Lawrence Berkeley National Laboratory

Recent Work

Title

TOP QUARK AND LIGHT HIGGS SCALAR MASS BOUNDS IN NO-SCALE SUPERGRAVITY

Permalink https://escholarship.org/uc/item/5v21w973

Author Roy, P.

Publication Date 1986-08-01

BC-33 080

Lawrence Berkeley Laboratory

UNIVERSITY OF CALIFORNIA

RECEIVED

Physics Division

BERKELEY LABORATORY

OCT 1 3 1986

LIBRARY AND DOCUMENTS SECTION

Presented at the XXIII International Conference on High Energy Physics, Berkeley, CA, July 16-23, 1986

TOP QUARK AND LIGHT HIGGS SCALAR MASS BOUNDS IN NO-SCALE SUPERGRAVITY

P. Roy

August 1986

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098

DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.

TOP QUARK AND LIGHT HIGGS SCALAR MASS BOUNDS IN NO-SCALE SUPERGRAVITY ¹²

Probir Roy

Lawrence Berkeley Laboratory University of California Berkeley, California 94720 and Tata Institute of Fundamental Research

Bombay, India³

No-scale supergavity theories with the minimal low-energy particle content are shown to become untenable for a top quark mass m_T much less than 40 GeV. For $m_T < 55$ GeV, a stringent upper bound operates on the mass of the lowestlying Higgs scalar. Further, the Higgs pseudoscalar is constrained to be nearly a quarter as massive as the gluino.

¹This work was supported by the Director, Office of Energy Research, Office of High Energy and Nuclear Physics, Division of High Energy Physics of the U.S. Department of Energy under Contract DE-AC03-76SF00098.

²Presented at the Supersymmetry and Supergravity session of the 23rd International Conference on High Energy Physics, Berkeley, California, July 16-23, 1986.

³Permanent address.

TOP QUARK AND LIGHT HIGGS SCALAR MASS BOUNDS IN NO-SCALE SUPERGRAVITY

Probir Roy

Lawrence Berkeley Laboratory University of California Berkeley, CA 94720 and Tata Institute of Fundamental Research Bombay, India[•]

No-scale supergravity theories with the minimal low-energy particle content are shown to become untenable for a top quark mass m_T much less than 40 GeV. For $m_T < 55$ GeV, a stringent upper bound operates on the mass of the lowest-lying Higgs scalar. Further, the Higgs pseudoscalar is constrained to be nearly a quarter as massive as the gluino.

No-scale N = 1 supergravity theories¹ hold a lot of interest these days. Such a theory is likely to be the effective low-energy limit²) of the heterotic superstring³). The scalar potential in this type of a theory is flat. That is ensured by a noncompact $SU(n, 1)/SU(n) \times U(1)$ symmetry in the Kähler sector. Consequently, the Kähler potential is characterized by a particular logarithmic form, specifically $-3\ln[f(z) + f^*(z) + g(\phi^{\dagger i}, \phi^j)]$, where z is a generic gauge singlet scalar and ϕ^{j} 's are n-1 gauge nonsinglet ones, f and g being analytic and real functions, respectively. The gravitino mass gets decoupled from the scale of global supersymmetry breaking at laboratory energies. The latter is seeded by a universal gaugino mass M at the grand unifying scale M_{GUT} . Since such theories have difficulties⁴⁾ admitting a fourth generation, I shall consider only no-scale supergravity theories with the minimal low-energy particle content — namely, three fermionic generations, the 3-2-1 gauge bosons, two Higgs doublets and superpartners for all.

An important question concerns the requirements of stability and electroweak symmetry breadkown in the light Higgs sector. These tightly constrain the squared mass parameters μ_i^2 defined through the quadratic part of the Higgs potential in terms of the $Y = \pm 1$ doublets ϕ_1, ϕ_1 as

$$V_H^{(2)} = \left(\phi_1 \ \phi_{\uparrow}^*\right)^* \left(\begin{array}{c} \mu_1^2 \ -\mu_3^2 \\ -\mu_3^2 \ \mu_2^2 \end{array}\right) \left(\begin{array}{c} \phi_1 \\ \phi_{\uparrow}^* \end{array}\right)$$

Radiative effects make $\mu_i^2 \equiv \mu_i^2(t)$, t being $\ln(M_{GUT}^2Q^{-2})$ with Q as the energy scale. These functions of t evolve⁵ to $t_W = \ln(M_{GUT}^2M_W^{-2})$ * Permanent address. from their boundary values at t = 0. Extrapolations, based on the observed values of the Weinberg angle and the rationalized fine structure constant, imply $M_{GUT} \sim 3.2 \times 10^{16}$ GeV and $t_W \simeq$ 66.95. The boundary conditions at t = 0 are, however, determined from the flavor-independence and the universality of gravitational interactions in the underlying supergravity theory. When the latter is of the no-scale type, all global supersymmetry breaking constants — except M — vanish at t = 0. Consequently, very stringent experimentally verifiable restrictions⁶ emerge. In effect, these constraints provide laboratory tests of the type of theories considered here.

Recall that, in the simplest softly broken supersymmetric extension of the standard 3-2-1 theory, the matter fields of the latter are extended into chiral superfields. Thus

$$\begin{pmatrix} u \\ d \end{pmatrix}_{iL} = q_i \rightarrow \hat{Q}_i \quad \begin{pmatrix} \nu \\ e \end{pmatrix}_{iL} = \ell_i \rightarrow \hat{L}_i$$

$$u_{iL}{}^C \rightarrow \hat{U}_i^C \qquad e_{iL}{}^C \rightarrow \hat{E}_i^C$$

$$d_{iL}{}^C \rightarrow \hat{D}_i^C \qquad \phi_{\uparrow} \rightarrow \hat{\Phi}_{\uparrow}$$

$$\phi_{\downarrow} \rightarrow \hat{\Phi}_{\downarrow}$$

The general form of the superpotential is

$$f = \lambda_U^{ij} \hat{Q}_i \hat{U}_j^C \hat{\Phi}_{\dagger} + \lambda_D^{ij} \hat{Q}_i \hat{D}_j^C \hat{\Phi}_{\downarrow} + \lambda_E^{ij} \hat{L}_i \hat{E}_j^C \hat{\Phi}_{\downarrow} + \mu \hat{\Phi}_{\dagger} \cdot \hat{\Phi}_{\downarrow}$$
(1)

where λ 's are Yukawa couplings and μ is a Higgs mass-mixing parameter. The soft supersymmetry breaking part of the Lagrangian is characterized by masses M_a of the gaugino fields λ_a , scalar masses m_{x_i} as well as mass parameters μ_3 and \bar{A}^{ij}

-1-

$$-\frac{1}{2}\sum_{a}M_{a}\bar{\lambda}_{a}\lambda_{a} + \mu_{3}^{2}(\phi_{\uparrow}\cdot\phi_{\downarrow}+h.c.) - \sum_{i}m_{s_{i}}^{2}|z_{i}|^{2}$$
$$-[(\lambda_{U}\bar{A}_{U})^{ij}Q_{i}U_{i}^{C}\phi_{\uparrow} + (\lambda_{D}\bar{A}_{D})^{ij}Q_{i}D_{i}^{C}\phi_{\downarrow}$$
$$+(\lambda_{E}\bar{A}_{E})^{ij}L_{i}E_{j}^{C}\phi_{\downarrow}] \qquad (2)$$

Returning to the Higgs potential, let me recapitulate the conditions⁷ imposed by minimization and stability, i.e.,

$$\cot^{-1} \frac{\left\langle \phi_{1}^{0} \right\rangle}{\left\langle \phi_{1}^{0} \right\rangle} \equiv \theta = \sin^{-1} \frac{2\mu_{3W}^{2}}{\mu_{1W}^{2} + \mu_{2W}^{2}} \quad real, \quad (3a)$$

$$\frac{1}{2}M_Z^2 = -\mu_{1W}^2 + (\mu_{1W}^2 - \mu_{2W}^2)\frac{\cos^2\theta}{\cos^2\theta - \sin^2\theta} \quad (3b)$$

and that required by electroweak symmetry breadkown, namely

$$\det \mu_{Wij}^2 \equiv \mu_{1W}^2 \mu_{2W}^2 - \mu_{3W}^4 < 0 \tag{4}$$

The four physical Higgs masses $m_{\pm,a,b,c}$ obey the constraints⁷

$$m_{e}^{2} = \mu_{1W}^{2} + \mu_{2W}^{2} = m_{e}^{2} + m_{b}^{2} - m_{S}^{2} = m_{\pm}^{2} - M_{W}^{2}$$
$$m_{b} \ge M_{S} \mid \cos 2\theta \mid \ge M_{S} \mid (m_{1W}^{2} - \mu_{2W}^{2})(\mu_{1W}^{2} + \mu_{2W}^{2})^{-1} \mid$$
$$m_{e} \le \max(M_{S}, m_{e})$$

The boundary conditions at t = 0 are $m_{x_i}(0) = \overline{A}^{ij}(0) = \mu_{30}^2 = 0$, $\mu_{10}^2 = \mu_{20}^2 = \mu_0^2$, $M_a(0) = M$ and $\overline{\alpha}_{2,3}(0) = 5/3\overline{\alpha}_1(0) = \overline{\alpha}(0) \simeq 1/96\pi$. Renormalization group evolution⁸) makes μ_1^2 and μ_2^2 increase and decrease with t, respectively, the main driving term being $\lambda_T = \lambda_U^{35}$. Thus (3b) implies $1/2 < \cos\theta < 1$. Moreover, for $m_T < 55 \ GeV$, the Alvarez-Gaumé, Polchinski, Wise analysis⁹ showing that $\langle \phi_1^0 \rangle \sim \langle \phi_1^0 \rangle$ and $1/2 \sim \cos^2 \theta$ holds so that all Yukawa couplings except $Y_T = (\lambda_T/4\pi)^2$ can be safely neglected in the 1loop evolution equations. The latter are shown in Table 1. These are now analytically integrable. The solutions can best be expressed in terms of certain evolution functions displayed in Table 2.

Recall first that $\tilde{\alpha}_{aW}\tilde{\alpha}_{a0}^{-1} = M_{aW}M^{-1} = (1 + \tilde{\alpha}_{a0}b_at_W)^{-1}$ where the b_a 's are given in Table 1. The other relevant analytic solutions to the 1-loop renormalization group equations at $t = t_W$ may be written in terms of the evolution functions of the table and the dimensionless ratio $3F_W(2\sqrt{2}\pi^2 E_W \cos^2\theta)^{-1}G_F m_T^2 = \beta(\theta).$

$$\begin{aligned} &\frac{d}{dt}(M_a\tilde{\alpha}_a^{-1}) = 0, \frac{d}{dt}\tilde{\alpha}_a^{-1} = b_a, \\ &(b_1, b_2, b_3,) = (-3, 1, 11) \\ &(\frac{d}{dt} + 6Y_T - \frac{16}{3}\tilde{\alpha}_3 - 3\tilde{\alpha}_2 - \frac{13}{9}\tilde{\alpha}_1)Y_T = 0 \\ &(\frac{d}{dt} + 3Y_T - 3\tilde{\alpha}_2 - \tilde{\alpha}_1)\mu^2 = 0 \\ &\frac{d}{dt}\mu_1^2 = \frac{d}{dt}\mu^2 + 3\tilde{\alpha}_2M_2^2 + \tilde{\alpha}_1M_1^2 \\ &(\frac{d}{dt} + 6Y_T)(\mu_1^2 - \mu_2^2) = 3Y_T\bar{A}_T^2 + Y_T \cdot \\ &\cdot \left[\frac{16}{3}(M_3^2 - M^2) + 9(M^2 - M_2^2) + \frac{13}{33}(M^2 - M_1^2)\right] \\ &(\frac{d}{dt} + \frac{3}{2}Y_T - \frac{3}{2}\tilde{\alpha}_2 - \frac{1}{2}\tilde{\alpha}_1)\mu_3^2 \\ &= \mu(3\bar{A}_T - 3\tilde{\alpha}_2M_2 - \tilde{\alpha}_1M_1) \\ &(\frac{d}{dt} + 6Y_T)\bar{A}_T = \frac{16}{3}\tilde{\alpha}_3M_3 + 3\tilde{\alpha}_2M_2 + \frac{13}{9}\tilde{\alpha}_1M_1 \end{aligned}$$

$$\begin{split} E(t) &= \left(1 - \frac{t}{32\pi}\right)^{-\frac{16}{9}} \left(1 - \frac{t}{96\pi}\right)^3 \left(1 + 11\frac{t}{160\pi}\right)^{\frac{13}{99}} \\ F(t) &= \int_0^t d\tau E(\tau), \\ H(t) &= \frac{t}{E} \frac{dE}{dt}, \ \ \dot{H}(t) &= FH - tE + F \\ H^{i}(t) &= \frac{16}{3} \left[\left(1 - \frac{t}{32\pi}\right)^{-2} - 1 \right] + 6 \left[1 - \left(1 + \frac{t}{96\pi}\right)^{-2} \right] \\ - \frac{2}{9} \left[1 + 11\frac{t}{160\pi}\right)^{-2} \right] \\ \dot{F}(t) &= \frac{8}{9} \left[\left(1 - \frac{t}{32\pi}\right)^2 - 1 \right] + \frac{8}{99} \left[1 - \left(1 + 11\frac{t}{160\pi}\right)^2 \right] \\ g(t) &= \frac{3}{2} \left[1 - \left(1 + \frac{t}{96\pi}\right)^{-2} \right] + \frac{1}{22} \left[1 - \left(1 + 11\frac{t}{160\pi}\right)^{-2} \right] \\ G(t) &= \int_0^t d\tau E(\tau) [\ddot{F}(\tau) - \frac{1}{6}H'(\tau)] \\ - \frac{1}{6F} [4FH^2 - 4H\ddot{H} - 2\int_0^t d\tau E(\tau)H^2(\tau)] \\ K(t) &= H(H - \frac{R}{F}) + \frac{3}{2}G, \ L(t) &= \left(H - \frac{R}{F}\right)^2, \\ S(t) &= \frac{t}{32\pi} \left[1 + \frac{t}{96\pi}\right)^{-1} + \frac{1}{5} \left(1 + 11\frac{t}{160\pi}\right)^{-1} \right] \end{split}$$

Table 2: Useful evolution functions

$$\mu_{W}^{2} = \mu_{0}^{2} \left(1 + \frac{t_{W}}{96\pi}\right)^{2} \left(1 + 11\frac{t_{W}}{160\pi}\right)^{\frac{1}{11}} \left(1 - \beta(\theta)\right)^{\frac{1}{2}}$$

$$\mu_{1W}^{2} = \mu_{W}^{2} + g_{W}M^{2} \qquad (5)$$

$$\mu_{2W}^{2} = \mu_{1W}^{2} - \beta(\theta)(K_{W} - \frac{1}{2}L_{W}\beta(\theta))M^{2}$$

$$\mu_{3W}^{2} = \left\{\frac{1}{2}\beta(\theta)\left(\frac{t_{W}E_{W}}{F_{W}} - 1\right) - S_{W}\right\}M\mu_{W}$$

The substitution of μ_{iW}^2 from (5) into inequality (3), together with the numerical evolution of the evolution constants up to the third decimal place, leads to

$$\eta^{2} + (0.707 - 0.223 \frac{w}{\cos^{2} \theta} + 0.002 \frac{w^{2}}{\cos^{4} \theta})\eta + 0.284 - 0.149 \frac{w}{\cos^{2} \theta} + 0.002 \frac{w^{2}}{\cos^{4} \theta} < 0 \quad (6)$$

In (6) $\eta \equiv M^{-2}\mu_W^2$ and $w = (m_T/40 \ GeV)^2$. For $1/2 < \cos^2\theta$ and $m_T < 55 \ GeV$, the real non-negativity at η turns out to necessarily imply the negativity of the η -independent part in (6). (Note that a vanishing μ_0 , and hence μ_W , as suggested by the dimensional reduction²) of superstring theories, yields this result directly.) The consequences are twofold:

(1) $0.5 < \cos^2 \theta < 0.5085w$

i.e.,
$$\frac{m_1}{M_g} < |\cos 2\theta| < 1.017 \left(\frac{m_T}{40GeV}\right)^2 - 1$$
 (7)

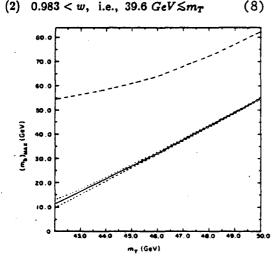


Figure 1: Plot of the upper bound on m_b against m_T in no-scale theories (solid curve, with the dotted band representing the estimated error from radiative corrections). The dashed curve is the bound (Drees et al.¹⁰) for more general N = 1 supergravity theories.

Figure 1 shows the upper bound (7) plotted against m_T in comparison with the earlier weaker result¹⁰ for more general N = 1 supergravity theories. For $m_T < 42$ GeV, the error due to radiative corrections (dotted band) becomes quite large. As m_T goes below 39.6 GeV, the bound becomes imaginary. On the other side, it saturates at unity as m_T exceeds⁹ 55 GeV. The pseudoscalar mass is given by

$$m_c^2 = \mu_{1W}^2 + \mu_{2W}^2$$

= $M^2 (2\eta + 1.066 - 0.279w \cos^{-2} \theta$
+ $0.004w^2 \cos^{-4} \theta$

with η varying between 0 and $\eta_+(\cos\theta, w)$ which is the higher root of the quadratic equation corresponding to (6) being an equality. For $m_T < 50 \ GeV$, the absolute upper bound on η is $\eta_+(0.15, 1.25) = 0.097$ so that one finds by use of $m^2 \simeq 0.112m_j^2$ that $0.21m_j < m_c < 0.28m_j$, where m_j is the gluino mass.

It is my conclusion that no-scale N = 1 supergravity theories with the <u>minimal</u> low-energy particle content face rather critical experimental tests in the near future through (7) and (8).

This work was done in collaboration with P. Majumdar. I thank Mary K. Gaillard for the hospitality of the Theory Group at LBL where this talk was written up.

REFERENCES

E. Cremmer et al., Phys. Lett. <u>133B</u> (1983)
 61; N.P. Chang et al., Phys. Rev. Lett. <u>51</u> (1983) 327; J. Ellis et al., Phys. Lett. <u>134B</u> (1984) 429 and Nucl. Phys. <u>B241</u> (1984)
 406, <u>B247</u> (1984) 373.

 $2\pi_{\rm A}$

a.

4

- [2] E. Witten, Phys. Lett. <u>155B</u> (1985) 151.
- [3] D. Gross et al., Phys. Rev. Lett. <u>52</u> (1985)
 502.
- [4] K. Enqvist et al., Phys. Lett. <u>167B</u> (1986)
 73.
- [5] For any function f(t) we use f₀ and f_w to mean f(0) and f(t_w), respectively.
- [6] P. Majumdar and P. Roy, to be published in Phys. Rev. D.
- K. Inoue et al., Prog. Theor. Phys. <u>67</u> (1982) 1889, <u>68</u> (1982) 927; R. Flores and M. Sher, Ann. Phys. (N.Y.) <u>148</u> (1983) 95.
- [8] K. Inoue et al., Prog. Theor. Phys. <u>67</u> (1982) 1889; L. Ibañez et al., Nucl. Phys. <u>B233</u> (1984) 511; <u>B256</u> (1985) 218.
- [9] L. Alvarez-Gaumé et al., Nucl. Phys. <u>B221</u> (1983) 495.
- [10] P. Majumdar and P. Roy, Phys. Rev. <u>D30</u> (1984) 2432; <u>33</u> (1986) 2674.; P. Roy, in *Design and Utilization of the Superconducting Supercollider* (Snowmass 1984, eds R. Donaldson and J.G. Morfin) p.807; H.P. Nilles and M. Nusbaumer, Phys. Lett. <u>145B</u> (1984) 73; M. Drees et al., *ibid.* <u>159B</u> (1985) 118.; E. Reya, Phys. Rev. <u>D33</u> (1986) 773.

-3-

This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

LAWRENCE BERKELEY LABORATORY TECHNICAL INFORMATION DEPARTMENT UNIVERSITY OF CALIFORNIA BERKELEY, CALIFORNIA 94720

