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Abstract

The transversity distribution, which describes transversely polarized quarks in transversely polarized nucle-

ons, is a fundamental component of the spin structure of the nucleon, and is only loosely constrained by

global fits to existing semi-inclusive deep inelastic scattering (SIDIS) data. In transversely polarized p↑ + p

collisions it can be accessed using transverse polarization dependent fragmentation functions which give rise

to azimuthal correlations between the polarization of the struck parton and the final state scalar mesons.

This letter reports on spin dependent di-hadron correlations measured by the STAR experiment. The

new dataset corresponds to 25 pb−1 integrated luminosity of p↑+p collisions at
√
s = 500 GeV, an increase of

more than a factor of ten compared to our previous measurement at
√
s = 200 GeV. Non-zero asymmetries

sensitive to transversity are observed at a Q2 of several hundred GeV and are found to be consistent with

the former measurement and a model calculation. We expect that these data will enable an extraction of

transversity with comparable precision to current SIDIS datasets but at much higher momentum transfers

where subleading effects are suppressed.

Keywords: transversity, di-hadron correlations, interference fragmentation function
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1. Introduction

The proton is the fundamental bound state of quantum chromodynamics (QCD). In spite of its impor-

tance for our understanding of this theory, our knowledge of the proton structure remains incomplete [1]. In

particular, the proton wave function cannot be computed ab-initio in perturbative QCD (pQCD), but has

to be constrained by measurements. In deep inelastic scattering (DIS) experiments of electrons or muons

off nuclei at high energies, the wavefunction of the proton is accessed on the lightcone. In this frame, the

wavefunction can be expanded in the squared 4-momentum transfer Q2 of the interaction. The leading co-

efficients in this expansion can be identified with three parton distribution functions (PDFs). In the parton

model, PDFs have a probabilistic interpretation as the probability of finding a parton that carries a momen-

tum fraction x of the parent proton. The moderate Q2 dependence, which arises from the parton splitting

functions [2, 3, 4], is computed using evolution equations. We assume a Q2 dependence in the following

discussion even when not explicitly written. Two of the PDFs, the parton helicity averaged PDF f1(x), and

the helicity PDF g1(x) appear at leading twist respectively in the spin averaged and longitudinally polarized

inclusive DIS cross-section [5]. They are therefore fairly well determined experimentally [6]. The third one,

the transversity distribution h1(x), does not appear at leading twist in the inclusive DIS cross-section since

it is connected to a chiral-odd helicity-flip amplitude. Instead, it is accessed in processes where it couples

to the chiral-odd transverse spin dependent fragmentation function (FF) [7]. The transversity PDF can be

interpreted as the probability of finding a transversely polarized quark in a transversely polarized proton,

and the FF serves as a quark polarimeter.

The analysis presented here investigates a channel in which transversity couples to the spin dependent di-

hadron FF H^
1 (z,M) [8, 9, 10], which, for historical reasons, is also known as the interference fragmentation

function (IFF). Here, z is the fraction of the parent parton energy carried by the hadron pair, and M

is the invariant mass of the pair. Presently, transversity is only loosely constrained by fits [11, 12] to

available SIDIS [13, 14, 15, 16, 17] and e+e− [18, 19] data. The e+e− data are necessary to constrain the

polarization dependent fragmentation functions. While measurements sensitive to the unpolarized single

hadron fragmentation functions have a long history (see again [7] for an overview), only recently, a result

sensitive to the unpolarized di-hadron fragmentation function [20] was presented for the first time. Fixed

target data are currently limited in the valence region to x < 0.2, restricting the knowledge of valence

quark transversity at high x. Probing transversity in p + p collisions provides better access to the d-quark

transversity than is possible in SIDIS, due to the fact that there is no charge weighting in the hard scattering

QCD 2 → 2 processes in p+p collisions. A precision determination of both u and d-quark transversity are

important in particular for the determination of the zeroth moment of transversity, the tensor charge

gT =

∫ 1

0

dx[hq1(x)− hq̄1(x)] (1)

Recently, gT has attracted increased interest. One reason is that it can be calculated precisely using lattice
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QCD [21, 22, 23, 24, 25], which makes it one of the few observables involving transverse polarization where

experiments can be compared with first principles pQCD calculations. In fact, gT is the first nucleon

matrix element that could be extrapolated to the physical limit. Furthermore, gT determines the effective

tensor coupling constant for beyond the standard model contributions to low energy scattering [26]. This

determination is particularly important for planned electric dipole moment experiments where a precise

knowledge of gT is needed to determine the contributions of possible new CP violating phases [27]. Due

to its chiral-odd property, gluon polarization contributions to transversity in a spin- 1
2 target vanish [28].

This characteristic is one reason gT is dominated by the medium to high x region. Precision data from

transversely polarized p+ p collisions at high
√
s and pT are crucial to access transversity at high Q2, where

theoretical uncertainties are well under control. The kinematic region covered by the STAR experiment

at these energies overlaps the reach of current SIDIS experimental data on transversity in the upper part

of the covered x range (see Fig. 1). The STAR kinematics is obtained from the transverse momentum

of the mid-rapidity jet containing the hadron pair since this is the relevant scale in p + p collision and

approximately equal to Q2. The results presented in this letter at
√
s = 500 GeV use more than 10 times

the integrated luminosity than our previously reported result at
√
s = 200 GeV [29], where a significant

signal of transversity was observed in an exploratory measurement of di-pion correlations. The calculations

reported in [30] found hints of universality where the phase space of the
√
s = 200 GeV p+ p and the SIDIS

data overlap. Since the calculations are performed in a collinear framework, this was already postulated.

However, since factorization is not proven in this process and has been explicitly shown to be broken in

other transverse polarization dependent processes in p + p [31], this was a crucial finding to support the

inclusion of the data in global analyses. In the future, a comparison between di-hadron asymmetries,

with measurements of azimuthal asymmetries of pions in jets by STAR [32], will provide further tests of

universality and factorization. The former asymmetries can be described in a collinear framework, while the

latter include an explicit dependency on intrinsic transverse momenta (for more details see [33, 34]). The

collinear framework is well understood and describes the unpolarized p + p cross-section well [35], but the

transverse momentum dependent (TMD) framework is still being developed, and questions remain about

universality, factorization and evolution.

2. Experiment

The Relativistic Heavy Ion Collider (RHIC), located at Brookhaven National Laboratory, can collide

beams of polarized protons, as well as heavy ions, at each of the interaction regions. The data used in

this analysis were recorded at the STAR experiment in 2011 representing 25 pb−1 integrated luminosity of

transversely polarized p+p collisions at
√
s = 500 GeV and an average beam polarization of 53%. Kinematic

observables of charged particles are measured using the Time Projection Chamber (TPC) with 2π azimuthal

coverage in the pseudorapidity range -1 . η . 1 [36]. The barrel and endcap electromagnetic calorimeters

5
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Figure 1: Q2 vs x coverage for STAR, HERMES, and COMPASS [13, 14, 15, 16, 17]. The kinematics of the STAR data points
correspond to the lower panel of Fig. 3.

(BEMC/EEMC) and the beam-beam counters (BBC) are used in coincidence for the trigger. A single BEMC

tower is required to have a minimum transverse energy (ET > 4.0 or 5.7 GeV) or a ∆φ×∆η = 1.0×1.0 jet

patch must have ET > 6.4, 9.0 or 13.9 GeV, respectively. Particles are identified by measuring their average

specific ionization energy loss, 〈dE/dx〉, as they traverse the TPC and comparing this measured value with

the associated parameterized expectation for each particle species as a function of η and momentum. Cuts

on the number of standard deviations from the pion 〈dE/dx〉 peak (-1σ to 2σ) and the number of hits used

to determine 〈dE/dx〉 (> 20) are applied to achieve an 85±2.5% pion pair purity across the entire kinematic

range. The pion pair purity is the probability that both particles in a pair are pions. The momentum, p, of

each particle is required to be greater than 2 GeV/c.

Each proton beam in the RHIC ring consists of bunches that alternate between being transversely

polarized up or down with respect to the accelerator plane. However, when the single spin asymmetry

measurement is carried out with respect to a given beam, the polarization of the other beam is integrated

over to effectively be unpolarized. Polarimeters, which measure the elastic scattering of protons on ultra

thin carbon ribbon targets several times during a fill, were used to measure the polarization of each beam.

These polarimeters were calibrated with a polarized hydrogen gas jet target [37].
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polarization, and φR is the angle between the scattering plane (gray) and the di-hadron plane (yellow).

  η
1− 0.8− 0.6− 0.4− 0.2− 0 0.2 0.4 0.6 0.8 1

0.05

0.1

0.15

0.2

0.25

0.45

0.5

0.55

0.6

0.65〉x〈
〉z〈 pion pairs from quarks

U
T

A

0

0.01

0.02

0.03

0.04

particle ID

trigger bias

 = 500 GeVs + X, -π + +π →+p ↑p
2 = 1 GeV/c〉

inv
M〈 = 13 GeV/c, 〉

T
p〈

STAR

Figure 3: AUT (top) and the kinematic variables, 〈x〉 and 〈z〉 (bottom), plotted as a function of η for 〈pT 〉 = 13 GeV/c
for pairs that arise from quarks. Statistical uncertainties are represented by the error bars, the open rectangles are the
systematic uncertainties originating from the particle identification, and the solid rectangles represent the trigger bias systematic
uncertainties.
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3. Analysis

The azimuthal angles in the scattering system used to calculate the π+π− azimuthal correlation follow

the definition in ref. [39] and are shown in Fig. 2. The scattering plane is defined by the polarized beam

direction, ~pbeam, and the direction of the total momentum of the pion pair, ~ph. The di-hadron plane is defined

by the momentum vectors from each pion (~ph,1 and ~ph,2) in the pair. The difference vector ~R = ~ph,1 − ~ph,2
lies in the di-hadron plane. The pions are chosen to be in close proximity to each other in η − φ space with√

(∆η)2 + (∆φ)2 ≤ 0.7 and the sum of the transverse momenta, pT , for each pair is required to be greater

than 3.75 GeV/c. Throughout the rest of this paper, pT is the transverse momentum of the pion pair and

~ph,1 corresponds to the positive pion and ~ph,2 to the negative pion. We define the unit vectors p̂ = ~p/|~p|.

The angle between the scattering plane and the polarization of the incident beam, ~sa, is φS . The angle

between the scattering plane and the di-hadron plane is φR, which is used to define φRS = φR − φS , where

φR and φS are calculated using Eqs. (2)–(5). The angle φRS modulates the asymmetry due to the product

of transversity and the IFF by sin(φRS).

cos(φS) =
p̂beam × ~ph
|p̂beam × ~ph|

· p̂beam × ~sa
|p̂beam × ~sa|

(2)

sin(φS) =
(~ph × ~sa) · p̂beam

|p̂beam × ~ph||p̂beam × ~sa|
(3)
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Figure 7: The azimuthal asymmetry as a function of invariant mass in the highest pT bin compared with predictions from fits
to existing SIDIS and e+e− data provided by the same authors as [30]. Details on the calculation can be found in [38].

cos(φR) =
p̂h × ~pbeam
|p̂h × ~pbeam|

· p̂h ×
~R

|p̂h × ~R|
(4)

sin(φR) =
(~pbeam × ~R) · p̂h
|p̂h × ~pbeam||p̂h × ~R|

. (5)

The π+π− azimuthal correlation observable, AUT , is defined in Eq. (6), where P is the beam polarization

and N↑(↓) is the number of pion pairs when the polarization of the beam is pointing up (down). The

combination of different polarization directions and detector hemispheres removes luminosity and efficiency

dependencies from the asymmetry calculation to leading order [40].

AUT is calculated for eight φRS bins of equal width in the range [0, π], which are then fit with a single-

parameter function, AUT ·sin(φRS), to extract the amplitude. The mean reduced χ2 of all fits is 1.00±0.06.

This procedure is carried out as a function of the pseudorapidity of the pion pair, which is denoted as η for

the remainder of this report. η > 0 is forward with respect to the polarized beam direction. AUT is also

measured as a function of invariant mass, Minv, and pT .

AUT · P · sin(φRS) =

√
N↑(φRS)N↓(φRS + π)−

√
N↓(φRS)N↑(φRS + π)√

N↑(φRS)N↓(φRS + π) +
√
N↓(φRS)N↑(φRS + π)

. (6)

The scale uncertainty due to the beam polarization in this analysis is 4.5%. We investigated a potential

bias of the triggered events towards pions that come from quark jets, which could result in an enhancement
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of the measured asymmetries, since gluons are not expected to contribute to transversity. To investigate this

bias, particles produced in p+p simulated events from PYTHIA 6.426 [41] with the Perugia-0 tune [42], were

processed through a detector simulator (GSTAR package based upon GEANT 3.21/08T [43]), and then used

to estimate the quark/parton ratio of a biased sample over the quark/parton ratio in an unbiased sample.

In STAR the trigger decision is based on the energy deposit in a defined segment in one of the calorimeters.

We expect therefore that a potential trigger bias effect will be strongest for low pT parent jets, since at

high jet pT the impact of a shape difference between quark or gluon initiated jets will be negligible for the

trigger decision. For this reason we investigated the trigger bias as a function of the transverse momentum

of the hadron pair. Within our statistical uncertainties, we do not observe a significant trigger bias and thus

decided not to correct for this effect. Instead, the statistical uncertainty with which one can determine the

ratio of the fractions of quark initiated jets in the triggered over the non-triggered sample was assigned as

a systematic uncertainty, being ∼20% at low pT and ∼5% at high pT . Note that the trigger bias does not

affect the statistical significance of the measurement because the scaling applies to the asymmetry and its

uncertainty equally. Since the trigger efficiency is higher for larger jet energies, the selection of pion pairs

might be biased towards lower z pairs. Using the same simulation as for the trigger bias, we estimate this

effect to be ∼8% at low pT and ∼4% at high pT .

Finally, the pion pair purity previously mentioned was used to estimate the asymmetric asymmetry

dilution due to π −K and π − p pairs and found to be about 15% and is represented as rectangles above

(below) positive (negative) data points in Figs. 3-6. This estimate assumes the π−K and π−p asymmetries

are no larger than the π+ − π− asymmetries and have the same sign.

4. Results

The single spin asymmetry, AUT , was measured as a function of η for five pT bins. It is shown as a

function of η in Fig. 3 for the largest pT bin with 〈pT 〉 = 13 GeV/c. The other four pT bins have smaller

asymmetries compared to the 〈pT 〉 bin in Fig. 3. Using the particles produced in PYTHIA and processed

through GEANT as mentioned previously, the kinematic variables x and z were estimated. The bottom

panel of Fig. 3 shows x and z as a function of pion pair pseudorapidity. As shown in Fig. 3, a strong rise of

the measured signal is observed toward higher η where we reach the highest values of x. This is consistent

with the expectation that the transversity distribution is largest at high-x.

AUT as a function of Minv for η > 0 and η < 0 is shown in Fig. 4 for the five pT bins. For η > 0 a

significant signal is seen in the highest pT bin, while for η <0 the values of the asymmetries are significantly

smaller as was already shown in Fig. 3 for the highest pT bin. For the two highest pT bins and η > 0, an

enhancement near the ρ mass at mid-Minv is observed. In models of the IFF, this enhancement is expected

due to the interference of vector meson decays in a relative p-wave with the non-resonant background

in a relative s-wave [44]. To test this hypothesis, the same-charge, momentum-ordered (|~ph,1| > |~ph,2|)

12



asymmetry was calculated and is shown in Fig. 5. This plot shows a significantly smaller asymmetry around

the ρ mass compared to the charge-ordered calculation. We note that this suppressed asymmetry can also

be explained in single hadron emission models like the Nambu and Jona-Lasinio jet model [45] where the

parton producing the lower ranked same-charge pion will carry less of the spin information and is more likely

to have a transverse momentum direction correlated (instead of anti-correlated) with the higher ranked pion.

AUT as a function of pT for η > 0 is shown in Fig. 6 for five Minv bins. A significant asymmetry is

observed at high pT for 〈Minv〉 > 0.4 GeV/c2. Though not shown here, the asymmetry as a function of pT

for η < 0 is small compared to the results for η > 0. Supplemental tables containing the numerical results

shown in the figures discussed above are available online.

Figure 7 shows a comparison of a theoretical calculation with the azimuthal asymmetry as a function of

the invariant mass measured in p↑ + p collisions at
√
s = 500 GeV for the highest pT bin. The gray band

represents the range of the 68% confidence interval of the fit to SIDIS and e+e− data [12]. The theoretical

prediction for
√
s = 500 GeV has been provided by the authors of reference [30], which was first compared

to the STAR results at
√
s = 200 GeV [29]. The smaller Minv range for the theory band is due to the fact

that this specific model calculation has only been performed up to Minv ≈ 1.2 GeV/c. The asymmetry

comparison shows close agreement within statistical uncertainty between the data and the theory band,

which further hints at the universality of the mechanism producing azimuthal correlations in SIDIS, e+e−,

and p+ p data. These high-precision
√
s = 500 GeV results can further constrain global fits of transversity

parton distribution functions to SIDIS, e+e−, and p + p data, and in particular, improve the statistical

significance for x > 0.1.

5. Conclusions

STAR has measured the first π+π− transverse spin-dependent azimuthal asymmetries in p↑+p collisions

at
√
s = 500 GeV for several pseudorapidity, invariant mass, and transverse momentum bins. These data

show significant signals at high pT and Minv for η > 0. IFF models predict an enhancement around the ρ

mass due to the interference of vector meson decays in a relative p-wave with the non-resonant background

in a relative s-wave. This prediction is consistent with the data reported in the paper. These data probe

transversity at much higher Q2 ≈400 GeV2 and sample a different mixture of quark flavors compared to

the charge weighted coupling in SIDIS. These results can be used to test the universality of the mechanism

producing azimuthal correlations in SIDIS, e+e−, and p+ p. In the future, a comparison between di-hadron

asymmetries with measurements of azimuthal asymmetries of pions in jets will provide further tests of

universality and factorization. Additionally, the high-precision of these results, can further constrain global

fits to world data, especially in the region x > 0.1.
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