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REVIEW
 CURRENT
OPINION Clonal hematopoiesis driven by DNMT3A and TET2

mutations: role in monocyte and macrophage
biology and atherosclerotic cardiovascular disease
1065-6251 Copyright � 2021 The A
a b a c
Isidoro Cobo , Tiffany Tanaka , Christopher K. Glass , and Calvin Yeang
Purpose of review

Clonal hematopoiesis of indeterminate potential (CHIP), defined by the presence of somatic mutations in
hematopoietic cells, is associated with advanced age and increased mortality due to cardiovascular
disease. Gene mutations in DNMT3A and TET2 are the most frequently identified variants among patients
with CHIP and provide selective advantage that spurs clonal expansion and myeloid skewing. Although
DNMT3A and TET2 appear to have opposing enzymatic influence on DNA methylation, mounting data has
characterized convergent inflammatory pathways, providing insights to how CHIP may mediate
atherosclerotic cardiovascular disease (ASCVD).

Recent findings

We review a multitude of studies that characterize aberrant inflammatory signaling as result of DNMT3A
and TET2 deficiency in monocytes and macrophages, immune cells with prominent roles in atherosclerosis.
Although specific DNA methylation signatures associated with these known epigenetic regulators have
been identified, many studies have also characterized diverse modulatory functions of DNTM3A and TET2
that urge cell and context-specific experimental studies to further define how DNMT3A and TET2 may
nonenzymatically activate inflammatory pathways with clinically meaningful consequences.

Summary

CHIP, common in elderly individuals, provides an opportunity understand and potentially modify age-
related chronic inflammatory ASCVD risk.
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INTRODUCTION

Age-related clonal hematopoiesis is a
recently identified risk factor for
atherosclerotic cardiovascular disease

Despite significant advances in contemporary ther-
apies targeted at traditional risk factors for athero-
sclerotic cardiovascular disease (ASCVD), it remains
the main cause of morbidity and mortality in west-
ern societies [1,2]. With an expanding elderly pop-
ulation worldwide, age, a potent and independent
risk factor for ASCVD [3–5], accounts partly for the
global burden of disease. In addition, ASCVD risk
modification is limited by an incomplete under-
standing of how to treat nontraditional risk factors
such as chronic inflammation safely and effectively
[6]. Through an increasing body of research over the
past decade, somatic mutations found in hemato-
poietic cells, termed clonal hematopoiesis of inde-
terminate potential (CHIP), has emerged as an
uthor(s). Published by Wolters Kluwe
age-related ASCVD risk factor that also offers impor-
tant insights toward clinically relevant pathways
mediating chronic inflammation.

Somatic mutations are an inevitable consequence
of ageing and contribute to cellular heterogeneity in
r Health, Inc. www.co-hematology.com
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KEY POINTS

� Clonal hematopoiesis, driven by somatic mutations and
increasingly prevalent with age, is an independent risk
factor for ASCVD.

� The majority of mutations associated with clonal hema-
topoiesis are found in DNMT3A and TET2, despite the
antagonistic biochemical functions of their encoded proteins.

� DNMT3A and TET2 converge in regulation of pro-
inflammatory pathways in monocytes and
macrophages, cell types highly relevant to the
development and progression of atherosclerosis.

Myeloid biology
tissues [7–11]. These mutations are particularly appar-
ent in highly proliferative tissues and tissues exposed
to environmental or chemical factors such as the
hematopoietic system, skin and esophagus [12–15]
but is also observed in tissues with low-proliferative
rate like the pancreas [16–18]. Somatic mutations
conveying a selective advantage and subsequent
clonal expansion of hematopoietic cells in appar-
ently healthy individuals is known as CHIP. The
prevalence of CHIP increases with age with more
than 15–20% of septuagenarians affected. Although
mutations in more than 100 genes are found in CHIP,
several of the most commonly mutated genes associ-
ated with ASCVD play roles as epigenetic or transcrip-
tional regulators involved in diverse aspects of
cellular development and function, including
DNMT3A, TET2, ASXL1 and JAK2 [19–26]. Although
the overlap between mutations associated with
hematologic malignancies and CHIP had been long
appreciated, the indeterminant potential of CHIP
reflected the low (0.5–1%/year) risk for developing
a hematologic malignancy particularly for those with
DNMT3A, TET2 and ASXL1. Long-term follow-up of
patients with CHIP revealed an increased risk in
mortality that was largely due to CVD [26].

Both systemic and local inflammation have
important roles in the development and progression
of atherosclerosis, resulting in risk for myocardial
infarction (MI), ischemic heart failure, stroke, and
peripheral arterial disease [6,27]. Monocytes and mac-
rophages are key mediators of these disease processes.
Activation of monocytes in the setting of ASCVD risk
factors lead to their extravasation into the arterial
intima, where these cells interact with modified and
retained apolipoprotein B (apoB) containing lipopro-
teins and differentiate into macrophage foam cells.
Foam cells secrete various cytokines and chemokines
that perpetuates arterial inflammation and disease
progression, but also destabilize the plaque and pro-
mote thrombotic events associated with adverse clini-
cal outcomes [28,29].
2 www.co-hematology.com
A major focus of inquiry is to understand how
CHIP, resulting from somatic mutations in more
than 100 functionally diverse genes and affecting
only a fraction of hematopoietic cells may contrib-
ute to inflammation and atherosclerosis. Here, we
consider this question with respect to DNMT3A and
TET2, which together account for approximately
50% of the mutations associated with CHIP in
ASCVD patients. DNMT3A and TET2 are of particu-
lar interest because they possess antagonistic enzy-
matic activities. DNMT3A is an enzyme that
catalyzes de novo DNA methylation of cytosine, a
modification often associated with gene silencing.
Conversely, TET2 encodes a methyl cytosine dioxy-
genase that initiates a sequence of reactions leading
to cytosine demethylation. If loss of the enzymatic
activities of DNMT3A or TET2 were the critical
determinant of increased risk of ASCVD, a common
phenotype would be expected to be due to effects on
different genes and potentially different cell types,
which nevertheless have convergent effects on
ASCVD pathogenesis. Alternatively, the apparent
paradoxical contribution of DNTM3A and TET2
mutations in CHIP raises the possibility of an alter-
native mechanism that is independent in changes in
DNA methylation. Moreover, despite displaying
antagonistic enzymatic activities, loss-of-function
of DNMT3A or TET2 in murine models show over-
lapping phenotypes in terms of increased Hemato-
poietic stem cell (HSC) fitness [30] suggesting a
common program regulated by DNMT3A and TET2.
Role of DNMT3A and TET2 in the
development of clonal hematopoiesis of
indeterminate potential and atherosclerosis

DNMT3A and TET2 are the most commonly identi-
fied mutated genes associated with CHIP [20,22–
24]. Both genes are widely expressed in hematopoi-
etic stem and progenitor cells (HSPC) and have been
implicated in their expansion and differentiation.
Mutations in these genes can bestow a selective
advantage to affected HSPCs resulting in clonal
expansion. DNMT3A was shown to repress the stem
cell program of HSC and activate their transcrip-
tional differentiation program [31,32]. In addition,
DNMT3A has high expression in macrophages [33].
TET2 expression is higher during bone marrow-
derived macrophages (BMDM) differentiation [34]
and TET2 regulates osteoclasts differentiation by
interacting with RUNX1 [35] indicating a role dur-
ing differentiation of myeloid cells.

Consistent with a causal role of DNMT3A muta-
tions in CHIP and ASCVD, murine HSPCs exhibiting
heterozygotic DNMT3A loss of function develop a
competitive advantage and myeloid skewing over
Volume 29 � Number 1 � January 2022



Clonal hematopoiesis driven by DNMT3A and TET2 mutations Cobo et al.
time [36]. In patients with CHIP solely driven by
DMNT3A mutations, genotyping of fluorescent-acti-
vated sorted blood cells revealed presence of the
driver mutation in lymphocytes as well as in myeloid
cells, suggesting multipotent lineage involvement
[37]. Importantly, DNMT3A deficiency has to lead
to several potentially pro-atherogenic phenotypes in
a variety of immune cell populations, including pro-
inflammatory activation of mast cells [38] increased
IFNg production by T cells and restrained immuno-
suppressive function in myeloid-derived suppressor
cells [39]. On the contrary, DNMT3A inhibition has
been shown to increase the expression of IL-13 in T
cells [40] and to limit the production of type I inter-
ferons in macrophages [33], which could potentially
protect against atherosclerosis development [40,41].
These findings are consistent with diverse modula-
tory functions of DNTM3A and call for cell/context-
specific experimental studies to determine the con-
tribution of somatic mutations in DNMT3A to the
development of ASCVD.

In contrast to DNMT3A, TET2 mutations were
predominantly restricted to myeloid lineages in
blood from individuals with CHIP and single
TET2 mutations [37]. Murine studies have shown
that TET2 deletion or haploinsufficiency result in
increased HSPC self-renewal and a bias toward dif-
ferentiation into the myeloid lineage [42–44]. How-
ever, despite the broad expression pattern of TET2
[45], the relevance of this protein in pathophysio-
logical settings other than stem cell biology or can-
cer has just recently begun to be explored. The
expansion of Tet2 deficient cells, and to a lesser
extent for Tet2 heterozygous cells, in these condi-
tions accelerated atherosclerosis in murine models
substantially, leading to the formation of �60%
larger plaques. In addition, atherosclerotic plaque
size was also increased when Tet2 ablation was
restricted to myeloid cells [46]. These findings were
recently validated in independent studies in mice
exhibiting full hematopoietic ablation of Tet2 [26].
Collectively, these experimental studies provide
strong support to the existence of causal connection
between somatic mutations in this gene and the
development of atherosclerotic ASCVD. In addition,
Tet2’s role specifically in myeloid cells suggests
mechanisms beyond expansion of progenitor cells.
DNMT3A and TET2 in monocyte biology

DNMT3A and TET2 have important roles in the biol-
ogy of monocytes. Using single cell RNA-Seq analysis,
monocytes from patients with a recent MI and heart
failure with or without detectable DNMT3A muta-
tions were recently compared. Monocytes isolated
from patients carrying DNMT3A mutations had an
1065-6251 Copyright � 2021 The Author(s). Published by Wolters Kluwe
increased expression of pro-inflammatory genes
compared with monocytes from patients without
DNMT3A mutations. These genes include inflamma-
tory cytokines IL1B, IL6 and IL8, CCL3 and CCL4,
inflammasome components (NLRP3) and resistin
(RETN), which promotes monocyte adhesion to
endothelial cells [47

&

,48]. These findings remain to
be confirmed in a larger and more diverse patient
population with high-throughput assessment (e.g.,
flow cytometry or cytometry by time of flight, CyTOF
of inflammatory cells subtypes), but are consistent
with a pro-atherogenic role for CHIP with DNMT3A
mutations. Moreover,DNMT3A mutationshave been
associated with increased risk for hospitalization or
death in patients with heart failure secondary to
ASCVD, but also heart failure due to nonischemic
etiologies [49–51]. Further studies are required to
evaluate the combinatorial impact of mutation fre-
quency and mutation site location on transcriptional
profiles, as different mutations within the same gene
may have divergent effects on the coding molecule’s
functional outcome and subsequent physiological
outcomes.

The methylcytosine dioxygenase TET2 also
plays an important role in monocyte biology. Small
interference RNA (siRNA)-mediated TET2 knock-
down in primary monocytes were shown to prevent
active DNA demethylation, providing evidence
that TET2-mediated conversion of 5-methylcyto-
sine to 5-hydroxymethylcytosine initiates targeted,
active DNA demethylation in a mature postmitotic
myeloid cell type [52]. Similarly, familial germline
TET2 loss in seven individuals, three of whom had a
diagnosis of nodular lymphocyte-predominant
lymphoma, and additionally a de novo TET2 muta-
tion in an unrelated individual were all associated
with hematopoietic cell hypermethylation that was
especially prominent at active enhancer regions
[53]. Significantly, the regions displayed reduced
methylation relative to all open chromatin regions
in four DNMT3A germline mutation carriers, poten-
tially due to TET2-mediated oxidation. These
results indicate that the perturbation in hematopoi-
esis caused by reduced TET2 function appears to
relate to aberrations in DNA methylation that
require synergistic actions of TET2 and master tran-
scription factors involved in hematopoiesis and
enhancer activation. Significantly, contrary to the
effects of DNMT3A in monocytes, familial germline
TET2-mutant monocytes did not display neither
unusual predisposition to atherosclerosis nor
abnormal pro-inflammatory cytokine or chemo-
kine expression [53]. More work is required to
understand the potential differential effects of
germline vs. somatic as well as unique TET2 muta-
tions and their relationship to atherosclerosis.
r Health, Inc. www.co-hematology.com 3



Myeloid biology
DNMT3A and TET2 in macrophage biology
DNMT3A regulates inflammatory pathways in mac-
rophages in a context-specific manner. In a genome-
wide association study, the single nucleotide poly-
morphism (SNP) g.25498283A>C in the intronic
region of DNMT3A gene was associated with protec-
tion against recurrent methicillin-resistant Staphylo-
coccus aureus bacteremia and reduced levels of the
anti-inflammatory cytokine IL-10 [54]. Moreover,
DNMT3A expression knockdown using siRNA in
human macrophages increased IL-10 production
in response to S. aureus stimulation. Supporting
the importance of DNMT3A methyltransferase
activity, macrophages treated with the methylation
inhibitor 5-aza-20-deoxycytidine produced higher
levels of IL-10. The g.25498283A>C SNP does not
appear to have impact on expression of DNMT3A
mRNA but is associated with higher levels of meth-
ylation in gene-regulatory CpG.

In contrast to DNMT3A’s role in restraining an
anti-inflammatory response to bacterial infections,
DNMT3A activates the antiviral immune response
of macrophages through upregulation of Histone
deacetylase 9 (HDAC9) to deacetylase Tank binding
kinase 1 (TBK1) [33]. In this regard, DNTM3A inhi-
bition leads to lower production of type I IFNs in
mouse peritoneal macrophages (PM) triggered by
pattern-recognition receptors but does not reduce
the expression of other inflammatory genes such as
Tnf or Il6 [33]. These apparent paradoxical effects
exemplify the diverse modulatory functions of
DNTM3A, and further urge cell/context-specific
experimental studies to determine the role of
DNMT3A in specific cell populations. In addition,
transcriptional regulation of DNMT3A and TET2
needs to be further characterized. Recent work by
Li et al. [55] provided insight to the transcriptional
regulation of DNTM3A by long noncoding RNAs
(lncRNAs) Dnmt3aos (DNMT3A, opposite strand),
located on the antisense strand of Dnmt3a. Cellular
assays and functional experiments confirmed that
Dnmt3aos regulates DNMT3A mRNA and protein
expression and that reduced DNMT3A expression
by lower Dnmt3aos leads to an exacerbated response
to lipopolysaccharide (LPS) and IFNy and an aber-
rant response to IL4 through alterations in DNA
methylation [55]. These examples of transcriptional
regulation highlight the importance of DNMT3A in
regulating macrophage biology including regula-
tion of inflammatory programs and response
to stimuli.

Several studies have also supported the role of
TET2 loss of function in promoting macrophage
inflammation relevant to atherosclerosis. Tet2 defi-
ciency in murine macrophages results in inflamma-
some activation and an enhanced secretion of IL-1B
4 www.co-hematology.com
and IL-6 [26,46]. Moreover, activation of type I
interferons by Interferon Response Factor 3 (IRF3),
known to promote an adverse response to MI [56], is
regulated by NLRP3, TET2 and nuclear factor ery-
throid 2-related factor 2 (NFE2L2 or NRF2) (Cal-
cagno et al., 2020, BioRxive) [57]. The distinctions
between Tet2 deficient BMDM and PM support con-
text-specific roles of TET2 in macrophages, similar
to observations with DNMT3A. In addition to the
activation of inflammatory pathways during forma-
tion of atherosclerosis, macrophages that scavenge
excessive lipid content becomes foam cells that lead
to plaque formation [58–60] and further, impaired
phagocytic capacity of these macrophages [61]. In
addition, up-regulation of Tet2 by CEBPA during
transdifferentiation of pre-B cells to macrophages
is required for upregulation of macrophage markers
as well as phagocytic capacity, indicating a role for
TET2 regulating phagocytosis of macrophages [62].
CONCLUSION

Summary and unanswered questions

Somatic mutations in DNMT3A and TET2, the most
commonly affected genes in individuals with CHIP,
are associated with increased ASCVD risk. Accumulat-
ing evidence support the role of DNMT3A and TET2 in
promoting inflammation in monocytes and macro-
phages and have provided a potential global mecha-
nistic basis for how CHIP may promote development
and progression of atherosclerosis. However, there
remainsignificantgaps inunderstandingof thepoten-
tially multiple pathways involved in ASCVD risk asso-
ciated with DNMT3A and TET2 driven CHIP.

The apparent opposing enzymatic activities of
DNMT3A and TET2 on DNA methylation and the
role of their nonenzymatic activities in promoting
atherosclerosis remain incompletely understood.
One possibility is that enzymatic activities of
DNMT3A and TET2 both require maintaining a
homeostatic DNA methylation status and that
loss of either promotes a DNA methylation pattern
that promotes disease. In support of this theory,
dynamic DNA methylation of DNMT3A-maintained
enhancers in B-cells is determined by the coincident
activity of DNMT3A and TET enzymes [63

&

,64]. On
the other hand, and not mutually exclusive with a
role in DNA methylation, increasing evidence impli-
cates DNMT3A and TET2 in activation of inflamma-
tory programs independent of their catalytic
activities. The lack of correlation between methyl-
ation and differential gene expression in murine
bone marrow is consistent with other studies includ-
ing Dnmt3a-null HSC [32] and human samples of
acute myeloid leukemia [31]. TET2’s role beyond
Volume 29 � Number 1 � January 2022



FIGURE 1. Schematic of the potential functional consequences of mutations in DNMT3A and TET2 in macrophages during
atherosclerotic cardiovascular disease.

Clonal hematopoiesis driven by DNMT3A and TET2 mutations Cobo et al.
DNA methylation is consistent with previous work
showing noncatalytic mechanisms mediated by
TET2 are crucial for HSPC homeostasis [32]. This
opens the possibility of additional mechanisms such
as complexing with other transcription factors, co-
activator and co-regulators of gene expression or by
regulating the three dimensional structure of the
genome (Fig. 1).

Another incompletely understood concept is
how CHIP, resulting in clonal expansion affecting
only a minority of circulating immune cells, may
contribute robustly to ASCVD risk. CHIP is charac-
terized by its driver mutation(s) and the percentage of
alleles sequencedcontaining themutation,orvariant
allele frequency (VAF). The number of nucleated
blood cells carrying the mutation is approximately
equal to double the VAF (i.e., a VAF of 10% affects
20% of cells in whole blood sequenced). CHIP with a
VAF of as little as 10% was sufficiently associated with
ASCVD risk [65]. More remarkably, CHIP due to
mutations in DNMT3A or TET2 with a VAF 2% or
less was associated with incident heart failure and
also worse prognosis with heart failure in a dose
dependent manner [49,50,66]. A potential explana-
tion for how a minor population of immune cells
carrying a DNMT3A or TET2 mutation may influence
the local environment (e.g., atherosclerotic plaque)
through expansion and/or remodeling noncell
autonomously through secretion of inflammatory
mediators. As a hypothetical example, DNMT3A or
TET2 mutantmacrophages wouldactiveneighboring
immune, endothelial, or smoothmuscle cells thereby
accelerating and perpetuating tissue inflammation
driving the progression of atherosclerosis.

DNMT3A and TET2 may also mediate ASCVD risk
through regulating lipid and glucose metabolism.
CHIP is independently associated with an increased
1065-6251 Copyright � 2021 The Author(s). Published by Wolters Kluwe
risk for type 2 diabetes [23,67]. DNMT3A, for instance,
is significantly increased in adipose tissue-derived
macrophages but not PM from mice fed with high-
fat diet and that is sufficient to mediate insulin resis-
tance in cultured mouse and human adipocytes [68].
Similarly, a recent report indicates that clonal expan-
sion in Tet2 deficient cells exacerbates insulin resis-
tance, obesity and ageing in mice [69

&

]. The role of
CHIP in other processes highly relevant to ASCVD
such as cholesterol regulation, early plaque formation
and phagocytosis of dying and dead cells at the plaque
has not been well investigated.

A highly clinically important question to be
answered is whether CHIP represents an opportu-
nity to modify age-related ASCVD risk in those
affected. A preliminary secondary analysis of the
Canakinumab Anti-inflammatory Thrombosis Out-
come Study (CANTOS) demonstrated a more potent
CVD risk reduction with IL-1B inhibition in those
with CHIP compared with the overall trial popula-
tion. Although promising, CVD outcomes studies
randomizing larger and more elderly populations
with CHIP to anti-inflammatory therapies with
favorable safety profiles will be needed to confirm
and validate the finding from CANTOS (AHA Jour-
nal, Abstract 15111).
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