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Nuclear Physics: Macroscopic Aspects 

W.J. Swiatecki 

Nuclear Science Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, 
Berkeley, California 94720, USA 

ABSTRACT 

A systematic macroscopic, leptodermous approach to nuclear statics and 
dynamics is described, based formally on the assumptions ti '"'""7 0 and b/R << 1, 
where b is the surface diffuseness and R the nuclear radius. The resulting static 
model of shell-corrected nuclear binding energies and deformabilities is accurate 
to better than 1 part in a thousand and yields a firm determination of the 
principal properties of the nuclear fluid. As regards dynamics, the above 
approach suggests that nuclear shape evolutions will often be dominated by 
dissipation, but quantitative comparisons with experimental data are more 
difficult than in the case of statics. In its simplest liquid drop version the model 
exhibits interesting formal connections to the classic astronomical problem of 
rotating gravitating masses. 

1. INTRODUCTION 

The earth, as seen from a spaceship, may be described approximately as a 
sphere. To apply this approximation to the description of the Alps would be 
foolish nonsense. Yet the approximation is useful in the proper context. Using a 
macroscopic approximation in nuclear physics is a little like saying that the earth 
is a sphere. Thus, to pretend that a nucleus is like a macroscopic droplet of 
nuclear matter is only useful if you stand back far enough to be willing to 
disregard shell effects and the quark-gluon structure ofthe nucleons themselves. 
In a sense that means disregarding the most interesting aspects of nuclear 
physics. Still, for some purposes it is useful to think of the earth as a sphere, and 
of a nucleus as a droplet of nuclear matter. 

2. THE LEPTODERMOUS IDEALIZATION 

What is the formal approximation according to which a nucleus becomes a 
droplet of nuclear matter? With some qualifications the answer may be stated as 
the leptodermous idealization [1]. This states that the thickness b of the nuclear 
surface is small compared to the nuclear radius R. More preCisely, that the 



presence of the surface is felt only in a region of limited thickness of order b. The 
surface thickness is determined by the range a of nuclear forces, which is of the 
order of the interparticle spacing, i.e., of the radius constant ro. The radius 
constant is itself of the order of the Fermi wavelength ~F of the most energetic 
nucleon in the nucleus since, for a Fermi gas, ~F = (8/97t)ll3ro. Thus the formal 
small expansion parameter in a leptodermous treatment is the dimensionless 
ratio E, where 

E = b/R oc: aiR oc: ro/R oc: ~FIR (1) 

The smallness of ro/R suggests an expansion of nuclear properties in powers of 
A-113, since R = roAll3. The smallness of~FIR, if understood as implying formally 
that ti ~ 0 (rather than that R ~ oo), leads to a semi-classical approach, such as 
the Thomas-Fermi approximation, analogous to the Thomas-Fermi approximation 
in atomic problems. (This approximation actually goes beyond the leptodermous 
idealization, in that it is useful even if b/R is not small [2,3] .) 

As usual, when one commits oneself to using a certain approximation, two 
questions naturally arise: 

1. What are the consequences? 
2. What are the limitations? 

The second is the more difficult one, since it involves estimating effects beyond 
the idealization in question. Let us then start with the first question. 

3. STATICS 

If a system is truly leptodermous, the deviations from bulk behavior are· 
confined to a thin surface region and one expects an expansion in b/R to be useful. 
Indeed, one can then write down the following expansion for the static energy of 
the system [ 4]: 

Relative Order 
4 

Volume Energy A E = Cl·-7tR3 1 
3 

+c2fdcr Surface Energy b/R A213 

+cgfKdcr Curvature Energy (b/R)2 All3 

+c4 frda Gaussian Curvature Energy (b/R)3 AO 

+c~fK2dcr Squared Curvature Energy (bfR)3 AO 

+corrections that tend to zero as powers of A-113 

+non-local terms non-analytic in b/R, e.g., ofthe form e-Rlh. 

In the above the integrals are over the surface of the system, K is the total 
curvature at a point on the surface (the sum of the reciprocals of the principal 
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radii of curvature, R1 and R2) and r is the Gaussian curvature l/R1R2. The 
quantities c1, ... c~ are constants independent of the system's size and shape (but 
dependent, in general, on the bulk density and composition of the nuclear 
droplet). For standard nuclear matter c1 is proportional to the binding energy per 
particle and c2 is the surface energy per unit area. If the binding energy per 
particle is taken to depend quadratically on the relative neutron excess according 
to the expression -a1 + JI2, where I= (N-Z)/A, if terms beyond the surface energy 
are neglected and if an electrostatic energy of a uniform charge distribution is 
added, one obtains the standard Liquid Drop model of nuclear masses and 
deformabilities. The model has four adjustable parameters: a1, c2, J and ro. 
(Alternatively; one may impose on ro the value deduced from measurements of 
nuclear sizes.) If one wishes to go to the next order in A-113 and J2 consistently, 
i.e., in such a way that all terms of this order are included in the energy, one is 
led to the Droplet Model [5], based on the following hierarchy: 

Order A 

Order 
• A-113 In 

A213 

This self-consistency of the Droplet Model requires that the neutron and proton 
densities should deviate slightly from uniformity in the bulk and that they should 
be bounded by two slightly different effective surfaces. The latter leads to the 
appearance of a neutron skin. It turns out that the Droplet Model has now nine 
adjustable parameters, five more than the Liquid Drop model. The three most 
important of the new parameters are the compressibility coefficient K of nuclear 
matter, a coefficient aa (proportional to cg) determining the curvature correction 
to the surface energy, and a coefficient Q, determining the effective resistance of 
the surface energy against the formation of a neutron skin. In a nuclear mass 
formula this coefficient is found to control the dependence of the surface energy 
term on the neutron excess (the so-called surface symmetry energy). 
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An even more ambitious macroscopic scheme is the Thomas-Fermi model 
[2,3,6,7,8], which not only goes beyond the Droplet Model, but does so with fewer 
parameters (typically six or seven). The price one pays for this is the loss of much 
of the algebraic convenience of the Liquid Drop or Droplet models. 

What are such macroscopic models good for? There are three aspects: 
1. The models are useful in a semi-empirical description of the binding energies 

of nuclei, of nuclear fission barriers (also at high spin) and, more generally, they 
provide the macroscopic part of the deformation energy in dynamical processes 
such as fission or nucleus-nucleus collisions. 

2. The models are a tool for deducing various properties of the nuclear fluid · 
(e.g., volume and surface energies) by fitting the models' adjustable parameters to 
experimental data. 

3. Using the above information, the macroscopic models may then be used to 
estimate the equation of state of nuclear and neutron matter in astrophysical 
applications (neutron stars, supernovae explosions). This is where a macroscopic 
treatment is the only option available: yo:u cannot use a microscopic Hartree-Fock 
theory to discuss 1057 nucleons in a neutron star. 

Where do we stand today? Ground state binding energies are accounted for 
very well by macroscopic models, within the expected deviations due to shell 
effects. The principal properties of the nuclear fluid determined by fits to binding 
energies are [9]: a1 = 16.2 MeV, a2 = 4nr~c2 = 24MeV, J = 33 MeV. When shell 
corrections calculated according to the Strutinsky method are allowed for, the 
RMS deviation between experimental and theoretical binding energies for some 
1650 nuclei is about 0.67 MeV. A good part of this deviation is actually due to the 
limited accuracy of the Strutinsky estimate of shell effects for light nuclei. If the 
deviations for nuclei with N < 65 are left out, the RMS deviation in the remaining 
region is only about 0.45 MeV [9]. This is 0.45 MeV out of a total binding energy 
of some 1000 MeV for a medium heavy nucleus! 

It is interesting that one can do almost as well with the Liquid Drop model, 
without the Droplet Model refinements. But not quite. For some time there has 
been evidence for a surface symmetry energy describable in the Droplet Model 
using a value of the Q parameter equal to about 30 MeV (with considerable 
uncertainty as to the precise value). More recently, evidence has also emergedin 
fits to binding energies for a finite value of the compressibility coefficient K. 
Figure 1, taken from Ref. 9, shows how the fit to ground state masses is improved 
if one goes from a Liquid Drop model (with K = oo) to a Droplet Model with 
K = 240 MeV. (See also Ref. 10.) As regards the third Droplet Model refinement 
associated with the curvature correction to the surface energy, there is an 
interesting puzzle [11]. Fits to binding energies are happiest without a curvature 
correction term proportional to All3, whereas various theoretical estimates 
suggest aaA113, with aa = 10 MeV. How serious this might be is brought out by 
comparing calculated and measured fission barriers. (Because a deformed fission 
saddle point shape has an integrated curvature considerably different from that 
for a sphere, the curvature energy becomes relatively important.) Thus a recent 
refined Thomas-Fermi model, fitted to nuclear ground state masses and sizes, and 
which is characterized by a curvature correction coefficient aa = 11 MeV, when 
applied to fission, gives for 194Hg a shell-corrected barrier of 25 MeV where 
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Figure 1. The top band in each panel shows the difference between measured 
masses of nuclei and droplet model masses (upper panel) and liquid drop model 
masses (lower panel). Lines connect isotopes of a given element. The middle 
bands show the calculated Strutinsky shell corrections. The bottom bands show 
the discrepancies between measured masses and shell-corrected droplet or liquid 
drop masses. For lighter nuclei (with N ~ 64) the discrepancy is due mostly to the 
limited accuracy of the shell correction. For heavier nuclei the improvement 
brought about by the droplet model is largely due to the finite value of the 
compressibility coefficient (K = 240 MeV). From Ref. 9. 

measurements indicate 14 MeV [3]. By contrast, a model which (by construction) 
has no curvature correction (and does not insist on reproducing nuclear sizes) can 
reproduce the measured fission barriers (of some 28 nuclei) to within about 1 MeV 
[9]. Something is not understood here about the curvature correction and fission 
barriers. 

A word about the still higher-order terms at the A o level in the leptodermous 
expansion. As a function of A they are constants. As a function of shape some of 
them have a peculiar behaviour that could make them important despite their 
relative smallness. Thus the term f(1/ R1R2)dcr is proportional to the Euler-

5 



Poincare topological invariant. It is strictly independent of shape, and changes 
only-but then suddenly-when the topology changes. Thus the above term is 47t 
for a single fragment of any shape, 81t for two fragments of any shape, zero for a 
torus, etc. This causes problems if such a term is kept in the binding energy 
formula, which is then used to describe fission. Thus, at the instant of scission, 
this term would jump discontinuously to twice its value! An open problem is how 
such a term really changes in the vicinity of scission, when the diffuseness of the 
nuclear surface is taken into account. There is then no well-defined scission 
point, but a fuzzed out scission neighborhood. We should ask mathematicians to 
work out for us a generalized Euler-Poincare near-invariant for diffuse surfaces. 

Strangely enough there is another term at the AO level with a similar unusual 
behavior. It is the so-called Wigner term, which is often included in binding 
energy formulae. It has the form WI I I , with W == 30 MeV. There is evidence for 
such a term in the measured masses of the lighter nuclei, and there are 
theoretical reasons to expect its presence [5]. The peculiar dependence on I N-Z I 
is a reflection of the fact that the Wigner term has probably to do with the 
number of pairs of nucleons in identical orbits. [Think of a group of Z men and N 
women paired off as dancing partners. The number of couples is N or Z, 
whichever is less, and this can be written as 1/2(N+Z- I N-Z I)]. The Wigner 
term is formally of order A O and, interestingly, the same dependence on shape 
seems to be implied as for the topological AO term: according to the simplest 
model [5] there should be no shape dependence until scission, followed by a 
sudden doubling. Since for a 264Fm nucleus we have I = 0.24, the predicted jump 
at scission would be about 7 MeV. Again one needs a more careful analysis of 
how such a schematic jump is washed out in the case of real nuclei. 

Finally a word about the non-analytic term e-lfE. Far from being an academic 
curiosity it is this type of term which is responsible for the so-called proximity 
interaction between the surfaces of two approaching nuclei, an interaction 
essential for the description of nucleus-nucleus collisions [4,12]. But even in th~ 
case of a single nucleus such a term is expected to be present. Most of it can be 
understood as resulting from a 'proximity' interaction of surface elements on the 
opposite sides of a nucleus. The presence of such a term is nicely illustrated by 
the (exact) formula for the interaction energy E of a prototype leptodermous 
system consisting of a uniform density p inside a sphere of radius R, whose 
elements interact via a Yukawa interaction ofrange a [13]: 

Here a1 is the appropriate volume energy coefficient and A= (4/3)7tR3p. In 
addition to the polynomial in (aiR) there appears a non-analytic term, exponential 
in the ratio of the sphere's diameter to the range of interaction. The retention of a 
term of this general type may be important in semi-empirical mass formulae, but 
the problem needs further study. (Note: the vanishing of the curvature 
correction term in Eq. (2) is not typical of more realistic models.) 

6 



4. A GLOBAL LOOK 

Let us now forget all these higher order terms and go back to the 
incompressible liquid drop with simple surface and electrostatic energies, but 
generalized to incorporate a rotational energy calculated by assuming a common 
angular velocity for the drop's mass elements. There are two dimensionless 
parameters in this idealized gyrostatic problem. They specify the amount of 
charge and the amount of angular momentum on the drop. They may be chosen 
as the conventional fissility parameter x and the rotational parameter y, defined 
as follows: 

(electrostatic energy of spherical configuration) x=---------=.::..---=-____ __;:::...__ __ _ 
2 (surface energy of sphere) 

(rotational energy of spherical configuration) 
y= 

(surface energy of sphere) 

(3) 

One can now pose the following grand problem [14,15]: given a pair of values 
(x,y), discuss the many-dimensional deformation energy landscape for such a 
drop; in particular determine all the stable and unstable configurations of 
equilibrium, i.e., minima, mountain tops, saddle-point passes with various 
degrees of instability, etc.; repeat this exercise for all values of x andy, positive 
and· negative! 

For x in the range 0 to 1 and small y, one is discussing idealized rotating nuclei 
in the periodic table. The results are useful in interpreting fission barriers of 
rotating nuclei and the existence of superdeformed spinning nuclei. See Fig. 2. 
But what does' the rest of the x-y parameter space correspond to? 

Negative x means that the repulsive electrostatic energy has been replaced by 
an attractive gravitational energy. For x = -1/2 the gravitation~! and surface 
energies are equal. For a globe of water this happens when the radius is about 
10 m. So this regime of x-values would correspond, for example, to small 
asteroids when in a molten state. (The number of molecules in such an object is of 
the order of 1033. You can readily verify by a dimensional argument that this is 
the order of the ratio of the electromagnetic to the gravitational coupling constant 
between molecules.) For still larger negative values of x the surface energy 
becomes negligible, and at x ~ --oo we make contact with the classic 19th century 
problem of the equilibrium shapes of rotating, gravitating masses [16]. 

What about negative values of y? At first this sounds silly: a negative 
rotational energy or an imaginary angular momentum? Actually, negative y 
corresponds to nothing more exotic than bubbles in a uniformly rotating liquid. 
The mass of a bubble in relation to the surrounding medium is negative, and an 
air bubble in a sealed glass cylinder filled with water and rotating about its axis 
experiences a negative centrifugal force. With increasing angular. velocity the 
bubble is drawn to the axis of rotation· and assumes stretched-out prolate 
configurations of equilibrium. These configurations are a continuation to 
negative rotational energies of the well-known oblate Plateau shapes of rotating 
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y = 0.09 
X= 0.6 

Figure 2. A pair of equilibrium shapes (ground state, labeled H, and saddle point, 
labeled PP) for a liquid drop with fissility parameter x = 0.6 and rotation 
parameter y = 0, 0.08, 0.09. The case y = 0.09 corresponds approximately to a 
superdeformed rare earth nucleus rotating about the vertical axis with an 
angular momentum of about 851i. In this case the two shapes shown have 
approximate rotational symmetry about the horizontal axis. From Ref. 14. 

globes with surface tension (most conveniently studied in spaceships). When the 
bubble is in a gravitating or uniformly charged liquid the system corresponds to 
negative y and positive or negative x-values. (See Fig. 3) 

Suppose we now calculate, for a given x,y, the set of equilibrium shapes that 
make the energy stationary. Suppose we label the n-th shape with some 
characteristic quantity, say its maximum extension Ln. Considered as functions 
of x and y these quantities Ln(x,y) trace out sets of two-dimensional surfaces. If 
one of the parameters is frozen, for example if y is taken to be zero, we will have 
sets of curves depending on x. Figure 4 shows what some of these curves look like 
for x > 0. When the extra dimension y is added to the plot, the curves become 
families of surfaces that fold and cross in intricate ways. There are useful general 
rules which relate the degrees of instability of the equilibrium shapes that come 
together at the folds or crossings (Poincare's rules of 'exchange of stabilities') [17]. 
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Figure 3. Physical systems corresponding to different regimes in the space of the 
fi.ssility and rotational parameters x andy. From Ref. 15. 
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fissility x, with y held fixed at zero). Figure based on Refs. 25-27 and 
unpublished work. 
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Imagine now that we project the locations of the folds and crossings onto the x-y 
plane. This divides the x,y parameter space into several domains with different 
physical meanings, as illustrated in Fig. 5. [The projections obey (for the most 
part) the canonical rules of "Catastrophe Theory" [18], but some generalization of 
the standard rules appears necessary.] 

This somewhat abstract global ·way of generalizing the rotating nuclear liquid 
drop problem has, among other things, shed new light on the classic discussions of ·. 
idealized astronomical masses studied through the centuries by Newton, Jacobi, 
Riemann, Poincare, Darwin, Jeans, Lyapunov, AppeJ~ and, more recently, by 
Chandrasekhar [16] and others. Figure 6 summarizes what was known until rel-
atively recently about the locations of the most important families o~ astronomical 
equilibrium configurations, and indicates an attempt to relate them to each other 
and to a further set of"ghost families" required to avoid loose ends [15]. 
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Figure 5. The regimes in the space of the fissility and rotational parameters x 
and y where the ground-state equilibrium shapes are oblate or triaxial. With 
increasing angular momentum these shapes disintegrate by loss of stability to a 
triaxial deformation if 0. 73 ~ x < 1, by loss of equilibrium to symmetric necking if 
-0.4 ~ x ~ 0. 73 and by loss of stability to asymmetric necking if -oo :::; x ~ -0.4. 
From Ref. 15 supplemented by Ref. 28. 
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Figure 6. The major semi-axes Rmax of rotating equilibrium shapes of uniform 
gravitating masses, plotted as a function of angular momentum squared. The 
right hand side shows how the conventional picture on the left may be completed 
by using insights gained from a global analysis that includes rotating idealized 
nuclei. A "ghost" is a conventional rotating configuration accompanied by a 
vanishingly small satellite in synchronous orbit. (Ref. 15.) 

5. WHEN IS THE MACROSCOPIC APPROACH JUSTIFIED? 

After this digression, back to the drop of nuclear matter and to the second, more 
difficult question: When is the macroscopic, leptodermous approach justified? 
The crucial approximations are ti --7 0 (no shell effects) and the localization of 
surface effects to a thin layer, b << R. For an ordinary liquid where both the 
range of inter-molecular forces and the molecular mean free paths are short, such 
a localization is well justified. But in the case of a nucleus the situation is more 
subtle. The range of the nuclear force is indeed small, but the mean free path is 
long rather than short. Does that pose a problem? It does indeed, if the nuclear 
mean-field potential is such that the nucleonic motions are integrable or nearly 
integrable. (A dynamical system is integrable if there are as many constants of 
motion as degrees of freedom. Examples: a particle in a rectangular box, a 
spherical or spheroidal box, a harmonic oscillator potential, isotropic or not.) In 
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such cases each particle has encoded in its behavior knowledge of the constants of 
motion that it has to respect. This means knowledge of a global property of the 
potential well. It is then unlikely that the properties of a fluid made up of such 
particles can be described by reference to localized surface conditions. 

At the other extreme from integrable dynamics is chaotic dynamics, 
characterized by exponential sensitivity to initial conditions. In that case there is 
nothing special about any particular shape of the potential, and one shape is as 
good as another so long as it stays away from the subset of near-integrable 
configurations. In that case an averaged, leptodermous, macroscopic treatment 
might be relevant even when the mean free paths are long. These expectations 
are borne out by numerical studies of ·classical or quantal particles in various 
potential wells. As regards the static deformability of such systems the 
macroscopic-leptodermous approximation is found to be extremely good. Large 
deviations are indeed present for assemblies of particles whose dynamics is 
integrable, but even then the average deformability of the assembly is well 
described by the leptodermous expansion [1,19]. 

The net result is that we are now in possession of a semi-empirical des-cription 
of the average static energy and deformability of a nuclear drop, based on the 
leptodermous expansion which, when corrected for shell effects, is accurate to 
better than an MeV - except near scission, where there are questions left 
unanswered. 

6. DYNAMICS 

Now we come to a new problem: can we say something equally simple about 
the dynamic properties of a nuclear drop, when the drop's shape is changing in 
time, as in fission or in nucleus-nucleus collisions? In particular, let me focus on 
the dissipative resistance to shape changes or, equivalently, on the rate of energy 
dissipation that would be expected when a nuclear drop is changing its shape at a 
given rate. Let us again make the following idealizations: macroscopic (l'i --7 0), 
leptodermous (biR<<1), together with the assumption oflong mean free paths and 
chaotic nucleonic motions. Taken literally, these assumptions mean that we are 
dealing with a gas of independent point particles in the classical limit, moving 
chaotically in a slightly diffuse potential well. The well is now made to change its 
shape (at fixed volume) and the questions is: what is the dissipative resistance 
against this change or, equivalently, at what rate is the gas being heated up? 

Since the potential well is flat in the bulk, the only transfer of energy from the 
wall motions to the particles takes place in a thin surface region. (This remains 
true even if the particles are quantized!) This immediately suggests that one 
should be able to write down the rate at which the gas is being heated up, d.E/dt, 
as an expansion in b/R, analogous to the leptodermous expansion of E itself. 

The result is the following dynamic analogue of the static leptodermous 
expansion [20,21]: 
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dE= k 1 (volume integral)== 0 
dt 

+k2fn2dcr Wall formula 

+ k3 f D. 2Kdcr 

+k4fn.2rdcr 

+k4fn2K2dcr 

+ k4 f (grad D. )
2 

dcr 

Curvature correction 

Higher-order corrections 

+corrections that tend to zero as powers of A-113 

+non-local (correlation) terms. 

Relative Order 

b/R 

(bJR)2 

(bJR)3 

A213 

A113 

In the above, D. specifies the normal speed c;>f the deforming surface at the point in 
question, and grad D. is the two-dimensional gradient of D. considered as a 
function of position on the surface. The leading term in the leptodermous 
expansion is the "wall formula" for dissipation. The coefficient k2 is the nuclear 
mass density p times the mean nucleonic speed v 

k2 = pv = (27 I 321t)(1t I 3)113 (ll I r6) == 1.0 x 10-22 MeV sec fm-4 . (4) 

Estimates of k3 suggest k3/k2 == 1 fm. These values follow "from first principles" in 
the idealized model specified earlier. One could, however, regard the coefficients 
as (somewhat) adjustable parameters, in analogy with the semi-empirical 
approach to nuclear binding energies. 

The numerical value of k2 turns out to be sU:ch that in many cases nuclear 
dynamics would appear to be dominated by dissipation, i.e., inertial terms in the 
equation of motion should be negligible [22]. Let us then combine the lowest 
order (liquid drop) potential energy with the lowest order dissipation term (the 
wall formula) to obtain an equation of motion for the way the shape of an 
idealized nucleus would be expected to change with time. Imagine the 
displacement of the surface in time ()t to be specified by on. The energy dissipated 
is 

<>E = dE <>t = pvf ilondcr . 
dt 

The change in the sum of electrostatic and surface energies is 

() (Potential Energy) = Pe f <j>Ondcr + yf KOndcr , 
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where Pe is the charge density, cp the electrostatic potential on the surface and 
'Y(=c2) is the surface energy per unit area. (I have made use of well-known 
expressions from electrostatics and analytical geometry of surfaces.) By 
conservation of energy the sum of Eqs. (5) and (6) should be zero for volume 
preserving deformations. This implies that 

pv:ri + Pe«P + )'K = constant. (7) 

Taking the surface 'a'verage of this equation determines the constant as Pe<i> + "{K. 
(Bars denote surface averages. The surface average of il is zero by volume 
conservation.) There follows a delightfully simple equation of motion 

dn 
-=P/pv, 
dt 

(8) 

where P = Pe ((j)- cp) + (K- K) is the pressure excess at a point on the surface due to 
the imbalance between electric and surface tension forces, and pv is the constant 
given by Eq. (4). 

This type of equation of motion, generalized for the presence of overall 
translations or 'drifts' and for the presence of necked-in shapes (when a 'window 
dissipation' appears), has been used in numerous studies of fission and nucleus
nucleus collisions [22,24]. Figure 7 shows the kinetic energy released in fission 
for nuclei ranging from medium to heavy. The calculation-without the 
adjustment of any parameters-reproduces the measurements fairly well. The 
upper curve in Fig. 7 shows what happens when the dissipation is switched off, 
and the lower curve the result of a calculation with a large viscosity of the 
conventional ('two-body') kind, appropriate for fluids consisting of particles with a 
mean free path short rather than long compared to the size of the system. By 
adjusting such a viscosity arbitrarily one could reproduce the measurements, but 
a short mean-free-path assumption is not appropriate at low nuclear 
temperatures. Figures 8 and 9 show other comparisons between the one-body 
(i.e., wall formula) dissipation and the two-body viscosity applied to the study of 
ternary fission. 

The idealized dynamics represented by Eq. (8) (with refinements for drifts and 
constrictions) has also been applied to nucleus-nucleus collisions [23,24]. In 
particular, it has been used to study what happens when for two sufficiently 
heavy nuclei the Coulomb repulsion at contact is so large that the nuclei do not 
want to fuse and, after a period of amalgamation as a binary or 'composite' 
system, they reseparate. In such cases an extra push over and above the Coulomb 
barrier is required to form a compound nucleus. The strength of this extra push 
and the rate at which it grows with increasing size of the colliding nuclei should 
reflect.the strength of the dissipative forces (which tend to reduce the efficacy of 
the extra collision energy in inducing fusion). Of the many comparisons between 
experiment and the macroscopic dynamic theory outlined above I have chosen 
Figs. 10 and 11. The former confirms the existence of the extra push 
phenomenon, but suggests that the idealized calculations, as they stand, predict a 
steeper increase of the extra push than is observed experimentally and that shell 
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Figure 7. Fission fragment kinetic energies are compared with predictions of a 
liquid drop model incorporating a very large conventional (two-body) viscosity or 
one-body dissipation. (Ref. 22.) 

effects play an important role. Figure 11, taken from the extensive comparisons 
of experimental data with the one-body dissipation theory in Ref. 24, suggests 
that the rate of mass transfer between two unequal nuclei in contact is roughly 
that predicted by theory. See also Ref. 23. 

7. SUMMARY 

I described an extreme macroscopic, leptodermous approach which considers 
the nucleus to be a droplet of a nuclear fluid. All structure effects are 
disregarded, or incorporated later as separate contributions. There are two 
aspects to the problem: static and dynamic. The static macroscopic model based 
on the leptodermous expansion with adjustable parameters is extremely 
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Figure 8. The difference between conventional (two-body) viscosity and one-body 
dissipation is illustrated by a liquid drop study of a hypothetical super-heavy 
nucleus. The conventional viscosity coefficient of 0.02 terapoise was adjusted to 
reproduce fission-fragment kinetic energies. Note the short time scale and the 
prediction of a well-developed third fragment at scission in the case of fission with 
conventional viscosity. (Ref. 29.) · 

successful. It describes shell-corrected nuclear deformation energies to within an 
MeV or better, except near scission, where there are problems. Using this model 
the major bulk and surface properties of the nuclear fluid have been determined, 
and estimates of secondary (droplet model) refinements have become available, 
except for the curvature correction coefficient, which remains a puzzle. 

The dynamic macroscopic model makes an interesting qualitative prediction 
about nuclear dynamics being dominated by dissipation when the nucleonic 
motions are chaotic. When used in its extreme idealized form, without the 
adjustment of any parameters, the model is sometimes reasonably successful, but 
in one instance at least there· is an indication that the unadorned wall formula 
may be overestimating the dissipation in nucleus-nucleus collisions. 

In contrast to the statics, where the Strutinsky method has provided a good 
estimate of shell effects, the incorporation of quanta! and shell effects into the 
macroscopic dynamics-in a simple way-has not progressed very far. 

One might, in fact, say that the outstanding challenge is to develop a 
reasonably simple macroscopic-microscopic theory of nuclear dynamics analogous 
to the similar theory of nuclear statics. 
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Figure 9. Using conventional viscosity one would predict that nuclei near the end 
of the periodic table would typically fission with a measurable amount of matter 
released between the main fragments at scission. With one-body dissipation 
ternary fission would not occur until much higher masses. (Ref. 29.) 
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Figure 10. A schematic liquid drop model with one-body dissipation predicts that 
when a certain 'mean fissility' Xm exceeds a value near 0.72 a rapidly increasing 
'extra push' energy in excess of the Coulomb barrier is needed to make the nuclei 
fuse. Experimental data appear to deviate significantly from this prediction. (For 
x ~ 0. 7 measurements, shown schematically as dots, are consistent with zero 
extra push.) 
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Figure 11. When the angle of rotation in a quasi-fission reaction is used as a clock 
to measure the rate at which mass flows from a U target into various projectiles, a 
time scale may be established for this type of asymmetric collective degree of 
freedom. The results are in semi-quantitative agreement with a liquid drop 
model incorporating one-body dissipation. (Ref. 24.) 
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