,PS between them-stable affine permutations andm/n-parking functions and prove
the following results about them.

Theorem 1.2. MapsA andPS satisfy the following properties:

(1) The mapA is a bijection for allm andn.
(2) The mapPS is a bijection form = kn ± 1. For m = kn + 1, it is equivalent to the Pak-Stanley labeling of

Shi regions.

Date: March 4, 2014.
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(3) The mapPS ○A−1 generalizes the bijectionζ constructed by Haglund in[18]. More concretely, if one
takesm = n+1 and restricts the mapsA andPS to minimal length right coset representatives ofSn/S̃n,

thenPS ○A−1 specializes to Haglund’sζ.

Remark 1.3. Form = n + 1 the bijectionA is similar to the Athanasiadis-Linusson [5] labeling of Shiregions,
but actually differs from it.

Conjecture 1.4. The mapPS is bijective for all relatively primem andn.

The mapPS has an important geometric meaning. In [24] Lusztig and Smelt considered a certain Springer
fibreFm/n in the affine flag variety and proved that it can be paved bymn−1 affine cells. In [14, 15] a related
subvariety of the affine Grassmannian has been studied underthe name of Jacobi factor, and a bijection between
its cells and the Dyck paths inm×n rectangle has been constructed. In [20] Hikita generalizedthis combinatorial
analysis and constructed a bijection between the cells in the affine Springer fiber andm/n-parking functions (in
slightly different terminology). He gave a quite involved combinatorial formula for the dimension of a cell. We
reformulate his result in terms of the mapPS.

Theorem 1.5. The affine Springer fiberFm/n admits a paving by affine cellsΣω naturally labeled by them-stable
affine permutationsω. The dimension of such a cell equals

dimΣω =
n

∑
i=1

PSω(i).

Corollary 1.6. If the mapPS is a bijection (in particular, ifm = kn ± 1), then the Poincaŕe polynomial ofFm/n

is given by the following simple formula:
∞

∑
k=0

tk dimHk (Fm/n) = ∑
f∈PFm/n

t2∑i f(i).

It had been proven by Varagnolo, Vasserot and Yun [32, 33] that the cohomology of affine Springer fibersFm/n

carry the action of double affine Hecke algebra (DAHA). In fact, all finite-dimensional DAHA representations can
be constructed this way. On the other hand, Cherednik, the third named author and Suzuki [7, 30] gave a com-
binatorial description of DAHA representations in terms ofperiodic standard Young tableaux and nonsymmetric
Macdonald polynomials.

Theorem 1.7. There is a basis (of nonsymmetric Macdonald polynomials) inthe finite-dimensional DAHA repre-
sentation naturally labeled by the alcoves of them-dilated fundamental simplex. By Proposition 1.1, these alcoves
can be identified with them-stable permutationsω. The weight of such a nonsymmetric Macdonald polynomial
can be explicitly computed in terms of the parking functionAω.

The mapsA andPS can be used to define two statistics onm-stable permutations (or, equivalently, onm/n-
parking functions):

area(ω) ∶=
(m − 1)(n − 1)

2
−∑Aω(i), dinv(ω) ∶=

(m − 1)(n − 1)
2

−∑PSω(i).

For the casem = n + 1 Armstrong showed in [2] (in slightly different terms) thatarea anddinv statistic agrees
with the statistics defined in [19] as a part of “Shuffle Conjecture”.

Conjecture 1.8. The combinatorial Hilbert series

Hm/n(q, t) ∶= ∑
ω

qarea(ω)tdinv(ω)

is symmetric inq andt for all m andn:

Hm/n(q, t) =Hm/n(t, q).

To support this conjecture, let us remark that the “weak symmetry” Hm/n(q,1) = Hm/n(1, q) would follow
from the bijectivity of the mapPS . Indeed,

Hm/n(q,1) = ∑
ω

q
(m−1)(n−1)

2
−∑Aω(i) = ∑

f∈PFm/n

q
(m−1)(n−1)

2
−∑ f(i) = ∑

ω

q
(m−1)(n−1)

2
−∑PSω(i) =Hm/n(1, q).

The second equation follows from the bijectivity of the mapA, and the third one follows from the bijectivity of
the mapPS. In particular, the “weak symmetry” holds form = kn ± 1.
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f ∈ PF7/4

f ∉ PF5/4

FIGURE 1. The labeled diagram for the parking functionf = L2040M.

Surprisingly enough, we found a version of the mapPS for the finite symmetric groupSn. A permutation
ω ∈ Sn is calledm-stable, ifω(i +m) > ω(i) for all i ≤ n −m. It is easy to see that the number ofm-stable
permutations is given by a certain multinomial coefficient.We definePSω(ω(i)) as the number of inversions of
height at mostm in ω, containingi as the right end.

Theorem 1.9. The restriction of the mapPS to the finite symmetric groupSn is injective for allm andn.

For example, form = 2 the mapPS provides a bijection between the set of2-stable permutations inSn and the
set of lengthn Dyck paths with free right end. We also discuss a relation of this finite version of our construction
to the theory of Springer fibers.

The rest of the paper is organized as follows. In Section 2 we introduce and review the main ingredients of
our construction: rational slope parking functions, affinepermutations, and Sommers regions. In Section 3 we
construct the mapsA andPS from the set ofm-stable affine permutations to the set of rational slope parking
functions and prove thatA is a bijection. We also discuss the statistics arising from our construction and introduce
the combinatorial Hilbert polynomial. In Section 4 we studythe casem = kn ± 1 and its relation to the theory of
extended Shi arrangements and Pak-Stanley labeling. In Section 5 we discuss the specializations of the mapsA
andPS to minimal length coset representatives and their relationto Haglund’s bijectionζ. In Section 6 we relate
our construction to the theory of finite dimensional representations of Cherednik’s DAHA and nonsymmetric
Macdonald polynomials. In Section 7 we discuss a version of the mapPS for the finite symmetric group and
prove its injectivity. In Section 8 we discuss how our constructions are related to the theory of Springer fibers.
Finally, we consider some examples form ≠ kn ± 1 in Section 9.

It is worth to mention that the combinatorial structure of the dilated fundamental alcove has been recently inves-
tigated in [31], where the alcoves in it were labeled by certain sequences of numbers (but not parking functions).
We plan to investigate the connections of our work to [31] in the future.
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2. TOOLS AND DEFINITIONS

We start with a brief review of the definitions and basic results involving parking functions, affine permutations,
and hyperplane arrangements, which will play the key role inour constructions.

2.1. Parking Functions.

Definition 2.1. A function f ∶ {1, . . . , n} → Z≥0 is called anm/n-parking functionif the Young diagram with
row lengths equal tof(1), . . . , f(n) put in the decreasing order, bottom to top, fits under the diagonal in ann×m
rectangle. The set of such functions is denoted byPFm/n .

We will often use the notationf = Lf(1)f(2) . . . f(n)M for parking functions.

Example 2.2. Consider the functionf ∶ {1,2,3,4} → Z≥0 given byf(1) = 2, f(2) = 0, f(3) = 4, andf(4) = 0
(i.e. f = L2040M). The corresponding Young diagram fits under the diagonal ina4× 7 rectangle, but it does not fit
under the diagonal in a4 × 5 rectangle. Therefore,f ∈ PF7/4 butf ∉ PF5/4 (see Figure 1).

Equivalently, a functionf ∶ {1, . . . , n} → Z≥0 belongs toPFm/n if and only if it satisfies one of the following
two equivalent conditions:
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∀ℓ ∈ {0, . . . ,m − 1}, ♯{k ∈ {1, . . . , n} ∣ f(k) < ℓ} ≥
ℓn

m
,

or

∀i ∈ {0, . . . , n − 1}, ♯{k ∈ {1, . . . , n} ∣ f(k) ≤
im

n
} ≥ i + 1.

Let P ∶ PFm/n → Ym,n denote the natural map from the set of parking functions to the setYm,n of Young
diagrams that fit under diagonal in ann × m rectangle. To recover a parking functionf ∈ PFm/n from the
corresponding Young diagramP (f) one needs some extra information. Lengths of the rows ofP (f) correspond
to the values off, but one needs also to assign the preimages to them. That is, one should label the rows ofP (f)
by integers1,2, . . . , n. Note that ifP (f) has two rows of the same length, then the order of the corresponding
labels does not matter. One should choose one of the possibleorders. We choose the decreasing order (read from
bottom to top).

Definition 2.3. Let Ŷm,n denote the set of couples(D,τ) of a Young diagramD ∈ Ym,n and a (finite) permutation
τ ∈ Sn, such that ifkth and(k + 1)th rows ofD have the same length, thanτ(k + 1) < τ(k). We will refer toτ as
the row-labeling ofD.

Note thatτ ∈ Sn is the permutation of maximal length such thatf ○ τ is non-increasing.

Example 2.4. In Example 2.2, one hasτ = [3,1,4,2], sof ○ τ = L2040M ○ [3,1,4,2] = L4200M.

We get the following lemma:

Lemma 2.5. The set ofm/n-parking functionsPFm/n is in bijection with the set of labeled Young diagrams

Ŷm,n.

Remark 2.6. Note that form = n+ 1 the setPFm/n is exactly the set of classical parking functionsPF , and for
m = kn + 1 it is the set ofk-parking functionsPFk (e.g. [18]).

From now on we will assume thatm andn are coprime, so there are no lattice points in the diagonal of
n ×m rectangle. By abuse of notation, we will call a non-decreasing parking function increasing. The number of
increasing parking functions equals to the generalized Catalan number♯Ym,n = 1

n+m
(n+m

n
). The number of all

parking functions equalsmn−1.

2.2. Affine Permutations.

Definition 2.7. Theaffine symmetric group̃Sn is generated by elementss1, . . . , sn−1, s0 subject to the relations

(a) s2i = 1,
(b) sisj = sjsi for i − j /≡ ±1 modn,
(c) sisjsi = sjsisj for i − j ≡ ±1 modn (if n > 2).

Let

x =
⎛⎜⎝

x1

⋮
xn

⎞⎟⎠ , V ∶= {x ∈ Rn ∣ x1 + . . . + xn = 0} ⊂ Rn

and letHk
ij be the hyperplane{x ∈ V ∣ xi − xj = k} ⊂ V. The hyperplane arrangement̃Bn = {Hk

ij ∶ 0 < i < j ≤
n, k ∈ Z} is called theaffine braid arrangement.The connected components of the complement to the affine braid
arrangement are calledalcoves.The group̃Sn acts onV with the generatorssi acting by reflections in hyperplanes
H0

i,i+1 for i > 0, ands0 acting by reflection in the hyperplaneH1
1,n. The action is free and transitive on the set of

alcoves, so that the mapω ↦ ω(A0), where A0 ∶= {x ∈ V ∣ x1 > x2 > . . . > xn > x1 − 1} is thefundamental
alcove, gives a bijection between the group̃Sn and the set of alcoves.

ObserveHk
i,j = H

−k
j,i , so we may always takei < j. It is convenient to extend our notation to allow subscripts

in Z via Hk
i+tn,j+tn = H

k
i,j andHk

i,j = H
k−1
i,j−n. In this way, we can uniquely write each hyperplane inB̃n asH0

i,ℓ

with 1 ≤ i ≤ n, i < ℓ, ℓ ∈ Z. Then we can define theheightof the hyperplaneH0

i,ℓ to beℓ − i. Observe, in this
manner, the reflecting hyperplane ofs0 isH1

1,n =H
0
1,0 =H

0
0,1 of height1. Note that with this notation, the action

of the groupS̃n on the hyperplanesHk
i,j is given by

ω(Hk
i,j) =Hk

ω(i),ω(j).

There is another way to think about the affine symmetric group:
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Definition 2.8. A bijectionω ∶ Z → Z is called an affineSn-permutation, ifω(x + n) = ω(x) + n for all x, and

∑n
i=1 ω(i) = n(n+1)

2
.

In this presentation the operation is composition and the generatorss1, . . . , sn−1, s0 are given by

(a) si(x) = x + 1 for x ≡ i modn,
(b) si(x) = x − 1 for x ≡ i + 1 modn,
(c) si(x) = x otherwise.

It is convenient to use list orwindow notationfor ω ∈ S̃n as the list[ω(1), ω(2),⋯, ω(n)]. Sinceω(x + n) =
ω(x) + n, this determinesω. The bijection betweeñSn and the set of alcoves can be made more explicit in the
following way.

Lemma 2.9. Every alcoveA contains exactly one point(x1, . . . , xn)T ∈ A in its interior such that the numbers
n+1
2
− nx1, . . . ,

n+1
2
− nxn are all integers. Moreover, ifx ∈ ω(A0) is such a point, then in the window notation

one has

(1) ω−1 = [n + 1
2
− nx1, . . . ,

n + 1
2
− nxn].

These points are called centroids of alcoves.

Proof. Window notation for the identity permutation isid = [1,2, . . . , n]. By (1), the corresponding point is
1

2n
(n − 1, n − 3, . . . ,1 − n). Note that it belongs to the fundamental alcoveA0 = {x ∈ V ∣ x1 > x2 > . . . > xn >

x1 − 1}. Moreover, it is the unique pointx ∈ A0 such that the numbersn+1
2
− nxi are all integers. Indeed, let

ai = n+1
2
− nxi for all 1 ≤ i ≤ n. Sincex1 > x2 > . . . > xn > x1 − 1 we geta1 < a2 < . . . < an < a1 + n. Moreover,

sincex1 + . . . + xn = 0, we havea1 + . . . + an =
n(n+1)

2
. There is a unique collection of integers satisfying these

conditions:a1 = 1, a2 = 2, . . . , an = n.
SinceS̃n acts freely and transitively on the set of alcoves, all we need to prove is that (1) is preserved under the

action of the generatorss0, . . . , sn. Indeed, for1 ≤ i ≤ n we have

(siω)−1 = ω−1si = [ω−1(si(1)), . . . , ω−1(si(n))]
= [ω−1(1), . . . , ω−1(i + 1), ω−1(i), . . . , ω−1(n)],

and fori = 0 we have

(s0ω)−1 = [ω−1(n) − n,ω−1(2), . . . , ω−1(n − 1), ω−1(1) + n].
On the other side, generatorss1, . . . , sn ∈ Sn simply permute the coordinates of points inV, while s0 acts by
sending(x1, . . . , xn) to (xn + 1, x2, . . . , xn−1, x1 − 1). Therefore, Equation 1 is preserved by the action of the
groupS̃n. �

The minimal length left coset representativesω ∈ S̃n/Sn, also known as affine Grassmannian permutations,
satisfyω(1) < ω(2) < ⋯ < ω(n), so that their window notation is anincreasinglist of integers (summing ton(n+1)

2

and with distinct remaindersmod n). Their inversesω−1 are the minimal length right coset representatives and
satisfy that the centroid of the alcoveω−1(A0) are precisely those whose coordinates aredecreasing. That is to
say,ω−1(A0) is in the dominant chamber{x ∈ V ∣ x1 > x2 >⋯ > xn}.

By a slight abuse of notation, we will refer to the set of minimal length left (right) coset representatives as
S̃n/Sn (respectivelySn/S̃n).

2.3. Sommers region.The notions of an inversion and the length of a permutation generalizes from the symmet-
ric groupSn to the affine symmetric group̃Sn. However, the set{(i, j) ∈ Z2 ∣ i < j,ω(i) > ω(j)} is infinite for
all ω ∈ S̃n except identity. That is why it makes more sense to consider inversions up to shifts by multiples ofn ∶

Definition 2.10. Letω be an affine permutation. The set of its inversions is defined as

Inv(ω) ∶= {(i, j) ∈ Z ×Z ∣ 1 ≤ i ≤ n, i < j,ω(i) > ω(j)}.
The length of a permutationω is then defined asℓ(ω) = ♯ Inv(ω). We shall say theheightof an inversion(i, j) is
j − i. We will also use the notation

Inv(ω) ∶= {(i, j) ∈ Z × Z ∣ i < j,ω(i) > ω(j)}
for unnormalized inversions.
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Remark 2.11. If (i, j) ∈ Inv(ω), then obviouslyi + kn < j + kn andω(i + kn) > ω(j + kn) for any integerk.
Essentially, these couples of integers represent the same inversion ofω. The condition1 ≤ i ≤ n allows us to count
each inversion exactly once. Alternatively, one could alsorequire1 ≤ j ≤ n, 1 ≤ ω(i) ≤ n, or 1 ≤ ω(j) ≤ n.
Example 2.12.Considerω = [−3,2,3,8] ∈ S̃4/S4, whose inverse isω−1 = [5,2,3,0]. The centroid ofω−1(A0) is
1

8
(11,1,−1,−11)T . Noteω is translation by the vectorµ = (−1,0,0,1)T , asω = [1− 1(4),2+ 0(4),3+ 0(4),4+

1(4)] and likewiseω−1 is translation by−µ. One can see the centroid above is the centroid of the fundamental
alcove translated by−µ. In terms of Coxeter generators,ω = s1s2s3s2s1s0 andω−1 = s0s1s2s3s2s1. Note
Inv(ω) = {(4,5), (4,6), (4,7), (4,9), (3,5), (2,5)}andℓ(ω) = 6 which is also its Coxeter length. The inversions
are of height1,2,3,5,2,3 respectively. Additionally,Inv(ω−1) = {(1,2), (1,3), (1,4), (1,8), (2,4), (3,4)}.

Geometrically,ω has an inversion of heightm if and only if the alcoveω−1(A0) is separated fromA0 by a
(corresponding) hyperplane of heightm. More precisely, that hyperplane isH0

i,i+m if the inversion is(i, i +m).
The following definition will play the key role in our constructions:

Definition 2.13. An affine permutationω ∈ S̃n is calledm-stableif for all x the inequalityω(x +m) > ω(x)
holds, i.e.ω has no inversions of heightm. The set of allm-stable affine permutations is denoted byS̃m

n .

Definition 2.14. An affine permutationω ∈ S̃n is calledm-restrictedif ω−1 ∈ S̃m
n . We will denote the set of

m-restricted permutations bymS̃n. Noteω ∈ mS̃n if and only if for all i < j, ω(i)− ω(j) ≠m.

Lemma 2.9 implies an important corollary for the setS̃m
n :

Lemma 2.15. Letm = kn + r, where0 < r < n. The set of alcoves{ω(A0) ∶ ω ∈ mS̃n} coincides with the set of
alcoves that fit inside the regionDm

n ⊂ V defined by the inequalities:

(1) xi − xi+r ≥ −k for 1 ≤ i ≤ n − r,
(2) xi+r−n − xi ≤ k + 1 for n − r + 1 ≤ i ≤ n.

Proof. Remark thatDm
n is precisely the region cut out by the hyperplanes of heightm, asH−ki,i+r = H

0

i,i+r+kn =
H0

i,i+m and likewiseHk+1
i+r−n,i = H

0

i+r−n+(k+1)n,i = H
0
i+m,i = H

0
i,i+m. This means that alcoveω−1(A0) is inside

Dm
n if and only if the permutationω has no inversions of heightm. �

The regionDm
n was considered by Sommers in [27], therefore we call it theSommers region. It is known

thatDm
n is isometric to themth dilation of the fundamental alcove. This was proven for all types by Fan [10,

Lemma 2.2] and Sommers [27, Theorem 5.7], based on an earlierunpublished observation of Lusztig. It is worth
emphasizing that in typeA the construction of the isometry is very clear.

Lemma 2.16. Letc = (m−1)(n+1)
2

The affine permutationωm ∶= [m − c,2m − c, . . . , nm − c] induces an isometry
betweenDm

n and the simplexmD1
n =mA0 in the dominant region cut out by the hyperplanex1 − xn =m:

ωm (mD1

n) =Dm
n .

Proof. By the proof of Lemma 2.15, the regionDm
n is cut out by the hyperplanesH0

i,i+m for all integeri. Since
m andn are coprime, one can equivalently say that it is cut out by thehyperplanes

H0

m−c,2m−c,H
0

2m−c,3m−c, . . . ,H
0

nm−c,(n+1)m−c.

On the other hand, the hyperplanex1 − xn =m can be written asH0
n,mn+1, so the simplexmD1

n is cut out by the
hyperplanesH0

1,2,H
0
2,3, . . . ,H

0
n−1,n,H

0
n,mn+1. Remark thatωm(i) =mi − c for 1 ≤ i ≤ n, and

ωm(mn + 1) = ωm(1) +mn =m − c +mn =m(n + 1)− c.
Thereforeωm(H0

i,i+1) =H0

mi−c,m(i+1)−c for 1 ≤ i < n, and

ωm(H0

n,mn+1) =H0

mn−c,m(n+1)−c ,

henceωm(mD1
n) =Dm

n . �

Observe that, sincem andn are coprime, the image of the origin under this isometry willbe the unique vertex
of Dm

n with all integer entries (in other words, in the root lattice).
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[−226]

H0
3,7H0

1,5

H0
2,6

FIGURE 3. Dilated fundamental alcoves (left) and Sommers regions (right) form = 4, ω4 = [−226]

Example 2.17. For n = 3 andm = 2 we haveω2 = [024]. The dilated fundamental alcove is bounded by the
hyperplanesH0

2,3,H
0
1,2 andH2

1,3, the Sommers regionD2
3 is bounded by the hyperplanesH0

1,3,H
0
2,4 andH0

3,5.
Note that

ω2(H0

2,3) =H0

2,4, ω2(H0

1,2) =H0

0,2 =H
0

3,5, ω2(H2

1,3) =H2

0,4 =H
0

1,3.

Similarly, for m = 4 we haveω4 = [−226]. The dilated fundamental alcove is bounded by the hyperplanes
H0

2,3,H
0
1,2 andH4

1,3, the Sommers regionD4
3 is bounded by the hyperplanesH0

1,5,H
0
2,6 andH0

3,7. Note that

ω4(H0

2,3) =H0

2,6, ω4(H0

1,2) =H0

−2,2 =H
0

1,5, ω4(H4

1,3) =H4

−2,6 =H
0

3,7.

All these hyperplanes are shown in Figure 2 and Figure 3.

3. MAIN CONSTRUCTIONS.

3.1. Bijection A ∶ S̃m
n → PFm/n. We define the mapA ∶ S̃m

n → PFm/n by the following procedure. Given
ω ∈ S̃m

n , consider the set∆ω ∶= {i ∈ Z ∶ ω(i) > 0} ⊂ Z and letMω be its minimal element. Note that the set∆ω is
invariant under addition ofm andn. Indeed, ifi ∈ ∆ω thenω(i+m) > ω(i) > 0 andω(i+n) = ω(i)+n > n > 0.
Thereforei +m ∈∆ω andi + n ∈ ∆ω.

Consider the integer lattice(Z)2. We prefer to think about it as of the set of square boxes, rather than the set of
integer points. Consider the rectangleRm,n ∶= {(x, y) ∈ (Z)2 ∣ 0 ≤ x < m,0 ≤ y < n}. Let us label the boxes of
the lattice according to the linear function

l(x, y) ∶= (mn −m − n) +Mω − nx −my.

The functionl(x, y) is chosen in such a way that a box is labeled byMω if and only if its NE corner touches the
line containing the NW-SE diagonal of the rectangleRm,n, sol(x, y) ≥Mω if and only if the box(x, y) is below
this line. The Young diagramDω defined by

Dω ∶= {(x, y) ∈ Rm,n ∣ l(x, y) ∈∆ω}.
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FIGURE 4. The labeled diagram corresponding to the permutationω = [0,6,3,1].

If (x, y) ∈Dω, thenω(l(x, y)) > 0, hence

ω(l(x − 1, y)) = ω(l(x, y)+ n) > 0,
and

ω(l(x, y − 1)) = ω(l(x, y)+m) > ω(l(x, y)) > 0.
Therefore, ifx− 1 ≥ 0, then(x− 1, y) ∈ Dω, and ify − 1 ≥ 0, then(x, y − 1) ∈ Dω. We conclude thatDω ⊂ Rm,n

is indeed a Young diagram with the SW corner box(0,0). Note also thatDω fits under the NW-SE diagonal of
Rm,n. Therefore,Dw ∈ Ym,n.

Observe that the boxes in theith row of the diagram correspond to coordinates withy = i − 1.
The row-labelingτω is given byτω(i) = ω(ai), whereai is the label on the rightmost box of theith row ofDω

(if a row has length0 we take the label on the box(−1, i − 1), just outside the rectangle in the same row). Note
that if ith and(i + 1)th rows have the same length, thenai+1 = ai −m and

τω(i + 1) = ω(ai+1) = ω(ai −m) < ω(ai) = τω(i).
Therefore,(Dω, τω) ∈ Ŷm,n. We defineA(ω) ∈ PFm/n to be the parking function corresponding to(Dω, τω).
Example 3.1. Let n = 4, m = 7. Consider the affine permutationω = [0,6,3,1] = s1s0s2s3s2 ∶

x . . . −3 −2 −1 0 1 2 3 4 5 6 7 8 . . .

ω(x) . . . −4 2 −1 −3 0 6 3 1 4 10 7 5 . . . ,

The inversion set isInv(ω) = {(2,3), (2,4), (2,5), (2,8), (3,4)}. Note that there are no inversions of height7,

soω is 7-stable. Equivalently,ω−1 = [4,−2,3,5] is 7-restricted. The set∆ω = {−2,2,3,4, . . .} is invariant under
the addition of4 and7, andMω = −2. The diagramDω is shown in Figure 4. Note that the labels3,4,5, and−2 on
the rightmost boxes of the rows ofDω are the4-generators of the set∆ω, i.e. they are the smallest numbers in∆ω

in the corresponding congruence classesmod 4. It follows then that the corresponding valuesω(3), ω(4), ω(5),
andω(−2) are a permutation of1,2,3,4. Indeed, read bottom to top,(ω(3), ω(4), ω(5), ω(−2)) = (3,1,4,2).
This defines the row-labelingτω ∶= [3,1,4,2]. Note that the last (top) two rows of the diagram have the same
length0. Therefore, the difference between the corresponding labels is5−(−2) = 7. The7-stability condition then
implies thatτ(3) = ω(5) > ω(−2) = τ(4), which is exactly the required monotonicity condition on thelabeling.
Using the bijection from Lemma 2.5, one obtains the parking functionAω = L2040M.

Equivalently, one can start directly fromω−1 = [4,−2,3,5] ∈ mS̃n and form the same labeled rectangle, noting
Mω =min{ω−1(i) ∣ 1 ≤ i ≤ n}. ThenAω(i) = 1 + x wherex is thex-coordinate of the box labeledω−1(i).

Alternatively, one can define the mapA in a more compact, but less pictorial way:

Definition 3.2. Let ω ∈ S̃m
n . We define the corresponding parking functionAω as follows. Let

Mω ∶=min{i ∈ Z ∶ ω(i) > 0}.
Givenα ∈ {1, . . . , n}, there is a unique way to expressω−1(α) −Mω as a linear combinationrm − kn with the
conditionr ∈ {0, . . . , n − 1}. Note that one automatically getsk ≥ 0. Indeed, otherwise

α = ω(Mω + rm − kn) ≥ ω(Mω) − kn > −kn ≥ n,
which contradicts the assumptionα ∈ {1, . . . , n}. We setAω(α) ∶= k.
Lemma 3.3. The two above definitions of the mapA are equivalent.
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Proof. Let (x, i − 1) be the rightmost box in theith row of the diagramDω. Let

α ∶= ω(l(x, i − 1)) = ω(Mω + (mn −m − n) − xn − (i − 1)m) = τω(i).
We need to check thatAω(α) is equal to the length of theith row, which isx + 1. Indeed,

ω−1(α) =Mω + (mn −m − n) − xn − (i − 1)m,

or
ω−1(α) −Mω = (n − i)m − (x + 1)n,

with n − i ∈ {0, . . . n − 1}. Therefore,Aω(α) = x + 1. �

Theorem 3.4. The mapA ∶ S̃m
n → PFm/n is a bijection.

Proof. Injectivity of the mapA ∶ S̃m
n → PFm/n is immediate from the construction. Indeed, the diagramDω

completely determines the set∆ω, while the row-labelingτω determines the values ofω on then-generators of
∆ω, which suffices to determineω. This gives an injective mapφ ∶ PFm/n → S̃n, such thatφ ○ A = idS̃m

n
. To

prove thatA is also surjective, it suffices to show thatφ(f) ism-stable for anyf ∈ PFm/n .

Indeed, letf ∈ PFm/n be a parking function,(Df , τf ) be the corresponding Young diagram with row labeling,
andω ∶= φ(f). Suppose that(l, l+m) is an inversion of heightm, i.e. ω(l) > ω(l+m). By shifting l by a multiple
of n if necessary, one can assume thatω(l) ∈ {1, . . . , n}, so thatl labels the rightmost box of one of the rows of
Df . Suppose thatl labels the box(x, y) with y > 0, i.e. it is not in the first row. Thenl +m = l(x, y − 1), which
is the label on the box just below the box(x, y). SinceDf is a Young diagram,(x, y − 1) ∈ Df . Suppose that
(z, y − 1) ∈Df is the rightmost box in theyth row. Then

ω(l +m) = ω(l(z, y − 1)+ (z − x)n) = τf(y) + (z − x)n.
If z > x, we getω(l +m) > n > ω(l). Contradiction. Ifz = x, then theyth and(y + 1)th rows are of the same
length and, by the condition on the row labelingω(l +m) = τf(y) > τf(y + 1) = ω(l). Contradiction.

Suppose now thatl labels the rightmost box in the first row:l = l(x,0) = M + mn − m − n − xn. Then
l +m =M + (m − 1 − x)n and

ω(l +m) = ω(M)+ (m − 1 − x)n > (m − 1 − x)n ≥ n,
becauseM labels the rightmost box in thenth (top) row and, therefore,ω(M) = τf (n) > 0, andm − 1 − x ≥ 1,
because the first row of the diagramDf has lengthx+1, which has to be less thanm. We conclude thatω(l+m) >
n ≥ ω(l). Contradiction. Therefore,ω ∈ S̃m

n andA ∶ S̃m
n → PFm/n is a bijection. �

We callA the Anderson map, since if we restrict the domain to minimal length right coset representatives
(which correspond to partitions called(m,n)-cores), and then project to increasing parking functions by sorting,
the map agrees with one constructed by Anderson [1].

Remark 3.5. Forωm as in Lemma 2.16 we haveAωm
= L00⋯0M.

Example 3.6. Consider the casen = 5,m = 3. Let id = [1,2,3,4,5], s1 = [2,1,3,4,5], s1s2 = [2,3,1,4,5]
which are all3-restricted. The images of their inverses under the Anderson map are thenf = Aid = L01201M,
As1 = L10201M = f ○ s1, andAs2s1 = L12001M = f ○ s1s2. Indeed the3-restricted permutations in the shuffle
14 ∪∪25 ∪∪3 correspond in a similar manner to the entire finiteS5 orbit of f . The precise statement is in the
following proposition.

Proposition 3.7. Letω ∈ S̃m
n , f = Aω ∈ PFm/n, and writeu = ω−1 ∈ mS̃n. LetH = {h ∈ Sn ∣ f ○ h = f}. Let

V = {v ∈ Sn ∣ uv ∈ mS̃n}. If v ∈ V then
Av−1ω =Aω ○v.

In particularV are a complete set of coset representatives forSn/H .

Proof. We first consider the casev = si. Note usi = [u(1),⋯, u(i + 1), u(i),⋯, u(n)], so in particular as
u,usi ∈ mS̃n, ∣u(i) = u(i+ 1)∣ ≠m; and in fact this difference cannot be a multiple ofm. We observed at the end
of Example 3.1 thatAω(k) = 1 + x where(x, y) are the coordinates of the box labeledu(k). Multiplication by
si ∈ Sn does not changeMω nor the function that labels the boxes of the rectangle. HenceAsiω(k) = 1+x where
(x, y) are the coordinates of the box labeledusi(k). In other words

Asiω(k) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

Aω(k) k ≠ i, i + 1
Aω(i + 1) k = i
Aω(i) k = i + 1

= Aω ○si = f ○ si.
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Further, note thatAω ○si ≠ Aω, otherwise the boxes labeledu(i), u(i+1)would be in the same column and hence
differ by a multiple ofm. Conversely, given1 ≤ i ≤ n with f ○ si ≠ f , we seeu,usi ∈ mS̃n.

Hence we may assumef is chosen so thatH is a standard parabolic subgroup, in which case the setV will
correspond to minimal length coset representatives. Indeed, repeating the above argument, we see that for any
v ∈ Sn with uv ∈ S̃m

n andℓ(uv) = ℓ(u) + ℓ(v) thatAv−1w = Aω ○v. �

3.2. Map PS ∶ S̃m
n → PFm/n.

Definition 3.8. Let ω ∈ S̃m
n . Then the mapPSω ∶ {1, . . . , n}→ Z is given by:

PSω(α) ∶= ♯{β ∣ β > α,0 < ω−1(α) − ω−1(β) <m}
= ♯{i ∣ ω(i) > α,ω−1(α) −m < i < ω−1(α)} .

In other words,PSω(α) is equal to the number of inversions(i, j) ∈ Inv(ω) of height less thanm and such that
ω(j) ≡ α modn.

Definition 3.9. Let SP ∶ mS̃n → PFm/n be defined byω ↦ PSω−1 .
ObserveSPu(i) = ♯{j > i ∣ 0 < u(i)− u(j) <m}.
Example 3.10. Using the same permutation as in Example 3.1, one getsPSω(1) = 3 = ♯{(2,4), (3,4), (−2,4)},
PSω(2) = 0, PSω(3) = 1 = ♯{(2,3)}, andPSω(4) = 1 = ♯{(2,5)}, soPSω = L3011M.

Likewise,ω−1 = [4,−2,3,5] andSPω−1(1) = 3 = ♯{(1,2), (1,3), (1,6)} ⊆ Inv(ω−1), 1 = ♯{(3,6)}, and
1 = ♯{(4,6)}.
Example 3.11. Consider(n,m) = (5,3) andu = [0,3,6,2,4]. ThenInv(u) = {(2,4), (3,4), (3,5), (3,6)} and
soSPu = L01200M. Noteu(3)− u(4) = 4 >m so this inversion does not contribute toSPu(3).

Let us prove thatPSω is indeed anm/n-parking function. We will need the following definition andlemmas.

Definition 3.12. A subsetK ⊂ Z is called±n-invariant if for all x ∈K one hasx + n ∈K andx − n ∈K.

Lemma 3.13. LetK be an±n-invariant set, and♯ (K ∩ [1, n]) = k. Then there existsi ∈ Z such that

♯ (K ∩ [i −m + 1, i]) ≤ km

n
.

Proof. Consider an intervalI in Z of lengthmn. On one hand, it is covered bym intervals of lengthn, containing
k points ofK each, hence♯(K ∩ I) = km. On the other hand, it is covered byn intervals of lengthm, hence one
of these intervals should contain at mostkm

n
points ofK. �

Lemma 3.14. Letω ∈ S̃m
n , letK be an±n-invariant set, and♯ (K ∩ [1, n]) = k. There existsl ∈ Z ∖K such that

the following conditions hold:

a) If j < l andω(j) > ω(l) thenj ∈K
b) ♯{j ∈K ∶ l −m < j < l, ω(j) > ω(l)} ≤ km

n
.

Proof. By Lemma 3.13 there existsi ∈ Z such that♯ (K ∩ [i −m + 1, i]) ≤ km
n

. Sinceω(x + n) = ω(x) + n, the
set of values ofω on the half line(−∞, i] is bounded from above. Let us choosel ≤ i such that:

(2) ω(l) =max{ω(x) ∶ x ∈ (−∞, i] ∖K},
and prove that thisl satisfies (a) and (b). Ifj < l andj ∉ K then by (2) one hasω(j) < ω(l), hence (a) holds. To
prove (b), define

Jm(l,K) ∶= {j ∈K ∶ l −m < j < l, ω(j) > ω(l)}.
Given j ∈ Jm(l,K), there exists a uniqueα(j) ∈ Z≥0 such thati −m < j + α(j)m ≤ i, and for differentj the
numbersj + α(j)m are all different. Sinceω ism-stable, we have

ω(l) < ω(j) < ω(j +m) < . . . < ω(j + α(j)m).
By (2) we conclude thatj + α(j)m ∈K.

Therefore we constructed an injective map fromJm(l,K) toK ∩ [i −m + 1, i], and

♯Jm(l,K) ≤ ♯ (K ∩ [i −m + 1, i]) ≤ km

n
.

�
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Theorem 3.15. For anym-stable affine permutationω, the functionPSω is anm/n-parking function. Thus one
gets a mapPS ∶ S̃m

n → PFm/n .

Proof. Let us construct a chain of±n-invariant subsets

∅ =K0 ⊂K1 ⊂ . . .Kn = Z,

with ♯{Ki ∩ [1, n]} = i for all i, by the following inductive procedure. GivenKi for somei, we use Lemma
3.14 to find an integerli+1 satisfying Lemma 3.14 (a,b). SinceKi was±n-invariant andli+1 ∉ Ki, the sets
Ki and li+1 + nZ do not intersect, hence we can setKi+1 ∶= Ki ⊔ (li+1 + nZ). By shifting the numberli+1
by a multiple ofn if necessary, we can assume thatω(li+1) ∈ {1, . . . , n} for all i ∈ {0, . . . , n − 1}. Note that
{ω(l1), ω(l2), . . . , ω(ln)} = {1, . . . , n}.

Let us estimatePSω(ω(li+1)). If li+1 −m < j < li+1 andω(j) > ω(li+1), then by Lemma 3.14(a) we have
j ∈Ki and by Lemma 3.14(b) the number of suchj is at mostim

n
. Therefore,

♯{α ∶ PSω(α) ≤ im

n
} ≥ i + 1,

because for anyk ∈ {0,1, . . . , i} one hasPSω(ω(lk+1)) ≤ km
n
≤ im

n
. Therefore,PS(ω) is anm/n-parking

function. �

Conjecture 3.16. The mapPS ∶ ω ↦ PSω is a bijection betweeñSm
n andPFm/n .

In the special casesm = kn ± 1, we prove thatPS is a bijection in the next Section.
It is convenient to extend the domains of the functionsPSω andSPω to all integers by using exactly the same

formula. Note that in this casePSω(α+n) = PSω(α). We have the following results, which should be considered
as steps towards Conjecture 3.16:

Proposition 3.17. Letω ∈ mS̃n and let1 ≤ i ≤ n, i < j.
(1) ω(i) < ω(i + 1) ⇐⇒ SPω(i) ≤ SPω(i + 1)
(2) (i, j) ∈ Inv(ω) Ô⇒ SPω(i) > SPω(j)

Proof. We first show that if(i, j) ∈ Inv(ω), thenω has a unique inversion(i, J) with

(3) j ≤ J, ω(j) ≡ ω(J) mod m, and0 < ω(i) − ω(J) <m.

Sinceω ∈ mS̃n, in the list ω(1), ω(2),⋯, we have thatω(j) occurs to the left ofω(j) + rm for all r ≥ 1.
Hence, we can pickr ≥ 0 such thatrm < ω(i) − ω(j) < (r + 1)m, i.e. 0 < ω(i) − (ω(j) + rm) < m, and set
J = ω−1(ω(j) + rm).

Now supposeω(i) < ω(i+1). Let(i, j) ∈ Inv(ω)with 0 < ω(i)−ω(j) <m. Then sinceω(i+1) > ω(i) > ω(j)
we also have(i + 1, j) ∈ Inv(ω). Observei + 1 < j as(i, i + 1) ∉ Inv(ω). We pick(i + 1, J) ∈ Inv(ω) as in (3)
above. The map(i, j)↦ (i + 1, J) is clearly an injection, yieldingSPω(i) ≤ SPω(i + 1).

For ease of exposition, we recall Remark 2.11 which lets us equate an inversion(i, j) with (i + tn, j + tn).
Next if i < j with ω(i) > ω(j), suppose we have(j, k) ∈ Inv(ω) with 0 < ω(j) − ω(k) < m. Then(i, k) ∈

Inv(ω) too. We can pickK ≥ k according to (3) yielding(i,K) ∈ Inv(ω) with 0 < ω(i) − ω(K) < m and
ω(k) ≡ ω(K) mod m. Again the map(j, k) ↦ (i,K) is an injection, yieldingSPω(j) ≤ SPω(i). Further
there is an extra inversion of the form(i, J) ∈ Inv(ω), showingSPω(i) > SPω(j). The casej = i + 1 gives the
converse of (1). �

Note that if(n,n+ 1) ∈ Inv(ω) then the above proposition impliesSPω(n) ≤ SPω(1), as we haveSPω(1) =
SPω(n + 1) by our convention. As a consequence of this, we have the following corollary.

Corollary 3.18. Let1 ≤ i, j ≤ n. SPω(i) = SPw(j) Ô⇒ ∣ω(i) − ω(j)∣ < n
Proof. Without loss of generalityi < j. By Proposition 3.17 item (2),ω(i) < ω(j). If alsoω(i)+n < ω(j) then as
j < i+n, (j, i+n) ∈ Inv(ω) so by the propositionSPω(j) > SPω(i+n) = SPω(i) which is a contradiction. �

Proposition 3.19. Letω ∈ mS̃n.

(1) If 0 < ω(i)− ω(i + 1) <m, then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

SPωsi(i) = SPω(i + 1),
SPωsi(i + 1) = SPω(i) − 1,
SPωsi(j) = SPω(j) for j /≡ i, i + 1 mod n
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(2) If m < ω(i)− ω(i + 1), then

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

SPωsi(i) = SPω(i + 1),
SPωsi(i + 1) = SPω(i),
SPωsi(j) = SPω(j) for j /≡ i, i + 1 mod n

Proof. Write u = wsi. Since0 < ω(i) − ω(i + 1), we haveInv(u) = si(Inv(ω)) ∖ {(i, i + 1)}. In other words,
(i, j) ∈ Inv(u) iff (i + 1, j) ∈ Inv(ω). Sinceu(i) − u(j) = w(i + 1) − w(j) this yieldsSPu(i) = SPω(i + 1)
Similarly, for k ≠ i, i + 1, (k, j) ∈ Inv(u) iff (k, j) ∈ Inv(ω), yieldingSPu(k) = SPω(k).

Finally (i+ 1, j) ∈ Inv(u) iff j ≠ i+ 1 and(i, j) ∈ Inv(ω). Againu(i+ 1)−u(j) = w(i)−w(j). Hence in the
caseω(i) − ω(i + 1) < m, so that(i, i + 1) ∈ Inv(ω) contributes toSPω(i), we seeSPω(i) = SPu(i + 1) + 1.
Whenm < ω(i) − ω(i + 1) this inversion does not contribute, soSPω(i) = SPu(i + 1). �

As a corollary to this proposition, we see thatSP is injective on{ω ∈ mS̃n ∣ (i, j) ∈ Inv(ω) Ô⇒ ω(i)−ω(j) <
m}. Another interpretation of Theorem 3.17 is thatSP not only respects descents but also respects (weakly)
increasing subsequences.

Example 3.20. Let (n,m) = (3,4). Consider these three affine permutationsy = [1,5,0], ω = ys2 = [1,0,5],
andωs1 = [0,1,5] ∈ 4S̃3. The corresponding parking functions areSPy = L120M,SPw = SPys2 = L102M (note
5 − 0 > 4 so their second and third values have swapped), andSPωs1 = L002M (note1 − 0 < 4).

Remark 3.21. The mapsPS andSP preserve a kind of cyclic symmetry, as follows. (Compare this to Proposition
3.7 for the mapA.) Let the shift operatorπ ∶ Z→ Z be defined by

π(i) = i + 1.
Clearlyπ(i + tn) = π(i) + tn, butπ ∉ S̃n as∑n

i=1 π(i) = n(n+3)
2

. (In other contexts,π lives in theextendedaffine
symmetric groupP ⋊ Sn ⫌ Q ⋊ Sn ≃ S̃n. It corresponds to the generator ofP /Q whereP andQ are the weight
and root lattices of typeA, respectively.) The conjugation map̃Sn → S̃n, ω ↦ πωπ−1 interacts nicely with the
mapsSP andPS.

In window notation, conjugation byπ corresponds to sliding the “window” one unit to the left, butthen renor-
malizing so the sum of the entries is stilln(n+1)

2
, i.e.πωπ−1 = [ω(0)+ 1, ω(1)+ 1,⋯, ω(n− 1)+ 1]; equivalently

πωπ−1(i) = ω(i + 1) + 1. It is clear thatInv(πωπ−1) = {(i + 1, j + 1) ∣ (i, j) ∈ Inv(ω)}, and so conjugation
by π preserves heights of inversions. In particular, it preserves both setsmS̃n andS̃m

n . It is also clear from the
definition ofSP that

SPπuπ−1(i + 1) = SPu(i) for u ∈ mS̃n and hence

PSπωπ−1(i + 1) = PSω(i) ω ∈ mS̃n.

Consider Example 3.10, for whichu = [4,−2,3,5] andSPu = L3011M. We getπuπ−1 = [2,5,−1,4] (for which
Inv(πuπ−1) = {(1,3), (2,3), (2,4), (2,7), (4,7)}) andSPπuπ−1 = L1301M.

3.3. Two statistics. Our work was partially motivated by some open questions posed by Armstrong in [2]. He
managed to describearea anddinv statistics on parking functions appearing in “Shuffle Conjecture” of [19] in
terms of the Shi arrangement.

We present two natural generalizations of these statisticsto the rational case. Both were introduced in a different
form in [20], but they can be best written in terms of mapsA andPS.

Definition 3.22. Letω ∈ S̃m
n be an affine permutation labeling an alcoveω−1(A0) ∈ Dm

n . We define:

(4) area(ω) ∶= (m − 1)(n − 1)
2

−∑Aω(i), dinv(ω) ∶= (m − 1)(n − 1)
2

−∑PSω(i).
Proposition 3.23. The statisticsarea(ω) can be computed as follows. Recall that∆ω ∶= {i ∈ Z ∶ ω(i) > 0}, then

area(ω) = ♯ ([min∆ω,+∞) ∖∆ω) .
Proof. Indeed, there are(m−1)(n−1)

2
boxes in the rectangleRm,n below the diagonal. The ones labeled by the

elements of the set([min∆ω,+∞) ∖∆ω) are in 1-to-1 correspondence with the boxes outside of the diagram of
A(ω), so their number equals(m−1)(n−1)

2
−∑Ai(ω) = area(ω). �

One can also check that the statisticarea agrees with the statisticsish−1 of [2].

Example 3.24. For the fundamental alcove,PS id(i) = 0, sodinv(id) = (m−1)(n−1)
2

. On the other hand,∆id =
{1,2,3, . . .}, so by Proposition 3.23area(id) = 0.
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Example 3.25.Consider the permutationωm = [m−c,2m−c . . . , nm−c] ∈ mS̃n. Here the constantc is uniquely

determined by the condition
n

∑
i=1

ωm(i) = n(n+1)
2

. In fact,c = (n+1)(m−1)
2

. Let us computeSPωm
= PSω−1m

.

Since the entries in the window notation forωm are increasing, i.e.ωm ∈ S̃n/Sn, if (k, t) ∈ Inv(ωm) this forces
t = i + jn for some1 ≤ i < k andj ≥ 1. Since it is an inversion, we havekm − c > im − c + jn. To contribute to
SPωm

(k) we must have

0 < (km − c) − (im − c + jn) <m ⇐⇒ km > im + jn > (k − 1)m
⇐⇒ (k − 1 − i)m < nj < (k − i)m
⇐⇒

(k − 1 − i)m
n

< j <
(k − i)m

n

HenceSPωm
(k) = ♯{j, i ∣ j ≥ 1,1 ≤ i < k, (k−1−i)mn

< j < (k−i)m
n
} Since we run over all1 ≤ i < k this is just

= ♯{j ∣ j ≥ 1, j < (k−1)m
n
} = ⌊m(k−1)

n
⌋. By Proposition 3.17,SPωm

is weakly increasing. The corresponding
diagram is the maximal diagram that fits under the diagonal inanm × n rectangle. The area of such a diagram
is (n−1)(m−1)

2
, thereforedinv(ω−1m ) = (m−1)(n−1)2

−∑PSω−1m
(i) = 0. One can also check thatA(ω−1m ) = 0, so

area(ω−1m ) = (m−1)(n−1)2
.

Definition 3.26. We define thecombinatorial Hilbert seriesas the bigraded generating function:

Hm/n(q, t) = ∑
ω∈S̃m

n

qarea(ω)tdinv(ω).

It is clear thatHm/n(1,1) =mn−1, since there aremn−1 permutations iñSm
n .

Conjecture 3.27. (cf. [20]) The combinatorial Hilbert series is symmetric inq andt:

Hm/n(q, t) =Hm/n(t, q).
This conjecture is a special case of “Rational Shuffle Conjecture” [16, Conjecture 6.8]. A more general con-

jecture also implies this identity

Hm/n(q, q−1) = q− (m−1)(n−1)2 (1 + q + . . . + qm−1)n−1.
Both conjectures are open for generalm andn.

Example 3.28. Forn = 5 andm = 2, we have (see Example 9.3 below for details):

H2/5(q, t) = 5 + 4(q + t) + (q2 + qt + t2),
and the above properties hold:

(1) H2/5(1,1) = 16 = 24,
(2) H2/5(q, t) =H2/5(t, q),
(3) H2/5(q, q−1) = q−2 + 4q−1 + 6 + 4q + q2 = q−2(1 + q)4.

4. THE CASESm = kn ± 1 AND THE EXTENDED SHI ARRANGEMENTS.

4.1. Extended Shi Arrangements and Pak-Stanley Labeling.Recall the set ofk-parking functionsPFk ∶=
PF(kn+1)/n . Recall the hyperplanesHk

ij = {x ∈ V ∣ xi − xj = k} and the affine braid arrangementB̃n = {Hk
ij ∣

1 ≤ i, j ≤ n, k ∈ Z}. Theextended Shi arrangement, ork-Shi arrangement [25, 29], is defined as a subarrangement
of the affine braid arrangement:

Definition 4.1. The hyperplane arrangement

Shkn ∶= {Hℓ
ij ∶ 1 ≤ i < j ≤ n, −k < ℓ ≤ k}

is called thek-Shi arrangement. The connected components of the complement toShkn are calledk-Shi regions.
The set ofk-Shi regions is denotedRegkn .

One can use the notations introduced in Section 2.2 to rewrite the definition of thek-Shi arrangement as follows:

Shk
n = {Hℓ

ij ∶ 1 ≤ i < j ≤ n, −k < ℓ ≤ k}
= {Hℓ

ij ∶ 1 ≤ i < j ≤ n, −k < ℓ < 0} ⊔ {Hℓ
ij ∶ 1 ≤ i < j ≤ n, 0 ≤ ℓ ≤ k}

= {H0

i,j−nℓ ∶ 1 ≤ i < j ≤ n, −k < ℓ < 0} ⊔ {H0

j,i+ℓn ∶ 1 ≤ i < j ≤ n, 0 ≤ ℓ ≤ k}
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FIGURE 5. Pak-Stanley labeling for1-Shi arrangement forn = 3.

= {H0

ij ∶ 1 ≤ i ≤ n, i < j < i + kn, j ≢ i mod n} .
In other words, thek-Shi arrangement consists of all hyperplanes of height lessthankn in the affine braid ar-
rangement. The hyperplaneHℓ

ij dividesV into two half-spaces. LetHℓ,≺
ij denote the half-space that containsA0

andHℓ,≻
ij denote the complementary half-space. Note thatHℓ

ij separatesω(A0) from A0 iff ω(A0) ⊆ H
ℓ,≻
ij iff

(i, j − ℓn) or (j, i + ℓn) ∈ Inv(ω−1) (when taking the conventioni, j ∈ {1, . . . , n}).
Definition 4.2. The Pak-Stanley labeling is the mapλ ∶ Regkn → PFk, R ↦ λR defined by the formula

λR(a) = ♯{Hℓ
ij ∈ Sh

k
n ∣ R ⊆Hℓ,≻

ij , ℓ > 0, i = a} + ♯{Hℓ
ij ∈ Sh

k
n ∣ R ⊆Hℓ,≻

ij , ℓ ≤ 0, j = a}.
In other words, one labels the fundamental alcoveA0 by the parking functionf = L0 . . . 0M, and then as one crosses
the hyperplaneHℓ

ij in the positive direction (i.e. getting further away fromA0), one adds1 to f(j) if ℓ ≤ 0 and
adds1 to f(i) if ℓ > 0.

Remark 4.3. One can rewrite this definition as follows:

λR(a) = ♯{H0

ij ∈ Sh
k
n ∣ R ⊆H0,≻

ij , a = i < j} = ♯{H0

aa+t ∣ R ⊆H0,≻
aa+t,0 < t < kn, t /≡ 0 mod n}.

We illustrate the Pak-Stanley labeling forn = 3, k = 1 (m = 4) in Figure 5.

Theorem 4.4([29]). The mapλ ∶ Regkn → PFk is a bijection.

4.2. Relation Between Sommers Regions and Extended Shi Arrangements form = kn±1. Consider the case
m = kn+1. One can show that each region of an extended Shi arrangement contains a unique minimal alcove (i.e.
an alcove with the least number of hyperplanesHk

ij separating it from the fundamental alcoveA0).

Theorem 4.5([11]). An alcoveω(A0) is the minimal alcove of ak-Shi region if and only ifω−1(A0) ⊂Dkn+1
n .

Example 4.6. We illustrate this theorem in Figure 6, where the minimal alcoves of the1-Shi region are matched
with the alcoves in the Sommers regionD4

3. On the left we have the minimal alcovesω(A0) labeled by the
m-stable permutationsω ∈ S̃m

n for m = 4, n = 3. On the right we have alcovesω−1(A0) that fit insideD4
3 ,

labeled by them-restricted permutationsω−1 ∈ mS̃n. Note that[−226] = [420]−1, [150] = [1 − 16]−1, and
[4 − 13] = [−253]−1.

Theorem 4.5 and Lemma 2.15 imply a bijectionalc ∶ S̃kn+1
n → Regkn .

Theorem 4.7. One hasλ ○ alc = PS in this case. In particular,PS is a bijection form = kn + 1.

Proof. As it was mentioned in Section 2.3, an affine permutationω has an inversion(i, i + h) if and only if
ω−1(A0) is separated fromA0 by the hyperplaneH0

i,i+h or, equivalently, if and only ifω−1(A0) ⊂ H0,≻
i,i+h. Given

a regionR, for any affine permutationω such thatω−1(A0) ⊂ R, the number of inversions of the form(a, a + h)
of heighth < kn is equal toλR(a).

If ω−1 ∈ S̃kn+1
n then the alcoveω−1(A0) is the minimal alcove in the regionR andalc(ω−1) = R. By definition,

PSω−1(a) is equal to the number of inversions(α,β) of ω−1, such thatβ−α < kn+1 andω−1(β) = a, which is the
same as the number of inversions(a, a+h) ofω, such thatω(a)−ω(a+h) < kn+1.Note thatω(a)−ω(a+h) cannot
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FIGURE 6. Minimal alcoves forSh1

3 and Sommers regionD4
3 .

be equal tokn, soPSω−1(a) is, in fact, equal to the number of inversions(a, a+h), such thatω(a)−ω(a+h) < kn.
To match it withλR(a), one has to prove the following equation for anya ∈ {1, . . . , n} and anyω :

(5) ♯{(a, a + h) ∈ Inv(ω) ∣ h < kn} = ♯{(a, a + h) ∈ Inv(ω) ∣ ω(a) − ω(a + h) < kn} .
Givenr ∈ {1, . . . , n − 1}, define

γa,ω(r) ∶= ♯ {(a, a + h) ∈ Inv(ω) ∣ h < kn,h ≡ rmodn}
and

γ′a,ω(r) ∶= ♯{(a, a + h) ∈ Inv(ω) ∣ ω(a)− ω(a + h) < kn,h ≡ rmodn} .
Let hr

max be the maximal number such that(a,hr
max) ∈ Inv(ω) andhr

max ≡ r modn. It is not hard to see that

γa,ω(r) = γ′a,ω(r) =min(k, ⌊hr
max

n
⌋) .

Indeed, the total number of inversions(a, a + h) such thath ≡ r modn equals⌊hr
max

n
⌋. If it is less than or equal

to k then all of them satisfy bothh < kn andω(a) − ω(a + h) < kn. In turn, if it is greater thank, then the
inversions(a, a+h) for h = r, r +n, . . . , r + (k − 1)n satisfy the conditionh < kn, while the inversions(a, a+h)
for h = hr

max, h
r
max − n, . . . , h

r
max − (k − 1)n satisfy the conditionω(a) − ω(a + h) < kn.

Finally, the sum of identitiesγa,ω(r) = γ′a,ω(r) for all r is equivalent to (5). �

Example 4.8. When one applies the mapPS to the affine permutations in the left part of Figure 6 one getsthe
Pak-Stanley labeling shown in Figure 5.

The casem = kn − 1 is treated similarly. The main difference is that instead ofthe set of allk-Shi regions

Regkn one should consider the set of boundedk-Shi regionŝRegkn. One can show that every boundedk-Shi region
contains exactly one maximal alcove.

Theorem 4.9([12]). An alcoveω(A0) is the maximal alcove of a boundedk-Shi region if and only ifω−1(A0) ⊂
Dkn−1

n .

As above, we use Lemma 2.15 and Theorem 4.9 to obtain the bijection âlc ∶ S̃kn−1
n → R̂egkn. We prove the

following theorem:

Theorem 4.10. The image of the subset̂Regkn ⊂ Regkn under the Pak-Stanley labeling is exactlyPF(kn−1)/n ⊂
PF(kn+1)/n . Furthermore, one getsλ ○ âlc = PS in this case. In particular,PS is a bijection form = kn − 1.

Proof. It is sufficient to prove the formulaλ ○ âlc = PS . Indeed, this would imply that the restriction of the

Pak-Stanley labeling to the subset̂Regkn ⊂ Regkn is an injective (and, therefore, bijective) map from̂Regkn to
PF(kn−1)/n .

If ω−1 ∈ S̃kn−1
n then the alcoveω−1(A0) is the maximal alcove of a bounded regionR and âlc(ω−1) = R.

Similarly to Theorem 4.7, we get thatPSω−1(a) is equal to the number of inversions(a, a + h) of ω such that
ω(a)−ω(a+h) < kn−1. Sinceω ∈ kn−1S̃n, one hasω(a)−ω(a+h) ≠ kn−1 for anyh > 0. Therefore,PSω−1(a)
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is equal to the number of inversions(a, a + h) in ω such thatω(a) − ω(a + h) < kn. In the proof of Theorem 4.7
we have shown that this number is equal toλR(a). �

5. MINIMAL LENGTH REPRESENTATIVES AND THEZETA MAP.

Definition 5.1. Let Modm,n be the set of subsets∆ ⊂ Z≥0, such that∆ +m ⊂ ∆, ∆ + n ⊂ ∆, andmin(∆) = 0.
A numbera is called ann-generatorof ∆, if a ∈ ∆ anda − n ∉ ∆. Every∆ ∈ Modm,n has exactlyn distinct
n-generators.

In [14, 15] such subsets were called0-normalized semimodules over the semigroup generated bym andn. We
will simply call themm,n-invariant subsets.

There is a natural mapR ∶ S̃m
n →Modm,n given byω ↦∆ω −min(∆ω) (here, as before,∆ω = {i ∈ Z ∶ ω(i) >

0}). LetΩm
n be the set ofm-stable minimal length right coset representatives ofSn/S̃n. In other words,

(6) Ωm
n ∶= {ω ∈ S̃m

n ∣ ω−1(1) < . . . < ω−1(n)}.
One can check that the restrictionR∣Ωm

n
∶ Ωm

n →Modm,n is a bijection. Indeed, the integersω−1(1), . . . , ω−1(n)
are then-generators of∆ω, and sinceω ∈ Ωm

n we haveω−1(1) < . . . < ω−1(n), so one can uniquely recoverω
from∆ω. Let R̂ ∶= R∣Ωm

n
∶ Ωm

n →Modm,n denote the restriction.
Recall thatYm,n is the set of Young diagrams that fit under diagonal in ann ×m rectangle andP ∶ PFm/n →

Ym,n is the natural map. In [14, 15] the first two named authors constructed two mapsD ∶ Modm,n → Ym,n and
G ∶Modm,n → Ym,n, proved thatD is a bijection, and related the two maps to the theory ofq, t-Catalan numbers
in the following way. In the casem = n + 1 one gets

cn(q, t) = ∑
∆∈Modn+1,n

qδ−∣D(∆)∣tδ−∣G(∆)∣,

whereδ = n(n−1)
2

andcn(q, t) is the Garsia-Haimanq, t-Catalan polynomial. It is known that these polynomi-
als are symmetriccn(q, t) = cn(t, q), although the proof is highly non-combinatorial and uses themachinery
of Hilbert schemes, developed by Haiman. Finding a combinatorial proof of the symmetry of theq, t-Catalan
polynomials remains an open problem.

The above consideration motivates the rational slope generalization of theq, t-Catalan numbers:

cm,n(q, t) = ∑
∆∈Modm,n

qδ−∣D(∆)∣tδ−∣G(∆)∣,

whereδ = (m−1)(n−1)
2

is the total number of boxes below the diagonal in ann ×m rectangle. The symmetry of
these polynomials remains an open problem beyond the classical casem = n + 1 and the casesmin(m,n) ≤ 4

(see [15] formin(m,n) ≤ 3 and [22] formin(m,n) = 4). It was also shown in [14] that the composition
G ○ D−1 ∶ Ym,n → Ym,n generalizes Haglund’s zeta map exchanging the pairs of statistics (area,dinv) and
(bounce,area) on Dyck paths. It was conjectured that the mapG, and therefore, the generalized Haglund’s zeta,
are also bijections. This would imply a weaker symmetry propertycm,n(q,1) = cm,n(1, q). In [15] the bijectivity
of G was proved form = kn ± 1. For more details on this work we refer the reader to [14, 15].

Let ⋆ denote the involution oñSn: ω⋆(x) = 1 − ω(1 − x).
Lemma 5.2. The map⋆ preserves the set̃Sm

n and the setΩm
n . The map⋆ ∶ (i, j)↦ (1− j,1− i) provides a height

preserving bijection from{(i, j) ∣ i < j, ω(i) > ω(j)} to {(i, j) ∣ i < j, ω⋆(i) > ω⋆(j)}.
Proof. Let us check thatω⋆ is an affine permutation:ω⋆(x + n) = 1 − ω(1 − x − n) = 1 − ω(1 − x) + n,

n

∑
i=1

ω⋆(i) = n − 0

∑
i=1−n

ω(i) = n − n

∑
i=1

(ω(i)− n) = n + n2 −
n(n + 1)

2
=
n(n + 1)

2
.

If ω(1) < . . . < ω(n) thenω(1 − n) < ⋯ < ω(0), soω⋆(1) < . . . < ω⋆(n). Let (i, j) be such thati < j and
ω(i) > ω(j). Then1 − j < 1 − i, and

ω⋆(1 − j) = 1 − ω(1 − (1 − j)) = 1 − ω(j) > 1 − ω(i) = ω⋆(1 − i).
Note also that⋆ squares to identity. Therefore, since⋆ is an involution,⋆ is a bijection between{(i, j) ∣ i <
j, ω(i) > ω(j)} and{(i, j) ∣ i < j, ω⋆(i) > ω⋆(j)}. Furthermore, since⋆ preserves height,⋆ preserves the set
S̃m
n . �

The following Theorem shows that our constructions are direct generalizations of those of [14, 15]:
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Theorem 5.3. One has the following identities:

(1) P ○ A○R̂−1 =D,

(2) P ○ PS ○ ⋆ ○R̂−1 = G.

Proof. The first statement follows from the definition ofA and Lemma 3.3. For the second statement, we need to
recall the definition of the mapG.

Given anm,n-invariant subset∆ ∈ Modm,n, let u1 < . . . < un be itsn-generators. The mapG was defined in
[14, 15] by the formula

G∆(α) = ♯ ([uα, uα +m] ∖∆) .
Given a minimal coset representativeω ∈ Ωm

n , we can consider anm,n-invariant subsetR(ω) = ∆ω −
min(∆ω) ∈ Modm,n. Its n-generators areuα = ω−1(α) − min(∆ω), and by (6) we haveu1 < . . . < un. For
everyx ∈ [uα, uα +m] ∖ R(ω), definex′ ∶= x +min(∆ω), then all suchx′ (and hencex) are defined by the
inequalities

ω−1(α) < x′ < ω−1(α) +m, ω(x′) ≤ 0.
Note that by (6) the inequalityω(x′) < 0 can be replaced byω(x′) < α. Indeed, we haveω−1(1) < ω−1(2) < . . . <
ω−1(n), and, therefore,ω(x′) ∉ {1, . . . , α − 1} for ω−1(α) < x′ < ω−1(α) +m. Therefore the set[uα, uα +m] ∖
R(ω) is in bijection with the set

{(i, j) ∣ i < j < i +m, ω(i) > ω(j), ω(i) = α}.
In turn, the map⋆ bijectively maps this set to the set

{(1 − j,1 − i) ∣ (1 − j) < 1 − i < (1 − j) +m, ω⋆(1 − j) > ω⋆(1 − i), ω⋆(1 − i) = 1 − ω(i) = 1 − α},
or, after a shift byn and a change of variables,

{(i, j) ∣ i < j < i +m, ω⋆(i) > ω⋆(j), ω⋆(j) = n + 1 − α}.
Therefore, according to the definition of the mapPS, we get

GR(ω)(α) = PSω⋆(n + 1 − α),
and thus

G(R(ω)) = P (PS(ω⋆)).
�

The involution⋆ could have been avoided in Theorem 5.3 by adjusting the definition of the mapPS . However,
in that case one would have to use⋆ to match the mapPS for m = kn + 1 with the Pak-Stanley labeling (see
Section 4).

The compositionPS ○A−1 ∶ PFm/n → PFm/n should be thought of as a rational slope parking function
generalization of the Haglund zeta mapζ. Note that its bijectivity remains conjectural beyond casesm = kn ± 1,
which follows immediately from Theorems 4.7 and 4.10.

6. RELATION TO DAHA REPRESENTATIONS

6.1. Finite-dimensional representations of DAHA. It turns out that the mapA is tightly related to the represen-
tation theory of double affine Hecke algebras (DAHA). This theory is quite elaborate and far beyond the scope of
this paper, so we refer the reader to Cherednik’s book [6] forall details. Here we just list the necessary facts about
finite-dimensional representations of DAHA.

Let Hn denote the DAHA of typeAn−1. It contains the finite Hecke algebra generated by the elements Ti,
1 ≤ i < n as well as two commutative subalgebrasXi/Xj, 1 ≤ i ≠ j ≤ n, andY ±11 , . . . , Y ±1n subject to commutation
relations betweenX ′s andY ′s that depend on two parametersq andt. (Alternatively, one can take generators
Ti, 0 ≤ i < n, π andXi/Xj , 1 ≤ i ≠ j ≤ n.) Hn admits a (degree0 Laurent)polynomial representation
V = C[Xi/Xj]1≤i≠j≤n , whereXi/Xj act as multiplication operators, andYi act as certain difference operators.
We can also obtainV by inducing a 1-dimensional representation of the subalgebra generated by theTi andY ±1i

up toHn. The productY1Y2⋯Yn (or equivalentlyπn) acts as a constant on this representation. This constant
agrees with the scalar by which the product acts on the initial 1-dimensional representation. We usually take
this constant to be1, or indeed impose the relationY1Y2⋯Yn = 1 in Hn. However, to match the combinatorics
developed in this paper, it is convenient to choose that scalar to beq

n+1
2 .

There exists a basis ofV consisting of nonsymmetric Macdonald polynomialsEσ(Xi) labeled by minimal
length right coset representativesσ ∈ Sn/S̃n such thatYi are diagonal in this basis:Yi(Eσ) = ai(σ)Eσ .
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The weightsai(σ) are directly related to the combinatorial content of this paper and can be described as
follows. Corresponding to the fundamental alcoveσ = id we haveEid = 1 and its weight equals to:

a(id) = (a1(id), . . . , an(id)) = q n+1
2n (t 1−n

2 , t
3−n
2 , . . . , t

n−1
2 ).

As we cross the walls (fromσA0 to σsiA0), the weights are transformed as follows:

(7) si(a1, . . . , an) =
⎧⎪⎪⎨⎪⎪⎩
(a1, . . . , ai+1, ai, . . . , an), if i ≠ 0
(an/q, a2, . . . , an−1, qan), if i = 0.

One can check that (7) defines an action of the affine symmetricgroup on the set of sequences of Laurent mono-
mials inq andt.

If the parametersq andt are connected by the relationqm = tn for coprimem andn, the polynomial repre-
sentationV becomes reducible, and admits a finite-dimensional quotient Lm/n of dimensionmn−1. The basis of
Lm/n is again given by the nonsymmetric Macdonald polynomialsEσ, but now the permutationσ should have
σA0 belong to the (dominant) region bounded by the hyperplanex1−xn =m. In other words, we can cross a wall
if and only if the ratio of the corresponding weights is not equal tot±1. (See [7, Theorem 6.5] for a discussion on
these finite-dimensional quotients. See [8, (1.17)] for theformula for the intertwiners that takeEσ to Eσsi . See
[9] for the nonsymmetric Macdonald evaluation formula thatdescribes theEσ in the radical of the polynomial
representation.)

6.2. From DAHA weights to Sommers region. For the finite-dimensional representationLm/n we haveqm =
tn, so t = qm/n. This means that every monomialqxty can be written asq

nx+my

n , so we can rewrite the DAHA
weights as

a(σ) = (a1, . . . , an) = (qb1(σ)/n, . . . , qbn(σ)/n).
It turns out that “evaluated weights”bi are tightly related to the labeling of the regionDm

n by affine permutations.
Let c = (m−1)(n+1)

2
. Consider the affine permutationωm = [m − c,2m − c, . . . , nm − c]. By Lemma 2.16,ωm

identifies the dilated fundamental alcove with the simplexDm
n . Recallω ∈ mS̃n ⇐⇒ ω−1m ω(A0) ⊆mD1

n =mA0.

Theorem 6.1. Under this identification, for everyω ∈ mS̃n one has:

b(ω−1m ω) = ω,
by which we mean forσ = ω−1m ω that(b1(σ), . . . , bn(σ)) = (ω(1), . . . , ω(n)).
Proof. In the weight picture we start from the fundamental alcove atσ = id, where we have weights

a(id) = q n+1
2n (t 1−n

2 , t
3−n
2 , . . . , t

n−1
2 ) = (q(m−c)/n, q(2m−c)/n, . . . , q(nm−c)/n),

b(id) = b(ω−1m ωm) = (m − c,2m − c, . . . , nm − c) = (ωm(1), . . . , ωm(n)).
By Lemma 2.16,A0 ⊆mD1

n corresponds to the alcoveωm(A0) ⊆Dm
n , which we label byωm = [m−c, . . . , nm−

c] ∈ mS̃n. Therefore the desired identity holds forσ = id and can be extended to anyσ with σA0 ⊆mA0 =mD1
n

(equivalentlyωmσ ∈ mS̃n) by rules (7). �

6.3. From DAHA weights to parking functions. Instead of direct evaluation of DAHA weights as powers of
q1/n, one can instead draw monomialsqxty on the(x, y)-plane. This point of view was used in much wider
generality in [30], where the weights were interpreted in terms of periodic skew standard Young tableaux. Here
we focus on finite-dimensional representations and relate this picture to parking function diagrams.

Let a = (a1, . . . , an) be a DAHA weight. We define a functionTa ∶ Z2
≥0 → Z≥0 labeling the square lattice

by the following rule. For everyi, let us presentai = (q n+1
2n t

−1−n
2 )qxityi and defineTa(xi, yi) = i. Under this

renormalization,{y1, . . . , yn} = {1, . . . , n}. Hence we obtainn squares labeled1, . . . , n in the rows1, . . . n in
some order. We can extend this labeling to the whole plane by the following two-periodic construction. First, one
can identifyqm with tn and writeTa(x +m,y − n) = Ta(x, y).

Secondly, recall that thebi that correspond toa can be naturally extended to an affine permutation using the
quasi-periodic conditionbi+n = bi + n. This means that one can defineai for all integeri by the ruleai+n = qai,
andTa(x + 1, y) = Ta(x, y) + n. Hence the fillings in the boxes ofTa increase across rows automatically; that
is,Ta is row-standard. The more interesting question is when isTa column standard, which in this context means
fillings increase up columns.
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FIGURE 7. DAHA weights forL4/3 above. When one evaluates att = q4/3, the weights become

(q u(1)
3 , q

u(2)
3 , q

u(3)
3 ) for the matching alcoveωmuA0 which is labeled byu ∈ 4S̃3 in Figure 3.

Note for the fundamental alcove,a(id) = q
2

3 ( 1
t
,1, t) = q

2

3 (q− 4

3 , q0, q
4

3 ) = (q− 2

3 , q
2

3 , q
6

3 ) and
u = [−2,2,6] = ωmid. Compare this to Figure 3, where the alcoveA0 in the left figure matches
the alcove labeled[−2,2,6] in right figure.

Lemma 6.2. The weighta appears in the finite-dimensional representationLm/n if and only ifTa is a standard
Young tableau (SYT), that is,Ta(x + 1, y) > Ta(x, y) andTa(x, y + 1) > Ta(x, y).
Proof. Indeed, in terms ofbi this means thatbi +m appears afterbi, which is precisely equivalent tom-stability.

�

Corollary 6.3. There is a natural bijection between the alcoves in the Sommers region and surjective maps
T ∶ Z2

≥0 → Z≥0 satisfying the following conditions:

(8) T (x + 1, y) = T (x, y)+ n, T (x+m,y − n) = T (x, y), T (x, y + 1) > T (x, y).
Lemma 6.4. There exists a unique up to shiftn×m rectangle such that all squares labeled by positive numbersare
located above the NW-SE diagonal. The corresponding parking function diagram coincides with the Anderson-
type labeling up to a central symmetry.

Proof. If (b1, . . . , bn) corresponds to the weighta, then its correspondingn-invariant subset has n-generatorsbi,
and contains all fillings in squares to the right of labeled ones, including the periodic shift by(m,−n). There
exists a unique line with slopem/n which is tangent to the resulting infinite set of squares, andthe tangency
points define then ×m rectangle. Now the statement follows from the definition of the mapA. �

Example 6.5. Consider the weight(a1, a2, a3) = q 2

3 ( t
q2
,
q

t
, q) = (q0, q 1

3 , q
5

3 ) for t = q4/3. We have(b1, b2, b3) =
(0,1,5) andω = [015]. The corresponding(3,4)-invariant subset is∆ω = ω(Z>0) = {0,1,3,4,5, . . .}, and the
parking function diagram is shown in Figure 8 on the right.

On the left side of Figure 8 is a piece ofTa, showing rows with1 ≤ y ≤ 4 and columns with−2 ≤ x ≤ 4.
Rewritinga = q

2

3 t−2(q−2t3, q1t1, q1t2), we see we put the filling 1 in square(−2,3), 2 in square(1,1), and 3
in square(1,2). The periodicity conditions fill in the rest of the squares ofTa. The unique NW-SE line has
been drawn, and the corresponding rectangle it determines is rotated by 180 to obtain a Young diagram below the
diagonal.
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q

t

1 4 7 10 13 16 19

−6 −3 0 3 6 9 12

−7 −4 −1 2 5 8 11

−11 −8 −5 −2 1 4 7

FIGURE 8. Periodic SYT on(x, y)-plane (left); parking function diagram (right)

To get to the weighta from the trivial weight, we need to applyω−1m ω = [−2,2,6]−1 ○ [0,1,5] = [−3,4,5].
Observe[−3,4,5] = [−2(3)+3,1(3)+1,1(3)+2]. From this we could also read off that the fillings 1,2,3 belong in
squares(−2,3), (1,1), (1,2) respectively. (We remind the reader of Figure 3, where the alcove labeled[−3,4,5]
in the left figure, matches the alcove labeled[0,1,5] in right figure.)

Note, if we had instead normalized in the more standard way sothatY1Y2Y3 = 1 and the fundamental alcove
had weighta′ = ( 1

t
,1, t), then we would have had a shift by2 = 3 2

3
yielding(b′1, b′2, b′3) = (−2,−1,3) = (0−2,1−

2,5 − 2) but still ω = [015] and we would drawTa′ as above.

7. INJECTIVITY OFPS FOR THE FINITE SYMMETRIC GROUP

In this Section we prove an analogue of Conjecture 3.16 for the finite groupSn.

Definition 7.1. Let Sm
n denote the intersectionSn ∩ S̃m

n . In other words,ω ∈ Sm
n if for all 1 ≤ x ≤ n −m the

inequalityω(x+m) > ω(x) holds and{1, . . . , n} = {ω(1), . . . , ω(n)}. We call such permutationsfinitem-stable.

Proposition 7.2. The number of finitem-stable permutations equals

♯Sm
n =

n!

∏m
i=1 ni!

, whereni =
⎧⎪⎪⎨⎪⎪⎩
⌊n−i

m
⌋ + 1 if i ≤ n,

0 if i > n.

Proof. The setX = {1, . . . , n} can be split intom disjoint subsets

Xi ∶= {x ∈X ∶ x ≡ imodm}
of cardinalityni. A permutationω is finitem-stable if and only if it increases on eachXi, hence it is uniquely
determined by an ordered partition

{1, . . . , n} = ω(X1) ⊔ . . . ⊔ ω(Xm).
�

Example 7.3. For n = 5,m = 3, X1 = {1,4},X2 = {2,5},X3 = {3}. Observeω ∈ Sm
n iff ω−1 occurs in the

shuffle14 ∪∪25 ∪∪3, which are precisely them-restricted permutations inS5.

Definition 7.4. Given a permutationω ∈ Sm
n , let us definePSω(α) as the number of inversions(x, y) of ω such

thatx < y < x +m, ω(x) > ω(y) = α (the height of such inversion is less thanm). Define

PSω ∶= (PSω(1), . . . ,PSω(n)).
In other words, this is just the restrictionPS ∣Sn

. Hence by Theorem 3.15 the integer sequences in the image
of PS arem/n-parking functions.

Observe that ifω ∈ Sn thenPSω(n) = 0.

Theorem 7.5. The mapPS from the setSm
n toPFm/n is injective.

We provide two proofs of this Theorem, as they are somewhat different and might both be useful for the future
attempts to proof Conjecture 3.16 in the affine case.
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First proof. Given a parking functionLPSω(1)⋯PSω(n)M in the image, we need to reconstructω or, equiva-
lently,ω−1 ∈ Sn. We will first reconstruct the numberx1 = ω−1(1), thenx2 = ω−1(2), and so on, all the way up
to xn = ω−1(n). Note thatω−1 = [x1, x2, . . . , xn] andPSω(i) = SPω−1(i) = ♯{j ∣ i < j ≤ n,0 < xi − xj < m}.
We have used that sinceω ∈ Sn, for all (i, j) ∈ Inv(ω), 1 ≤ i < j ≤ n. Also sinceω ∈ Sn, for all j ≥ 1 we have
ω(j) ≥ 1. For the first step, note thatx1 < m + 1, since otherwisex1 −m andx1 will form an inversion ofω of
heightm, asx1 −m ≥ 1 so it occurs to the right ofx1 in ω−1. For every1 ≤ y < x1, there is an inversion(y, x1) of
height less thanm and there are no other inversions of the form(−, x1), hencex1 = PSω(1)+1. On the next step
we recoverx2. Note that for everyy < x2, there is an inversion(y, x2), unlessy = x1. It follows thatx2 is either
equal tox1 +m or x2 < m + 1. It is not hard to see, that all these possible values ofx2 correspond to different
values ofPSω(2). Therefore, knowingPSω(2), one can recoverx2. Let us show that one can proceed in that
manner inductively all the way toxn.

Suppose that one has already reconstructedxi = ω−1(i) for all i < k. Define the set

Yk−1 = {x1 . . . , xk−1} ⊔ {l ∈ Z ∶ l < 1} = {y ∶ 1 ≤ y ≤ n,ω(y) < k} ⊔ {l ∈ Z ∶ l < 1}.
Let us use the notationI(y) ∶= (y−m,y]∩Z for anyy ∈ Z≤n. Consider the functionϕk(y) ∶= ♯ (I(y) ∖ Yk−1)−1
defined on the domainy ∈ Z≤n ∖ Yk−1. GivenPSω(k) = ϕk(xk), we need to reconstructxk. Let us prove that
the functionϕk(y) is non-decreasing. Indeed, lety > y′ andy, y′ ∈ Z≤n ∖ Yk−1. Let z ∈ I(y) = (y −m,y] ∩ Z
andz′ ∈ I(y′) = (y′ −m,y′] ∩ Z be such thatz − z′ ≡ 0 modm. It follows that if z ∈ Yk−1, then alsoz′ ∈ Yk−1.

Otherwise, ifz′ ∉ Yk−1 then1 ≤ z′ andω(z′) ≥ k. Furthery > y′ implies z > z′ ≥ 1 andz ∈ Yk−1 gives
ω(z) < k ≤ ω(z′). Therefore,(z′, z) is an inversion ofω of height divisible bym, which implies thatω is not
m-stable. Contradiction.

We conclude, that

ϕk(y) = ♯ (I(y) ∖ Yk−1) − 1 ≥ ♯ (I(y′) ∖ Yk−1) − 1 = ϕk(y′).
Finally, we remark thatxk ∉ Yk−1 but xk − m ∈ Yk−1, since otherwisexk − m ≥ 1 andω(xk −m) > k, and
that produces an inversion of heightm. Therefore, one check there is a strict inequalityϕk(y) < ϕk(xk) for any
y < xk with y ∈ Z≤n ∖Yk−1. Thus,xk =min{y ∈ Z∖Yk−1∣ϕk(y) = PSω(k)}. In particular, this set is non-empty.
We illustrate this proof on an example in Figure 9. �

Second proof.Define the functiong(α, i) by the following formula:

g(α, i) = ♯{j ∈ (i −m, i] ∩ {1, . . . , n} ∶ ω(j) > α}.
By definition ofPSω, one immediately gets

g(ω(i), i) = PSω(ω(i)).
Lemma 7.6. The functiong(α, i) is non-decreasing ini for any fixedα.

Proof. Indeed, suppose thatg(α, i) < g(α, i−1). The interval(i−m, i] is obtained from the interval(i−1−m, i−1]
by droppingi−m and addingi. Therefore, one should haveω(i−m) > α andω(i) ≤ α to getg(α, i) < g(α, i−1).
But that impliesω(i −m) > ω(i), producing an inversion of heightm. Contradiction. �

We will need the following corollary:

Corollary 7.7. For any i ∈ {1, . . . , n}, ω(i) is the minimal integerα, such thatα ≠ ω(j) for any j < i, and
PSω(α) = ♯{j ∈ (i −m, i) ∩ {1, . . . , n} ∶ ω(j) > α}.
Proof. Fix i. Letα satisfy the above conditions. Notice such anα must exist sinceω(i) satisfies these conditions
as

PSω(ω(i)) = g(ω(i), i) = ♯{j ∈ (i −m, i) ∶ ω(j) > ω(i)} .
By minimality, α ≤ ω(i). If α ≠ ω(i) then we must haveα < ω(i), yielding i ∈ {j ∈ (i −m, i] ∩ {1, . . . , n} ∶
ω(j) > α}. Howeveri ∉ {j ∈ (i −m, i) ∩ {1, . . . , n} ∶ ω(j) > α} whose cardinality isPSω(α) by assumption.
Henceg(α, i) = PSω(α)+1. If it were the case thatα = ω(k) for somek > i, then sinceg(α,−) is non-decreasing,
we getPSw(α) = PSw(w(k)) = g(w(k), k) = g(α,k) ≥ g(α, i) > PSω(α). Contradiction. On the other hand,
α was chosen soα ≠ ω(j) for anyj < i. Hence it must be thatα = ω(i). �

Now we can complete the proof of Theorem 7.5 and reconstructω starting fromω(1), thenω(2), and so
on, using Corollary 7.7. Indeed, if we already reconstructed ω(1), ω(2), . . . , ω(i − 1), then we can compute
♯{j ∈ (i −m, i) ∩ {1, . . . , n} ∶ ω(j) > α} for all α ∈ {1, . . . , n}. Thenω(i) is the smallest numberα ∈ {1, . . . , n}
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k xi, i < k ϕk(y)
1 - - - - - - - 0 1 2 2 2 2 2
2 1 - - - - - - - 0 1 2 2 2 2
3 1 2 - - - - - - - 0 1 2 2 2
4 1 2 - 3 - - - - - 0 - 1 1 2
5 1 2 4 3 - - - - - - - 0 1 2
6 1 2 4 3 - - 5 - - - - 0 1 -
7 1 2 4 3 - 6 5 - - - - 0 - -

1 2 4 3 7 6 5 - - - - - - -

FIGURE 9. Suppose thatn = 7, m = 3, andPSω = L0010210M. Let us reconstructω−1 using
the first proof of Theorem 7.5. We record on every step the numbers that we have already
reconstructed and the values of the functionϕk for all other numbers.

k ω(i), i < k PSω(α) − ♯{j ∈ {k −m + 1, . . . , k − 1} ∶ ω(j) > α}
1 - - - - - - - 0 0 1 0 2 1 0
2 1 - - - - - - - 0 1 0 2 1 0
3 1 2 - - - - - - - 1 0 2 1 0
4 1 2 4 - - - - - - 0 - 2 1 0
5 1 2 4 3 - - - - - - - 2 1 0
6 1 2 4 3 7 - - - - - - 1 0 -
7 1 2 4 3 7 6 - - - - - 0 - -

1 2 4 3 7 6 5 - - - - - - -

FIGURE 10. As in Figure 9,n = 7, m = 3, andPSω = L0010210M. This time we reconstruct
ω using the second proof of Theorem 7.5. We record on every stepthe numbers that we have
already reconstructed and the differencePSω(α)− ♯{j ∈ {k−m+ 1, . . . , k − 1} ∶ ω(j) > α} for
all α ∈ {1, . . . , n} ∖ {ω(1), ω(2), . . . , ω(k − 1)}, so that on each step we choose the position of
the leftmost 0 in the second column.

such thatα ≠ ω(j) for j < i, andPSω(α) = ♯{j ∈ (i −m, i) ∩ {1, . . . , n} ∶ ω(j) > α}. We illustrate this proof on
example on Figure 10.

�

We do not know how to describe the imagePS(Sm
n ) for generalm. As an example, let us consider the case

m = 2 for which we do have a complete description. Let us recall that S2
n is the set of finite permutationsω of n

elements with no inversions of height2, that is,ω(i + 2) > ω(i) for all x. We define the mapinv(2) from the set
S2
n to the set of sequences of 0’s and 1’s as

inv(2)ω (α) ∶= χ (ω(ω−1(α) − 1) > α) =
⎧⎪⎪⎨⎪⎪⎩
1 if ω(ω−1(α) − 1) > α
0 else.

Lemma 7.8. The image ofinv2 consists of alln-element sequencesf of 0’s and 1’s, such that for everyα ∈
{1, . . . , n} at least half of the subsequence(fα, . . . fn) are0’s. The image ofinv2 agrees with that ofPS ∣S2

n
.

Proof. Let ω be a permutation inS2
n and letf = inv(2)(ω). For everyα such thatfα = 1 one can findβ =

ω(ω−1(α) − 1) > α such thatfβ = 0 (otherwiseω would have an inversion of height2). In other words, if we
considerω−1 = [x1, . . . , xn], f(α) = 1 iff xα = i andi − 1 occurs to the right, i.e.i − 1 = xβ with β > α. Which
occurs iffPSω(α) = 1. And in this casei − 2 cannot be to the right ofi − 1 as that would place it to the right ofi,
i.e. f(β) = PSω(β) = 0. Note that the correspondenceα ↦ β = ω(ω−1(α) − 1) from 1’s to 0’s in the sequence
f is injective and increasing. Therefore, for everyα ∈ {1, . . . , n} at least half of the subsequence(fα, . . . fn) are
0’s.

Since we know thatinv(2) is injective, the lemma now follows from the comparison of the cardinalities of the
two sets. �

The sequences appearing in Lemma 7.8 have a clear combinatorial meaning. Let us read the sequences

backwards and replace0’s with a vector(1,1) and1’s with a vector(1,−1). We get a lattice path inZ2 which
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never goes below the horizontal axis. Such a path may be called a Dyck path with open right end, and Lemma 7.8
establishes a bijection between the set of such paths of lengthn and the set of finite2-stable permutations.

7.1. Algorithm to construct SP−1 in the affine case.Here we present a conjectural algorithm that invertsSP .
While we have not yet shown the algorithm terminates, which in this case means it eventually becomesn-periodic,
we have checked it on several examples.

Givenf ∈ PFm/n, extendf to N by f(i + tn) = f(i). Construct an injective functionU ∶ N → N as follows.
Informally, we will think ofU as the bottom row in the following table.

i 1 2 ⋯
f(i) f(1) f(2) ⋯
U(i) U(1) U(2) ⋯

SinceU is manifestly injective, it will make sense to talk aboutU−1.
We will insert the numbersα ∈ N into the table as follows.

(1) Placeα = 1 under the leftmost0. In other words, leti = min{j ∈ N∣f(j) = 0} and then setU(i) = 1. As
there always exists some1 ≤ j ≤ n such thatf(j) = 0, this is always possible.

(2) Assume{1,2, . . . , α−1} have already been placed. Placeα in the leftmost empty positioni (i.e.U(i) = α,
with i ∉ {U−1(β)∣1 ≤ β < α} for i minimal) such that these two conditions hold.
(I) α is to the right ofα − tm for 1 ≤ t < α/m, t ∈ N. More precisely,i > U−1(α − tm).

(II) If U(i) = α, thenf(i) = ♯{β∣β ∈ (α −m,α), U−1(β) > i}.
In other words, we buildU so thatf(i) = ♯{j∣j > i,0 < U(i) − U(j) < m} counts the number ofm-
restricted inversions. Note that placingα is always possible, since a valid (non-minimal) position for α is
under a0 of f such that it and all spots to the right of it are as yet unoccupied.

Conjecture 7.9. For theU constructed above,∃N such that for alli ≥N , t ∈ N
(1) U(i + tn) = U(i) + tn, so in particular
(2) U(N + j) for 1 ≤ j ≤ n have all been assigned values

GivenU constructed fromf ∈ PFm/n as in the algorithm and satisfying the conditions of the conjecture, we
constructω ∈ mS̃n as follows: Pickt so1 + tn ≥ N . By the periodicity ofU and thatU has no “gaps” afterN ,
{U(i + tn) mod n∣1 ≤ i ≤ n} = {1,2, . . . , n}. Henceb ∶= ∑n

i=1 U(i + tn) ≡ n(n+1)
2

mod n. Let k be such that

b − n(n+1)
2
= kn. Now set

ω(i) = U(i + tn) − k.
This forces∑n

i=1 ω(i) = n(n+1)
2

, and so we seeω ∈ S̃n. By construction, (I) and (II) imply w ∈ mS̃n and
SPω = f .

We illustrate the algorithm to constructU andω on the following example.

Example 7.10. Let n = 5,m = 3. Let f = L11002M ∈ PF3/5 .

Refer to Figure 11 for a demonstration of howU is constructed. Note thatU(7) ≠ 8 since that would place8
before5, violating being3-restricted.

In the above we can in fact takeN = 5. Observe{U(6), U(7), U(8), U(9), U(10)} = {6,9,5,8,12} yielding
b = 40 andk = 5. Hence we setω = [1,4,0,3,7]. Now one can easily verifyω ∈ 3S̃5 andSPω = L11002M.

In practice, we have foundU to be surjective as well; in other words there are no “gaps” even beforeN . Further,
whenf = SPu for some finite permutationu ∈ Sn, we can takeN = 1.

8. RELATION TO SPRINGER THEORY

8.1. Springer fibers for the symmetric group. LetV be a finite-dimensional vector space and letN be a nilpo-
tent transformation ofV . LetFl(V ) denote the space of complete flags inV . A classical object in the representa-
tion theory is the Springer fiber ([28, 26]) defined as

XN ∶= {F = {V = V1 ⊃ V2 ⊃ . . . ⊃ Vn} ∈ Fl(V ) ∶ N(Vi) ⊂ Vi}.
It is known thatXN admits an affine paving with combinatorics completely determined by the conjugacy class of
N (see e.g. [26] and references therein).



24 EUGENE GORSKY, MIKHAIL MAZIN, AND MONICA VAZIRANI

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 ⋯
f(i) 1 1 0 0 2 1 1 0 0 2 1 1 0 0 2 1 1 0 0 2 ⋯
U(i)

. . 1

2 . 1

2 3 1

2 3 1 4

2 3 1 4 . . . 5

2 3 1 4 . 6 . 5

2 3 1 4 7 6 . 5

2 3 1 4 7 6 . 5 8

2 3 1 4 7 6 9 5 8 . . . 10

2 3 1 4 7 6 9 5 8 . 11 . 10

2 3 1 4 7 6 9 5 8 12 11 . 10

2 3 1 4 7 6 9 5 8 12 11 . 10 13

2 3 1 4 7 6 9 5 8 12 11 14 10 13

2 3 1 4 7 6 9 5 8 12 11 14 10 13 . . 15

2 3 1 4 7 6 9 5 8 12 11 14 10 13 . 16 15

2 3 1 4 7 6 9 5 8 12 11 14 10 13 17 16 15 ⋯

FIGURE 11. Algorithm to constructU from f = L11002M ∈ PF3/5 .

We will be interested in a particular case of this construction. Let us fix a basis(e1, . . . , en) in the spaceV ,
consider the operator of shift bym:

N(ei) ∶=
⎧⎪⎪⎨⎪⎪⎩
ei+m, i +m ≤ n
0, otherwise

The following theorem describes the structure of the affine cells in the varietyXN .

Theorem 8.1. The varietyXN admits an affine paving, where the cellsΣω are parametrized by the finitem-
restricted permutationsω ∈ Sm

n . The dimension ofΣω is given by the number of inversions inω−1 of height less
thanm.

Proof. The cells are essentially given by the intersections of Schubert cells inFl(V ) with the subvarietyXN . For
the sake of completeness, let us recall their construction.Given a permutationω ∈ Sn, we can define a stratumΣω

in Fl(V ) consisting of the following flags:

F = {V1 ⊃ V2 ⊃ . . . ⊃ Vn}, Vi = span{vω(i), . . . , vω(n)},
where

vα = eα + ∑
β>α

λα
βeβ .

Note that the position ofvα in the basis equalsω−1(α). After a triangular change of variables, we can assume that
λα
β = 0 for β > α with ω−1(β) > ω−1(α). Therefore one can write

(9) vα = eα + ∑
β>α,ω−1(β)<ω−1(α)

λα
βeβ = eα + ∑

(α,β)∈Inv(ω−1)

λα
βeβ.

The parametersλα
β are uniquely defined by the flagF. They serve as coordinates on the affine spaceΣω, whose

dimension is equal to the length ofω, i.e. = ♯ Inv(ω) = ♯ Inv(ω−1) .
Let us study the intersectionΣN

ω ∶= Σω ∩XN . SinceNvα starts witheα+m, the vectorvα+m should go after
vα in the basis, so one needsω−1(α +m) > ω−1(α). ThereforeΣN

ω is non-empty if and only ifω−1 is m-stable.
A flagF isN -invariant, ifN(vα) belongs tospan{vβ ∶ ω−1(β) > ω−1(α)} for all α. If

β > α +m andω−1(β) > ω−1(α),
then the coefficient invα+m −N(vα) at eβ can be eliminated by subtracting an appropriate multiple ofvβ . Once
all these coefficients are eliminated, the remaining coefficients invα+m −N(vα), labeled byβ > α +m such that
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ω−1(β) < ω−1(α) will vanish automatically. ThereforeΣN
ω is cut out inΣω by the equations:

(10) λα+m
β = λα

β−m + φ(λ) if β > α +m,ω−1(β) < ω−1(α),
whereφ(λ) are certain explicit polynomials inλµ

ν with ν − µ < β − α −m, with no linear terms.
It is clear that such equations are labeled by the inversions(α,β) in ω−1 of height bigger thanm. Note also

that the linear parts of these equations are linearly independent. Therefore the number of free parameters onΣN
ω

equals to the number of inversions ofω−1 of height less thanm. �

Example 8.2. Consider a 2-stable permutationω = [2,1,4,3] = ω−1. The basis (9) has the form:

vω(1) = e2, vω(2) = e1 + λ1

2e2, v
ω(3) = e4, vω(4) = e3 + λ3

4e4.

There are two free parameters, sodimΣN
ω = 2. Note that althoughλ3

4 ≠ λ
1
2,

N(vω(2)) = e3 + λ1

2e4 ∈ span{vω(3), vω(4)}.
Example 8.3. Consider a3-stable permutationω−1 = [1,5,3,2,6,4,7], soω = [1,4,3,6,2,5,7] is 3-restricted.
The basis (9) has a form:

vω(1) = e1, vω(2) = e4, vω(3) = e3 + λ3

4e4, v
ω(4) = e6, vω(5) = e2 + λ2

3e3 + λ
2

4e4 + λ
2

6e6,

vω(6) = e5 + λ5

6e6, v
ω(7) = e7.

SinceN(vω(5)) − vω(6) = (λ2
3 − λ

5
6)e6 + λ2

4e7 ∈ V5, and

V5 = span{vω(5), vω(6), vω(7)} = span{e2 + λ2

3e3 + λ
2

4e4 + λ
2

6e6, e5 + λ
5

6e6, e7},
the coefficient ofe6 must vanish and so we get the relationλ2

3 = λ
5
6. ThereforedimΣN

ω = 4.

8.2. Springer fibers for the affine symmetric group. We recall the basic definitions of the typeA affine Springer
fibres, and refer the reader e. g. to [13, 21, 24] for more details.

Let us choose an indeterminateε and consider the fieldK = C((ε)) of Laurent power series and the ring
O = C[[ε]] of power series inε. LetV = Cn((ε)) be aK-vector space of dimensionn.

Definition 8.4. Theaffine GrassmannianGn for the groupGLn is the moduli space ofO-submodulesM ⊂ V

such that the following three conditions are satisfied:

(a) M isO-invariant.
(b) There existsN such thatε−NC

n[[ε]] ⊃M ⊃ εNC
n[[ε]].

(c) LetN be an integer satisfying the above condition. Then the following normalization condition is satis-
fied:

dimC ε
−N

C
n[[ε]]/M = dimCM/εNC

n[[ε]].
Theaffine complete flag varietyFn for the groupGLn is the moduli space of collections{M0 ⊃ . . . ⊃ Mn},

where eachMi satisfies (a) and (b),dimCMi/Mi+1 = 1, Mn = εM0, andM0 ∈ Gn, i.e. M0 also satisfies the
normalization condition (c).

Definition 8.5. Let T be an endomorphism ofV . It is callednil-elliptic if limk→∞ T k = 0 and the characteristic
polynomial ofT is irreducible overK.

Given a nil-elliptic operatorT , one can extend its action toGn and toFn and define theaffine Springer fibers
as the corresponding fixed point sets.

Remark 8.6. The conditionlimk→∞ T k = 0 means that for anyN ∈ N there existsk ∈ N such that

T k(Cn[[ε]]) ⊂ εNC
n[[ε]].

In [24] Lusztig and Smelt studied the structure of the affine Springer fibers for a particular choice ofT . Given
aC-basis{e1, . . . , en} in C

n, one can consider it as aK-basis ofV = Cn((ε)). Consider the operatorN defined
by the equationsN(ei) = ei+1, N(en) = εe1. The following theorem is the main result of [24].

Theorem 8.7. ([24]) Consider the nil-elliptic operatorT ∶= Nm, wherem is coprime ton. Then the correspond-
ing affine Springer fiberFm/n ⊂ Fn admits an affine paving bymn−1 affine cells.

It turns out that the affine paving of this affine Springer fiberis tightly related to the combinatorics of the
simplexDm

n . This was implicitly stated in [17, 20, 24], but we would liketo make this correspondence precise
and explicit.
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Theorem 8.8. There is a natural bijection between the affine cells inFm/n and the affine permutations inmS̃n.
The dimension of the cellΣω labeled by the affine permutationω is equal to∑n

i=1 SPω(i).
Proof. Let us introduce an auxiliary variablez = ε1/n. We can identify the vector spaceV = C

n((ε)) with the
spacespanC{1, z, . . . , zn−1}((zn)) ≃ C((z)) of Laurent power series inz by sending the basis{e1, . . . , en} to
{1, z, . . . , zn−1}. Note that under this identification,Cn[[ε]] is mapped toC[[z]]. By construction,N coincides
with the multiplication operator byz and henceT = Nm coincides with the multiplication operator byzm.
ThereforeFm/n consists of flags{M0 ⊃ . . . ⊃ Mn} of C[[zn, zm]]-modules, such thatdimCMi/Mi+1 = 1,
Mn = znM0 andM0 ∈ Gn. Let us extend the notationMi to arbitraryi ∈ Z by settingMi+kn ∶= zknMi. As a
result, we get an infinite flag{. . . ⊃M0 ⊃ . . . ⊃Mn ⊃ . . .} of C[[zn, zm]]-modules satisfying the same conditions
as above andMi+n = znMi.

For f(z) ∈ V = C((z)), let Ord(f) denote the order off(z) in z, i.e. the smallest degree ofz, such that the
corresponding coefficient inf(z) does not vanish. Given a subsetM ⊂ V , define

Ord(M) = {Ord(f) ∶ f ∈M,f ≠ 0}.
We will need the following lemma, whose proof is standard andleft to the reader:

Lemma 8.9. LetL ⊂ M ⊂ C((z)) be twoC[[zm, zn]]-submodules inz−NC[[z]] for some largeN ∈ N. Then
♯ (Ord(M)∖Ord(L)) = dimCM/L.

Given a flag{. . . ⊃ M0 ⊃ . . . ⊃ Mn ⊃ . . .} as above, setOrd(Mi) ∖ Ord(Mi+1) = {ω(i)}. Note that one
automatically getsOrd(Mi) = {ω(i), ω(i+ 1), . . .}, because⋂

i
Ord(Mi) = ∅. Recall the notation

Inv(ω) ∶= {(i, j) ∈ N ×N ∣ 1 ≤ i ≤ n, i < j,ω(i) > ω(j)}
and

Inv(ω) ∶= {(i, j) ∈ N ×N ∣ i < j,ω(i) > ω(j)}
for the inversion sets ofω. For eachi there exists a uniquefi(z) ∈Mi such that

(11) fi = zω(i) + ∑
(j,i)∈Inv(ω)

λ
ω(i)

ω(j)
zω(j).

Indeed, take any functionf ∈ Mi such thatOrd(f) = {ω(i)} and use functions fromMi+1 to eliminate coef-
ficients atzω(j) for j > i andω(j) > ω(i). The resulting function is unique up to a scalar, because otherwise
dimCMi/Mi+1 would be at least2. It follows thatfi+n = znfi.

We claim thatω is an affine permutation and, moreover,ω ∈ mS̃n. Indeed, sincefi+n = znfi we getω(i+n) =
ω(i) + n, and sincezmfi ∈ Mi we get thatω(i) + m ∈ {ω(i), ω(i + 1), . . .}, and, therefore, for anyj < i,

ω(j) − ω(i) ≠ m. Finally, we need to check the normalization condition
n

∑
i=1

ω(i) = n(n+1)
2

, which follows form

the normalization condition onM0 ∈ Gn. Indeed, it is not hard to see that for allL ∈ Gn the sum of elements of
Ord(L)∖Ord(tnL) should be the same. In particular, forL = C[[z]] we haveOrd(C[[z]])∖Ord(znC[[z]]) =
{0,1, . . . , n − 1}, and their sum isn(n−1)

2
. Therefore, sinceOrd(M0)∖Ord(znM0) = {ω(0), . . . , ω(n− 1)}, we

get
n−1

∑
i−0

ω(i) = n(n−1)
2

, which equivalent to the required condition.

The above gives us a mapν ∶ Fm/n → mS̃n. Let us prove that the fibersΣω ∶= ν−1(ω) of this map are affine
cells and compute their dimensions. This is very similar to the computation in the finite case (see Theorem 8.1).
Let us setfω(i) ∶= fi. The expansions (11) can be rewritten as

fα = zα + ∑
(α,β)∈Inv(ω−1)

λα
βz

β.

Sincefi+n = znfi, one getsλα+n
β+n = λα

β . Let us also extend the notation by settingλα
β = 0 whenever(α,β) ∉

Inv(ω−1), so that one can write
fα = zα + ∑

β>α

λα
βz

β.

Let us say that the coefficientλα
β is of heightβ − α. As before, letα = ω(i). The conditionzmfα ∈ Mi implies

the following relations on the coefficients. The function

zmfα − fα+m = ∑
β>α

λα
βz

β+m − ∑
β>α+m

λα+m
β zβ = ∑

β>α+m

(λα
β−m − λ

α+m
β )zβ
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should belong toMi. Takeβ > α +m and letj = ω−1(β). If j > i, then the term of degreeβ can be eliminated
by subtractingfβ = fj ∈ Mi with an appropriate coefficient. Ifj < i, thenω−1(β −m) < ω−1(β) < ω−1(α) <
ω−1(α+m). Hence(α,β−m) ∈ Inv(ω−1) and(α+m,β) ∈ Inv(ω−1), so the coefficientsλα

β−m andλα+m
β are both

not forced to be zero, i.e. they are parameters onΣω. The term(λα
β−m − λ

α+m
β )zβ has to vanish automatically

after we eliminated all lower order terms. As we eliminate terms of degreeγ such thatα + m < γ < β, the
coefficient atzβ changes, but the added terms can only depend on coefficients of smaller height. More precisely,
all additional terms are non-linear, and the total height ofeach monomial is alwaysβ − α −m. In the end, we get
thatλα

β−m − λ
α+m
β should be equal to zero modulo the coefficients of smaller height.

This means that for each(α,β) ∈ Inv(ω−1) of heightβ −α >m there is an equation that allows one to express
λα
β−m in terms ofλα+m

β and higher order terms in coefficients with lower height. A priori, the linear parts of

these equations can be dependent if for all0 ≤ q ≤ n one has(α + qm,β + qm) ∈ Inv(ω−1). However, sincem
andn are relatively prime, this would mean thatω−1(γ) > ω−1(γ + β − α) for all γ ∈ Z, which is impossible.
Therefore, one can resolve the relations on the coefficientswith respect toλα

β such that(α,β) ∈ Inv(ω−1) and

(α,β + m) ∈ Inv(ω−1). So, the coordinates onΣω correspond to the inversions(α,β) ∈ Inv(ω−1), such that
(α,β +m) ∉ Inv(ω−1). Sinceλα

β = λα+n
β+n, one should count inversions inInv(ω−1) only. It is not hard to see

that such inversions are in bijection with inversions of height less thanm. Indeed, the required map is(α,β) ↦
(α,β − km), wherek is the maximal integer such thatβ − km > α.

Alternatively, one can also notice that the relations are inbijection with inversions of height greater thanm.

Indeed, the relationλα
β ≡ λ

α+m
β+m (modulo lower height terms) corresponds to the inversion(α,β +m) ∈ Inv(ω−1)

of height greater thanm. Therefore, the dimension ofΣω is the total number of inversions minus the number of
inversion of height greater thanm. Since there are no inversions of heightm, the dimension is equal to the number
of inversions of height less thanm. Since∑n

i=1PSω−1(i) is exactly the total number of inversions of height less
thanm, we conclude that

dim(Σω) =
n

∑
i=1

SPω(i) =
n

∑
i=1

PSω−1(i) = (m − 1)(n − 1)
2

− dinv(ω−1).
For a more abstract proof see e.g. [13] and [20, Theorem 2.7, eq. 4.5]. �

Remark 8.10. Similar reasoning shows that the Grassmannian version of the affine Springer fiberGm/n ⊂ Gn
parametrizes appropriately normalizedC[[zn, zm]]-submodules inC((z)). This affine Springer fiber was studied
e.g. in [14, 15] under the name of Jacobi factor of the plane curve singularity{xm = yn}. The cells in it are
parametrized by the subsets inZ≥0 which are invariant under addition ofm andn, and can be matched to the
lattice points inDm

n . Note the lattice points in turn correspond to the minimal length left coset representatives
mS̃n ∩ S̃n/Sn.

Corollary 8.11. If the mapPS is a bijection then the Poincaré polynomial ofFm/n is given by the following
formula:

(12)
∞

∑
k=0

tk dimHk (Fm/n) = ∑
f∈PFm/n

t2∑i f(i).

Proof. Since the varietyFm/n can be paved by the even-dimensional cells, it has no odd cohomology and(2k)-th
Betti number is equal to the number of cells of complex dimension k. Therefore by Theorem 8.8:

∑
k

tk dimHk (Fm/n) = ∑
ω∈mS̃n

t2dimΣω = ∑
ω∈S̃m

n

t2∑iPSω(i) = ∑
f∈PFm/n

t2∑i f(i).

�

Equation (12) was conjectured in [24, Sec. 10] for all coprimem andn.

9. SOME EXAMPLES FORm ≠ kn ± 1.

In this section we discuss some examples for whichm ≠ kn ± 1.

Example 9.1. There are81 = 34 3/5-parking functions. The7 = 1

5+3
(5+3

5
) increasing parking functions are

L00000M, L00001M, L00002M, L00011M, L00012M, L00111M, L00112M. Grouping them into theS5-orbits{f ○ ω ∣ ω ∈
S5} yields81 = 1 + 5 + 5 + 10 + 20 + 10 + 30. There are 7 vectors inZ5 ∩ V ∩D3

5. Their transposes are:

(0,0,0,0,0), (1,0,0,0,−1), (0,1,0,0,−1), (1,0,0,−1,0), (0,0,1,−1,0), (0,1,−1,0,0), (1,−1,0,1,−1)
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[12345]

[02346]

[−30369]

[−12356]

[−22456]

[01347]

[01248][−11357]

[−11258][−21457]

H0
5,6 H0

5,7 H0
5,8H0

4,6H0
3,6

FIGURE 12. 7 permutationsω ∈ 3S̃5 labelingω−1A0 in the dominant cone

The30 parking functions in theS5-orbit of L00112M correspond under the mapA to the30 permutations inS5∩3S̃5

which are those in the support of the shuffle14 ∪∪25 ∪∪3 (that is to say, the intersection of the Sommers region with
the orbit of the identity permutation).
On the other hand, the parking functionL00000M = A(ωm) corresponds underA to the affine permutationωm =
[−3,0,3,6,9] ∈ 3S̃5. Anything else in its rightS5-orbit lies outside the Sommers region.

Despite the fact many of the above theorems and constructions useS̃m
n , it is more uniform to study the set

{uA0 ∣ u ∈ mS̃n} andSP than{ωA0 ∣ ω ∈ S̃m
n } andPS. One reason is that while the Sommers region can always

be defined forgcd(m,n) = 1, a hyperplane arrangement that is the correct analogue of the Shi arrangement cannot.
Consider the following example.

Example 9.2. . In the case(n,m) = (5,3) it is impossibleto find a set of hyperplanes that separate the alcoves
{ωA0 ∣ ω ∈ S̃m

n } and has 1

5+3
(5+3

5
) = 7 dominant regions, i.e. that there are exactly7 dominant regions with a

uniqueωA0 in each. In other words, the notion ofRegkn does not extend well whenm ≠ kn ± 1.
Indeed, 7 dominant regions corresponding to 3-restricted affine permutationsω ∈ 3S̃5 ∩ S̃5/S5 are shown in

bold in Figure 12. Each permutation drawn corresponds to thedominant alcoveω−1A0. Hence the hyperplanes
crossed (by the picturedω) correspond exactly toInv(ω). The hyperplanesH0

4,6,H
0
5,6 andH0

5,7 separate[02346]
from other 3-restricted permutations. To separate[−21457] from [−11258], one must add eitherH0

3,6 or H0
5,8 to

the arrangement, but this would leave either of the non-3-restricted permutations[−22456] or [01248] in a region
with no 3-restricted permutations. Therefore any extension of the classical braid arrangement forS5 would either
have a region with two 3-restricted permutations or a regionwith none of them.

Note there are more hyperplanes (H0
4,7,H

0
5,11) thatωm = [−3,0,3,6,9] has crossed that we did not draw on

the picture.

Example 9.3. We list all affine permutations iñS2
5 together with their images under the mapsA andPS in Figure

13. Hereω is a2-stable affine permutation (that is,ω(i + 2) > ω(i)), andω−1 is 2-restricted . Note that form = 2
one hasAω(k) = ω−1(k) −Mω mod 2, where, as above,Mω =min{k ∶ ω(k) > 0}.

The combinatorial Hilbert series has a form:

H2/5(q, t) = 5 + 4(q + t) + (q2 + qt + t2).
In particular, it is symmetric inq andt and thus answers a question posed in [2, Section 5.4].
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The special vertex ofD2/5 corresponding to the fundamental alcove by Lemma 2.16 is described by the affine
permutationω2 = [−1,1,3,5,7].

ω ω−1 A area PS dinv

[-1,2,5,3,6] [0,2,4,6,3] L0,0,0,0,1M 1 L0,0,1,1,0M 0
[0,2,3,4,6] [0,2,3,4,6] L0,0,1,0,0M 1 L0,0,0,0,1M 1
[0,2,4,3,6] [0,2,4,3,6] L0,0,0,1,0M 1 L0,0,1,0,1M 0
[0,3,1,4,7] [3,0,2,4,6] L1,0,0,0,0M 1 L1,0,0,0,1M 0
[0,3,2,4,6] [0,3,2,4,6] L0,1,0,0,0M 1 L0,1,0,0,1M 0
[2,0,3,6,4] [-1,1,3,5,7] L0,0,0,0,0M 2 L0,0,0,1,1M 0
[1,2,3,4,5] [1,2,3,4,5] L0,1,0,1,0M 0 L0,0,0,0,0M 2
[1,2,3,5,4] [1,2,3,5,4] L0,1,0,0,1M 0 L0,0,0,1,0M 1
[1,2,4,3,5] [1,2,4,3,5] L0,1,1,0,0M 0 L0,0,1,0,0M 1
[1,3,2,4,5] [1,3,2,4,5] L0,0,1,1,0M 0 L0,1,0,0,0M 1
[1,3,2,5,4] [1,3,2,5,4] L0,0,1,0,1M 0 L0,1,0,1,0M 0
[1,4,2,5,3] [1,3,5,2,4] L0,0,0,1,1M 0 L0,1,1,0,0M 0
[2,1,3,4,5] [2,1,3,4,5] L1,0,0,1,0M 0 L1,0,0,0,0M 1
[2,1,3,5,4] [2,1,3,5,4] L1,0,0,0,1M 0 L1,0,0,1,0M 0
[2,1,4,3,5] [2,1,4,3,5] L1,0,1,0,0M 0 L1,0,1,0,0M 0
[3,1,4,2,5] [2,4,1,3,5] L1,1,0,0,0M 0 L1,1,0,0,0M 0

FIGURE 13. Affine permutations iñS2
5 , their inverses in2S̃5; mapsA andPS toPF2/5;

area anddinv statistics
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