
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
A Bayesian Model for Recursive Recovery of Syntactic Dependencies

Permalink
https://escholarship.org/uc/item/5v172907

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 27(27)

ISSN
1069-7977

Authors
Phaf, R. Hans
Rotteveel, Mark
Wendte, Robert

Publication Date
2005
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5v172907
https://escholarship.org
http://www.cdlib.org/


A Bayesian Model for Recursive Recovery of Syntactic Dependencies

Virginia Savova (savova@jhu.edu)
Department of Cognitive Science, 3300 N. Charles St
Johns Hopkins University, Baltimore, MD 21218 USA

Leonid Peshkin (pesha@hms.harvard.edu)
Department of Systems Biology, 200 Longwood Ave

Harvard University, Boston, MA 02115 USA

Abstract

Bayesian inference on graphical models can account for
a variety of psychlogical data in non-linguistic domains.
Recent proposals have touted its biological plausibility,
which raises the question to what extent it may capture
the learning and use of grammar. We propose a way to
structure the parsing task in order to make it amenable
to local classification methods. This allows us to build a
Dynamic Bayesian Network which uncovers the syntac-
tic dependency structure of English sentences. Exper-
iments with a small test corpus demonstrate that the
model successfully learns from labeled data. We discuss
what this approach may tell us about the way syntax
may be encoded in the brain and about the modularity
of the language faculty.
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Introduction

Bayesian graphical models have become an im-
portant explanatory strategy in cognitive science
( [Knill and Richards, 1996], [Kording and Wolpert, 2004],
[Stocker and Simoncelli, 2005]). Recent work strongly
supports their biological plausibility in general and that
of dynamic Bayesian models in particular [Rao, 2005].
Dynamic models are geared towards prediction and clas-
sification of sequences. As such, they are naturally suit-
able for language modeling and have already been aplied
to tasks like speech recognition [Livescu et al., 2003] and
part-of-speech tagging [Peshkin et al., 2003]. However,
grammar learning and parsing with such models gener-
ally appears out-of-reach, because of their Markovian
character.

Markov models restrict possible dependencies to a
bounded, local context. At one extreme, the context
is confined to the symbol occupying the current position
in the sequence (order-0 or unigram models). In more
relaxed versions, context may include a fixed number of
positions before the current symbol (k-order), typically
no more than two (trigram models). The restricted space
of possible dependencies allows transition probabilities
to be infered from the data and stored in a look-up table
with relatively little technical sophistication.

Not surprisingly however, the restricted space of rep-
resentable dependencies is also the main disadvantage of

Markov models in syntax-related tasks like parsing. Syn-
tactic dependencies in natural language are unboundedly
non-local, in the sense that no fixed amount of context
is guaranteed to contain the members of a given con-
stituent. For example, consider the sentences in exam-
ples (1 - 3). In the first sentence, the subject king and
verb bought are adjacent to one another. Thus, the de-
pendecy between them would be captured by a bigram
(order-1) model. However, the same model would be un-
able to represent the dependendency in the second exam-
ple, because the subject and verb are separated by two
words. To capture this dependency, we need a 2nd-order
Markov model (trigram). Similarly, the 2nd-order model
would prove inadequate for the third example, where the
subject and verb are separated by four words.

(1) The king bought a camel.

(2) The king of Prussia bought a camel.

(3) The king of some strange country bought a
camel.

Our solution to this problem relies on representing sen-
tences with non-local dependencies like (2, 3) as derived
from their local dependency variants, akin to (1). This
intuition is based on the formal notion that a string with
non-local dependency is obtained from a dependency
tree via a recursive linearization procedure. The string
obtained at each step of the linearization procedure con-
tains new local dependencies, which push apart local de-
pendencies from previous levels. This way of conceptu-
alizing the linearization of syntactic structure allows us
to use a Dynamic Bayesian Network despite its Markov
properties. We construct a DBN parser which decides
only on local attachments. We then call the parser
recursively to uncover the underlying dependency tree.
Our results show that the model captures grammatical
knowledge for all levels of the derivation. The biologi-
cal plausibility and remarkable compactness of learned
representation may suggest that parsing in the brain is
accomplished in a similar manner.

Dependency grammar

Tree-based linguistic representations of natural language
syntax treat non-local dependencies as local in the two-
dimensional tree structure, of which the string is a one
dimensional projection. The dependency grammar rep-
resentation of (1) captures the dependency between the
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subject, the object and the verb, and the dependency be-
tween the determiners and their respective nouns (Figure
1).
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Figure 1: Dependency structure of example (2)

More formally, a dependency grammar consists of a
lexicon of terminal symbols (words), and an inventory
of dependency relations specifying inter-lexical require-
ments. A string is generated by a dependency grammar
if and only if:

• Every word but one (ROOT) is dependent on another
word.

• No word is dependent on itself either directly or indi-
rectly.

• No word is dependent on more than one word.

• Dependencies do not cross.

In a dependency tree, each word is the mother of its de-
pendents, otherwise known as their head. To linearize
the dependency tree in Figure 1 into a string, we intro-
duce the dependents recursively next to their heads:
Step I: bought
Step II: king bought camel
Step III: The king of bought a camel
Step IV: The king of Prussia bought a camel.

Recursive parsing as local classification

Parsing in the dependency grammar framework is the
task of uncovering the dependency tree given the sen-
tence. Suppose that instead of searching for a complete
parse given a complete sentence, we restricted our task
to compressing the string up the linearization path. Note
that linearization is essentially dependency parsing in re-
verse. In other words, we can uncover the dependency
structure by labeling the local head-dependent relation-
ships at the bottom linearization level (i.e. the sentence)
and erasing from the string the words whose heads are
already found. We recursively process the output until
the root level. Thus, if as a first step in parsing (2),
we pick the head of Prussia to be the preposition of,
we can compress the string to a form virtually equiva-
lent to linearization Step III. Picking king as the head of
the preposition leads us to compress the string further,
to the equivalent of step II. To compress the string, we
must simply identify which words in the string occupy a
position adjacent to their heads.

The attractive feature of this representation is that
the parsing decisions taken at each step are local. Hence,
parsing can be converted into a local classification task.
The task is to chose the best sequence of labels denoting

local dependency relationships (links). At each position,
we choose between setting the link to left, right, or
none, where left/right means the word is dependent
on its left/right neighbor. none means the search for
this word’s head should be postponed until later stages
of compression. The output of the classifier is a labeled
string, which can be compressed by removing linked de-
pendents. It is fed through recursively, until the string
is compressed to the ROOT.

The Dynamic Bayesian Network classifier

The first step towards building the classifier is coming up
with a feature representation. We will briefly motivate
the choice of feature set with linguistic arguments. It is
easy to determine that the linking pattern of a word de-
pends on its part of speech (PoS) and the part of speech
of its neighbor. For example, English determiners only
link to the right, and adverbs link almost exclusively to
verbs. However, the parts of speech alone are not suffi-
cient to determine linking behavior. In some cases, the
identity of the adjacent word is required - bought accepts
links from nouns to the right, while slept does not.

Another decisive factor is how many dependents the
current word has acquired so far. Since once the cur-
rent word is linked it will become unavailable as a future
linking target to other words, it is important to acertain
that its valency has already been satisfied. Valency refers
to the minimal number of dependents a word actively
seeks to license. In English and other SVO languages,
the word has particular requirements with respect to the
number of left and right dependents. Thus, in our fea-
ture representation, valency is indirectly captured by two
variables, which reflect the number of dependents which
had already been linked to the current word from ei-
ther side - left and right composite (comp). The
comp variables affect not only the linking behavior of
the current token, but that of its neighbor as well. If
the word has already received many dependents from
one side, the probability of accepting yet another one
becomes smaller, since its valency is already satisfied.

Finally, the current label depends on the labels of its
neighbor, because if the previous label is right, then
the current label cannot be left, and if the next label
is left, the current label cannot be right. Thus, our
full feature representation consists of the word and its
PoS tag, the words and PoS tags of its neighbor, the two
valencies of the current word, the right valency of its left
neighbor and the left valency of its right neighbor, as
well as the neighboring links.

The Word and Next Word feature vocabulary contain
the 2500 most frequent words in the data. An additional
value was allocated for all remaining out-of-vocabulary
words. The PoS, and Next PoS vocabulary contain 36 of
the original 45 Penn Treebank Tagset, after all punctu-
ation PoS tags were removed. The left and right comp
features had tree values: none, one and many.

This feature representation is used as the basis of the
Dynamic Bayesian Network (dbn). After we briefly in-
troduce the essential aspects of dbns, we wil expand on
the structure of the network for parsing. For more infor-

1932



mation on the general class of models, we refer the reader
to a recent dissertation [Murphy, 2002] for an excellent
survey.

General notes on DBNs

A dbn is a Bayesian network unwrapped in “time” (i.e.
over a sequence), such that it can represent dependencies
between variables at adjacent position. More formally, a
dbn consists of two models B0 and B+, where B0 defines
the initial distribution over the variables at position 0,
by specifying:

• set of variables X1, . . . , Xn;

• directed acyclic graph over the variables;

• for each variable Xi a table specifying the conditional
probability of Xi given its parents in the graph
Pr(Xi|Par{Xi}).

The joint probability distribution over the initial state
is:

Pr(X1, ..., Xn) =

n
∏

1

Pr(Xi|Par{Xi}).

The transition model B+ specifies the conditional prob-
ability distribution (cpd) over the state at time t given
the state at time t−1. B+ consists of:

• directed acyclic graph over the variables X1, . . . , Xn

and their predecessors X−

1 , . . . , X−

n
— roots of this

graph;

• conditional probability tables Pr(Xi|Par{Xi}) for all
Xi (but not X−

i
).

The transition probability distribution is:

Pr(X1, ..., Xn

∣

∣

∣
X−

1 , ..., X−

n
) =

n
∏

1

Pr(Xi|Par{Xi}).

Together, B0 and B+ define a probability distribution
over the realizations of a system through time, which
justifies calling these bns “dynamic”. In our setting, the
word’s index in a sentence corresponds to time, while
realizations of a system correspond to correctly tagged
English sentences. Probabilistic reasoning about such
system constitutes inference.

Standard inference algorithms for dbns are similar to
those for hmms. Note that, while the kind of dbn we
consider could be converted into an equivalent hmm, that
would render the inference intractable due to a huge re-
sulting state space. In a dbn, some of the variables will
typically be observed, while others will be hidden. The
typical inference task is to determine the probability dis-
tribution over the states of a hidden variable over time,
given time series data of the observed variables. This
is usually accomplished using the forward-backward al-
gorithm. Alternatively, we might obtain the most likely
sequence of hidden variables using the Viterbi algorithm.
These two kinds of inference yield resulting link tags.

C o n t r o lL i n k

R i g h t C o m pL e f t C o m pP o SW o r d
s l i c e K s l i c e K + 1
Figure 2: The parsing DBN.

Learning the parameters of a dbn from data is gen-
erally accomplished using the EM algorithm. However,
in our model, learning is equivalent to collecting statis-
tics over cooccurrences of feature values and link labels.
This is implemented in gawk scripts and takes minutes
on a large corpus. While in large dbns, exact inference
algorithms are intractable, and are replaced by a vari-
ety of approximate methods, the number of hidden state
variables in our model is small enough to allow exact al-
gorithms to work. For the inference we use the standard
algorithms, as implemented in a recently released toolkit
[Bilmes and Zweig, 2002].

Structure of the DBN parser

Each slice of our DBN parser is a representation
of the joint probability distribution of word, pos,
left/right comp, and the hidden variable link Fig-
ure 2. In our model, the link determines the value of
all variables and they are independent of one another.
Of course, this is not truly the case, but among those
variables link is the only unobserved, hence modeling
all other dependencies is inconsequential. In addition to
the intra-slice dependencies, we model dependencies be-
tween the current, previous and next position. The link
variable infulences all aforementioned variables in neigh-
boring slices. Finally, we introduce a control variable
which deterministically ensures that at least one link in
the sequence will be set to something other than none.
This forces the parser to trully compress the string at
each recursive parsing step.

Experiments and results

For the results presented here we used the WSJ10 cor-
pus [Klein and Manning, 2004]. It is a subset of the WSJ
Penn Treebank ([Marcus et al., 1993]), consisting of all
sentences shorter than eleven words with punctuation
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removed 1. Eliminating the punctuation was done to
simulate parsing in the oral modality. The dependency
annotation was obtained through automatic conversion
of the original treebank annotation. The relatively short
sentences make this corpus a good approximation to ca-
sual speech and limit the effects of misattachments due
to the conversion. Note that the parser is in principle
capable of handling longer sentences.

Encoding

The corpus was encoded in our feature representation
as follows. For each sentence, a number of feature files
were produced containing the feature representation of
the sentence at each linearization level. The encoding of
an actual sentence-structure pair from our corpus (Fig-
ure 3), is illustrated in Figures 4 to 7.h e r i m m e d i a t e p r e d e c e s s o r s u f f e r e d a n e r v o u s b r e a k d o w n .

Figure 3: Dependency structure.

At the lowest level, no word has any discovered depen-
dents, hence the comp values are zero everywhere. All
links of words whose heads are not adjacent are labeled
none (0).

At the next level, words whose labels were left orh e r i m m e d i a t e p r e d e c e s s o r s u f f e r e d a n e r v o u s b r e a k d o w n .00 00 00 00 00 00 00 00p r o n n o u n n o u na d j v e r b d e t a d j r o o t0 R i g h t R i g h t0 0 0 0R i g h t C o m p :L e f t C o m p :P o S :W o r d :L i n k :
Figure 4: First layer representation.

right are removed from the structure and the comp
counters for their head are incremented.

00 10 00 00 10 00p r o n n o u n n o u nv e r b d e t r o o tR i g h t R i g h t0 0 0P o S :W o r d :L i n k : h e r p r e d e c e s s o r s u f f e r e d a b r e a k d o w n .R i g h t C o m p :L e f t C o m p :
Figure 5: Second layer representation.

The same procedure produces the subsequent levels (Fig-
ures 6, 7)

Testing

The corpus was split randomly 9:1 into a training and
testing section. In training mode, the DBN was given

1the dot in our figures stands for an abstract ROOT
symbol

20 00 20 00n o u n n o u nv e r b r o o tR i g h t 0L e f tP o S :W o r d :L i n k : p r e d e c e s s o r s u f f e r e d b r e a k d o w n .R i g h t C o m p :L e f t C o m p :
Figure 6: Third layer representation.

11 00v e r b r o o tR i g h tP o S :W o r d :L i n k : s u f f e r e d .R i g h t C o m p :L e f t C o m p :
Figure 7: Top layer representation.

all levels with the correct labels. It was trained directly
on the annotations, with no additional smoothing. The
result achieved was 79% correct link attachment for di-
rected dependencies, and 82% for undirected. We com-
pare the results to two baselines given for this corpus by
[Klein and Manning, 2004], Table 1.

Table 1: DBN results against baseline.

Model Accuracy
Dir Undir

DBN 79 82
Random 30 46
Adjacent heuristic 34 57

More detailed results for our model are shown in Ta-
ble 2 . The results unequivocally surpass the random
baseline, and the best available heuristic, which amounts
to linking every word to its right neighbor. This suggests
our model has learned at least some of the non-trivial
dependencies which govern the choice of link structure.
The minimal difference between the vocabulary and out-
of-vocabulary scores imply that the network can recover
the syntactic properties of an unknown word in context.
The fact that the root accuracy is higher than the non-
root accuracy allows us to conclude that the network cor-
rectly learns to postpone decisions about the root word
in all cases, and about its dependent in most cases.

Table 2: Detailed results for the DBN.

Measure Accuracy
Root dependency 83
Non-root dependency 78
Out-of-Vocabulary 75
Sentence 36
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Discussion

Our results show that combining a DBN model with re-
cursive application is a reasonable parsing strategy. This
opens the door to the hypothesis that Bayesian infer-
ence is a possible mechanism for parsing in the brain,
despite the Markovian properties of the corresponding
dynamic models. The high ROOT accuracy suggests
that the model has captured some fundamental princi-
ples defining the local dependency structure at all levels
of the derivation. We take this result as evidence that
graphical models with Markov properties are capable of
handling unbounded non-local dependencies through re-
cursive calls on their own output. The implication of this
finding transcend Bayesian graphical models and speak
to the general issue of how relevant other biologically
plausible Markov models can be to language processing
and learning. For example, Elman networks have been
criticized for their a priori limitation in handling un-
bounded dependencies [Frank et al., 2005]. It is possible
that such type of models may be adapted to discover
locality in the hierarchical structure through recursive
application.

One exciting implication of this hypothesis is the
domain-generality of Bayesian inference and learn-
ing mechanisms. Previous work has proposed that
these mechanisms are involved in visual perception
[Knill and Richards, 1996], [Kersten and Yuille, 2003],
motor control [Kording and Wolpert, 2004], and
attention modulation [Yu and Dayan, 2005].
[Kersten and Yuille, 2003] proposes Bayesian graphical
model of object detection which rely on estimating hid-
den variables such as relative depth and 3-D structure
from observables they influence -shadow displacement,
2-D projection. [Kording and Wolpert, 2004] suggests
that subjects ina sensory-motor experiment internally
represent both the statistical distribution of the task
and their sensory uncertainty, combining them in
a manner consistent with a performance-optimizing
bayesian process. In our work, the hidden links are
estimated from observable word and PoS, along with a
prior label distibution.

The parallelism in the proposed cognitive strategies for
all these different modalities may shed light on the issue
whether and how modular the language faculty is. The
modularity hypothesis states that the cognitive mech-
anisms underlying linguistic competence are specific to
language. If Bayesian inference proves to be a plausi-
ble uniting principle behind visual, motor and linguistic
abilities, this hypothesis is seriously undermined. At the
same time, it is important to note that the generality
of the mechanism does not necessarily negate the mod-
ularity of language completely. The feature represen-
tation which our model used already encodes language-
specific knowledge. Further research is needed to deter-
mine whether the feature representation and the struc-
ture of the network can be induced through structure
learning algorithms.

Our approach is particularly appealing in light of re-
cent work suggesting that Bayesian type inference is bi-
ologically plausible. [Rao, 2005] shows that recurrent

networks of noisy integrate-and-fire neurons can per-
form approximate Bayesian inference for dynamic and
hierarchical graphical models. According to him, the
membrane potential dynamics of neurons corresponds
to approximate belief propagation in the log domain,
and the spiking probability of a neuron approximates
the posterior probability of the preferred state encoded
by the neuron, given past inputs. This seems to suggest
that our parsing model can be implemented in a neu-
ral circuit. Furthermore, since the same DBN is used to
uncover local dependencies throughout all levels of the
derivation, such implementation would address Hum-
boldt’s characterization of language as a system that
makes “infinite use of finite means” at the neurophys-
iological level. The same neural aparatus could be used
to recursively uncover the dependency structure of a sen-
tence level by level.

Another implication of our work is that the nature
of the processing architecture may constrain the kind of
grammar human languages permit. If indeeed parsing is
accomplished through recursive processing of the output
of previous stages, some types of long-distance depnden-
cies would be impossible to detect. In particular, if the
material intervening between a head-dependent pair (H,
D) is not a constituent whose own head depend on ei-
ther H or D, our model would not be able to uncover
it because H and D will not be adjacent at any point
in the derivation. In other words, this parser is inca-
pable of handling strictly context-sensitive languages. to
the extent that such dependencies exist, they are fairly
limited [Shieber, 1985]. Such cases will need to be re-
solved through some reordering in pre-processing, possi-
bly based on case marking.

Future work

One deficiency of our model is that decisions at lower
levels cannot be reversed in the interest of more optimal
choices at higher levels. There are however important
reasons why this might be necessary. For example, a
prepositional phrase subcategorized for by the verb may
be mistakenly attached to a preceding noun phrase, leav-
ing the verb with a missing dependent (4)

(4) The king put *[the camel in the trunk].

In the future, we hope to address this problem through a
form of beam search - retaining the k-best parses at each
level and choosing among them based on what happens
at the next level.

Another important issue that we need to address is
the total loss of information about the dependents that
have been linked to a word at previous levels. Some
well-known cases pose a problem for this aspect of our
model. For example, the sentences in (6) and (5) are
structurally distinct solely becase the complement of the
prepositional phrase in the second sentence is an instru-
ment appropriate for seeing.

(5) The king saw [the camel with two humps] .

(6) The king saw *[the camel with a telescope].
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In our current model, once the complement is linked to
the preposition, the two sentence will become identical,
and one of them will be assigned the wrong structure.
This concern can be addressed through introducing new
variables, which keep track not only of the number of
linked dependents but of their semantic category (e.g.
instrument, animate etc.)

A natural way to extend our model in a different di-
rection is to combine it with the Bayesian PoS tagger
developed in [Peshkin et al., 2003]. Allowing the model
to infer PoS tags and structure simultaneously will be
a significantly better approximation to the parsing task
humans are faced with. Last but not least, we would
like to implement semisupervised learning. One way to
do this would involve starting off with a small labeled
set of sentences at all parsing depths, followed by pre-
senting unparsed whole sentences. The parses suggested
by the model would in their turn be used for learning in
a bootstrap fashion.

Conclusion

In our closing remarks, we would like to emphasize sev-
eral aspects of our parsing model which make it inter-
esting from the perspective of cognitive science. First,
it belongs to a class of models which have been used re-
cently to capture cognitive mechanisms in non-linguistic
domains. Second, it naturally utilizes the overwhelming
“disguised locality” of natural language syntax - in other
words, it benefits from the fact that string-non-local de-
pendencies are tree-local. Third, it is biologically plau-
sible because it has been shown to be implementable in
a neural circuit. And finally, it takes seriously the ques-
tion how the finite amount of brain hardware is capable
of encoding structures of unbounded depth. While there
is much room for improvement, we believe these qualities
make it an important step on the difficult road toward
understanding how the mind emerges from the brain.
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