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Object detection is one of the most important and challenging research topics in computer

vision. It is playing an important role in our everyday life and has many applications, e.g.

surveillance, autonomous driving, robotics, drone, medical imaging, etc. The ultimate goal of

object detection is a universal object detector that can work very well in any case under any

condition like human vision system. However, there are multiple challenges on the universality

of object detection, e.g. scale-variance, high-quality requirement, domain shift, computational

constraint, etc. These will prevent the object detector from being widely used for various scales

of objects, critical applications requiring extremely accurate localization, scenarios with changing

domain priors, and diverse hardware settings. To address these challenges, multiple solutions
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have been proposed in this thesis. These include an efficient multi-scale architecture to achieve

scale-invariant detection, a robust multi-stage framework effective for high-quality requirement, a

cross-domain solution to extend the universality over various domains, and a design of complexity-

aware cascades and a novel low-precision network to enhance the universality under different

computational constraints. All these efforts have substantially improved the universality of object

detection, and the advanced object detector can be applied to broader environments.
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Introduction
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Figure 1.1: The difference between object classification and object detection.

Computer vision is a scientific field that studies the acquisition, extraction, processing,

analysis, interpretation and understanding of digital images in order to produce numerical or

symbolic information, e.g. in the forms of decisions. This image understanding can be seen as the

disentangling of symbolic information from image data using models constructed with the aid of

geometry, physics, statistics, and learning theory [111, 39]. It is an interdisciplinary scientific filed

with cognitive science, robotics, machine learning, statistics, etc. Its goal is to simulate the human

vision system by automatic machines. It has multiple sub-domains, including visual recognition,

action understanding, image retrieval, video tracking, segmentation, 3D reconstruction, etc.

Computer vision tasks have achieved great successes in recent years, powered by the

recent great successes of deep learning [86, 150, 152, 61]. These are enabled by big data, e.g.

large scale annotated dataset, and big computation, e.g. distributed or parallel computations.

The feature representation learning by deep neural network is much more representative and

powerful than the hand-crafted feature extraction, e.g. HOG [26] and SIFT [109]. The substantial

progresses in computer vision make it possible to deploy computer vision algorithms into critical

applications, e.g. autonomous driving, medical imaging diagnosis, surgery and service robotics,

etc.
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1.1 Object Detection

Object detection is one of the most important and challenging research topics in computer

vision. What is object detection? Object classification is probably a more common problem.

Given an image, the task is to answer the question of “what”. For example, in Figure 1.1 (a),

there are a person and a boat. In addition to the question of “what”, object detection also needs to

answer the “where” question. For example, in Figure 1.1 (b), knowing there are a person and a

boat is not enough. We also want to where they are.

Object detection is important. On one hand, it has many practical applications, e.g.

surveillance, autonomous robot, drone, medical imaging, etc. For example, in autonomous

driving, object detection is used to localize objects, understand surrounding environments, and

help to make safe decisions. It can also help to detect the lesion in medical CT scans to alleviate

the burden of radiologists. On the other hand, object detection is a upstream task in computer

vision, supporting many downstream tasks, like visual question answering, captioning, visual

navigation, robot grasping, knowledge graph, pose estimation, etc. For example, object detection

can not only help the robot arm to accurately grasp the objects in the physical world, but also

enable bots to better understand the image semantics and provide more precise answers to the

questions asked by the users. Hence, the advancement of object detection is necessary. It will

benefit many other sub-domains of computer vision and improve practical computer vision

systems to better serve our everyday life.

1.2 Challenges on Object Detection Universality

Despite object detection has made huge progresses in recent years [51, 59, 50, 140, 99, 58],

there are still many unresolved challenges. For example, the object detector is usually required to

produce accurate detection results of various categories, scales, aspect ratios, etc, and sometimes

even with serious lighting changes, occlusion, background distraction, etc. It is very challenging
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to develop a universal object detector that can work well in any case under any condition like

human visual system. In specific, the universality challenge has multiple aspects, including

scale-variance, high-quality requirement, domain shift, device and computation constraints, etc.

First, scale invariance is an important requisite for effective object detection, since the

objects could be presented with huge scale variation, e.g. from 5×5 pixels to 1000×1000 pixels,

in a typical image. A detector should detect all objects without scale bias. This is important

for practical application of object detection. For example, in the vision system of autonomous

vehicle, where the further objects are usually visually smaller, if smaller (further) objects can be

successfully detected, the control system will have more time to respond. However, the detection

of small objects is much more difficult than that of large objects, reducing the universality of

object detection in scale. There are mainly two reasons responsible for this: 1) the feature

extraction is not scale invariant; and 2) it is nontrivial to design an effective and efficient multi-

scale detection framework. To address each of them, before the resurgence of deep learning, the

solutions are to manually design better feature extraction, e.g. HOG [26] and SIFT [109], and

to use the image pyramid strategy, respectively. However, the handcrafted feature extraction is

not very representative and the image pyramid is very time-consuming. Although deep neural

networks can offer much more powerful feature representations, the design of efficient multi-scale

detection system within neural network is not trivial.

Second, detection quality is an important indicator of how good an object detector is.

Higher detection quality means the detector can produce detection results that have tighter

coverage with the ground truths. The tightness is evaluated by a metric, called intersection over

union (IoU), between a detection and the corresponding ground truth. If the IoU is above a

threshold, e.g. 0.5, the detection is a success, otherwise, a failure. However, the importance of

high-quality detection is generally neglected in the area of object detection. This is partially

because the detection evaluation metrics have historically placed greater emphasis on the low-

quality detection regime. Many object detection datasets, including the very popular PASCAL
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VOC [36], ImageNet [143], Caltech Pedestrian[32], etc., use IoU threshold of 0.5 in evaluation,

which is a very loose requirement. Nevertheless, it is important to have high quality detections,

e.g. using IoU threshold of 0.7. For example, if the detection of a pedestrian is not highly accurate,

the vision system of an autonomous vehicle could mispredict the pedestrian crossing the street

as walking on the sidewalk. Another example is from robotics, e.g. surgery or service robots.

Any visual detection in surgery robot is required to be highly precise. Nobody wants his/her

organs or tissues to be mislocalized or miscut in any way. The consequences of low quality

detection in these critical applications are very serious. The current object detectors are usually

good at low-quality detection, but not high-quality detection. It is very challenging to design

quality-universal object detection system.

Third, existing detectors are usually domain-specific, e.g. trained and tested on a single

dataset, instead of domain-universal. This is partially due to the fact that object detection

datasets are diverse and there are nontrivial domain shifts among them. In general, high detection

performance requires a detector specialized on the target dataset. This poses a significant problem

for practical applications, which are not usually restricted to any one of the domains. For example,

an autonomous robot can go into any environments, with changing illumination, background,

weather, etc. The domain-specific detector probably will fail in this case. Hence, there is a need

for systems capable of detecting objects regardless of the domains. However, developing this

domain universal detection system is very challenging, e.g. for more than thousands of different

domains, considering that a single model may not have enough capacity to cover the substantial

domain shifts and the model size and computation need to be prevented from being increasing

too much.

Fourth, object detection is an indispensable module in many computer vision systems,

which are frequently required to run on different kinds of hardware. Although the overwhelming

popularity of neural networks make the GPU as the most popular hardware, its disadvantages

including expensive price, high power usage, large volume, heavy weight, etc., encourage to
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use other hardware to meet different kinds of needs, e.g. CPU, FPGA, cellphone, raspberry pi,

etc. However, these non-GPU hardware generally has strong constraints on power, computation,

memory, etc., which could be orders of lower than those of GPUs. In these cases, the detector

usually has to compromise on speed and performance due to the constraints. Therefore, the

current object detectors are not universal for different devices or under different constraints. How

to improve speed, reduce power consumption and remain accuracy on non-GPU devices are

important and challenging.

1.3 Contributions of the Thesis

In this thesis, we mainly try to tackle the four challenges mentioned above, scale, quality,

domain and complexity constraint, and to advance the universality of object detection.

1.3.1 An Efficient Framework for Multi-Scale Detection

Although deep neural networks have achieved great successes in object detection [51,

59, 50, 140, 99, 58], how to design effective and efficient multi-scale detection system in neural

networks is still under exploration. Our goal is to develop a new architecture of convolutional

neural network for multi-scale object detection, improving the detection universality across scales.

The scale-invariant detection is traditionally addressed by operating a scale-specific detector on

a pyramid of images: the larger (smaller) objects are detected on the coarser (finer) resolution

image. The outputs on all pyramid images are grouped together as the final detection results.

However, this strategy is not desirable, especially for neural networks, because it requires to

run the expensive network multiple times for all images in the pyramid. Instead, we avoid the

problem by resorting to a pyramid of features, as an approximation to image pyramid. The

efficient feature pyramid will be achieved by forwarding the original input image to the expensive

network only once, and then multiple scale-specific light-weight detectors run on corresponding
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feature scale. These complementary detectors are grouped together as a final strong multi-scale

object detector. This feature pyramid strategy can successfully avoid the repetitive expensive

network computations for image pyramid, and thus are much more efficient. The experiments

have shown that it can significantly improve the detection performance on small objects, enabling

better scale-invariant detection. Thus, the universality over scale is advanced.

1.3.2 An Effective Architecture for High-Quality Detection

In object detection, there are many “close” false positives presented in an image, cor-

responding to “close but not correct” bounding boxes. An effective detector must find all true

positives, while suppressing these close false positives. This requirement makes detection more

difficult than object recognition. Unlike the latter, an intersection over union (IoU) threshold is

required to define positives/negatives in object detection, which as well defines its quality. While

the threshold is typically set at the value of 0.5, this is a very loose requirement for positives.

The resulting detectors frequently produce noisy (low quality) detections. However, detection

performance usually degrades when using higher training IoU thresholds. This is denoted the

paradox of high quality detection and has two main causes: 1) overfitting, due to exponentially

vanishing positive training sets for large thresholds, and 2) inference-time mismatch between

the IoUs for which the detector is optimal and those of the test hypotheses. A multi-stage object

detection architecture, the Cascade R-CNN, is proposed to address these problems. It consists of

a sequence of detectors trained with increasing IoU thresholds, so that deeper stages are more

selective against close false positives. The detectors are trained sequentially, using the output of

a detector as the training set for the subsequent one. This resampling operation progressively

improves hypotheses quality, guaranteing that all detectors have a positive training set of equiva-

lent size and thereby eliminating overfitting problem. The use of the same cascade procedure at

inference time then eliminates the quality mismatch between the hypotheses and the detector of

each stage. The Cascade R-CNN has been shown to significantly improve the high-quality object
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detection, and thus advance the detection universality over quality.

1.3.3 A Novel Design for Domain-Universal Detection

Despite increasing efforts on multi-domain/universal representations for visual recognition,

few have addressed object detection. In this thesis, we developed a few systems for multi-domain

and domain-universal object detection, capable of working on various image domains, e.g. from

human faces and traffic signs to medical CT images. In the multi-domain system, a new family

of domain adapter for object detection was introduced which is effective and efficient, based

on the principles of squeeze and excitation. However, this multi-domain detection system still

requires domain prior, knowing which domain to work on in advance. Unlike the multi-domain

system, the domain-universal system does not require prior knowledge of the domain of interest.

This is achieved by the introduction of a new domain-attention mechanism. In this domain-

universal system, all parameters and computations are shared across domains, and a single

network processes all domains all the time. The experiments have shown that these solutions

can substantially extend the detector universality across a large number of domains with small

amount of increases in overall model size and computation.

1.3.4 Optimal Detector Solutions under Complexity Constraint

How to improve speeds and reduce power consumption are necessary for object detection.

We tried to tackle these challenges from two aspects: the design of a novel complexity-aware

detector cascade and learning efficient low-precision networks. They improve the detection

universality across computation constraints and hardware.

Cascade object detector is one of the most popular detection frameworks in the history,

especially before the resurgence of deep learning. We investigated the design of complexity-aware

cascaded detectors, combining features of very different complexities. This cascade procedure is
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designed, by formulating cascade learning as the Lagrangian optimization of a risk that accounts

for both accuracy and complexity. A boosting algorithm, denoted as complexity aware cascade

training (CompACT), is then derived to solve this optimization. CompACT cascades are shown

to seek an optimal trade-off between accuracy and complexity by pushing features of higher

complexity to the later cascade stages, where only a few difficult candidate patches remain to be

classified. This enables the use of features of vastly different complexities in a single detector. In

result, the feature pool can be expanded to features previously impractical for cascade design, such

as the responses of a deep convolutional neural network (CNN). This leads to mixed CPU/GPU

solutions, that provide practitioners with flexible families of models, ranging from cheap and

energy efficient CPU-based cascades, to cascades using GPU stages that emphasize recognition

accuracy. This enables accurate cascade at fairly fast speeds.

Current cutting-edge computer vision systems extensively rely on deep neural networks,

which are heavy in terms of computation and memory, and require specialized expensive hard-

ware, e.g. GPUs. Substantial speed-ups will be made possible if, both activations and weights

of a network are binarized or quantized to low-bit, leveraging the property that the expensive

float-point computation of dot-product can be replaced by efficient bit operations. However, this

is challenging and suffers from substantial accuracy loss, especially when the activations are

quantized. Thus, we investigated the problem of quantizing the activations for the speeds-up of

neural networks. In previous binary quantization approaches, this problem consists of approxi-

mating a classical non-linearity, the hyperbolic tangent, by two functions: a piecewise constant

sign function, which is used in feedforward network computations, and a piecewise linear hard

tanh function, used in the backpropagation step during network learning. Instead, we considered

to approximate the widely used ReLU non-linearity. An half-wave Gaussian quantizer (HWGQ)

is proposed for forward approximation and shown to have efficient implementation, by exploiting

the statistics of network activations and batch normalization operations. To overcome the problem

of gradient mismatch, due to the use of different forward and backward approximations, several
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piece-wise backward approximators are then investigated. The implementation of the resulting

quantized network, denoted as HWGQ-Net, is shown to achieve much closer performance to full

precision networks. This network quantization technique can be used to significantly improve

the running speeds and save power for object detectors based on deep neural networks, enabling

them to run on non-GPU devices, e.g. CPU or FPGA.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 describes an efficient and effective

architecture of convolutional neural network for multi-scale object detection, which is shown to

enable better scale-invariant detection. In Chapter 3, we review the novel multi-stage architecture

for high-quality object detection, denoted as Cascade R-CNN, and show that this simple design

can achieve very robust and strong high-quality detection. Chapter 4 introduces a few solutions for

multi-domain and domain-universal object detection, to improve the detection universality across

different domains. Chapter 5 investigates the design of complexity-aware cascaded detectors,

combining features of very different complexities. The proposed cascades are shown to seek an

optimal trade-off between accuracy and complexity by pushing features of higher complexity

to the later cascade stages, where only a few difficult candidate patches remain to be classified.

In Chapter 6, we present a new quantization technique for low-precision networks, which can

significantly save computation and memory with minor accuracy drop, enabling running expensive

neural networks on non-GPU devices, e.g. CPU or FPGA. Finally, the thesis is summarized and

concluded in Chapter 7.
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Chapter 2

Multi-Scale Object Detection
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2.1 Introduction

Classical object detectors, based on the sliding window paradigm, search for objects at

multiple scales and aspect ratios. While real-time detectors are available for certain classes of

objects, e.g. faces or pedestrians [161, 29], it has proven difficult to build detectors of multiple

object classes under this paradigm. Recently, there has been interest in detectors derived from deep

convolutional neural networks (CNNs) [51, 50, 16, 59, 46]. While these have shown much greater

ability to address the multiclass problem, less progress has been made towards the detection of

objects at multiple scales. The R-CNN [51] samples object proposals at multiple scales, using

a preliminary attention stage [158], and then warps these proposals to the size (e.g. 224×224)

supported by the CNN. This is, however, very inefficient from a computational standpoint. The

development of an effective and computationally efficient region proposal mechanism is still an

open problem. The more recent Faster-RCNN [140] addresses the issue with a region proposal

network (RPN), which enables end-to-end training. However, the RPN generates proposals of

multiple scales by sliding a fixed set of filters over a fixed set of convolutional feature maps. This

creates an inconsistency between the sizes of objects, which are variable, and filter receptive

fields, which are fixed. As shown in Figure 2.1, a fixed receptive field cannot cover the multiple

scales at which objects appear in natural scenes. This compromises detection performance, which

tends to be particularly poor for small objects, like that in the center of Figure 2.1. In fact,

[50, 16, 140] handle such objects by upsampling the input image both at training and testing time.

This increases the memory and computation costs of the detector.

This work proposes a unified multi-scale deep CNN, denoted the multi-scale CNN (MS-

CNN), for fast object detection. Similar to [140], this network consists of two sub-networks: an

object proposal network and an accurate detection network. Both of them are learned end-to-

end and share computations. However, to ease the inconsistency between the sizes of objects

and receptive fields, object detection is performed with multiple output layers, each focusing
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Figure 2.1: In natural images, objects can appear at very different scales, as illustrated by the
yellow bounding boxes. A single receptive field, such as that of the RPN [140] (shown in the
shaded area), cannot match this variability.

on objects within certain scale ranges (see Figure 2.3). The intuition is that lower network

layers, such as “conv-3,” have smaller receptive fields, better matched to detect small objects.

Conversely, higher layers, such as “conv-5,” are best suited for the detection of large objects. The

complimentary detectors at different output layers are combined to form a strong multi-scale

detector. This is shown to produce accurate object proposals on detection benchmarks with large

variation of scale, such as KITTI [43], achieving a recall of over 95% for only 100 proposals.

A second contribution of this work is the use of feature upsampling as an alternative to

input upsampling. This is achieved by introducing a deconvolutional layer that increases the

resolution of feature maps (see Figure 2.4), enabling small objects to produce larger regions of

strong response. This is shown to reduce memory and computation costs. While deconvolution

has been explored for segmentation [107] and edge detection [173], it is, as far as we know, for the

first time used to speed up and improve detection. When combined with efficient context encoding

and hard negative mining, it results in a detector that advances the state-of-the-art detection on

the KITTI [43] and Caltech [32] benchmarks. Without image upsampling, the MS-CNN achieves

speeds of 10 fps on KITTI (1250×375) and 15 fps on Caltech (640×480) images.
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2.2 Related Work

One of the earliest methods to achieve real-time detection with high accuracy was the

cascaded detector of [161]. This architecture has been widely used to implement sliding window

detectors for faces [161, 8], pedestrians [29, 11] and cars [122]. Two main streams of research

have been pursued to improve its speed: fast feature extraction [161, 29] and cascade learning

[8, 145, 11]. In [161], a set of efficient Haar features was proposed with recourse to integral

images. The aggregate feature channels (ACF) of [29] made it possible to compute HOG

features at about 100 fps. On the learning front, [8] proposed the soft-cascade, a method to

transform a classifier learned with boosting into a cascade with certain guarantees in terms of

false positive and detection rate. [145] introduced a Lagrangian formulation to learn cascades

that achieve the optimal trade-off between accuracy and computational complexity. [11] extended

this formulation for cascades of highly heterogeneous features, ranging from ACF set to deep

CNNs, with widely different complexity. The main current limitation of detector cascades is the

difficulty of implementing multiclass detectors under this architecture.

In an attempt to leverage the success of deep neural networks for object classification,

[51] proposed the R-CNN detector. This combines an object proposal mechanism [158] and a

CNN classifier [86]. While the R-CNN surpassed previous detectors [38, 164] by a large margin,

its speed is limited by the need for object proposal generation and repeated CNN evaluation.

[59] has shown that this could be ameliorated with recourse to spatial pyramid pooling (SPP),

which allows the computation of CNN features once per image, increasing the detection speed

by an order of magnitude. Building on SPP, the Fast-RCNN [50] introduced the ideas of back-

propagation through the ROI pooling layer and multi-task learning of a classifier and a bounding

box regressor. However, it still depends on bottom-up proposal generation. More recently, the

Faster-RCNN [140] has addressed the generation of object proposals and classifier within a single

neural network, leading to a significant speedup for proposal detection. Another interesting work
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Figure 2.2: Different strategies for multi-scale detection. The length of model template repre-
sents the template size.

is YOLO [137], which outputs object detections within a 7×7 grid. This network runs at ∼40 fps,

but with some compromise of detection accuracy.

For object recognition, it has been shown beneficial to combine multiple losses, defined on

intermediate layers of a single network [152, 88, 107, 173]. GoogLeNet [152] proposed the use

of three weighted classification losses, applied at layers of intermediate heights, showing that this

type of regularization is useful for very deep models. The deeply supervised network architecture

of [88] extended this idea to a larger number of layers. The fact that higher layers convey more

semantic information motivated [107] to combine features from intermediate layers, leading to

more accurate semantic segmentation. A similar idea was shown useful for edge detection in

[173]. Similar to [152, 88, 107, 173], the proposed MS-CNN is learned with losses that account

for intermediate layer outputs. However, the aim is not to simply regularize the learning, as in

[152, 88], or provide detailed information for higher outputs, as in [107, 173]. Instead, the goal is

to produce a strong individual object detector at each intermediate output layer.

2.3 Multi-Scale Object Proposal Network

In this section, we introduce the proposed network for the generation of object proposals.
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2.3.1 Multi-Scale Detection Strategies

The coverage of many object scales is a critical problem for object detection. Since a

detector is basically a dot-product between a learned template and an image region, the template

has to be matched to the spatial support of the object to recognize. There are two main strategies

to achieve this goal. The first is to learn a single classifier and rescale the image multiple times,

so that the classifier can match all possible object sizes. As illustrated in Figure 2.2 (a), this

strategy requires feature computation at multiple image scales. While it usually produces the

most accurate detection, it tends to be very costly. An alternative approach is to apply multiple

classifiers to a single input image. This strategy, illustrated in Figure 2.2 (b), avoids the repeated

computation of feature maps and tends to be efficient. However, it requires an individual classifier

for each object scale and usually fails to produce good detectors. Several approaches have been

proposed to achieve a good trade-off between accuracy and complexity. For example, the strategy

of Figure 2.2 (c) is to rescale the input a few times and learn a small number of model templates

[3]. Another possibility is the feature approximation of [29]. As shown in Figure 2.2 (d), this

consists of rescaling the input a small number of times and interpolating the missing feature maps.

This has been shown to achieve considerable speed-ups for a very modest loss of classification

accuracy [29].

The implementation of multi-scale strategies on CNN-based detectors is slightly different

from those discussed above, due to the complexity of CNN features. As shown in Figure 2.2

(e), the R-CNN of [51] simply warps object proposal patches to the natural scale of the CNN.

This is somewhat similar to Figure 2.2 (a), but features are computed for patches rather than the

entire image. The multi-scale mechanism of the RPN [140], shown in Figure 2.2 (f), is similar

to that of Figure 2.2 (b). However, multiple sets of templates of the same size are applied to all

feature maps. This can lead to a severe scale inconsistency for template matching. As shown in

Figure 2.1, the single scale of the feature maps, dictated by the (228×228) receptive field of the

CNN, can be severely mismatched to small (e.g. 32×32) or large (e.g. 640×640) objects. This
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Figure 2.3: Proposal sub-network of the MS-CNN. The bold cubes are the output tensors of
the network. h×w is the filter size, c the number of classes, and b the number of bounding box
coordinates.

compromises object detection performance.

Inspired by previous evidence on the benefits of the strategy of Figure 2.2 (c) over that of

Figure 2.2 (b), we propose a new multi-scale strategy, shown in Figure 2.2 (g). This can be seen

as the deep CNN extension of Figure 2.2 (c), but only uses a single scale of input. It differs from

both Figure 2.2 (e) and (f) in that it exploits feature maps of several resolutions to detect objects

at different scales. This is accomplished by the application of a set of templates at intermediate

network layers. This results in a set of variable receptive field sizes, which can cover a large range

of object sizes.

2.3.2 Architecture

The detailed architecture of the MS-CNN proposal network is shown in Figure 2.3. The

network detects objects through several detection branches. The results by all detection branches

are simply declared as the final proposal detections. The network has a standard CNN trunk,

depicted in the center of the figure, and a set of output branches, which emanate from different
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layers of the trunk. These branches consist of a single detection layer. Note that a buffer

convolutional layer is introduced on the branch that emanates after layer “conv4-3”. Since this

branch is close to the lower layers of the trunk network, it affects their gradients more than the

other detection branches. This can lead to some instability during learning. The buffer convolution

prevents the gradients of the detection branch from being back-propagated directly to the trunk

layers.

During training, the parameters W of the multi-scale proposal network are learned

from a set of training samples S = {(Xi,Yi)}N
i=1, where Xi is a training image patch, and

Yi = (yi,bi) the combination of its class label yi ∈ {0,1,2, · · · ,K} and bounding box coordi-

nates bi = (bx
i ,b

y
i ,b

w
i ,b

h
i ). This is achieved with a multi-task loss

L(W) =
M

∑
m=1

∑
i∈Sm

αmlm(Xi,Yi|W), (2.1)

where M is the number of detection branches, αm the weight of loss lm, and S = {S1,S2, · · · ,SM},

where Sm contains the examples of scale m. Note that only a subset Sm of the training samples,

selected by scale, contributes to the loss of detection layer m. Inspired by the success of joint

learning of classification and bounding box regression [50, 140], the loss of each detection layer

combines these two objectives

l(X ,Y |W) = Lcls(p(X),y)+λ[y≥ 1]Lloc(b, b̂), (2.2)

where p(X) = (p0(X), · · · , pK(X)) is the probability distribution over classes, λ a trade-off

coefficient, Lcls(p(X),y) =− log py(X) the cross-entropy loss, b̂ = (b̂x, b̂y, b̂w, b̂h) the regressed

bounding box, and

Lloc(b, b̂) =
1
4 ∑

j∈{x,y,w,h}
smoothL1(b j, b̂ j), (2.3)

the smoothed bounding box regression loss of [50]. The bounding box loss is only used for
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positive samples and the optimal parameters W∗ = argminW L(W) are learned by stochastic

gradient descent.

2.3.3 Sampling

This section describes the assembly of training samples Sm = {Sm
+,S

m
−} for each detection

layer m. In what follows, the superscript m is dropped for notional simplicity. An anchor is

centered at the sliding window on layer m associated with width and height corresponding to filter

size. More details can be found in Table 2.1. A sample X of anchor bounding box b is labeled as

positive if o∗ ≥ 0.5, where

o∗ = max
i∈Sgt

IoU(b,bi). (2.4)

Sgt is the ground truth and IoU the intersection over union between two bounding boxes. In

this case, Y = (yi∗ ,bi∗), where i∗ = argmaxi∈Sgt IoU(b,bi) and (X ,Y ) are added to the positive

set S+. All the positive samples in S+ = {(Xi,Yi)|yi ≥ 1} contribute to the loss. Samples such

that o∗ < 0.2 are assigned to a preliminary negative training pool, and the remaining samples

discarded. For a natural image, the distribution of objects and non-objects is heavily asymmetric.

Sampling is used to compensate for this imbalance. To collect a final set of negative samples

S− = {(Xi,Yi)|yi = 0}, such that |S−|= γ|S+|, we considered three sampling strategies: random,

bootstrapping, and mixture.

Random sampling consists of randomly selecting negative samples according to a uniform

distribution. Since the distribution of hard and easy negatives is heavily asymmetric too, most

randomly collected samples are easy negatives. It is well known that hard negatives mining helps

boost performance, since hard negatives have the largest influence on the detection accuracy.

Bootstrapping accounts for this, by ranking the negative samples according to their objectness

scores, and then collecting top |S−| negatives. Mixture sampling combines the two, randomly

sampling half of S− and sampling the other half by bootstrapping. In our experiments, mixture

19



sampling has very similar performance to bootstrapping.

To guarantee that each detection layer only detects objects in a certain range of scales,

the training set for the layer consists of the subset of S that covers the corresponding scale range.

For example, the samples of smallest scale are used to train the detector of “det-8” in Figure

2.3. It is possible that no positive training samples are available for a detection layer, resulting

in |S−|/|S+| � γ. This can make learning unstable. To address this problem, the cross-entropy

terms of positives and negatives are weighted as follows

Lcls =
1

1+ γ

1
|S+| ∑

i∈S+

− log pyi(Xi)+
γ

1+ γ

1
|S−| ∑

i∈S−

− log p0(Xi). (2.5)

2.3.4 Implementation Details

Data Augmentation: In [50, 59], it is argued that multi-scale training is not needed,

since deep neural networks are adept at learning scale invariance. This, however, is not true for

datasets such as Caltech [32] and KITTI [43], where object scales can span multiple octaves.

In KITTI, many objects are quite small. Without rescaling, the cardinalities of the sets S+ =

{S1
+,S

2
+, · · · ,SM

+} are wildly varying. In general, the set of training examples of largest object size

is very small. To ease this imbalance, the original images are randomly resized to multiple scales.

Fine-tuning: Training the Fast-RCNN [50] and RPN [140] networks requires large

amounts of memory and a small mini-batch, due to the large size of the input (i.e. 1000×600).

This leads to a very heavy training procedure. In fact, many background regions that are useless

for training take substantially amounts of memory. Thus, we randomly crop a small patch

(e.g. 448×448) around objects from the whole image. This drastically reduces the memory

requirements, enabling four images to fit into the typical GPU memory of 12G.

Learning is initialized with the popular VGG-Net [150]. Since bootstrapping and the

multi-task loss can make training unstable in the early iterations, a two-stage procedure is adopted.

The first stage uses random sampling and a small trade-off coefficient λ (e.g. 0.05). 10,000
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Figure 2.4: Object detection sub-network of the MS-CNN. “trunk CNN layers” are shared with
proposal sub-network. W and H are the width and height of the input image. The green (blue)
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iterations are run with a learning rate of 0.00005. The resulting model is used to initialize the

second stage, where random sampling is switched to bootstrapping and λ = 1. We set αi = 0.9 for

“det-8” and αi = 1 for the other layers. Another 25,000 iterations are run with an initial learning

rate of 0.00005, which decays 10 times after every 10,000 iterations. This two-stage learning

procedure enables stable multi-task training.

2.4 Object Detection Network

Although the proposal network could work as a detector itself, it is not strong, since its

sliding windows do not cover objects well. To increase detection accuracy, a detection network is

added. Following [50], a ROI pooling layer is first used to extract features of a fixed dimension

(e.g. 7×7×512). The features are then fed to a fully connected layer and output layers, as shown

in Figure 2.4. A deconvolution layer, described in Section 2.4.1, is added to double the resolution

of the feature maps. The multi-task loss of (2.1) is extended to

L(W,Wd) =
M

∑
m=1

∑
i∈Sm

αmlm(Xi,Yi|W)+ ∑
i∈SM+1

αM+1lM+1(Xi,Yi|W,Wd), (2.6)
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where lM+1 and SM+1 are the loss and training samples for the detection sub-network. SM+1

is collected as in [50]. As in (2.2), lM+1 combines a cross-entropy loss for classification and

a smoothed L1 loss for bounding box regression. The detection sub-network shares some of

the proposal sub-network parameters W and adds some parameters Wd . The parameters are

optimized jointly, i.e. (W∗,W∗d) = argminL(W,Wd). In the proposed implementation, ROI

pooling is applied to the top of the “conv4-3” layer, instead of the “conv5-3” layer of [50], since

“conv4-3” feature maps performed better in our experiments. One possible explanation is that

“conv4-3” corresponds to higher resolution and is better suited for location-aware bounding box

regression.

2.4.1 CNN Feature Map Approximation

Input size has a critical role in CNN-based object detection accuracy. Simply forwarding

object patches, at the original scale, through the CNN impairs performance (especially for small

ones), since the pre-trained CNN models have a natural scale (e.g. 224×224). While the R-CNN

naturally solves this problem through warping [51], it is not explicitly addressed by the Fast-

RCNN [50] or Faster-RCNN [140]. To bridge the scale gap, these methods simply upsample

input images (by ∼2 times). For datasets, such as KITTI [43], containing large amounts of small

objects, this has limited effectiveness. Input upsampling also has three side effects: large memory

requirements, slow training and slow testing. It should be noted that input upsampling does not

enrich the image details. Instead, it is needed because the higher convolutional layers respond

very weakly to small objects. For example, a 32×32 object is mapped into a 4×4 patch of the

“conv4-3” layer and a 2×2 patch of the “conv5-3” layer. This provides limited information for

7×7 ROI pooling.

To address this problem, we consider an efficient way to increase the resolution of feature

maps. This consists of upsampling feature maps (instead of the input) using a deconvolution layer,

as shown in Figure 2.4. This strategy is similar to that of [29], shown in Figure 2.2 (d), where
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input rescaling is replaced by feature rescaling. In [29], a feature approximator is learned by least

squares. In the CNN world, a better solution is to use a deconvolution layer, similar to that of

[107]. Unlike input upsampling, feature upsampling does not incur in extra costs for memory

and computation. Our experiments show that the addition of a deconvolution layer significantly

boosts detection performance, especially for small objects. To the best of our knowledge, this

is the first application of deconvolution to jointly improve the speed and accuracy of an object

detector.

2.4.2 Context Embedding

Context has been shown useful for object detection [46, 16, 2] and segmentation [198].

Context information has been modeled by a recurrent neural network in [2] and acquired from

multiple regions around the object location in [46, 16, 198]. In this work, we focus on context

from multiple regions. As shown in Figure 2.4, features from an object (green cube) and a context

(blue cube) region are stacked together immediately after ROI pooling. The context region is 1.5

times larger than the object region. An extra convolutional layer without padding is used to reduce

the number of model parameters. It helps compress redundant context and object information,

without loss of accuracy, and guarantees that the number of model parameters is approximately

the same.

2.4.3 Implementation Details

Learning is initialized with the model generated by the first learning stage of the proposal

network, described in Section 2.3.4. The learning rate is set to 0.0005, and reduced by a

factor of 10 times after every 10,000 iterations. Learning stops after 25,000 iterations. The joint

optimization of (2.6) is solved by back-propagation throughout the unified network. Bootstrapping

is used and λ = 1. Following [50], the parameters of layers“conv1-1” to “conv2-2” are fixed
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Table 2.1: Parameter configurations of the different models.

det-8 det-16 det-32 det-64 ROI FC

car filter 5x5 7x7 5x5 7x7 5x5 7x7 5x5 7x7 4096
anchor 40x40 56x56 80x80 112x112 160x160 224x224 320x320

ped/cyc filter 5x3 7x5 5x3 7x5 5x3 7x5 5x3 7x5 2048
anchor 40x28 56x36 80x56 112x72 160x112 224x144 320x224

caltech filter 5x3 7x5 5x3 7x5 5x3 7x5 5x3 8x4 2048
anchor 40x20 56x28 80x40 112x56 160x80 224x112 320x160

during learning, for faster training.

2.5 Experimental Evaluation

The performance of the MS-CNN detector was evaluated on the KITTI [43] and Caltech

Pedestrian [32] benchmarks. These were chosen because, unlike VOC [36] and ImageNet [143],

they contain many small objects. Typical image sizes are 1250×375 on KITTI and 640×480

on Caltech. KITTI contains three object classes: car, pedestrian and cyclist, and three levels of

evaluation: easy, moderate and hard. The “moderate” level is the most commonly used. In total,

7,481 images are available for training/validation, and 7,518 for testing. Since no ground truth is

available for the test set, we followed [16], splitting the trainval set into training and validation

sets. In all ablation experiments, the training set was used for learning and the validation set for

evaluation. Following [16], a model was trained for car detection and another for pedestrian/cyclist

detection. One pedestrian model was learned on Caltech. The model configurations for original

input size are shown in Table 2.1. The detector was implemented in C++ within the Caffe toolbox

[76], and source code is available at https://github.com/zhaoweicai/mscnn. All times are reported

for implementation on a single CPU core (2.40GHz) of an Intel Xeon E5-2630 server with 64GB

of RAM. An NVIDIA Titan GPU was used for CNN computations.
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Table 2.2: Detection recall of the various detection layers on KITTI validation set (car), as a
function of object hight in pixels.

det-8 det-16 det-32 det-64 combined
25≤height<50 0.9180 0.3071 0.0003 0 0.9360
50≤height<100 0.5934 0.9660 0.4252 0 0.9814

100≤height<200 0.0007 0.5997 0.9929 0.4582 0.9964
height≥200 0 0 0.9583 0.9792 0.9583

all scales 0.6486 0.5654 0.3149 0.0863 0.9611
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Figure 2.5: Proposal recall on the KITTI validation set (moderate). “hXXX” refers to input
images of height “XXX”. “mt” indicates multi-task learning of proposal and detection sub-
networks.

2.5.1 Proposal Evaluation

We start with an evaluation of the proposal network. Following [63], oracle recall is used

as performance metric. For consistency with the KITTI setup, a ground truth is recalled if its best

matched proposal has IoU higher than 70% for cars, and 50% for pedestrians and cyclists.

The roles of individual detection layers: Table 2.2 shows the detection accuracy of the

various detection layers as a function of object height in pixels. As expected, each layer has

highest accuracy for the objects that match its scale. While the individual recall across scales is

low, the combination of all detectors achieves high recall for all object scales.

The effect of input size: Figure 2.5 shows that the proposal network is fairly robust to

the size of input images for cars and pedestrians. For cyclist, performance increases between

heights 384 and 576, but there are no gains beyond this. These results show that the network can
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Figure 2.6: Proposal performance comparison on KITTI validation set (moderate). The first
row is proposal recall curves and the second row is recall v.s. IoU for 100 proposals.

achieve good proposal generation performance without substantial input upsampling.

Detection sub-network improves proposal sub-network: [50] has shown that multi-

task learning can benefit both bounding box regression and classification. On the other hand

[140] showed that, even when features are shared between the two tasks, object detection does

not improve object proposals too much. Figure 2.5 shows that, for the MS-CNN, detection can

substantially benefit proposal generation, especially for pedestrians.

Comparison with the state-of-the-art: Figure 2.6 compares the proposal generation

network to BING [17], Selective Search [158], EdgeBoxes [199], MCG [1], 3DOP [16] and RPN

[140]. The top row of the figure shows that the MS-CNN achieves a recall about 98% with only

100 proposals. This should be compared to the ∼2,000 proposals required by 3DOP and the

∼10,000 proposals required by EdgeBoxbes. While it is not surprising that the proposed network

outperforms unsupervised proposal methods, such as [158, 199, 1], its large gains over supervised

methods [17, 16], that can even use 3D information, are significant. The closest performance

is achieved by RPN (input upsampled twice), which has substantially weaker performance for
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Table 2.3: Results on the KITTI validation set. “hXXX” indicates an input of height “XXX”,
“2x” deconvolution, “ctx” context encoding, and “c” dimensionality reduction convolution.
In columns “Time” and “# params”, entries before the “/” are for car model and after for
pedestrian/cyclist model.

Model Time # params Cars Pedestrians
Easy Mod Hard Easy Mod Hard

h384 0.11s/0.09s 471M/217M 90.90 80.63 68.94 73.70 68.37 60.72
h576 0.22s/0.19s 471M/217M 90.42 88.14 73.44 75.35 70.77 63.07
h768 0.41s/0.36s 471M/217M 89.84 88.88 75.78 76.38 72.26 64.08

h576-random 0.22s/0.19s 471M/217M 90.94 87.50 71.27 70.69 65.91 58.28
h576-mixture 0.22s/0.19s 471M/217M 90.33 88.12 72.90 75.09 70.49 62.43

h384-2x 0.12s/0.10s 471M/217M 90.55 87.93 71.90 76.01 69.53 61.57
h576-2x 0.23s/0.20s 471M/217M 94.08 89.12 75.54 77.74 72.49 64.43
h768-2x 0.43s/0.38s 471M/217M 90.96 88.83 75.19 76.33 72.71 64.31
h576-ctx 0.24s/0.20s 863M/357M 92.89 88.88 74.34 76.89 71.45 63.50

h576-ctx-c 0.22s/0.19s 297M/155M 90.49 89.13 74.85 76.82 72.13 64.14
proposal network (h576) 0.19s/0.18s 80M/78M 82.73 73.49 63.22 64.03 60.54 55.07

pedestrians and cyclists. When the input is not upsampled, RPN misses even more objects, as

shown in Figure 2.5. It is worth mentioning that the MS-CNN generates high quality proposals

(high overlap with the ground truth) without any edge detection or segmentation. This is evidence

for the effectiveness of bounding box regression networks.

2.5.2 Object Detection Evaluation

In this section we evaluate object detection performance. Since the performance of

the cyclist detector has large variance on the validation set, due to the low number of cyclist

occurrences, only car and pedestrian detection are considered in the ablation experiments.

The effect of input upsampling: Table 2.3 shows that input upsampling can be a crucial

factor for detection. A significant improvement is obtained by upsampling the inputs by 1.5∼2

times, but we saw little gains beyond a factor of 2. This is smaller than the factor of 3.5 required

by [16]. Larger factors lead to (exponentially) slower detectors and larger memory requirements.

Sampling strategy: Table 2.3 compares sampling strategies: random (“h576-random”),

bootstrapping (“h576”) and mixture (“h576-mixture”). For car, these three strategies are close to

each other. For pedestrian, bootstrapping and mixture are close, but random is much worse. Note
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Figure 2.7: Comparison to the state-of-the-art on KITTI benchmark test set (moderate).

that random sampling has many more false positives than the other two.

CNN feature approximation: Three methods were attempted for learning the deconvolu-

tion layer for feature map approximation: 1) bilinearly interpolated weights; 2) weights initialized

by bilinear interpolation and learned with back-propagation; 3) weights initialized with Gaussian

noise and learned by back-propagation. We found the first method to work best, confirming the

findings of [107, 173]. As shown in Table 2.3, the deconvoltion layer helps in most cases. The

gains are larger for smaller input images, which tend to have smaller objects. Note that the feature

map approximation adds trivial computation and no parameters.

Context embedding: Table 2.3 shows that there is a gain in encoding context. However,

the number of model parameters almost doubles. The dimensionality reduction convolution layer

significantly reduces this problem, without impairment of accuracy or speed.

Object detection by the proposal network: The proposal network can work as a detector,

by switching the class-agnostic classification to class-specific. Table 2.3 shows that, although not

as strong as the unified network, it achieves fairly good results, which are better than those of

some detectors on the KITTI leaderboard1.

Comparison to the state-of-the-art: The results of model “h768-ctx-c” were submitted

to the KITTI leaderboard. A comparison to previous approaches is given in Table 2.4 and Figure

2.7. The MS-CNN set a new record for the detection of pedestrians and cyclists. The columns

1http://www.cvlibs.net/datasets/kitti/
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Table 2.4: Results on the KITTI benchmark test set (only published works shown).

Method Time Cars Pedestrians Cyclists
Easy Mod Hard Easy Mod Hard Easy Mod Hard

LSVM-MDPM-sv [44] 10s 68.02 56.48 44.18 47.74 39.36 35.95 35.04 27.50 26.21
DPM-VOC-VP [132] 8s 74.95 64.71 48.76 59.48 44.86 40.37 42.43 31.08 28.23

SubCat [122] 0.7s 84.14 75.46 59.71 54.67 42.34 37.95 - - -
3DVP [169] 40s 87.46 75.77 65.38 - - - - - -
AOG [89] 3s 84.80 75.94 60.70 - - - - - -

Faster-RCNN [140] 2s 86.71 81.84 71.12 78.86 65.90 61.18 72.26 63.35 55.90
CompACT-Deep [11] 1s - - - 70.69 58.74 52.71 - - -

DeepParts [154] 1s - - - 70.49 58.67 52.78 - - -
FilteredICF [192] 2s - - - 67.65 56.75 51.12 - - -
pAUCEnsT [126] 60s - - - 65.26 54.49 48.60 51.62 38.03 33.38
Regionlets [164] 1s 84.75 76.45 59.70 73.14 61.15 55.21 70.41 58.72 51.83

3DOP [16] 3s 93.04 88.64 79.10 81.78 67.47 64.70 78.39 68.94 61.37
SDP+RPN [180] 0.4s 90.14 88.85 78.38 80.09 70.16 64.82 81.37 73.74 65.31

MS-CNN 0.4s 90.03 89.02 76.11 83.92 73.70 68.31 84.06 75.46 66.07

“Pedestrians-Mod” and “Cyclists-Mod” show substantial gains (6 and 7 points respectively) over

3DOP [16], and much better performance than the Faster-RCNN [140], Regionlets [164], etc. We

also led a nontrivial margin over the very recent SDP+RPN [180], which used scale dependent

pooling. In terms of speed, the network is fairly fast. For the largest input size, the MS-CNN

detector is about 8 times faster than 3DOP. On the original images (1250×375) detection speed

reaches 10 fps.

Pedestrian detection on Caltech: The MS-CNN detector was also evaluated on the Cal-

tech pedestrian benchmark. The model “h720-ctx” was compared to methods such as DeepParts

[154], CompACT-Deep [11], CheckerBoard [192], LDCF [121], ACF [29], and SpatialPooling

[126] on three tasks: reasonable, medium and partial occlusion. As shown in Figure 2.8, the

MS-CNN has state-of-the-art performance. Figure 2.8 (b) and (c) show that it performs very

well for small and occluded objects, outperforming DeepParts [154], which explicitly addresses

occlusion. Moreover, it misses a very small number of pedestrians, due to the accuracy of the

proposal network. The speed is approximately 8 fps (15 fps) on upsampled 960×720 (original

640×480) Caltech images.
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Figure 2.8: Comparison to the state-of-the-art on Caltech.

2.6 Conclusions

In this chapter, we have proposed a unified deep convolutional neural network, denoted the

MS-CNN, for fast multi-scale object detection. The detection is preformed at various intermediate

network layers, whose receptive fields match various object scales. This enables the detection

of all object scales by feedforwarding a single input image through the network, which results

in a very fast detector. CNN feature approximation was also explored, as an alternative to input

upsampling. It was shown to result in significant savings in memory and computation. Overall,

the MS-CNN detector achieves high detection rates at speeds of up to 15 fps.
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Chapter 3

High-Quality Object Detection
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3.1 Introduction

Object detection is a complex problem, requiring the solution of two tasks. First, the

detector must solve the recognition problem, distinguishing foreground objects from background

and assigning them the proper object class labels. Second, the detector must solve the localization

problem, assigning accurate bounding boxes to different objects. An effective architecture for

the solution of the two tasks, on which many of the recently proposed object detectors are based,

is the two-stage R-CNN framework [51, 50, 140, 99]. This frames detection as a multi-task

learning problem that combines classification, to solve the recognition problem, and bounding

box regression, to solve localization.

Despite the success of this architecture, the two problems can be difficult to solve accu-

rately. This is partly due to the fact that there are many “close” false positives, corresponding

to “close but not correct” bounding boxes. An effective detector must find all true positives

in an image, while suppressing these close false positives. This requirement makes detection

more difficult than other classification problems, e.g. object recognition, where the difference

between positives and negatives is not as fine-grained. In fact, the boundary between positives and

negatives must be carefully defined. In the literature, this is done by thresholding the intersection

over union (IoU) score between candidate and ground truth bounding boxes. While the threshold

is typically set at the value of u = 0.5, this is a very loose requirement for positives. The resulting

detectors frequently produce noisy bounding boxes, as shown in Figure 3.1 (a). Hypotheses that

most humans would consider close false positives frequently pass the IoU ≥ 0.5 test. While

training examples assembled under the u = 0.5 criterion are rich and diverse, they make it difficult

to train detectors that can effectively reject close false positives.

In this work, we define the quality of a detection hypothesis as its IoU with the ground

truth, and the quality of a detector as the IoU threshold u used to train it. Some examples of

hypotheses of increasing quality are shown in Figure 3.1 (c). The goal is to investigate the
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Figure 3.1: (a) and (b) detections by object detectors of increasing qualities, and (c) examples
of increasing quality.

poorly researched problem of learning high quality object detectors. As shown in Figure 3.1

(b), these are detectors that produce few close false positives. The starting premise is that a

single detector can only be optimal for a single quality level. This is known in the cost-sensitive

learning literature [35, 113], where the optimization of different points of the receiver operating

characteristic (ROC) requires different loss functions. The main difference is that we consider the

optimization for a given IoU threshold, rather than false positive rate.

Some evidence in support of this premise is given in Figure 3.2, which presents the bound-

ing box localization performance, classification loss and detection performance, respectively, of

three detectors trained with IoU thresholds of u = 0.5,0.6,0.7. Localization and classification are

evaluated as a function of the detection hypothesis IoU. Detection is evaluated as a function of

the IoU threshold, as in COCO [98]. Figure 3.2 (a) shows that the three bounding box regressors

tend to achieve the best performance for examples of IoU in the vicinity of the threshold used for
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Figure 3.2: Bounding box localization, classification loss and detection performance of object
detectors of increasing IoU threshold u.

detector training. Figure 3.2 (c) shows a similar effect for detection, up to some overfitting for

the highest thresholds. The detector trained with u = 0.5 outperforms the detector trained with

u = 0.6 for low IoUs, underperforming it at higher IoUs. In general, a detector optimized for a

single IoU value is not optimal for other values. This is also confirmed by the classification loss,

shown in Figure 3.2 (b), whose peaks are near the thresholds used for detector training. In general,

the threshold determines the classification boundary where the classifier is most discriminative,

i.e. has largest margin [19, 40].

The observations above suggest that high quality detection requires a close match between

the quality of the detector and that of the detection hypotheses. The detector will only achieve high

quality if presented with high quality proposals. This, however, cannot be guaranteed by simply

increasing the threshold u during training. On the contrary, as seen for the detector of u = 0.7

in Figure 3.2 (c), forcing a high value of u usually degrades detection performance. We refer

to this problem, i.e. that training a detector with higher threshold leads to poorer performance,

as the paradox of high-quality detection. This problem has two causes. First, object proposal

mechanisms tend to produce hypotheses distributions heavily imbalanced towards low quality.

In result, the use of larger IoU thresholds during training exponentially reduces the number of

positive training examples. This is particularly problematic for neural networks, which are very

example intensive, making the “high u” training strategy very prone to overfitting. Second, there
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is a mismatch between the quality of the detector and that of the hypotheses available at inference

time. Since, as shown in Figure 3.2, high quality detectors are only optimal for high quality

hypotheses, detection performance can degrade substantially for hypotheses of lower quality.

In this chapter, we propose a new detector architecture, denoted as Cascade R-CNN, that

addresses these problems, to enable high quality object detection. The new architecture is a multi-

stage extension of the R-CNN, where detector stages deeper into the cascade are sequentially

more selective against close false positives. As is usual for classifier cascades [161, 144], the

cascade of R-CNN stages is trained sequentially, using the output of one stage to train the next.

This leverages the observation that the output IoU of a bounding box regressor is almost always

better than its input IoU, as can be seen in Figure 3.2 (a), where nearly all plots are above the gray

line. In result, the output of a detector trained with a certain IoU threshold is a good hypothesis

distribution to train the detector of the next higher IoU threshold. This has some similarity to

boostrapping methods commonly used to assemble datasets for object detection [161, 38]. The

main difference is that the resampling performed by the Cascade R-CNN does not aim to mine

hard negatives. Instead, by adjusting bounding boxes, each stage aims to find a good set of close

false positives for training the next stage. The main outcome of this resampling is that the quality

of the detection hypotheses increases gradually, from one stage to the next. In result, the sequence

of detectors addresses the two problems underlying the paradox of high-quality detection. First,

because the resampling operation guarantees the availability of a large number of examples for

the training of all detectors in the sequence, it is possible to train detectors of high IoU without

overfitting. Second, the use of the same cascade procedure at inference time produces a set of

hypotheses of progressively higher quality, well matched to the increasing quality of the detector

stages. This enables higher detection accuracies, as suggested by Figure 3.2.

The Cascade R-CNN is quite simple to implement and trained end-to-end. Our results

show that a vanilla implementation, without any bells and whistles, surpasses almost all previous

state-of-the-art single-model detectors, on the challenging COCO detection task [98], especially
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under the stricter evaluation metrics. In addition, the Cascade R-CNN can be built with any

two-stage object detector based on the R-CNN framework. We have observed consistent gains (of

2∼4 points, and more under stricter localization metrics), at a marginal increase in computation.

This gain is independent of the strength of the baseline object detectors, for all the models we

have tested. We thus believe that this simple and effective detection architecture can be of interest

for many object detection research efforts.

A preliminary version of this manuscript was previously published in [12]. After the

original publication, the Cascade R-CNN has been successfully reproduced within many different

codebases, including the popular Detectron [49], PyTorch1, and TensorFlow2, showing consistent

and reliable improvements independently of implementation codebase. In this expanded version,

we have extended the Cascade R-CNN to instance segmentation, by adding a mask head to the

cascade, denoted as Cascade Mask R-CNN. This is shown to achieve non-trivial improvements

over the popular Mask R-CNN [58]. A new and more extensive evaluation is also presented,

showing that the Cascade R-CNN is compatible with many complementary enhancements pro-

posed in the detection and instance segmentation literatures, some of which were introduced after

[12], e.g. GroupNorm [167]. Finally, we further present the results of a larger set of experiments,

performed on various popular generic/specific object detection datasets, including PASCAL

VOC [36], KITTI [43], CityPerson [193] and WiderFace [182]. These experiments demonstrate

that the paradox of high quality object detection applies to all these tasks, and that the Cascade

R-CNN enables more effective high quality detection than previously available methods. Due

to these properties, as well as its generality and flexibility, the Cascade R-CNN has recently

been adopted by the winning teams of the COCO 2018 instance segmentation challenge3, the

OpenImage 2018 challenge4, and the Wider Challenge 20185. To facilitate future research, we

1https://github.com/open-mmlab/mmdetection
2https://github.com/tensorpack/tensorpack
3http://cocodataset.org/#detection-leaderboard
4https://storage.googleapis.com/openimages/web/challenge.html
5http://wider-challenge.org/
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have released the code on two codebases, https://github.com/zhaoweicai/cascade-rcnn (Caffe

[76]) and https://github.com/zhaoweicai/Detectron-Cascade-RCNN (Detectron [49]) to facilitate

future research.

3.2 Related Work

Due to the success of the R-CNN [51] detector, which combines a proposal detector and

a region-wise classifier, this two-stage architecture has become predominant in the recent past.

To reduce redundant CNN computations, the SPP-Net [59] and Fast R-CNN [50] introduced the

idea of region-wise feature extraction, enabling the sharing of the bulk of feature computations

by object instances. The Faster R-CNN [140] then achieved further speeds-up by introducing

a region proposal network (RPN), becoming the cornerstone of modern object detection. Later,

some works extended this detector to address various problems of detail. For example, the R-FCN

[24] proposed efficient region-wise full convolutions to avoid the heavy CNN computations of

the Faster R-CNN; and the Mask R-CNN [58] added a network head that computes object masks

to support instance segmentation. Some more recent works have focused on normalizing feature

statistics [131, 167], modeling relations between instances [65], non maximum suppression

(NMS) [7], and other aspects [149, 103].

Scale invariance, an important requisite for effective object detection, has also received

substantial attention in the literature [10, 99, 151]. While natural images contain objects at

various scales, the fixed receptive field size of the filters implemented by the RPN [140] makes it

prone to scale mismatches. To overcome this, the MS-CNN [10] introduced a multi-scale object

proposal network, by generating outputs at multiple layers. This leverages the different receptive

field sizes of the different layers to produce a set of scale-specific proposal generators, which is

then combined into a strong multi-scale generator. Similarly, the FPN [99] detects high-recall

proposals at multiple output layers, with recourse to a scale-invariant feature representation
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by adding a top-down connection across feature maps of different network depths. Both the

MS-CNN and FPN rely on a feature pyramid representation for multi-scale object detection.

SNIP [151], on the other hand, recently revisited image pyramid in modern object detection. It

normalizes the gradients from different object scales during training, such that the whole detector

is scale-specific. Scale-invariant detection is achieved by using an image pyramid at inference.

One-stage object detection architectures have also become popular for their computational

efficiency. YOLO [137] outputs very sparse detection results and enables real-time object

detection, by forwarding the input image once through an efficient backbone network. SSD [104]

detects objects in a way similar to the RPN [140], but uses multiple feature maps at different

resolutions to cover objects at various scales. The main limitation of these detectors is that

their accuracy is typically below that of two-stage detectors. The RetinaNet [100] detector was

proposed to address the extreme foreground-background class imbalance of dense object detection,

achieving results comparable to two-stage detectors. Recently, CornerNet [87] proposed to detect

an object bounding box as a pair of keypoints, abandoning the widely used concept of anchors first

introduced by the Faster R-CNN. This detector has achieved very good performance with the help

of some training and testing enhancements. RefineDet [194] added an anchor refinement module

to the single-shot SSD [104], to improve localization accuracy. This is somewhat similar to the

cascaded localization implemented by the proposed Cascade R-CNN, but ignores the problem of

high-quality detection.

Some explorations in multi-stage object detection have also been proposed. The multi-

region detector of [46] introduced iterative bounding box regression, where a R-CNN is applied

several times to produce successively more accurate bounding boxes. [179, 48, 47] used a

multi-stage procedure to generate accurate proposals, which are forwarded to an accurate model

(e.g. Fast R-CNN). [186, 118] proposed an alternative procedure to localize objects sequentially.

While this is similar in spirit to the Cascade-RCNN, these methods use the same regressor

iteratively for accurate localization. On the other hand, [91, 123] embedded the classic cascade
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Figure 3.3: The architectures of different frameworks. “I” is input image, “conv” backbone
convolutions, “pool” region-wise feature extraction, “H” network head, “B” bounding box, and
“C” classification. “B0” is proposals in all architectures.

architecture of [161] in an object detection network. Finally, [23] iterated between the detection

and segmentation tasks, to achieve improved instance segmentation.

Upon publication of the conference version of this manuscript, several works have pursued

the idea behind Cascade R-CNN [77, 105, 166]. [105, 166] applied it to single-shot object

detectors, showing nontrivial improvements for high quality single-shot detection, for general

objects and pedestrians, respectively. The IoU-Net [77] explored in greater detail high-quality

localization, achieving some gains over the Cascade R-CNN by cascading more bounding box

regression steps. [57] showed it is possible to achieve state-of-the-art object detectors without
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ImageNet pretraining, with a help of the Cascade R-CNN. These works show that the Cascade

R-CNN idea is robust and applicable to various object detection architectures. This suggests that

it should continue to be useful despite future advances in object detection.

3.3 Review of High-Quality Object Detection

In this section, we discuss the challenges of high quality object detection.

3.3.1 Object Detection

While the ideas proposed in this work can be applied to various detector architectures, we

focus on the popular two-stage architecture of the Faster R-CNN [140], shown in Figure 3.3 (a).

The first stage is a proposal sub-network, in which the entire image is processed by a backbone

network, e.g. ResNet [61], and a proposal head (“H0”) is applied to produce preliminary detection

hypotheses, known as object proposals. In the second stage, these hypotheses are processed by a

region-of-interest detection sub-network (“H1”), denoted as a detection head. A final classification

score (“C”) and a bounding box (“B”) are assigned per hypothesis. The entire detector is learned

end-to-end, using a multi-task loss with bounding box regression and classification components.

Bounding Box Regression: A bounding box b = (bx,by,bw,bh) contains the four coordi-

nates of an image patch x. Bounding box regression aims to regress a candidate bounding box b

into a target bounding box g, using a regressor f (x,b). This is learned from a training set (gi,bi),

by minimizing the risk

Rloc[ f ] = ∑
i

Lloc( f (xi,bi),gi). (3.1)

As in Fast R-CNN [50],

Lloc(a,b) = ∑
i∈{x,y,w,h}

smoothL1(ai−bi) (3.2)
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where

smoothL1(x) =

 0.5x2, |x|< 1

|x|−0.5, otherwise,
(3.3)

is the smooth L1 loss function. To encourage invariance to scale and location, smoothL1 operates

on the distance vector ∆ = (δx,δy,δw,δh) defined by

δx = (gx−bx)/bw, δy = (gy−by)/bh

δw = log(gw/bw), δh = log(gh/bh).
(3.4)

Since bounding box regression usually performs minor adjustments on b, the numerical values of

(3.4) can be very small. This usually makes the regression loss much smaller than the classification

loss. To improve the effectiveness of multi-task learning, ∆ is normalized by its mean and variance,

e.g. δx is replaced by

δ
′
x =

δx−µx

σx
. (3.5)

This is widely used in the literature [140, 10, 24, 99, 58].

Classification: The classifier is a function h(x) that assigns an image patch x to one

of M + 1 classes, where class 0 contains background and the remaining classes the objects

to detect. h(x) is a M + 1-dimensional estimate of the posterior distribution over classes, i.e.

hk(x) = p(y = k|x), where y is the class label. Given a training set (xi,yi), it is learned by

minimizing the classification risk

Rcls[h] = ∑
i

Lcls(h(xi),yi), (3.6)

where

Lcls(h(x),y) =− loghy(x) (3.7)

is the cross-entropy loss.
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3.3.2 Detection Quality

Consider a ground truth object of bounding box g associated with class label y, and a

detection hypothesis x of bounding box b. Since a b usually includes an object and some amount

of background, it can be difficult to determine if a detection is correct or not. This is usually

addressed by the intersection over union (IoU) metric

IoU(b,g) =
b∩g
b∪g

. (3.8)

If the IoU is above a threshold u, the patch is considered an example of the class of the object of

bounding box g and denoted “positive”. Thus, the class label of a hypothesis x is a function of u,

yu =

 y, IoU(b,g)≥ u

0, otherwise.
(3.9)

If the IoU does not exceed the threshold for any object, x is assigned to the background and

denoted “negative”.

Although there is no need to define positive/neagtive examples for the bounding box

regression task, an IoU threshold u is also required to select the set of samples

G = {(gi,bi)|IoU(bi,gi)≥ u} (3.10)

used to train the regressor. While the IoU thresholds used for the two tasks do not have to be

identical, this is usual in practice. Hence, the IoU threshold u defines the quality of a detector.

Large thresholds encourage detected bounding boxes to be tightly aligned with their ground truth

counterparts. Small thresholds reward detectors that produce loose bounding boxes, of small

overlap with the ground truth.

A main challenge of object detection is that, no matter the choice of threshold, the
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detection setting is highly adversarial. When u is high, positives contain less background but it is

difficult to assemble large positive training sets. When u is low, richer and more diverse positive

training sets are possible, but the trained detector has little incentive to reject close false positives.

In general, it is very difficult to guarantee that a single classifier performs uniformly well over all

IoU levels. At inference, since the majority of the hypotheses produced by a proposal detector, e.g.

RPN [140] or selective search [156], have low quality, the detector must be more discriminant

for lower quality hypotheses. A standard compromise between these conflicting requirements

is to settle on u = 0.5, which is used in almost all modern object detectors. This, however, is a

relatively low threshold, leading to low quality detections that most humans consider close false

positives, as shown in Figure 3.1 (a).

3.3.3 Challenges to High Quality Detection

Despite the significant progress in object detection of the past few years, few works

attempted to address high quality detection. This is mainly due to the following reasons.

First, evaluation metrics have historically placed greater emphasis on the low quality

detection regime. For performance evaluation, an IoU threshold u is used to determine whether a

detection is a success (IoU(b,g)≥ u) or failure (IoU(b,g)< u). Many object detection datasets,

including PASCAL VOC [36], ImageNet [143], Caltech Pedestrian[32], etc., use u = 0.5. This is

partly because these datasets were established a while ago, when object detection performance

was far from what it is today. However, this loose evaluation standard is adopted even by relatively

recent datasets, such as WiderFace [182], or CityPersons [193]. This is one of the main reasons

why performance has saturated for many of these datasets. Others, such as COCO [98] or KITTI

[43] use stricter evaluation metrics: average precision at u = 0.7 for car in KITTI, and mean

average precision across u = [0.5 : 0.05 : 0.95] in COCO. While recent works have focused on

these less saturated datasets, most detectors are still designed with the loose IoU threshold of

u = 0.5, associated with the low-quality detection regime. In this work, we show that there is
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Figure 3.4: IoU histograms of training samples of each cascade stage. The distribution of the
1st stage is the RPN output. Shown in red are the percentage of positives for the corresponding
IoU threshold.

plenty of room for improvement when a stricter evaluation metric, e.g. u≥ 0.75, is used and that

it is possible to achieve significant improvements by designing detectors specifically for the high

quality regime.

Second, the design of high quality object detectors is not a trivial generalization of existing

approaches, due to the paradox of high quality detection. To beat the paradox, it is necessary to

match the qualities of the hypotheses generator and the object detector. In the literature, there

have been efforts to increase the quality of hypotheses, e.g. by iterative bounding box regression

[48, 47] or better RPN design [10, 99], and some efforts to increase the quality of the object

detector, e.g. by using the integral loss on a set of IoU thresholds [187]. These attempts fail to

guarantee high quality detection because they consider only one of the goals, missing the fact

that the qualities of both tasks need to be increased simultaneously. On one hand, raising the

quality of the hypotheses has little benefit if the detector remains of low quality, because the

latter is not trained to discriminate high quality from low quality hypotheses. On the other, if

only the detector quality is increased, there are too few high quality hypotheses for it to classify,

leading to no detection improvement. In fact, because, as shown in Figure 3.4 (left), the set of

positive samples decreases quickly with u, a high u detector is prone to overfitting. Hence, a high

u detector can easily overfit and perform worse than a low u detector, as shown in Figure 3.2 (c).
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3.4 Cascade R-CNN

In this section we introduce the Cascade R-CNN detector.

3.4.1 Architecture

The architecture of the Cascade R-CNN is shown in Figure 3.3 (b). It is a multi-stage

extension of the Faster R-CNN architecture of Figure 3.3 (a). In this work, we focus on the the

detection sub-network, simply adopting the RPN [140] of Figure 3.3 (a) for proposal detection.

However, the Cascade R-CNN is not limited to this proposal mechanism, other choices should

be possible. As discussed in the section above, the goal is to increase the quality of hypotheses

and detector simultaneously, to enable high quality object detection. This is achieved with a

combination of cascaded bounding box regression and cascaded detection.

3.4.2 Cascaded Bounding Box Regression

High quality hypotheses can be easily produced during training, where ground truth

bounding boxes are available, e.g. by sampling around the ground truth. The difficulty is to

produce high quality proposals at inference, when ground truth is unavailable. This problem is

addressed with resort to cascaded bounding box regression.

As shown in Figure 3.2 (a), a single regressor cannot usually perform uniformly well

over all quality levels. However, as is commonly done for pose regression [31] or face alignment

[13, 174, 175], the regression task can be decomposed into a sequence of simpler steps. In the

Cascade R-CNN detector, the idea is implemented with a cascaded regressor with the architecture

of Figure 3.3 (b). This consists of a cascade of specialized regressors

f (x,b) = fT ◦ fT−1 ◦ · · · ◦ f1(x,b), (3.11)
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where T is the total number of cascade stages. The key point is that each regressor ft is optimized

for the bounding box distribution {bt} generated by the previous regressor, rather than the initial

distribution {b1}. In this way, the hypotheses are improved progressively.

This is illustrated in Figure 3.5, which presents the distribution of the regression distance

vector ∆ = (δx,δy,δw,δh) at different cascade stages. Note that most hypotheses become closer to

the ground truth as they progress through the cascade. There are also some hypotheses that fail to

meet the stricter IoU criteria of the later cascade stages. These are declared outliers and eliminated.

It should be noted that, as discussed in Section 3.3.1, ∆ needs be mean/variance normalized, as

in (3.5), for effective multi-task learning. The mean and variance statistics computed after this

outlier removal step are used to normalize ∆ at each cascade stage. Our experiments show that

this implementation of cascaded bounding box regression generates hypotheses of very high

quality at both training and inference.

3.4.3 Cascaded Detection

As shown in the left of Figure 3.4, the initial hypotheses distribution produced by the

RPN is heavily tilted towards low quality. For example, only 2.9% of examples are positive for

an IoU threshold u = 0.7. This makes it difficult to train a high quality detector. The Cascade

R-CNN addresses the problem by using cascade regression as a resampling mechanism. This is

inspired by Figure 3.2 (a), where nearly all curves are above the diagonal gray line, showing that

a bounding box regressor trained for a certain u tends to produce bounding boxes of higher IoU.

Hence, starting from examples {(xi,bi)}, cascade regression successively resamples an example

distribution {(x′i,b′i)} of higher IoU. This enables the sets of positive examples of the successive

stages to keep a roughly constant size, even when the detector quality u is increased. Figure 3.4

illustrates this property, showing how the example distribution tilts more heavily towards high

quality examples after each resampling step.

At each stage t, the R-CNN head includes a classifier ht and a regressor ft optimized for
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cascade stages. Top: plot of (δx,δy). Bottom: plot of (δw,δh). Red dots are outliers for the
increasing IoU thresholds of later stages, and the statistics shown are obtained after outlier
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the corresponding IoU threshold ut , where ut > ut−1. These are learned with loss

L(xt ,g) = Lcls(ht(xt),yt)+λ[yt ≥ 1]Lloc( ft(xt ,bt),g), (3.12)

where bt = ft−1(xt−1,bt−1), g is the ground truth object for xt , λ = 1 the trade-off coefficient,

yt is the label of xt under the ut criterion, according to (3.9), [·] is the indicator function. Note

that the use of [·] implies that the IoU threshold u of bounding box regression is identical to

that used for classification. This cascade learning has three important consequences for detector

training. First, the potential for overfitting at large IoU thresholds u is reduced, since positive

examples become plentiful at all stages (see Figure 3.4). Second, detectors of deeper stages are

optimal for higher IoU thresholds. Third, because some outliers are removed as the IoU threshold

increases (see Figure 3.5), the learning effectiveness of bounding box regression increases in
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the later stages. This simultaneous improvement of hypotheses and detector quality enables the

Cascade R-CNN to beat the paradox of high quality detection. At inference, the same cascade is

applied. The quality of the hypotheses is improved sequentially, and higher quality detectors are

only required to operate on higher quality hypotheses, for which they are optimal. This enables

the high quality object detection results of Figure 3.1 (b), as suggested by Figure 3.2.

3.4.4 Differences from Previous Works

The Cascade R-CNN has similarities to previous works using iterative bounding box

regression and integral loss for detection. There are, however, important differences.

Iterative Bounding Box Regression: Some works [46, 47, 61] have previously argued

that the use of a single bounding box regressor f is insufficient for accurate localization. These

methods apply f iteratively, as a post-processing step

f ′(x,b) = f ◦ f ◦ · · · ◦ f (x,b), (3.13)

that refines a bounding box b. This is called iterative bounding box regression and denoted as

iterative BBox. It can be implemented with the inference architecture of Figure 3.3 (c) where

all heads are identical. Note that this is only for inference, as training is identical to that of a

two-stage object detector, e.g. the Faster R-CNN of Figure 3.3 (a) with u = 0.5. This approaches

ignores two problems. First, as shown in Figure 3.2, a regressor f trained at u = 0.5 is suboptimal

for hypotheses of higher IoUs. It actually degrades bounding box accuracy for IoUs larger than

0.85. Second, as shown in Figure 3.5, the distribution of bounding boxes changes significantly

after each iteration. While the regressor is optimal for the initial distribution it can be quite

suboptimal after that. Due to these problems, iterative BBox requires a fair amount of human

engineering, in the form of proposal accumulation, box voting, etc, and has somewhat unreliable

gains [46, 47, 61]. Usually, there is no benefit beyond applying f twice.
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The Cascade R-CNN differs from iterative BBox in several ways. First, while iterative

BBox is a post-processing procedure used to improve bounding boxes, the Cascade R-CNN

uses cascade regression as a resampling mechanism that changes the distribution of hypotheses

processed by the different stages. Second, because cascade regression is used at both training

and inference, there is no discrepancy between training and inference distributions. Third, the

multiple specialized regressors { fT , fT−1, · · · , f1} are optimal for the resampled distributions of

the different stages. This is unlike the single f of (3.13), which is only optimal for the initial

distribution. Our experiments show that the Cascade R-CNN enables more precise localization

than that possible with iterative BBox, and requires no human engineering.

Integral Loss: [187] proposed an ensemble of classifiers with the architecture of Figure

3.3 (d) and trained with the integral loss. This is a loss

Lcls(h(x),y) = ∑
u∈U

Lcls(hu(x),yu) (3.14)

that targets various quality levels, defined by a set of IoU thresholds U = {0.5,0.55, · · · ,0.75},

chosen to fit the evaluation metric of the COCO challenge.

The Cascade R-CNN differs from this detector in several ways. First, (3.14) fails to

address the problem that the various loss terms operate on different numbers of positives. As

shown on Figure 3.4 (left), the set of positive samples decreases quickly with u. This is particularly

problematic because it makes the high quality classifiers very prone to overfitting. On the other

hand, as shown in Figure 3.4, the resampling of the Cascade R-CNN produces a nearly constant

number of positive examples as the IoU threshold u increases. Second, at inference, the high

quality classifiers are required to process proposals of overwhelming low quality, for which they

are not optimal. This is unlike the higher quality detectors of the Cascade R-CNN, which are

only required to operate on higher quality hypotheses. Third, the integral loss is designed to fit

the COCO metrics and, by definition, the classifiers are ensembled at inference. The Cascade
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R-CNN aims to achieve high quality detection, and the high quality detector itself in the last stage

can obtain the state-of-the-art detection performance. Due to all this, the integral loss detector of

Figure 3.3 (d) usually fails to outperform the vanilla detector of Figure 3.3 (a), for most quality

levels. This is unlike the Cascade R-CNN, which can have significant improvements.

3.5 Instance Segmentation

Instance segmentation has become popular in the recent past [23, 58, 103]. It aims to

predict pixel-level segmentation for each instance, in addition to determining its object class.

This is more difficult than object detection, which only predicts a bounding box (plus class) per

instance. In general, instance segmentation is implemented in addition to object detection, and

a stronger object detector usually leads to improved instance segmentation. The most popular

instance segmentation method is arguably the Mask R-CNN [58]. Like the Cascade R-CNN, it is

a variant on the two-stage detector. In this section, we extend the Cascade R-CNN architecture

to the instance segmentation task, by adding a segmentation branch similar to that of the Mask

R-CNN.

3.5.1 Mask R-CNN

The Mask R-CNN [58] extends the Faster R-CNN by adding a segmentation branch in

parallel to the existing detection branch during training. It has the architecture of Figure 3.6 (a).

The training instances are the positive examples also used to train the detection task. At inference,

object detections are complemented with segmentation masks, for all detected objects.

3.5.2 Cascade Mask R-CNN

In the Mask R-CNN, the segmentation branch is inserted in parallel to the detection

branch. However, the Cascade R-CNN has multiple detection branches. This raises the questions
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Figure 3.6: Architectures of the Mask R-CNN (a) and three Cascade Mask R-CNN strategies for
instance segmentation (b)-(d). Beyond the definitions of Figure 3.3, “S” denotes a segmentation
branch. Note that segmentations branches do not necessarily share heads with the detection
branch.

of 1) where to add the segmentation branch and 2) how many segmentation branches to add. We

consider three strategies for mask prediction in the Cascade R-CNN. The first two strategies

address the first question, adding a single mask prediction head at either the first or last stage of

the Cascade R-CNN, as shown in Figure 3.6 (b) and (c), respectively. Since the instances used to

train the segmentation branch are the positives of the detection branch, their number varies in

these two strategies. As shown in Figure 3.4, placing the segmentation head later on the cascade

leads to more examples. However, because segmentation is a pixel-wise operation, a large number

of highly overlapping instances is not necessarily as helpful as for object detection, which is a

patch-based operation. The third strategy addresses the second question, adding a segmentation

branch to each cascade stage, as shown in Figure 3.6 (d). This maximizes the diversity of samples
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used to learn the mask prediction task.

At inference time, all three strategies predict the segmentation masks on the patches

produced by the final object detection stage, irrespective of the cascade stage on which the

segmentation mask is implemented and how many segmentation branches there are. The final

mask prediction is obtained from the single segmentation branch for the architectures of Figure

3.6 (b) and (c), and from the ensemble of three segmentation branches for the architecture of

Figure 3.6 (d). Our experiments show that these architectures of the Cascade Mask R-CNN

outperform the Mask R-CNN.

3.6 Experimental Results

In this section, we present an extensive evaluation of the Cascade R-CNN detector.

3.6.1 Experimental Set-up

Experiments were performed over multiple datasets and baseline network architectures.

Datasets: The bulk of the experiments was performed on MS-COCO 2017 [98], which

contains∼118k images for training, 5k for validation (val) and∼20k for testing without provided

annotations (test-dev). The COCO average precision (AP) measure averages AP across IoU

thresholds from 0.5 to 0.95, with an interval of 0.05. It measures detection performance at

various qualities, encouraging high quality detection results, as discussed in Section 3.3.3. All

models were trained on the COCO training set and evaluated on the val set. Final results are

also reported on the test-dev set for fair comparison with the state-of-the-art. To assess the

robustness and generalization ability of the Cascade R-CNN, experiments were also performed

on Pascal VOC [36], KITTI [43], CityPersons [193] and WiderFace [182]. Instance segmentation

was also evaluated on COCO, using the same evaluation metrics as object detection. The only

difference is that the IoU is computed with respect to the mask rather than a bounding box.
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Implementation Details: All regressors are class agnostic for simplicity. All Cascade

R-CNN detection stages have the same architecture, which is the detection head of the baseline

detector. Unless otherwise noted, the Cascade R-CNN is implemented with four stages: one

RPN and three detection heads with thresholds U = {0.5,0.6,0.7}. The sampling of the first

detection stage follows [50, 140]. In subsequent stages, resampling is implemented by using all

the regressed outputs from the previous stage, as discussed in Section 3.4.3. No data augmentation

was used except standard horizontal image flipping. Inference was performed at a single image

scale, with no further bells and whistles. All baseline detectors were reimplemented with Caffe

[76], using the same codebase, for fair comparison. Some experiments with the FPN and Mask

R-CNN baselines were implemented on the Detectron platform.

Baseline Networks: To test the versatility of the Cascade R-CNN, experiments were

performed with multiple popular baselines: Faster R-CNN and MS-CNN of Chapter 2 with

VGG-Net [150] backbone, R-FCN [24] and FPN [99] with ResNet backbones [61], for the task

of object detection, and Mask R-CNN [58] with ResNet backbones for instance segmentation.

These baselines have a wide range of performances. Unless noted, their default settings were

used. End-to-end training was used instead of multi-step training.

In Faster R-CNN, the network head has two fully connected layers. To reduce parameters,

[55] was used to prune less important connections. 2048 units were retained per fully connected

layer and dropout layers were removed. These changes have negligible effect on detection

performance. Training started with a learning rate of 0.002, which was reduced by a factor of 10

at 60k and 90k iterations, and stopped at 100k iterations, on 2 synchronized GPUs, each holding

4 images per iteration. 128 RoIs were used per image.

The R-FCN adds a convolutional, a bounding box regression, and a classification layer to

the ResNet. For this baseline, all Cascade R-CNN heads have this structure. Online hard negative

mining [149] was not used. Training started with a learning rate of 0.003, which was decreased

by a factor of 10 at 160k and 240k iterations, and stopped at 280k iterations, on 4 synchronized
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GPUs, each holding one image per iteration. 256 RoIs were used per image.

Since official source code was not publicly available for the FPN when we performed

our original experiments [12], the implementation details were somewhat different from those

later made available in the Detectron implementation. RoIAlign [58] was used for a stronger

baseline. This is denoted as FPN+ and was used in all ablation studies, with the ResNet-50 as a

backbone as usual. Training used a learning rate of 0.005 for 120k iterations and 0.0005 for the

next 60k iterations, on 8 synchronized GPUs, each holding one image per iteration. 256 RoIs

were used per image. We have also reimplemented the Cascade R-CNN of FPN on Detectron

platform, when it is publicly available.

The MS-CNN, introduced in Chapter 2, is a good multi-scale object detector for specific

object categories, e.g. vehicle, pedestrian, face, etc. It was used as baseline detector for experi-

ments on KITTI, CityPersons and WiderFace. For this baseline, the Cascade R-CNN adopted the

same two-step training strategy of the MS-CNN: proposal sub-network trained first and then joint

end-to-end training. All detection heads were only added at the second step, where the learning

rate was initially 0.0005, decreased by a factor of 10 at 10k and 20k iterations and stopped at 25k

iterations, on one GPU of batch size 4 images.

The Mask R-CNN was used as baseline for instance segmentation. The default Detectron

implementation was adopted, using the 1x learning schedule. Training started with a learning

rate of 0.02, which was reduced by a factor of 10 at 60k and 80k iterations, and stopped at 90k

iterations, on 8 synchronized GPUs, each holding 2 images per iteration. 512 RoIs were used per

image.

3.6.2 Quality Mismatch

An initial set of experiments was designed to evaluate the impact of the mistmatch between

proposal and detector quality on detection performance. Figure 3.7 (a) shows the AP curves

of three individually trained detectors of increasing IoU threshold in U = {0.5,0.6,0.7}. The
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Figure 3.7: (a) detection performance of individually trained detectors, with their own proposals
(solid curves) or Cascade R-CNN stage proposals (dashed curves). (b) results of adding ground
truth to the proposal set.

detector of u = 0.5 outperforms the detector of u = 0.6 at low IoU levels, but underperforms it

at higher levels. However, the detector of u = 0.7 underperforms the other two. To understand

why this happens, we changed the quality of the proposals at inference. Figure 3.7 (b) shows the

results obtained when ground truth bounding boxes were added to the set of proposals. While all

detectors improved, the detector of u = 0.7 had the largest gains, and the best performance for

almost all IoU levels. These results suggest two conclusions. First, the commonly used u = 0.5

threshold is not effective for precise detection, simply more robust to low quality proposals.

Second, precise detection requires hypotheses that match the detector quality.

Next, the original proposals were replaced by the Cascade R-CNN proposals of higher

quality (u = 0.6 and u = 0.7 used the 2nd and 3rd stage proposals, respectively). Figure 3.7 (a)

suggests that the performance of the two detectors is significantly improved when the quality of

the test proposals matches the detector quality. Testing Cascade R-CNN detectors of different

qualities at all cascade stages produced similar observations. Figure 3.8 shows that each detector

was improved by the use of more precise hypotheses, with higher quality detectors exhibiting

larger gains. For example, the detector of u = 0.7 performed poorly for the low quality proposals
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Figure 3.8: Detection performance of all Cascade R-CNN detectors at all cascade stages.

of the 1st stage, but much better for the more precise hypotheses available at the deeper cascade

stages. The jointly trained detectors of Figure 3.8 also outperformed the individually trained

detectors of Figure 3.7 (a), even when the same proposals were used. This indicates that the

detectors are better trained within the Cascade R-CNN architecture.

3.6.3 Comparison with Iterative BBox and Integral Loss

In this section, we compare the Cascade R-CNN to the iterative BBox and integral loss

detectors. Iterative BBox was implemented by applying the detection head of FPN+ baseline

iteratively at inference, three times. The integral loss detector was implemented with three

classification heads, using U = {0.5,0.6,0.7}.

Localization: The localization performances of cascade regression and iterative BBox

are compared in Figure 3.9 (a). The use of a single regressor degrades localization for hypotheses

of high IoU. This effect accumulates when the regressor is applied iteratively, as in iterative

BBox, and performance actually drops with iteration number. Note the very poor performance of

iterative BBox after 3 iterations. On the contrary, the cascade regressor has better performance at

later stages, outperforming iterative BBox at almost all IoU levels. Note that, although cascade

regression can slightly degrade high input IoUs, e.g. IoU>0.9, this decrease is negligible because,

as shown in Figure 3.4, the number of hypotheses with such high IoUs is extremely small.
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Figure 3.9: (a) localization performance of iterative BBox and Cascade R-CNN regressors. (b)
detection performance of the individual classifiers of the integral loss detector.

Table 3.1: Comparison of the Cascade R-CNN with iterative BBox and integral loss detectors.

AP AP50 AP60 AP70 AP80 AP90

FPN+ baseline 34.9 57.0 51.9 43.6 29.7 7.1
Iterative BBox 35.4 57.2 52.1 44.2 30.4 8.1
Integral Loss 35.4 57.3 52.5 44.4 29.9 6.9
Cascade R-CNN 38.9 57.8 53.4 46.9 35.8 15.8

Integral Loss: Figure 3.9 (b) summarizes the detection performances of all classifiers of

the integral loss detector, sharing a single regressor. The classifier of u = 0.6 is the best at all IoU

levels, with u = 0.7 producing the worst results. The ensemble of all classifiers shows no visible

gain.

Table 3.1 shows that both iterative BBox and integral loss marginally improve on the

baseline detector, and are not effective for high quality detection. On the other hand, the Cascade

R-CNN achieves the best performance at all IoU levels. As expected, the gains are mild for low

IoUs, e.g. 0.8 for AP50, but significant for the higher ones, e.g. 6.1 for AP80 and 8.7 for AP90.

Note that high quality object detection was rarely explored before this work. These experiments

show that 1) it has more room for improvement than low quality detection, which focuses on

AP50, and 2) the overall AP can be significantly improved if it is effectively addressed.
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Table 3.2: Stagewise performance of the Cascade R-CNN. 1∼ 3 indicates an ensemble result,
obtained by averaging the three classifier probabilities for 3rd stage proposals.

test stage AP AP50 AP60 AP70 AP80 AP90

1 35.5 57.2 52.4 44.1 30.5 8.1
2 38.3 57.9 53.4 46.4 35.2 14.2
3 38.3 56.6 52.2 46.3 35.7 15.9

1∼ 2 38.5 58.2 53.8 46.7 35.0 14.0
1∼ 3 38.9 57.8 53.4 46.9 35.8 15.8

FPN+ baseline 34.9 57.0 51.9 43.6 29.7 7.1

3.6.4 Ablation Experiments

A few ablation experiments were run to enable a better understanding of the Cascade

R-CNN.

Stage-wise Comparison: Table 3.2 summarizes stagewise performance. Note that the

first stage already outperforms the baseline detector, due to the benefits of multi-stage multi-task

learning. Since deeper cascade stages prefer higher quality localization, they encourage the

learning of features conducive to it. This benefits the earlier cascade stages, due to the feature

sharing by the backbone network. The second stage improves performance substantially, and the

third is equivalent to the second. This differs from the integral loss detector, where the higher

IoU classifier is relatively weak. While the former (later) stage is better at low (high) IoU metrics,

the ensemble of all classifiers is the best overall.

IoU Thresholds: A Cascade R-CNN was trained using IoU threshold u = 0.5 for all

heads. In this case, the stages differ only in the hypotheses at their input. Each stage is trained

with the corresponding hypotheses, i.e. accounting for the distribution changes of Figure 3.5. The

first row of Table 3.3 shows that this cascade improves on the baseline detector. This supports the

claim that stages should be optimized for the corresponding sample distributions. The second

row shows performance that improves further when the threshold u increases across stages. As

discussed in Section 3.4.3, the detector becomes more selective against close false positives and

specialized to the more precise hypotheses.
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Table 3.3: Ablation experiments. “IoU↑” indicates increasing IoU thresholds, “update statistics”
updating regression statistics, and “stage loss” weighting of stage losses.

IoU↑ update stage
AP AP50 AP60 AP70 AP80 AP90statistics loss

decay 36.8 57.8 52.9 45.4 32.0 10.7
3 decay 38.5 58.4 54.1 47.1 35.0 13.1

3 decay 37.5 57.8 53.1 45.5 33.3 13.1
3 3 decay 38.9 57.8 53.4 46.9 35.8 15.8
3 3 avg 38.9 57.5 53.4 46.9 35.8 16.2

Regression Statistics: In Section 3.3.1, we saw that the distance vector ∆ is normalized

by the regression statistics (mean and variance), as in (3.5). In the Cascade R-CNN, these statistics

are updated stage by stage, as illustrated in Figure 3.5. Updating the statistics of (3.5) in deeper

stages helps the effective multi-task learning of classification and regression. Empirically, the

learning is not very sensitive to the exact values of these statistics. For simplicity, we set µ = 0

for all stages, Σ = (σx,σy,σw,σh) = (0.1,0.1,0.2,0.2) for the first stage, Σ/2 for the second, and

Σ/3 for the third, in all of our experiments. The third and fourth row of Table 3.3 show that this

is beneficial, when compared to using the statistics of the first stage in all stages (the first and

second row).

Stage Losses: The Cascade R-CNN has multiple detection heads, each with its own loss.

We have explored two schemes to combine these losses: decay and avg. In avg, the loss of stage t

receives a weight wt = 1/T , where T is the number of stages. In decay, the weight is wt = 1/2t−1.

For both schemes, the learning rate of the head parameters of stage t is rescaled by 1/wt , to ensure

that these are sufficiently trained. No rescaling is needed for the backbone network parameters,

since they receive gradients from all stages. Table 3.3 shows that 1) avg has somewhat better

performance for high quality metrics, but worse for low quality ones, and 2) the two methods

have similar overall AP. The decay scheme is used in the remainder of the chapter.

Number of Stages: Table 3.4 summarizes the impact of the number of stages in the

Cascade R-CNN performance. Adding a second stage significantly improves the baseline detector.
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Table 3.4: The impact of the number of stages in Cascade R-CNN.

# stages test stage AP AP50 AP60 AP70 AP80 AP90

1 1 34.9 57.0 51.9 43.6 29.7 7.1
2 1∼ 2 38.2 58.0 53.6 46.7 34.6 13.6
3 1∼ 3 38.9 57.8 53.4 46.9 35.8 15.8
4 1∼ 3 38.9 57.4 53.2 46.8 36.0 16.0
4 1∼ 4 38.6 57.2 52.8 46.2 35.5 16.3

Three detection stages still produce non-trivial improvement, but the addition of a 4th stage

(u = 0.75) has a slight performance decrease. Note, however, that while the overall AP degrades,

the four-stage cascade has the best performance at high IoU levels. The three-stage cascade

achieves the best trade-off between cost and AP performance, and is used in the remaining

experiments.

3.6.5 Comparison with the state-of-the-art

An implementation of the Cascade R-CNN, based on the FPN+ detector and the ResNet-

101 backbone, is compared to state-of-the-art single-model detectors in Table 3.56. The settings

are those of Section 3.6.1, but training used 280k iterations, with learning rate decreased at 160k

and 240k iterations. The number of RoIs was also increased to 512. The top of the table reports to

one-stage detectors, the middle to two-stage, and the bottom to multi-stage (3-stages+RPN for the

Cascade R-CNN). Note that all the compared state-of-the-art detectors are trained with u = 0.5.

An initial observation is that our FPN+ implementation is better than the original FPN

[99], providing a very strong baseline. Nevertheless, the extension from FPN+ to Cascade R-CNN

improved performance by ∼4 points. In fact, the vanilla Cascade R-CNN, without any bells

and whistles, outperformed almost all single-model detectors under all evaluation metrics. This

includes the COCO challenge 2016 winner G-RMI [68], the recent Deformable R-FCN [25],

RetinaNet [100], Mask R-CNN [58], RelationNet[65], DetNet[93], CornerNet [87], etc. Note
6Some detectors are omitted in this comparison because their single-model results on COCO test-dev are not

publicly available.
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some of these methods leverage several training or inference enhancements, e.g. multi-scale,

soft NMS [7], etc, making the comparison very unfair. Finally, compared to the previously best

multi-stage detector on COCO, AttractioNet [47], also using many enhancements, the vanilla

Cascade R-CNN has a gain of 7.1 points.

The only detector that outperforms the Cascade R-CNN in Table 3.5 is SNIP [151], which

uses multi-scale training and inference, a larger input size, a stronger backbone, Soft NMS, and

some other enhancements. For a more fair comparison, we implemented the Cascade R-CNN

with multi-scale training/inference, a stronger backbone (ResNeXt-152 [172]), mask supervision,

etc. This enhanced Cascade R-CNN surpassed SNIP by 5.2 points. It also outperforms the

single-model MegDet detector (50.6 mAP), which won the COCO challenge in 2017 and uses

many other enhancements [131]. The Cascade R-CNN is conceptually straightforward, simple to

implement, and can be combined, in a plug and play manner, with many detector architectures.

3.6.6 Generalization Capacity

To more thoroughly test this claim, a three-stage Cascade R-CNN was implemented

with three baseline detectors: Faster R-CNN, R-FCN, and FPN+. All settings are as discussed

above, with the variations discussed in Section 3.6.5 for the FPN+ detector. Table 3.6 presents a

comparison of the AP performance of the three detectors.

Detection Performance: Again, our implementations are better than the original detectors

[140, 24, 99]. Still, the Cascade R-CNN improves on all baselines by 2∼4 points, independently

of their strength. Similar gains are observed for val and test-dev. These results show that the

Cascade R-CNN is widely applicable across detector architectures.

Parameters and Timing: The number of Cascade R-CNN parameters increases with

the number of stages. The increase is linear and proportional to the parameter cardinality of the

baseline detector head. However, because the head has much less computation than the backbone

network, the Cascade R-CNN has small computational overhead, at both training and testing.
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Table 3.7: Performance of various implementations of the Cascade R-CNN with the FPN
detector on Detectron, using the 1x schedule.

backbone cascade AP AP50 AP75 APS APM APL

Fast ResNet-50
7 36.4 58.4 39.3 20.3 39.8 48.1
3 40.5 58.7 43.9 21.5 43.6 54.9

ResNet-50
7 36.7 58.4 39.6 21.1 39.8 48.1
3 40.9 59.0 44.6 22.5 43.6 55.3

ResNet-101
7 39.4 61.2 43.4 22.6 42.9 51.4
3 42.8 61.4 46.8 24.1 45.8 57.4

ResNeXt-101
7 41.3 63.7 44.7 25.5 45.3 52.9
3 44.7 63.7 48.8 26.3 48.4 58.6

ResNet-50-GN
7 38.4 59.9 41.7 22.2 41.2 50.0
3 42.2 60.6 45.8 24.7 45.2 55.7

ResNet-101-GN
7 39.9 61.3 43.3 23.6 42.8 52.3
3 43.8 62.2 47.6 26.2 47.2 57.7

This is shown in Table 3.6.

Codebase and Backbone: The Cascade R-CNN of FPN was also reimplemented on

the Detectron codebase [49] with various backbone networks. Table 3.7 summarizes these

experiments, showing very consistent improvements (3∼4 points) across backbones. The Cascade

R-CNN has also been independently reproduced by other research groups, on PyTorch and

TensorFlow. These again show that the Cascade R-CNN can provide reliable gains across detector

architectures, backbones, codebases, and implementations.

Fast R-CNN: As shown in Figure 3.3 (b), the Cascade R-CNN is not limited to the

standard Faster R-CNN architecture. To test this, we trained the Cascade R-CNN in the way of

the Fast R-CNN, using pre-collected proposals. The results of Table 3.7 show that the gains of

the Cascade R-CNN hold for frameworks other than the Faster R-CNN.

Group Normalization: Group normalization (GN) [167] is a recent normalization tech-

nique, published after the Cascade R-CNN. It addresses the problem that batch normalization

(BN) [73] must be frozen for object detector training, due to the inaccurate statistics that can be

derived from small batch sizes [131]. GN, an alternative to BN that is independent of batch size,

has comparable performance to large-batch synchronized BN. Table 3.7 shows that the Cascade
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Table 3.8: Proposal recall of Cascade R-CNN stages.

stage AP100 AP100
s AP100

m AP100
l AP1k AP1k

s AP1k
m AP1k

l

FPN 47.8 32.2 54.9 65.2 59.1 48.0 66.3 68.4
1 46.8 31.0 53.8 64.8 58.7 47.6 65.9 68.2
2 55.3 35.1 61.1 82.5 70.7 55.2 77.7 88.1
3 56.5 36.1 62.4 84.1 71.4 55.5 78.1 89.8

R-CNN with GN has similar gains to those obersved for the other architectures. This suggests

that the Cascade R-CNN will continue to be useful even as architectural enhancements continue

to emerge in the literature.

3.6.7 Proposal Evaluation

Table 3.8 summarizes the proposal recall performance of a Cascade R-CNN implemented

with the FPN detector and ResNet-50 backbone. The first Cascade R-CNN stage has proposal

recall close to that of the FPN baseline. The addition of a bounding box regression stage improves

recall significantly, e.g. from 59.1 to 70.7 for AP1k and close to 20 points for AP1k
l . This

shows that the additional bounding box regression is very effective at improving proposal recall

performance. The addition of a third stage has a smaller but non-negligible gain. Note that the

COCO recall is the mean recall over IoU thresholds [0.5:0.05:0.95]. This high proposal recall

performance secures the later high-quality object detection task.

3.6.8 Instance Segmentation by Cascade Mask R-CNN

Table 3.9 summarizes the instance segmentation performance of the Cascade Mask R-

CNN strategies of Figure 3.6. These experiments, use the Mask R-CNN, implemented on

Detectron with 1x schedule as baseline. All three strategies improve on baseline performance,

although with smaller gains than object detection (see Table 3.2), especially at high quality. For

example, the AP90 improvement of 8.7 points for object detection falls to 1.8 points, showing that

plenty of room is left for improving high quality instance segmentation. Comparing strategies, (c)
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Table 3.9: The instance segmentation comparison among three strategies of the Cascade Mask
R-CNN.

AP AP50 AP60 AP70 AP80 AP90

Mask R-CNN baseline 33.9 55.5 49.8 41.4 28.6 8.3
strategy of Figure 3.6 (b) 35.0 56.3 50.8 43.0 30.0 9.3
strategy of Figure 3.6 (c) 35.4 56.4 50.9 43.2 31.0 10.1
strategy of Figure 3.6 (d) 35.5 56.5 51.2 43.4 30.8 10.0

outperforms (b). This is because (b) trains the mask head in the first stage but tests after the last

stage, leading to a mask prediction mismatch. This mismatch is reduced by (c). The addition of a

mask branch to each stage by strategy (d) does not have noticeable benefits over (c), but requires

much more computation and memory. Strategy (b) has the best trade-off between cost and AP

performance, and is used in the remainder of the chapter.

To evaluate the instance segmentation robustness of the Cascade Mask R-CNN, several

backbone networks are compared in Table 3.10. Since this architecture can detect objects,

detection results are also shown. Note that the additional mask supervision makes these better

than those of Table 3.7. The gains of the Cascade Mask R-CNN are very consistent for all

backbone networks. Even when the strongest model, ResNeXt-152 [172], is used with training

data augmentation and 1.44x schedule, the Cascade Mask R-CNN has a gain of 2.9 points for

detection and 1.0 point for instance segmentation. Adding inference enhancements, the gains are

still 2.1 points for detection and 0.8 points for instance segmentation. This robustness explains

why the Cascade R-CNN was widely used in the COCO challenge 2018, where the task is instance

segmentation, not object detection.

3.6.9 Results on PASCAL VOC

The Cascade R-CNN was further tested on the PASCAL VOC dataset [36]. Following

[140, 104], the models were trained on VOC2007 and VOC2012 trainval (16,551 images) and

tested on VOC2007 test (4,952 images). Two detector architectures were evaluated: Faster
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Table 3.11: Detection results on PASCAL VOC 2007 test.

backbone cascade AP AP50 AP75

Faster R-CNN AlexNet
7 29.4 63.2 23.7
3 38.9 66.5 40.5

Faster R-CNN VGG
7 42.9 76.4 44.1
3 51.2 79.1 56.3

R-FCN RetNet-50
7 44.8 77.5 46.8
3 51.8 78.5 57.1

R-FCN ResNet-101
7 49.4 79.8 53.2
3 54.2 79.6 59.2

R-CNN (with AlexNet and VGG-Net backbones) and R-FCN (with ResNet-50 and ResNet-101).

Training details were as discussed in Section 3.6.1, and both AlexNet and VGG-Net were pruned.

More specifically, Faster R-CNN (R-FCN) training started with a learning rate of 0.001 (0.002),

which was reduced by a factor of 10 at 30k (60k) and stopped at 45k (90k) iterations. Since the

standard VOC evaluation metric (AP at IoU of 0.5) is fairly saturated, and the focus of this work is

high quality detection, the COCO metrics were used for evaluation7. Table 3.11 summarizes the

performance of all detectors, showing that the Cascade R-CNN significantly improves the overall

AP in all cases. These results are further evidence for the robustness of the Cascade R-CNN.

3.6.10 Additional Results on other Datasets

Beyond generic object detection datasets, the Cascade R-CNN was tested on some specific

object detection tasks, including KITTI [43], CityPerson [193] and WiderFace [182]. The MS-

CNN, a detector of strong performance on these tasks, was used as baseline for all of them.

KITTI: One of the most popular datasets for autonomous driving, KITTI contains 7,481

training/validation images, and 7,518 for testing with held annotations. The 2D object detection

task contains three categories: car, pedestrian, and cyclist. Evaluation is based on the VOC AP

at IoU of 0.7, 0.5, and 0.5 for the three categories, respectively. Since the focus of this work

7The PASCAL VOC annotations were transformed to COCO format, and the COCO toolbox used for evaluation.
Results are different from the standard VOC evaluation.
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Table 3.12: MS-CNN detection results for the car class on KITTI test set.

cascade Easy Moderate Hard

AP70
7 90.22 89.08 76.50
3 90.68 89.95 78.40

Table 3.13: MS-CNN detection results on CityPersons validation set.

cascade Reasonable Small Heavy All

MR50
7 13.07 40.42 53.55 38.74
3 11.96 38.37 49.41 36.83

MR75
7 38.23 59.84 85.06 65.56
3 28.45 56.24 81.86 58.24

is high quality detection, the Cascade R-CNN was only tested on the car category. As shown

in Table 3.12, it improved the baseline by 0.87 points for the Moderate, and 1.9 points for the

Hard regime, on the test set. These improvements are nontrivial, given that MS-CNN is a strong

detector and the KITTI car detection task is fairly saturated.

CityPersons: CityPersons is a recently published pedestrian detection dataset, collected

across multiple European cities. It contains 2,975 training and 500 validation images, and 1,575

images for testing with held annotations. Evaluation is based on miss-rate (MR) at IoU=0.5. We

also report results for MR at IoU=0.75, which is more commensurate with high quality detection.

This is consistent with a recent trend to adopt the stricter COCO metric for pedestrian and face

detection, see e.g. the Wider Challenge 2018. Table 3.13 compares the validation set performance

of the Cascade R-CNN with that of the baseline MS-CNN (performances on validation and test

sets are usually equivalent on this dataset). The Cascade R-CNN has large performance gains,

especially for the stricter evaluation metric. For example, it improves the baseline performance

by ∼10 points on the Reasonable set at MR75.

WiderFace: One of the most challenging face detection datasets, mainly due to its

diversity in scale, pose and occlusion, WiderFace contains 32,203 images with 393,703 annotated

faces, of which 12,880 are used for training, 3,226 for validation, and the remainder for testing

with held annotations. Evaluation is based on the VOC AP at IoU=0.5 on three subsets, easy,
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Table 3.14: MS-CNN Detection results on WiderFace validation set.

cascade Easy Medium Hard

AP50
7 91.1 90.6 81.0
3 91.3 90.3 81.1

AP75
7 59.7 61.3 40.7
3 68.7 66.3 42.8

medium and hard, of different detection difficulty. Again, we have used AP at IoU=0.5 and

IoU=0.75 and evaluation on the validation set. Table 3.14 shows that, while the Cascade R-CNN is

close to the baseline MS-CNN for AP50, it significantly boosts its performance for AP75. The gain

is smaller on the hard than on the easy and medium, because the former contains mainly very

small and heavily occluded faces, for which high quality detection is difficult. This observation

mirrors the COCO experiments of Table 3.6, where improvements in APS are smaller than for

APL.

3.7 Conclusion

In this chapter, we have proposed a multi-stage object detection framework, the Cascade

R-CNN, for high quality object detection, a rarely explored problem in the detection literature.

This architecture was shown to overcome the high quality detection challenges of overfitting

during training and quality mismatch during inference. This is achieved by training stages

sequentially, using the output of one to train the next, and the same cascade is applied at inference.

The Cascade R-CNN was shown to achieve very consistent performance gains on multiple

challenging datasets, including COCO, PASCAL VOC, KITTI, CityPersons, and WiderFace,

for both generic and specific object detection. These gains were also observed for many object

detectors, backbone networks, and techniques for detection and instance segmentation. We thus

believe that the Cascade R-CNN can be useful for many future object detection and instance

segmentation research efforts.
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Chapter 4

Domain-Universal Object Detection
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4.1 Introduction

There has been significant progress in object detection in recent years [50, 140, 10, 99,

58, 12], powered by the availability of challenging and diverse object detection datasets, e.g.

PASCAL VOC [36], COCO [98], KITTI [43], WiderFace [182], etc. However, existing detectors

are usually domain-specific, e.g. trained and tested on a single dataset. This is partly due to

the fact that object detection datasets are diverse and there is a nontrivial domain shift between

them. As shown in Figure 4.1, detection tasks can vary in terms of categories (human face, horse,

medical lesion, etc.), camera viewpoints (images taken from aircrafts, autonomous vehicles, etc.),

image styles (comic, clipart, watercolor, medical), etc. In general, high detection performance

requires a detector specialized on the target dataset.

This poses a significant problem for practical applications, which are not usually restricted

to any one of the domains of Figure 4.1. Hence, there is a need for systems capable of detecting

objects regardless of the domain in which images are collected. A simple solution is to design

a specialized detector for each domain of interest, e.g. use D detectors trained on D datasets,

and load the detector specialized to the domain of interest at each point in time. This, however,

may be impractical, for two reasons. First, in most applications involving autonomous systems

the domain of interest can change frequently and is not necessarily known a priori. Second, the

overall model size increases linearly with the number of domains D. A recent trend, known as

general AI, is to request that a single universal model solves multiple tasks [80, 84, 188], or the

same task over multiple domains [135, 6]. However, existing efforts in this area mostly address

image classification, rarely targeting the problem of object detection. The fact that modern

object detectors are complex systems, composed of a backbone network, proposal generator,

bounding box regressor, classifier, etc., makes the design of a universal object detector much

more challenging than a universal image classifier.

In this work, we consider the design of an object detector capable of operating over
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Figure 4.1: Samples of our universal object detection benchmark.

multiple domains. We begin by establishing a new universal object detection benchmark, denoted

as UODB, consisting of 11 diverse object detection datasets (see Figure 4.1). This is significantly

more challenging than the Decathlon [135] benchmark for multi-domain recognition. To the best

of our knowledge, we are the first to attack universal object detection using deep learning. We

expect this new benchmark will encourage more efforts in the area. We then propose a number of
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Figure 4.2: Multi-domain and universal object detectors for three domains. “D” is the domain,
“O” the output, “A” domain-specific adapter, and “DA” the proposed domain attention module.
The blue color and the DA are domain-universal, but the other colors domain-specific.

architectures, shown in Figure 4.2, to address the universal/multi-domain detection problem.

The two architecture on the left of Figure 4.2 are multi-domain detectors, which require

prior knowledge of the domain of interest. The two architectures on the right are universal

detectors, with no need for such knowledge. When operating on an unknown domain, the

multi-domain detector have to repeat the inference process with different sets of domain-specific

parameters, while the universal detector performs inference only once. The detector of Figure 4.2

(a) is a bank of domain-specific detectors, with no sharing of parameters/computations. Multi-

domain learning (MDL) [79, 120, 83, 183, 78, 34] improves on this, by sharing parameters across

various domains, and adding small domain-specific layers. In [135, 6], expensive convolutional

layers are shared and complemented with light-weight domain-specific adaptation layers. Inspired

by these, we propose a new class of light adapters for detection, based on the squeeze and

excitation (SE) mechanism of [66], and denoted SE adapters. This leads to the multi-domain

detector of Figure 4.2 (b), where domain-specific SE adapters are introduced throughout the

network to compensate for domain shift. On UODB, this detector outperforms that of Figure 4.2

(a) with ∼5 times fewer parameters.

In contrast, the universal detector of Figure 4.2 (c) shares all parameters/computations

(other than output layers) across domains. It consists of a single network, which is always active.
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This is the most efficient solution in terms of parameter sharing, but it is difficult for a single

model to cover many domains with nontrivial domain shifts. Hence, this solution underperforms

the multi-domain detector of Figure 4.2 (b). To overcome this problem, we propose the domain-

attentive universal detector of Figure 4.2 (d). This leverages a novel domain attention (DA)

module, in which a bank of the new universal SE adapters (active at all times) is first added, and a

feature-based attention mechanism is then introduced to achieve domain sensitivity. This module

learns to assign network activations to different domains, through the universal SE adapter bank,

and soft-routs their responses by the domain-attention mechanism. This enables the adapters

to specialize on individual domains. Since the process is data-driven, the number of domains

does not have to match the number of datasets and datasets can span multiple domains. This

allows the network to leverage shared knowledge across domains, which is not available in the

common single-domain detectors. Our experiments, on the newly established UODB, show that

this data-driven form of parameter/computation sharing enables substantially better multi-domain

detection performance than the remaining architectures of Figure 4.2.

4.2 Related Work

The two stage detection framework of the R-CNN [51], Fast R-CNN [50] and Faster

R-CNN [140] detectors has achieved great success in recent years. Many works have expanded

this base architecture. For example, MS-CNN [10] and FPN [99] built a feature pyramid to

effectively detect objects of various scales; the R-FCN [24] proposed a position-sensitive pooling

to achieve further speed-ups; and the Cascade R-CNN [12] introduced a multi-stage cascade for

high quality object detection. In parallel, single-stage object detectors, such as YOLO [137] and

SSD [104], became popular for their fairly good performance and high speed. However, none of

these detectors could reach high detection performance on more than one dataset/domain without

finetuning. In the pre-deep learning era, [82] proposed a universal DPM [38] detector, by adding
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dataset specific biases to the DPM. But this solution is limited since DPM is not comparable to

deep learning detectors.

Multi-task learning (MTL) investigates how to jointly learn multiple tasks simultaneously,

assuming a single input domain. Various multi-task networks [84, 188, 58, 102, 162, 195] have

been proposed for joint solution of tasks such as object recognition, object detection, segmentation,

edge detection, human pose, depth, action recognition, etc., by leveraging information sharing

across tasks. However, the sharing is not always beneficial, sometimes hurting performance

[37, 81]. To address this, [115] proposed a cross-stitch unit, which combines tasks of different

types, eliminating the need to search through several architectures on a per task basis. [188]

studied the common structure and relationships of several different tasks.

Multi-domain learning (MDL) addresses the learning of representations for multiple

domains, known a priori [79, 120]. It uses a combination of parameters that are shared across

domains and domain-specific parameters. The latter are adaptation parameters, inspired by works

on domain adaptation [130, 108, 142, 110], where a model learned from a source domain is

adapted to a target domain. [6] showed that multi-domain learning is feasible by simply adding

domain-specific BN layers to an otherwise shared network. [135] learned multiple visual domains

with residual adapters, while [136] empirically studied efficient parameterizations. However, they

build on BN layers and are not suitable for detection, due to the batch constraints of detector

training. Instead, we propose an alternative SE adapters, inspired by “Squeeze-and-Excitation”

[66], to solve this problem.

[160] proposed a self-attention module for machine translation, and similarly, [163]

proposed a non-local network for video classification, based on a spacetime dependency/attention

mechanism. [66] focused on channel relationships, introducing the SE module to adaptatively

recalibrate channel-wise feature responses, which achieved good results on ImageNet recognition.

In this work, we introduce a domain attention module inspired by SE to make data-driven

domain assignments of network activations, for the more challenging problem of universal object
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detection.

4.3 Multi-Domain Object Detection

The problem of multi-domain object detection is to detect objects on various domains.

4.3.1 Universal Object Detection Benchmark

To train and evaluate universal/multi-domain object detection systems, we established a

new universal object detection benchmark (UODB) of 11 datasets: Pascal VOC [36], WiderFace

[182], KITTI [43], LISA [116], DOTA [168], COCO [98], Watercolor [72], Clipart [72], Comic

[72], Kitchen [45] and DeepLesions [177]. This set includes the popular VOC [36] and COCO

[98], composed of images of everyday objects, e.g. bikes, humans, animals, etc. The 20 VOC

categories are replicated on CrossDomain [72] with three subsets of Watercolor, Clipart and

Comic, with objects depicted in watercolor, clipart and comic styles, respectively. Kitchen

[45] consists of common kitchen objects, collected with an hand-held Kinect, while WiderFace

[182] contains human faces, collected on the web. Both KITTI [43] and LISA [116] depict

traffic scenes, collected with cameras mounted on moving vehicles. KITTI covers the categories

of vehicle, pedestrian and cyclist, while LISA is composed of traffic signs. DOTA [168] is a

surveillance-style dataset, containing objects such as vehicles, planes, ships, harbors, etc. imaged

from aerial cameras. Finally DeepLesion [177] is a dataset of lesions on medical CT images. A

representative example of each dataset is shown in Figure 4.1. Some more details are summarized

in Table 4.1. Altogether, UODB covers a wide range of variations in category, camera view,

image style, etc, and thus establishes a good suite for the evaluation of universal/multi-domain

object detection.

78



4.3.2 Single-Domain Detector Bank

The Faster R-CNN [140] is used as the baseline architecture of all detectors proposed in

this work. As a single-domain object detector, the Faster R-CNN is implemented in two stages.

First, a region proposal network (RPN) produces preliminary class-agnostic detection hypotheses.

The second stage processes these with a region-of-interest detection network to output the final

detections.

As illustrated in Figure 4.2 (a), the simplest solution to multi-domain detection is to use an

independent detector per dataset. We use this detector bank as a multi-domain detection baseline.

This solution is the most expensive, since it implies replicating all parameters of all detectors.

Figure 4.3 shows the statistics (mean and variance) of the convolutional activations of the 11

detectors on the corresponding dataset. Some observations can be made. First, these statistics

vary non-trivially across datasets. While the activation distributions of VOC and COCO are

similar, DOTA, DeepLesion and CrossDomain have relatively different distributions. Second,

the statistics vary across network layers. Early layers, which are more responsible for correcting

domain shift, have more evident differences than latter layers. This tends to hold up to the

output layers. These are responsible for the assignment of images to different categories and

naturally differ. Interestingly, this behavior also holds for RPN layers, even though they are

category-independent. Third, many layers have similar statistics across datasets. This is especially

true for intermediate layers, suggesting that they can be shared by at least some domains.

4.3.3 Adaptive Multi-Domain Detector

Inspired by Figure 4.3, we propose an adaptive multi-domain detector, shown in Figure

4.2 (b). In this model, the output and RPN layers are domain-specific. The remainder of the

network, e.g. all convolutional layers, is shared. However, to allow adaptation to new domains,

we introduce some additional domain-specific layers, as is commonly done in MDL [135, 6].
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Figure 4.3: The activation statistics of all single-domain detectors.

These extra layers should be 1) sufficiently powerful to compensate for domain shift; 2) as light as

possible to minimize parameters/computation. The adaptation layers of [135, 6] rely extensively

on BN. This is unfeasible for detection, where BN layers have to be frozen, due to the small batch

sizes allowable for detector training.

Instead, we have experimented with the squeeze-and-excitation (SE) module [66] of

Figure 4.4 (a). There are a few reasons for this. First, feature-based attention is well known to

be used in mammalian vision as a mechanism to adapt perception to different tasks and envi-

ronments [185, 128, 165, 74, 184]. Hence, it seems natural to consider feature-based attention

80



C × 1 × 1

Residual

Global pooling

FC

C × H ×W

ReLU

FC

SigmoidC × 1 × 1

Scale

C × H ×W

X

C × 1

෩X

C

r
× 1

C

r
× 1

(a) SE adapter

FC

C × 1 × 1

Residual

Global pooling

FC

C × H ×W

FC

ReLU ReLU ReLU

FC FC FC

Sigmoid

Scale

C × H ×W

X

C × 1

෩X

C

r
× 1

C

r
× 1

C × 1 × 1

(b) SE adapter bank

Figure 4.4: (a) block diagram of SE adapter and (b) SE adapter bank.

mechanisms for domain adaptation. Second, the SE is a module that accounts for interdepen-

dencies among channels to modulate channel responses. This can be seen as a a feature-based

attention mechanism. Third the SE module has enabled the SENet to achieve state-of-the-art

classification on ImageNet. Finally, it is a light-weight module. Even when added to each residual

block of the ResNet [61] it increases the total parameter count by only ∼10%. This is close to

what was reported by [135] for BN-based adapters. For all these reasons, we adopt the SE module

as the atomic adaptation unit, used to build all domain adaptive detectors proposed in this work,

and denote it by the SE adapter.

4.3.4 SE Adapters

Following [66], the SE adapter consists of the sequence of operations of Figure 4.4

(a): a global pooling layer, a fully connected (FC) layer, a ReLU layer, and a second FC layer,
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implementing the computation

XSE = FSE(Favg(X)), (4.1)

where Favg is a global average pooling operator, and FSE the combination of FC+ReLU+FC

layers. The channel dimension reduction factor r, in Figure 4.4, is set as 16 in our experiments.

To enable multi-domain object detection, the SE adapter is generalized to the architecture of

Figure 4.4 (b), which is denoted as the SE adapter bank. This consists of adding a SE adapter

branch per domain and a domain-switch, which allows the selection of the SE adapter associated

with the domain of interest. Note that this architecture assumes this domain to be known a priori.

It leads to the multi-domain detector of Figure 4.2 (b). Compared to Figure 4.2 (a), this model is

up to 5 times smaller, while achieving better overall performance across the 11 datasets.

4.4 Domain-Universal Detection by Domain Attention

The detectors of the previous section require prior knowledge of the domain of interest.

This is undesirable for autonomous systems, like robots or self-driving cars, where determining the

domain is part of the problem to solve. In this section, we consider the design of domain-universal

detectors, which eliminate this problem.

4.4.1 Simple Domain-Universal Detector

The simplest solution to universal detection, shown in Figure 4.2 (c), is to share a single

detector by all tasks. Note that, even for this detector, the output layer has to be task-specific,

by definition of the detection problem. This is not a problem because the task, namely what

classes the system is trying to detect, is always known. Universality refers to the domain of input

images that the detector processes, which does not have to be known in the case of Figure 4.2

(c). Beyond universal, the fully shared detector is the most efficient of all detectors considered in

this work, as it has no domain-specific parameters. On the other hand, by forcing the same set

82



SE Adapter 2

channel attention 

global average 

pooling

adaptive 

recalibration

channel attention 

SE Adapter 1

adaptive 

recalibration

×concatenate

domain attention

universal SE 

adapter bank

×

domain sensitive 

channel attention

global average 

pooling

global average 

pooling

adaptive 

recalibration
channel attention 

SE Adapter N

matrix 

multiplication

skip connection channel-wise

multiplication

domain assignment

C × 1

C × 1

C × 1

C × 1 × 1

C × 1 × 1

C × 1 × 1

C × 1 × 1

C × N

N × 1

C × H ×W C × H ×W

FC

C × 1 × 1

Residual

Global pooling

FC

C × N

C × H ×W

FC

ReLU ReLU ReLU

FC FC FC

Concatenate

ScaleC × 1 × 1

FC

Softmax

SigmoidC × 1 × 1

Scale

C × H ×W

X

C × 1

N × 1

N × 1

෩X

C

r
× 1

C

r
× 1

Global pooling C × 1

Domain Assignment

Figure 4.5: The block diagram (top) and the detailed view (down) of the proposed domain
adaptation module.

of representations on all domains, it has little flexibility to deal with the statistical variations of

Figure 4.3. In our experiments, this detector usually underperforms the multi-domain detectors of

Figure 4.2 (a) and (b).

4.4.2 Domain-Attentive Universal Detector

Ideally, a universal detector should have some domain sensitivity, and be able to adapt

to different domains. We also have found that there is also a benefit in using task-specific RPN

layers, due to the observations of Figure 4.3. While this has a lot in common with multi-domain
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detection, there are two main differences. First, the domain must be inferred automatically.

Second, there is no need to tie domains and tasks. For example, the traffic tasks of Figure 4.1

operate on a common visual domain, “traffic scenes”, which can have many sub-domains, e.g.

due to weather conditions (sunny vs. rainy), environment (city vs. rural ), etc. Depending on the

specific operating conditions, any of the tasks may have to be solved in any of the domains. In fact,

the domains may not even have clear semantics, i.e. they can be data-driven. In this case, there is

no need to request that each detector operates on a single domain, and a soft domain-assignment

makes more sense. Given all of this, while domain adaptation can still be implemented with the

SE adapter of Figure 4.4 (a), the hard attention mechanism of Figure 4.4 (b), which forces the

network to fully attend to a single domain, can be suboptimal. To address this limitations, we

propose the domain adaptation (DA) module of Figure 4.5. This has two components, a universal

SE adapter bank and a domain attention mechanism, which are discussed next.

4.4.3 Universal SE Adapter Bank

The universal SE (USE) Adapter Bank, shown in Figure 4.5, is an SE adapter bank similar

to that of Figure 4.4 (b). The main difference is that there is no domain switching, i.e. the adapter

bank is universal. This is implemented by concatenating the outputs of the individual domain

adapters to form a universal representation space

XUSE = [X1
SE ,X

2
SE , ...,X

N
SE ] ∈ RC×N , (4.2)

where N is the number of adapters and Xi
SE the output of each adapter, given by (4.1). Note that

N is not necessarily identical to the number of detection tasks. The USE adapter bank can be seen

as a non-linear generalization of the filter banks commonly used in signal processing [157]. Each

branch (non-linearly) projects the input along a subspace matched to the statistics of a particular

domain. The attention component then produces a domain-sensitive set of weights that are used
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to combine these projections in a data-driven way. In this case, there is no need to know the

operating domain in advance. In fact there may not even be a single domain, since an input image

can excite multiple SE adapter branches.

4.4.4 Domain Attention

The attention component, of Figure 4.5, produces a domain-sensitive set of weights that

are used to combine the SE bank projections. Motivated by the SE module, the domain attention

component first applies a global pooling to the input feature map, to remove spatial dimensions,

and then a softmax layer (linear layer plus softmax function)

SDA = FDA(X) = softmax(WDAFavg(X)), (4.3)

where WDA ∈RN×C is the matrix of softmax layer weights. The vector SDA is then used to weigh

the USE bank output XUSE , to produce a vector of domain adaptive responses

XDA = XUSESDA ∈ RC×1. (4.4)

As in the SE module of [66], XDA is finally used to channel-wise rescale the activations X ∈

RC×H×W being adapted,

X̃ = Fscale(X,σ(XDA)) (4.5)

where Fscale(·) implements a channel-wise multiplication, and σ is the sigmoid function.

In this way, the USE bank captures the feature subspaces of the domains spanned by all

datasets, and the DA mechanism soft-routes the USE projections. Both operations are data-driven,

and operate with no prior knowledge of the domain. Unlike the hard attention mechanism of

Figure 4.4 (b), this DA module enables information sharing across domains, leading to a more

effective representation. In our experiments, the domain-attentive universal detector outperforms
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Table 4.1: The dataset details, the domain-specific hyperparameters and the performance of the
single-domain detectors. “T/V/T” means train/val/test, “size” the shortest side of inputs, BS
RPN batch size, and S/R anchor “scales/aspect ratios”.

dataset
dataset details hyperparameters

mAP
class T/V/T domain size BS RoIs S/R

KITTI 3 7k/-/7k traffic 576 256 128 12/3 64.3
WiderFace 1 13k/3k/16k face 800 256 256 12/1 48.9
VOC 20 8k/8k/5k natural 600 256 256 4/3 78.5
LISA 4 8k/-/2k traffic 800 64 32 4/3 88.3
DOTA 15 14k/5k/10k aerial 600 128 128 12/3 57.5
COCO 80 35k/5k/- natural 800 256 256 4/3 47.3
Watercolor 6 1k/-/1k watercolor 600 256 256 4/3 52.4
Clipart 6 0.5k/-/0.5k clipart 600 256 256 4/3 32.1
Comic 20 1k/-/1k comic 600 256 256 4/3 45.8
Kitchen 11 5k/-/2k indoor 800 256 256 12/3 87.7
DeepLesion 1 23k/5k/5k medical 512 128 64 12/3 51.3
Average - - - - - - - 59.4

the other detectors of Figure 4.2.

4.5 Experiments

In all experiments, we used a PyTorch implementation [181] of the Faster R-CNN with

the SE-ResNet-50[66]/ResNet50[61] pretrained on ImageNet, as the backbone for all detectors.

Training started with a learning rate of 0.01 for 10 epochs and 0.001 for another 2 epochs on

8 synchronized GPUs, each holding 2 images per iteration. All samples of a batch are from a

single (randomly sampled) dataset, and in each epoch, all samples of each dataset are processed

only once. As is common for detection, the first convolutional layer, the first residual block and

all BN layers are frozen, during training. These settings were used in all experiments, unless

otherwise noted. Both multi-domain and universal detectors were trained on all domains of

interest simultaneously.

The Faster R-CNN has many hyperparameters. In the literature, where detectors are tested

on a single domain, these are tuned to the target dataset, for best performance. This is difficult,
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and very tedious, to do over the 11 datasets now considered. We use the same hyperparameters

across datasets, except when this is critical for performance and relatively easy to do, e.g. the

choice of anchors. The main dataset-specific hyperparameters are shown in Table 4.1.

4.5.1 Datasets and Evaluation

Our experiments used the new UODB benchmark introduced in Section 4.3.1. For

Watercolor [72], Clipart [72], Comic [72], Kitchen [45] and DeepLesion [177], we trained on the

official trainval sets and tested on the test set. For Pascal VOC [36], we trained on VOC2007

and VOC2012 trainval set and tested on VOC2007 test set. For WiderFace [182], we trained

on the train set and tested on the val set. For KITTI [43], we followed the train/val splitting of

[10] for development and trained on the trainval set for the final results on test set. For LISA

[116], we trained on the train set and tested on the val set. For DOTA [168], we followed the

pre-processing of [168], trained on train set and tested on val set. For MS-COCO [98], we

trained on COCO 2014 valminusminival and tested on minival, to shorten the experimental

period.

All detectors were evaluated on each dataset individually. The Pascal VOC mean average

precision (mAP) was used for evaluation in all cases. The average mAPs was used as the

overall measure of universal/multi-domain detection performance. The domain attentive universal

detector was also evaluated using the official evaluation tool of each dataset, for comparison with

the literature.

4.5.2 Single-Domain Detection

Table 4.1 shows the results of the single-domain detector bank of Figure 4.2 (a) on

all datasets. Our VOC baseline with the SE-ResNet-50 is 78.5, and better than the Faster R-

CNN performance of [139, 61] (76.4 mAP for ResNet-101). The other entries in the table are

87



Table 4.2: The comparison on multi-domain detection. † denotes fixed assignment. “time” is
the relatively run-times on the five datasets when the domain is unknown.

Params time KITTI VOC WiderFace LISA Kitchen Avg
single-domain 155.1M 5x 64.3 78.5 48.8 88.3 87.7 73.5
adaptive 42.37M 6x 67.8 78.9 49.9 88.5 86.0 74.2
BNA [6] 31.72M 5x 64.0 71.9 44.0 66.8 84.3 66.2
RA [135] 82.72M 6x 64.3 70.5 46.9 69.1 84.6 67.1
universal 29.58M 1x 64.2 75.0 43.5 88.9 86.8 71.5
universal+DA† 37.47M 1.3x 67.5 79.0 49.8 88.2 88.0 74.6
universal+DA 37.56M 1.33x 67.9 79.2 52.2 87.5 88.5 75.1

Table 4.3: The effect of SE adapters number.

# adapters Params KITTI VOC WiderFace LISA Kitchen Avg
single 155.1M 64.3 78.5 48.8 88.3 87.7 73.5

3 34.82M 67.6 78.0 51.9 88.1 87.1 74.5
5 37.88M 67.9 79.2 52.2 87.5 88.5 75.1
7 40.94M 67.9 79.6 52.2 89.5 88.7 75.6
9 44.01M 67.7 79.2 52.2 89.5 86.9 75.1

incomparable to the literature, where different evaluation metrics/tools are used for different

datasets. The detector bank is a fairly strong baseline for multi-domain detection (average mAP

of 59.4).

4.5.3 Multi-Domain Detection

Table 4.2 compares the multi-domain object detection performance of all architectures

of Figure 4.2. For simplicity, only five datasets (VOC, KITTI, WiderFace, LISA and Kitchen)

were used in this section. The table confirms that the adaptive multi-domain detector of Section

4.3.3 (“adaptive”) is light-weight, only adding ∼11M parameters to the Faster R-CNN over the

five datasets. Nevertheless, it outperforms the much more expensive single-domain detector bank

by 0.7 points. Note that the latter is a strong baseline, showing the multi-domain detector can

beat individually trained models with a fraction of the computation. Table 4.2 also shows that

the proposed SE adapter significantly outperforms the BN adapter (BNA) of [6] and the residual

adapter (RA) or [135], previously proposed for classification. This is not surprising, given the
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above discussed inadequacy of BN as an adaptation mechanism for object detection.

The universal detector of Figure 4.2 (c) is even more efficient, adding only 0.5M parame-

ters to the Faster R-CNN, accounting for domain-specific RPN and output layers. However, its

performance (“universal” in Table 4.2) is much weaker than that of the adaptive multi-domain

detector (1.7 points). Finally, the domain-attentive universal detector (“universal+DA”) has the

best performance. With a ∼7% parameter increase per domain, i.e. comparable to the multi-

domain detector, it outperforms the single-domain bank baseline by 1.6 points. To assess the

importance of data-driven domain attention mechanism of Figure 4.5 (b), we fixed the soft domain

assignments, simply averaging the SE adapter responses, during both training and inference. This

(denoted “universal+DA†”) caused a performance drop of 0.5 point. Finally, Table 4.2 shows the

relative run-times of all methods on the five datasets, when the domain is unknown. It can be

seen that “universal+DA” is about 4× faster than the multi-domain detectors (“single-domain”

and “adaptive”) and only 1.33× slower than “universal”.

4.5.4 Effect of the number of SE adapters

For the USE bank of Figure 4.5 (b), the number N of SE adapters does not have to match

the number of detection tasks. Table 4.3 summarizes how the performance of the domain attentive

universal detector depends on N. For simplicity, we again use 5 datasets in this experiment. As

we can see in Table 4.3, more SE adapters will not always lead to better performance. Generally,

performance improves with the number of adapters until we reached 7 adapters, adding 9 adapters

will only get similar performance with 5 adapters and increase parameters number a lot. On the

other hand, the number of parameters increases linearly with the number of adapters. In these

experiments, the best trade-off between performance and parameters is around 5 adapters. This

suggests that, while a good rule of thumb is to use “as many adapters as domains”, fewer adapters

can be used when complexity is at a premium.
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Figure 4.6: Soft assignments across SE units for all datasets.

4.5.5 Results on the full benchmark

Table 4.4 presents results on the full benchmark. The settings are as above, but we

used 10 epochs with learning rate 0.1, and then 4 epochs with 0.01 on 8 GPUs, each holding

2 images. For universal detector without our proposed module, training with learning rate 0.1,

even with warming up for 1 epoch, will always get loss exploding, therefore, we will use 0.1×lr,

i.e. 0.01, to train universal detector. The universal detector performs comparably to the single-

domain detector bank, with 10 times fewer parameters. The domain-attentive universal detector

(“universal+DA”) improves baseline performance by 4.4 points with a 5-fold parameter decrease.

It has large performance gains (>5 points) on DeepLesion, Comic, and Clipart. This is because
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Comic/Clipart contain underpopulated classes, greatly benefiting from information leveraged

from other domains. The large gain of DeepLesion is quite interesting, given the nontrivial

domain shift between its medical CT images and the RGB images of the other datasets. The

gains are mild for VOC, KITTI, Kitchen, WiderFace and WaterColor (1∼5 points), and none

for COCO, LISA and DOTA. In contrast, for the universal detector, joint training is not always

beneficial. This shows the importance of domain sensitivity for universal detection.

To investigate what was learned by the domain attention module of Figure 4.5 (b), we

show the soft assignments of each dataset, averaged over its validation set, in Figure 4.6. Only

the first and last blocks of the 4th and 5th residual stages are shown. The fact that some datasets,

e.g. VOC and COCO, have very similar assignment distributions, suggests a substantial domain

overlap. On the other hand, DOTA and DeepLesion have distributions quite distinct from the

remaining. For example, on block “DA 4 1”, DeepLesion fully occupies a single domain. These

observations are consistent with Figure 4.3, indicating that the proposed DA module is able to

learn domain-specific knowledge.

A comparison of the first and the last blocks of each residual stage, e.g. “DA 4 1” v.s.

“DA 4 6”, shows that the latter are much less domain sensitive than the former, suggesting

that they could be made universal. To test this hypothesis, we trained a model with only 6

SE adapters for the 11 datasets, and only in the first and middle blocks, e.g. “DA 4 1” and

“DA 4 3”, all the other blocks will only add 1 SE adapter without domain assignment module.

This model, “universal+DA*”, achieved the best performance with much less parameters than the

“universal+DA” detector of 11 adapters. It outperformed the single domain baseline by 4.5 points.

We also trained a model with 8 SE adapters, adding another two adapters will get another 0.3

points increase, outperforms single-domain baseline by 4.8 points.
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Table 4.5: The comparison on VOC 2007 test. ‡/† denotes with COCO trainval/val

Backbone mAP
Faster-RCNN [140] ResNet-101 76.4
R-FCN [24] ResNet-50 77.0
Faster-RCNN‡ [139] VGG16 78.8
Faster-RCNN (ours) ResNet-50 78.0
Faster-RCNN (ours) SE-ResNet-50 78.5
Faster-RCNN+DA DA-ResNet-50 79.6
Faster-RCNN+DA† DA-ResNet-50 82.7

Table 4.6: The comparison on WiderFace Val.

Backbone Easy Medium Hard
Faster-RCNN [140] VGG-16 0.907 0.850 0.492
MS-CNN [10] VGG-16 0.916 0.903 0.802
HR [67] ResNet-101 0.925 0.910 0.806
SSH [119] VGG-16 0.931 0.921 0.845
Faster-RCNN (ours) ResNet-50 0.905 0.864 0.548
Faster-RCNN (ours) SE-ResNet-50 0.910 0.872 0.556
Faster-RCNN+DA DA-ResNet-50 0.914 0.882 0.587

4.5.6 Official Evaluation

Since, to the best of our knowledge, this is the first work to explore universal/multi-

domain object detection on 11 datasets, there is no literature for a direct comparison. Instead, we

compared the “universal+DA*” detector of Table 4.4 to the literature using the official evaluation

for each dataset. This is an unfair comparison, since the universal detector has to remember 11

tasks. All single-domain detector will use SE-ResNet50 as backbone. On VOC, we trained two

models, with/without COCO. Results are shown in Table 4.5, where all methods were trained on

Pascal VOC 07+12 trainval. Note that our Faster R-CNN baseline (SE-ResNet-50 backbone)

is stronger than that of [61] (ResNet-101). Adding universal domain adapters improved on the

baseline by more than 1.1 points. Adding COCO enabled another 3.1 points. Note that, 1) this

universal training is different from the training scheme of [139] (the network trained on COCO

then finetuned on VOC), where the final model is only optimized for VOC; and 2) only the 35k

images of COCO2014 valminusminival were used.
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Table 4.7: The comparison on KITTI test set of car.

Backbone Moderate Easy Hard
Faster-RCNN [140] VGG-16 81.84 86.71 71.12
SDP+CRC [180] VGG-16 83.53 90.33 71.13
YOLOv3 [138] Darknet-53 84.13 84.30 76.34
MS-CNN [10] VGG-16 88.83 90.46 74.76
F-PointNet [133] PointNet 90.00 90.78 80.80
Faster-RCNN (ours) ResNet-50 80.28 90.43 70.9
Faster-RCNN (ours) SE-ResNet-50 81.83 90.34 71.23
Faster-RCNN+DA DA-ResNet-50 88.23 90.45 74.21

Table 4.8: Sensitivity at 4 FPs per image on DeepLesion test set.

Backbone Sensitivity
Faster-RCNN [140] VGG-16 81.62
R-FCN [24] VGG-16 82.21
3-DCE, 9 Slices [176] VGG-16 84.34
3-DCE, 27 Slices [176] VGG-16 85.65
Faster-RCNN (ours) ResNet-50 81.34
Faster-RCNN (ours) SE-ResNet-50 82.44
Faster-RCNN+DA DA-ResNet-50 87.29

The baseline was the default Faster R-CNN that initially worked on VOC, with minimum

dataset-specific changes, e.g. in Table 4.1. Table 4.7 shows that this performed weakly on KITTI.

However, the addition of adapters, enabled a gain of 6.4 points (Moderate setting). This is

comparable to detectors optimized explicitly on KITTI, e.g. MS-CNN [10] and F-PointNet [133].

For WiderFace, which has enough training face instances, the gains of shared knowledge are

smaller (see Table 4.6). On the other hand, on DeepLesion and CrossDomain (Clipart, Comic

and Watercolor), see Table 4.8 and 4.9 respectively, the domain attentive universal detector

significantly outperformed the state-of-the-art. Although DeepLesion contains more than 33k

images, most of them only contain one lesion, which will make detector unable to get adequate

training. For Cross-domain datasets, they only contain a few thousands samples. Single-domain

detector is easy to be over-fitting when fine-tuned on so small datasets. Jointly training with other

datasets, especially with VOC and MS-COCO which share some categories with cross-domain

datasets, will benefit the representation learning process a lot for Cross-domain datasets and
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Table 4.9: The comparison on Clipart, Watercolor and Comic test set.

Backbone Clipart Watercolor Comic
ADDA [155] VGG-16 27.4 49.8 49.8
Faster-RCNN[140] VGG-16 26.2 - -
SSD300 [104] VGG-16 26.8 49.6 24.9
Faster-RCNN+DT+PL[72] VGG-16 34.9 - -
SSD300+DT+PL[72] VGG-16 46.0 54.3 37.2
Faster-RCNN (ours) ResNet-50 36.7 51.2 42.6
Faster-RCNN (ours) SE-ResNet-50 32.1 52.6 45.8
Faster-RCNN+DA DA-ResNet-50 54.6 58.2 52.6

mitigate over-fitting problem. Overall, these results show that a single detector, which operates

on 11 datasets, is competitive with single-domain detectors in highly researched datasets, such as

VOC or KITTI, and substantially better than the state-of-the-art in less explored domains. This is

achieved with a relatively minor increase in parameters, vastly smaller than that needed to deploy

11 single task detectors.

4.6 Conclusion

We have investigated the unexplored and challenging problem of universal/multi-domain

object detection. We proposed a universal detector that requires no prior domain knowledge,

consisting of a single network that is active for all tasks. The proposed detector achieves domain

sensitivity through a novel data-driven domain adaptation module and was shown to outperform

multiple universal/multi-domain detectors on a newly established benchmark, and even individual

detectors optimized for a single task.
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Chapter 5

Learning Complexity-Aware Cascades
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5.1 Introduction

Pedestrian detection is an important problem in computer vision, with application to smart

vehicles, surveillance, etc. Due to the real-time implementation requirements of many of these

applications, the detector cascade architecture of [161] has a long history in pedestrian detection.

It relies on the sliding window paradigm, processing each image patch with a sequence of binary

classifiers, known as cascade stages. Each stage either rejects the image patch or passes it to the

subsequent stages. This leads to two important properties. First, because most patches can be

rejected by early stages of low complexity, detection can be fast. Second, because the remaining

false positives can be rejected by complex detectors, deeper into the cascade, it can also be

accurate. In fact, because final stages are rarely used, their complexity is not an impediment to

fast detection.

While the cascade detection principle is intuitive, its implementation is far from trivial.

Early cascade designs required extensive heuristics to determine the configuration of cascade

stages [161, 171, 8]. A common assumption, by these methods, is that all features have equivalent

complexity. This significantly simplifies the design, which reduces to choosing features so as to

maximize detection accuracy. In fact, popular methods [8, 29] simply use a boosting algorithm

(typically AdaBoost [40]) to design a non-cascaded classifier and then transform it into a cascade,

by addition of thresholds. These approaches suffer from the problem that the “equivalent feature

complexity” hypothesis only produces sensible cascades when applied to features that indeed

have similar complexity.

In result, these methods have difficulties to accommodate features of widely varying

complexity. This is a problem for applications that require diverse feature sets [4, 127, 192], and

has become critical after the introduction of deep learning [86, 150]. On one hand, it is now well

known that high detection rates require deep learning models. On the other, it is quite difficult to

learn a cascade that combines these with the very efficient detectors needed in the early cascade
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stages. In fact, a complexity insensitive boosting algorithm, such as AdaBoost, will start by

selecting the deep features, which are most accurate but also the most complex, for the early

stages. This produces very slow cascades.

In object detection, an alternative strategy has emerged to address the intractability of

sliding windows for deep learning. This consists of using an object proposal mechanism [158],

which selects patches to process by a more powerful classifier. Various object detectors, such as

the R-CNN [51], Fast-RCNN [50] and Faster-RCNN [140], are based on this architecture. While

efficient, this strategy effectively implements a two stage cascade. Since there is no reason to

believe that two stages guarantee the optimal trade-off between accuracy and speed, it does not

necessarily guarantee the highest detection rate for a given complexity. For pedestrian detection,

object proposals are frequently implemented with weak pedestrian detectors, sometimes cascaded

detectors themselves [64]. The success of the somewhat arbitrary decomposition into a cascade

and a deep classifier suggests that good performance should be possible for cascades with stages

of deep learning models.

The introduction of deep learning has also generated a shift in the computer architectures

used for object recognition. While classical cascades can be implemented on CPUs, deep learning

model require dedicated GPUs. These create problems to applications, due to their high cost and

energy consumption. In practice, detector design requires consideration of the trade-offs between

accuracy, running time, energy consumption, and implementation cost. These different facets

of “complexity” vary in importance from application to application. While speed is critical for a

smart car braking system, energy (battery time) is much more important for drone applications.

On platforms like drones or home surveillance, it may not be cost-effective to use a GPU-based

detector of high accuracy, e.g it could be better to eliminate the GPU and complement a classic

CPU-based detector with one using radar or some other modality.

In a CPU architecture, all these costs are (approximately) linear on the number of compu-

tations required for the detection. Computation (or speed) can thus be used as a universal measure
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of complexity, simplifying the design of the loss functions needed to learn complexity-aware

algorithms. For GPU-based detectors this is much harder to accomplish. In this case, computation,

speed, and energy consumption are not linearly related, due to the parallel implementation of all

computations. In the detection context, where different image areas have different classification

complexity, the optimal allocation of computation and energy is spatially varying. This is, how-

ever, at odds with the parallel implementation of image-wide layers, which guarantees optimal

speed. Modern convolutional neural network (CNN) libraries favor the latter, leading to detectors

that are fast but perform many unnecessary computations, increasing detector cost and energy

consumption.

In this work, we address these problems by seeking an algorithm for optimal cascade

learning under a criterion that penalizes both detection errors and complexity. For the latter, we

introduce a definition of complexity risk akin to the empirical risk commonly used for classifier

design. This makes it possible to define quantities such as complexity margins and complexity

losses, and account for these in the learning process. We do this with recourse to a Lagrangian

formulation, which optimizes for the usual classification risk under a constraint in the complexity

risk. While the Lagrangian formulation can account for any of the facets of complexity discussed

above, we focus on computational complexity in this work. A boosting algorithm that minimizes

this Lagrangian is then derived.

This algorithm, denoted Complexity-Aware Cascade Training (CompACT), is shown to

select inexpensive features in the early cascade stages, pushing the more expensive ones to the

later stages. This enables the combination of features of vastly different complexities in a single

detector. These properties are demonstrated by the successful application of CompACT to the

problem of pedestrian detection, using a pool of features ranging from Haar wavelets to deep

CNNs. In particular, we show that it is possible to embed deep CNNs as the final stages of

classical detector cascades. This leads to mixed CPU/GPU solutions, that provide practitioners

with flexible families of models, ranging from cheap and energy efficient CPU-based cascades, to
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cascades using GPU stages that emphasize speed or recognition accuracy.

Overall, this work makes four major contributions. First, it proposes a novel algorithm

for learning complexity aware cascades, which optimally trade-off accuracy and speed. To

the best of our knowledge, this is the first algorithm to explicitly account for variable feature

complexity in cascade learning, supporting weak learners of widely different complexities.

Second, CompACT seamlessly integrates handcrafted and CNN features in a unified cascaded

detector. This generalizes the object proposal architecture, enabling the integration of CNN stages

with stages of any other complexity. Third, it is shown that many large and expensive CNN

models can be optimally embedded into the proposed CompACT cascades, enabling a range of

complexities and accuracies. Finally, it is shown that the embedding of a large CNN detector,

the MS-CNN [10], introduced in Chapter 2, enables CompACT cascades to achieve accurate

pedestrian detection rates on Caltech [32] and KITTI [43], at fairly fast speeds. While these

contributions only address the design of cascaded detectors by boosting, we hope that the ideas

will inspire subsequent research on explicit modeling of complexity into the objective functions

used to train neural networks end-to-end.

5.2 Related Work

Cascades have long been used to detect objects such as faces [161, 8, 171, 170], pedes-

trians [29, 144], or cars [145]. Early approaches used heuristics to find a cascade configuration

of good trade-off between accuracy and complexity [161, 8, 171, 170]. More recently, there

have been efforts to optimize this trade-off [112, 144, 145, 196]. For example, [196] added a

complexity term to the RealBoost loss, and [112, 144, 145] introduced the Lagrangian formulation

we adopt. However, these methods use a single feature family throughout the cascade. The need

for early cascades stages to be very efficient restricts this to a simple feature, e.g. a decision

stump. For pedestrian detection, this is usually applied to the integral channel features of [30].
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These extend the Haar-like features of [161] into a set of color and histogram-of-gradients (HOG)

channels. A computationally efficient version of [161], denoted the aggregate channel features

(ACF), was introduced in [29].

More recently, [127] complemented ACF with local binary patterns (LBP) and covariance

features, for better detection accuracy. Several works proposed alternative feature channels,

obtained by convolving different filters with the original HOG+LUV channels [191, 192, 4, 121].

The SquaresChnFtrs of [4] reduce the large number of features of [30, 161] to 16 box-like filters

of various sizes. [121] extended the locally decorrelated features of [56] to ACF, learning four

5×5 PCA-like filters from each of the ACF channels. Instead of empirical filter design, [191]

exploited prior knowledge about pedestrian shape to design informed filters. They later found,

however, that such filters are actually not needed [192]. Instead, the number of filters appears to

be the most important variable: features as simple as checkerboard patterns, or purely random

filters, can achieve very good performance, as long as there are enough of them. However, these

methods are relatively slow, since good performance requires convolution with large numbers of

filters [127, 192].

While deep convolutional classifiers achieve impressive results on general object detection

[51], e.g. on VOC, COCO or ImageNet, initial attempts with deep learning did not excel at

pedestrian detection [147, 124, 5]. The difficulty of sliding window implementation of deep

models motivated the use of object proposal mechanisms [51, 164, 64] that pre-select the most

promising image patches. Early models, such as the R-CNN [51] were fairly slow, but the

introduction of the Fast-RCNN [50], allowing the computation of CNN features once per image,

increased detection speed by an order of magnitude. Nevertheless, this model required an

independent bottom-up stage for proposal generation. Later, the Faster-RCNN [140] integrated

the generation of object proposals and region-wise classification within a single neural network,

leading to a significant speedup.

Following these works, [178, 190, 92] presented good results for pedestrian detection.
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However, large CNN models tend to be costly and consume large amounts of energy, due to their

GPU requirements. The massively parallel implementation required for speed makes difficult the

optimal allocation of computation to different image areas. This makes it difficult to optimize the

trade-offs between accuracy and speed, accuracy and energy consumption, accuracy and cost, etc.

For example, [137, 104] obtained significantly higher speeds than those of the Faster-RCNN with

a more efficient one-shot detection architecture but at the cost of substantially weaker detection

rates. The implementation of high accuracy GPU-based detectors with low energy consumption

or low-cost is mostly open at this point.

In this work, we define the optimal detector as that of maximal detection accuracy under a

complexity constraint. Under this definition, the two-stage (proposal plus classification) cascade

is not necessarily optimal. A more general multi-stage cascade could, in principle, achieve a

better trade-off between detection accuracy and speed. This motivated us to consider multi-stage

cascades that 1) include deep learning stages and 2) seek the optimal trade-off between accuracy

and complexity. This is accomplished with a generalization of the classic boosting framework for

cascade design, which complements the boosting loss with a complexity penalty.

The addition of this complexity term also establishes an explicit connection between

complexity constrained detection and regularization. It is well known that AdaBoost can overfit

when either the number of weak learners or their complexity are unchecked. In general, overfitting

propensity depends on the VC-dimension or Rademacher complexity of the detector [146]. This

has motivated the inclusion of complexity measures, e.g. Rademacher complexity [18], into

the boosting loss. CompACT is similar in that it considers complexity albeit computation, not

Rademacher complexity. Note, however, that both complexity measures are monotonically

increasing functions of decision tree depth. Our experiments show that the complexity constraint

in the proposed CompACT can indeed improve resistance to overfitting.
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5.3 Complexity-Aware Cascade

In this section we introduce the CompACT algorithm.

5.3.1 AdaBoost

A decision rule h(x) = sign[F(x)] of predictor F(x) maps a feature vector x ∈ X to a

class label y ∈ Y = {−1,1}. Boosting learns a strong decision rule by combining a set of weak

learners fk(x),

F(x) = ∑
k

fk(x), (5.1)

by functional gradient descent on a classification risk [41, 114]. AdaBoost [40] uses the exponen-

tial loss φ(yF(x)) = e−yF(x), minimizing the empirical risk

RE [F ]' 1
|St |∑i

e−yiF(xi), (5.2)

on a training set St = {(xi,yi)}. Boosting iterations compute the functional derivative of (5.2)

along the direction of weak learner g(x) at the current predictor F(x),

< δRE [F ],g >=
d
dε

RE [F + εg]
∣∣
ε=0

=
1
|St |∑i

[ d
dε

e−yi(F(xi)+εg(xi))
]∣∣∣

ε=0

=− 1
|St |∑i

yiwig(xi), (5.3)
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where wi = w(yi,xi) = e−yiF(xi). The predictor is updated by selecting the steepest descent

direction within a weak learner pool G = {g1(x), · · · ,gn(x)},

g∗(x) = argmax
g∈G

<−δRE [F ],g >

= argmax
g∈G

1
|St |∑i

yiwig(xi). (5.4)

The optimal step size for the update is

α
∗ = argmin

α
RE [F +αg∗]. (5.5)

For binary g∗(x), this has a closed form solution

α
∗ =

1
2

log
∑i|yi=g∗(x)wk

i

∑i|yi 6=g∗(x)wk
i
. (5.6)

Otherwise, the optimal step size is found by a line search.

5.3.2 Complexity-Aware Learning

Complexity-aware learning seeks the best trade-off between classification accuracy and

complexity. This is a constrained optimization problem, where classification risk is minimized

under a bound on a complexity risk RC[F ],

F∗(x) = argmin
F

RE [F ] s.t. RC[F ]< γ, (5.7)

which is solved by minimizing the Lagrangian

L [F ] = RE [F ]+ηRC[F ], (5.8)
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where η is a Lagrange multiplier that only depends on γ. To define a complexity risk, we note

that (5.2) can be written as

RE [F ]' 1
|St |∑i

φ[ξ(yi,F(xi))], (5.9)

with φ(v) = e−v and ξ(y,F(x)) = yF(x). The function ξ(·) is the margin of example x under

predictor F(·) and measures the confidence of the classification. Large positive (negative) margins

indicate that x is correctly (incorrectly) classified with high confidence, and the margin is zero

for examples on the boundary. The loss φ(·) is usually monotonically decreasing, penalizing all

examples with less than a small positive margin. This forces the learning algorithm to concentrate

on these examples, producing as few negative margins as possible. The exponential loss of

AdaBoost makes the penalty exponential on the confidence of incorrectly classified examples.

In this work, we adopt a complexity risk of similar form

RC[F ]' 1
|St |∑i

τ[κ(yi,F(xi))], (5.10)

where κ[y,F(x)] measures the complexity of classifying example x with F(·) and τ(·) is a non-

negative complexity loss. Drawing inspiration from the classification risk, we measure complexity

with the complexity margin

κ[y,F(x)] = yΩ(F(x)). (5.11)

While Ω(F(x)) can be any measure of complexity, in this work we focus on computational

complexity, setting Ω(F(x)) to the number of operations required to evaluate F(x). (5.11) assigns

positive (negative) complexity to positive (negative) examples, reflecting the fact that computation

spent on negative examples is “wasted” or “negative” while that spent on positives is “justified”

or “positive”. While positives have to survive all cascade stages, negatives should be rejected

with little computation. The loss τ(v) then determines the complexity-aware behavior of learning

algorithms. For example, a decreasing τ(v) for v < 0 penalizes negative examples of large
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complexity. This encourages classifiers that reject negatives with as little computation as possible.

On the other hand, an increasing τ(v) for v > 0 penalizes positives of large complexity.

5.3.3 Embedded Cascade

A cascaded classifier is a sequence of classification stages hi(x) = sgn[Fi(x)+Ti], where

Ti is a threshold. A popular architecture, which we adopt in this work, is the embedded cascade,

whose predictor has the embedded structure

Fk(x) = Fk−1(x)+ fk(x) =
k

∑
j=1

f j(x). (5.12)

Classification complexity is measured by the average per stage complexity,

Ω(F(x)) =
1
m

m

∑
k=1

rk(x)Ω( fk(x)), (5.13)

where, using u[·] to denote the Heaviside step function,

rk(x) =
k−1

∏
j=1

u
[
Fj(x)+Tj

]
, (5.14)

is an indicator of examples that survive all stages prior to k, i.e. rk(x) = 1 if Fi(x)+Ti > 0,∀i < k,

and rk(x) = 0 otherwise. Since the average complexity is bounded by the largest weak learner

complexity, this leads to a more balanced Lagrangian in (5.8) than the total complexity.

5.3.4 Cascade Boosting

The minimization of (5.8) requires the functional derivative of the Lagrangian along the

direction of weak learner g(x) at the current predictor F(x),

< δL [F ],g >=< δRE [F ],g >+η < δRC[F ],g >, (5.15)
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where < δRE [F ],g > is as in (5.3). To compute the derivative of the complexity risk we note that

Ω(F(x)+ εg(x)) =

 Ω(F(x)) if ε = 0

Ω(F(x)+ εg(x)) otherwise.
(5.16)

Defining u(ε) as u(ε) = 0 for ε = 0 and u(ε) = 1 otherwise,

Ω(F(x)+ εg(x)) =

= Ω(F(x))+u(ε)
[
Ω(F(x)+ εg(x))−Ω(F(x))

]
= Ω(F(x))[1−u(ε)]+u(ε)Ω(F(x)+ εg(x))

= Ω(F(x))[1−u(ε)]

+
u(ε)

m+1

[
m

∑
k=1

rk(x)Ω( fk(x))+ rm+1(x)Ω(εg(x))

]

= Ω(F(x))
[

1−u(ε)+
m

m+1
u(ε)

]
+

u(ε)
m+1

rm+1(x)Ω(εg(x))

= Ω(F(x))[1−u(ε)ζm]+u(ε)
rm+1(x)
m+1

Ω(εg(x)),

where ζm = 1− m
m+1 and we have used (5.13). Finally, since εg(x) is simply a rescaling of g(x),

it is assumed that Ω(εg(x))≈Ω(g(x)), from which the expression above can be approximated by

Ω(F(x)+ εg(x)) = Ω(F(x))[1−u(ε)ζm]+u(ε)
rm+1(x)
m+1

Ω(g(x)). (5.17)
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Furthermore, since u(ε) is not differentiable, it is approximated by σ(ε)≈ u(ε), where σ(ε) is a

differentiable function with σ(0) = 0. Under these approximations,

< δRC[F ],g > (5.18)

=
1
|St |∑i

[
d
dε

τ

[
yiΩ
(

F(xi)+ εg(xi)
)]]∣∣∣∣

ε=0

=
1
|St |∑i

yiτ
′ [yiΩ(F(xi))]

[
d
dε

Ω

(
F(xi)+ εg(xi)

)]∣∣∣∣
ε=0

=− 1
|St |∑i

yiψ(yi,xi)

[
rm+1(xi)

m+1
Ω(g(xi))−ζmΩ(F(xi))

]
,

where

ψ(yi,xi) =−τ
′ [yiΩ(F(xi))]σ

′(0). (5.19)

Note that the derivative only depends on σ′(0), other details of σ(ε) make no difference. Each

boosting iteration updates F(x) with a step along the steepest descent direction of (5.15) within

the weak learner learner pool G,

g∗(x) = argmax
g∈G

<−δL [F ],g > . (5.20)

Combining (5.3), (5.15), and (5.18) and denoting ri = rm+1(xi), ωi = ω(yi,xi), gi = g(xi), and

ψi = ψ(yi,xi), this is the direction that maximizes

D[g] =
1
|St |∑i

yi

[
ωigi +η

riψiΩ(gi)

m+1

]
, (5.21)

where we have disregarded the term ζmΩ(F(xi)) of (5.18), because it does not depend on g and

plays no role in the optimization. The optimal step size for the update is

α
∗ = argmin

α
L [F +αg∗], (5.22)
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The cascade predictor is finally updated with

Fnew(x) = F(x)+α
∗g∗(x). (5.23)

Note that, from (5.19), σ′(0) is a constant that rescales all ψi equally. Hence, in (5.21), it can

be absorbed into η. We thus assume, without loss of generality, that σ′(0) = 1. This boosting

algorithm is denoted the complexity aware cascade training (CompACT) boosting algorithm.

5.3.5 Properties

CompACT has a number of interesting properties. First, the contribution of each training

example to the complexity term in (5.21) is multiplied by ri. Hence, only examples that survive

the current cascade F contribute to the complexity term. We refer to the xi such that ri = 1 as

active examples. Note that, given the set of active examples

Sa(F) = {(xi,yi) ∈ St |ri = 1}, (5.24)

associated with F , (5.21) can be replaced by

D[g] =
1
|St |

(
∑

i
yiωigi + ∑

i|ri=1
yi

ηψiΩ(gi)

m+1

)
. (5.25)

This complies with the intuition that examples which do not reach stage m+1 during the cascade

operation should not affect the complexity term for that stage.

Second, most implementations of cascaded classifiers use weak learners of example-

independent complexity, i.e. Ω(g(xi)) = Ωg,∀i. While this does not hold for the cascade in

general (different examples can be rejected at different stages), it holds for the examples in Sa, i.e.

Ω(F(xi)) = ΩF ,∀xi ∈ Sa. In this case, the complexity weights of (5.19) only depend on the label

yi. Defining ψ+ =−τ′[ΩF ] (ψ− =−τ′[−ΩF ]) as the value of ψi for positive (negative) examples,
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and π
+
F (π−F ) as the percentage of positive (negative) active examples, (5.21) reduces to

D[g] =
1
|St |

(
∑

i
yiωigi +

η

m+1
Ωg ∑

i|ri=1
yiψi

)
(5.26)

=
1
|St |∑i

yiωig(xi)−
η

m+1
Ωg
|Sa|
|St |

ξF , (5.27)

with ξF = π
−
F ψ
−
F −π

+
F ψ

+
F . Since |Sa| decreases with cascade length, the rescaling of η by |Sa|

|St |

gradually weakens the complexity constraint as the cascade grows. While in the early iterations

there is pressure to select weak learners of reduced complexity, this pressure reduces as iterations

progress. Gradually, complex weak learners are penalized less and the algorithm asymptotically

reduces to a cascaded version of AdaBoost. This makes intuitive sense, since the latter cascade

stages process a much smaller percentage of the examples than the earlier ones and have much

less impact on the overall complexity. On the other hand, since the surviving examples are the

most difficult to classify, accurate classification requires weak learner accuracy to increase with

cascade length. This usually (but not always) implies that weak learner complexity increases as

well because powerful features usually require heavy computation. By pushing the complexity

to the later stages, the algorithm can learn cascades that are both accurate and computationally

efficient. This effect is reinforced by the fact that 1/(m+1) also decreases with cascade length.

Third, for homogeneous cascades, where every weak learner g in G has the same com-

plexity, the second term of (5.27) is constant and has no impact on the optimization. In this case,

(5.27) reduces to (5.3) and compACT boosting reduces to AdaBoost. Since this is the setting

used by most previous cascade design algorithms [161, 171, 8, 144], compACT boosting can be

seen as a generalization of these procedures. More generally, the weak learner pool is frequently

heterogenous but of the form G = {G1,G2, · · · ,GM}, where Gm is a homogeneous weak learner

subset and M a number of heterogeneous weak learner classes. In this case, Ωg is constant within

each Gm, only varying across the weak learner subsets, i.e. Ωg = ΩGm,∀g ∈ Gm. Hence, the

second term of (5.27) becomes a penalty on the weak learner subsets Gm. While different subsets
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are weighted according to their complexity, all weak learners within the same subset receive

the same penalty. In this way, compACT boosting penalizes weak learner families of larger

complexity but behaves like AdaBoost within each family.

5.3.6 Complexity Loss

The choice of complexity loss τ(v) determines the weight ξF = π
−
F ψ
−
F −π

+
F ψ

+
F in (5.27).

In our experience, the details of the loss function do not have a major impact on the performance

of the learned cascade. For example, because the percentage of positive training examples is

usually small, the behavior of τ(v) for v > 0 is not critical. For negative examples, the loss should

be monotonically decreasing on v, but we have not seen great differences between, say, linear and

exponential decay. For simplicity, we thus adopt the loss

τ(v) = max{0,−v}. (5.28)

This is similar to the SVM hinge loss [19],

τ(v) = max{0,1− v} (5.29)

but does not enforce a penalty on positive examples of low complexity. For complexity, it matters

most to distinguish between positives and negatives, penalizing positives of low complexity is not

important. Instead, this loss encourages CompACT to focus on the fast rejection of negatives.

Under it, ψ
−
F = 1,ψ+

F = 0 and ξF = π
−
F . Note that this makes the weight |Sa|

|St | ξF of (5.27) equal to

the ratio between the negative examples that are active and the total number of examples. This

decreases as the cascade grows.
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Figure 5.1: Decision tree of depth 2. Circles represent classifier nodes, squares terminal nodes.
φ(x,v) is the feature of x used at node v, θ a threshold.

5.3.7 Weak Learners

CompACT supports the design of cascades with many types of weak learners. In this

work, we follow the predominant trend in the literature and use binary decision trees.

Decision trees: As shown in Figure 5.1, binary decision trees have two node types:

classifier and terminal. Node v implements a classifier g(x,v) by computing a feature φ(x,v) of

sample x and comparing it to a threshold θ(v). The sample is then forwarded to one of the two

children of the node, according to the results of this comparison. In this way, each sample follows

a path from the root to a terminal node, transversing a single classifier node at each depth level.

No classification or feature computation is performed in terminal nodes. Hence, in what follows,

tree depth refers to classifier nodes only.

A binary decision tree g of depth L with classifier nodes {v1
1, · · · ,vi

l, · · · ,v
nL
L }, where

nl = 2l−1 is the number of nodes at depth l, has expected computation cost

Ω(g) =
L

∑
l=1

nl

∑
i=1

pi
lc

i
l, (5.30)
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Algorithm 1 Complexity-Restricted Tree Learning
Input:
Feature pool φ = {φ1,φ2, · · · ,φM}; training samples St = {(xi,yi)}.
Output:
The optimal decision tree g∗.
for k = 1 : M do

Build the optimal homogenous decision tree gk, using features from φk only and (5.4).
end for
Select the decision tree g∗ from {gk} that maximizes (5.27).

where pi
l = p(vi

l|x) is the probability that node vi
l is traversed by sample x and ci

l is the feature

computation cost of node vi
l . The probabilities pi

l have some properties that derive from the tree

structure, e.g. 1) if vk
l is the parent of v j

l+1 then p(v j
l+1|x) = p(v j

l+1|x,v
k
l )p(vk

l |x); 2) ∑
nl
i=1 pi

l = 1

for any depth l. Property 1) implies that p(v j
l+1|x)≤ p(vk

l |x), i.e. the probabilities decrease with

depth, and property 2) guarantees that the root node is traversed with probability p(v1
1|x) = 1 for

all x.

In this work, the feature pool φ used to build decision trees is composed of M classes,

φ = {φ1,φ2, · · · ,φM}, where all features of class k have computational cost Ck. It follows that ci
l ∈

{Ck}M
k=1. Two strategies for learning decision trees, which are discussed next, were considered.

Complexity-restricted Tree: Under the first strategy, all decision trees use homogeneous

features. At each boosting iteration, a decision tree gk is built from feature sub-pool φk. The

learning algorithm then chooses the best of the M trees gk. Under this strategy, (5.30) reduces to

Ω(gk) =
L

∑
l=1

nl

∑
i=1

pi
lCk = LCk, (5.31)

where we have used property 2) above. Hence, given k, Ω(gk) is a constant and the optimal weak

learner of (5.20) is identical to that of (5.4), i.e. that chosen by AdaBoost. Hence, the learning

of each cascade stage can be divided into two steps: 1) learn M homogeneous decision trees, by

using the AdaBoost rule of (5.4) to find the optimal tree gk for each each feature pool φk, and 2)

select the homogeneous tree g∗ ∈ {gk} that maximizes the complexity aware objective of (5.27).
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Algorithm 2 Complexity-Sensitive Tree Learning
Input:
Feature pool φ = {φ1,φ2, · · · ,φM}; training samples St = {(xi,yi)}; and tree depth L.
Output:
The optimal decision tree g∗ = {g1

1, · · · ,g
nL
L }.

for each classifier node v do
1. Collect the training samples Sv that fall into node v, and compute the probability pv that node v is
traversed by a sample.
2. Find the node classifier gv, by selecting the combination of feature from φ and threshold θ(v) that
maximizes (5.32).

end for

The procedure is summarized in Algorithm 1.

Complexity-sensitive Tree: The second strategy optimizes the trade-off between com-

plexity and accuracy even within each decision tree. Since global tree optimization is difficult, we

use the popular local recursive optimization, where nodes are optimized sequentially. Consider

(5.27) and the active sample |Sa| arriving at current stage. Using Sv to denote the samples that

reach node v, the empirical probabilities pv are estimated with pv =
|Sv|
|Sa| . The binary classifier

g(x,v) implemented at node v is then learned with the following variant of (5.27)

D[gv] =
1
|Sv| ∑i∈Sv

yiωigv(xi)−
η

m+1
|Sa|
|St |

pvξFΩgv , (5.32)

where we use gv to denote g(x,v). The optimization procedure is described in Algorithm 2.

Note that gv can choose a feature from any of the feature pools φk. Hence, the tree is usually

heterogenous and has two main properties. First, because the complexity penalty decreases with

node probability, less visited nodes tend to use more complex features. Second, from property 1)

above, deeper nodes have smaller probabilities than earlier ones, and feature complexity increases

towards the tree leaves. Hence, early and popular nodes tend to use low complexity features,

while features of higher complexity tend to be chosen for late or less popular nodes.
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Algorithm 3 Embedded Bootstrapping
Input:
Training images set I ; numbers {N1, · · · ,NK} of weak learners at different stages, where M = ∑

K
k=1 Nk.

Initialization:
Empty detector F = {}; initial training set S0.
Output:
Final detector F = {F1, · · · ,FK}.
for k = 1 : K do

1. Use Sk−1 to learn a detector Fk of Nk weak learners.
2. Embed Fk in detector F = F ∪Fk.
3. Run F to collect a new hard training set Sk.

end for

5.3.8 Bootstrapping and Thresholds

Bootstrapping is critical for effective object detection [38, 29]. A popular strategy is to

collect hard negatives for an immature detector and use them to train a less immature detector.

This is repeated for several rounds, until the detector is mature enough [29, 127, 192, 121, 5].

Usually, performance saturates after 4 to 5 bootstrapping rounds. A problem of this strategy is

that the final training samples are not representative of the sample distribution of natural images.

In fact, in the final bootstrapping round, most negatives are similar to the positives. Hence, there

is no guarantee that the final detector will correctly classify the samples rejected by previous

immature detectors.

To circumvent this, we use the bootstrapping strategy of Algorithm 3, which is similar

to the methods of [42, 153]. The final detector is not the one learned in the final bootstrapping

round. Instead, the detector learned in current round is embedded into the detector learned from

all previous rounds, using (5.12). In our experiments, this strategy is more resistant to over-fitting

than the classical one, sometimes outperforming it by a large margin.

Another important factor for cascade performance is the threshold used to reject negative

examples. While thresholds can be learned [8], this increases the complexity of learning the

complexity-aware cascade stages. In this work, the thresholds are selected as in [29], using

a simplified version of the soft cascade of [8]. This consists of setting, in (5.14), T1 = 1 and
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Figure 5.2: Sample of the feature channels generated on a pedestrian image.

Tj+1−Tj = ∆, ∀ j > 1, where ∆ is usually a small number, e.g. 0.005.

5.4 Pedestrian Detector Design

In this section, we discuss various details of the proposed pedestrian detector.

5.4.1 Heterogeneous Features

CompACT boosting seeks the optimal trade-off between accuracy and complexity, at

each cascade stage. This is most effective when the feature pool contains features of various

complexities. Our implementation draws such features from two main sources, the handcrafted
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aggregate feature channels (ACF) of [29] and a CNN feature set. Different filter sizes, computa-

tional mechanisms, platforms, etc. contribute to the diversity of feature complexities. A sample

of the responses of some of these features to a pedestrian image is shown in Figure 5.2. Note the

diversity of details that the features highlight. This is unlike most previous works in the cascade

literature, where most detectors use a single feature family.

In the literature, it is common to pre-compute a large number of feature responses at all

image locations, before detection [121, 192, 127]. This, however, has unfeasible complexity for

large feature pools (e.g. the 200,000∼500,000 features extracted per patch in [192, 127]) or when

features are computationally intensive (e.g. the CNN features of [86, 150]). In these cases, it

is neither tractable nor necessary to pre-compute all features at all locations. For example, a

cascade of 2048 decision trees of depth 2, evaluates at most 4096 features per patch. Since the

cascade rejects most candidate patches after a few stages, the most intensive features (e.g. CNN)

are unlikely to be needed at most image locations. Hence, while pre-computation is useful for

low-complexity features, complex features should be evaluated as necessary. We refer to the

former as pre-computed features and the latter as computed just-in-time (JIT).

Pre-computed Features: Our pre-computed feature set consists of ACF [29], mostly due

to its computational efficiency. Following [29], we extract 10 LUV+HOG channels. In total, there

are 16×8×10=1,280 ACF features per pedestrian patch.

Just-in-time Features: The JIT pool contains several feature subsets as introduced below.

SS: The self-similarity (SS) features of [148] capture the difference between local patches

and have achieved good performance on edge detection tasks [94, 33]. Following [94, 33], we

compute SS features on a 12×6 grid of the 16×8 ACF patch. This results in

72

2

×10= 25,560

SS features per pedestrian patch.

CB: Checkerboard features (CB) are obtained by convolving the ACF channels with a

set of checkerboard filters. [192] has shown that a simple set of such features could achieve very
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Figure 5.3: Eight 2×2 checkerboard-like filters used in this work. Red (Green) is used to
represent value +1 (-1).

good performance for pedestrian detection. Based on their observation that the number of features

determines performance (rather than feature type), we adopt the set of 8 simple 2×2 checkerboard

filters of Figure 5.3. In total, there are 16×8×80=10,240 CB features per pedestrian patch.

LDA: Locally decorrelated HOG features, computed with linear discriminant analysis

(LDA), have shown some superiority for object detection over HOG features [56]. [121] showed

that the computation of these features on ACF channels leads to a big improvement over ACF.

We adopt this feature family, with filter size of 3×3. In total, there are 16×8×40=5,120 LDA

features per pedestrian patch.

ACFCNN: SS, CB and LDA features are responses of simple hand-crafted filters to

ACF features. A set of filters of higher complexity is also learned with a shallow CNN. This

has the ACF feature channels as input and consists of a convolutional and a fully connected

(fc) layer. Since ACF channels vary quite a bit in magnitude, they are passed through a batch

normalization [73] layer before being fed to the CNN. The convolutional layer contains 32 filters

of size 1×3×10 and 3×1×10, where 10 is the number of ACF channels. These filters have

the same complexity and are denoted as ACFCNN. Although GPUs are used to train ACFCNN

parameters, they are relatively simple filters and we use a CPU for their computation. In total,

there are 16×8×64=8,192 ACFCNN features per pedestrian patch.

Small CNN: Beyond operators defined over ACF channels, we consider a set of CNN

features extracted directly from the image to classify. The CNN has eight convolutional layers and

one fc layer, whose details are given in Figure 5.4. It was originally trained on 64×64 ImageNet

images [143] and then fine tuned on a pedestrian dataset of 64×32 images. For feature extraction,
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Figure 5.4: CNN architecture used to extract small CNN features.

we use the output of the 5th and 7th convolutional layers. Similarly to ACF, these can be seen as

CNN feature channels and are denoted as CONV5 and CONV7, respectively. Inspired by the

good performance and simplicity of the checkerboard features on ACF, we also compute them

on the CONV5 feature channels. These are denoted CONV5CB features. Since CONV5 and

CONV7 features are strong and can drive boosting towards over-fitting (especially CONV7), we

only retain the 1/2 channels of CONV5 and the 1/4 channels of CONV7 that are more frequently

used during learning. After the cascade is trained, we prune the unfrequently used channels and

retrain it. Overall, there are 16×8×64=8,192 CONV5 features, 8×4×64=2,048 CONV7 features

and 16×8×512=65,536 CONV5CB features per pedestrian patch.

5.4.2 Feature Complexity

Different facets of feature complexity, such as number of computations, computation cost,

energy consumption, or speed, are of importance depending on the application. For features

computed on CPUs, these variables are linearly related, and any of them can be used as a general

measure of complexity. A reasonable choice is the number of floating-point operations (FLOPs)

required by feature computation. However, complexity can depend on the implementation. For

example, a Haar feature has complexity linear in the size of the image region it covers, but this

leads to substantial redundant computation when overlapping features are used. The problem

can be avoided by using the integral image of [161], which enables constant complexity (four

integral image operations) for all features. This type of problem is much more complex for
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Table 5.1: Feature complexity and processing unit

ACF SS CB LDA ACFCNN CONV5 CONV7 CONV5CB
FLOPs 1 2 4 9 30 5.84×107 8.67×107 5.84×107+4

Unit CPU CPU CPU CPU CPU GPU GPU GPU+CPU

CNN features computed on GPUs. In this case, speed is optimized when features are computed

in parallel. It is frequently faster to compute convolutions over the entire image, even if this

computation is not needed in some areas, than to adapt the computation to the detection needs.

This is, however, very inefficient in terms of energy consumption. Hence, for GPU-based CNN

features, the two facets of complexity are not linearly related. The problem could be solved by

shutting down individual CNN units, depending on the spatial location of their receptive field, but

this is usually not supported by deep learning libraries. Hence, it is difficult to define a universal

measure of complexity, of interest for all applications. This is even more complex for mixed

CPU/GPU implementations, since the cost and energy consumed per FLOP are very different

for the CPU and GPU architectures. In this case, the complexity measure can depend on the

particular hardware implementation of the detector. We avoid this problem by introducing a

generic but approximate measure of computational complexity, which relies on FLOPs to measure

the complexity of CPU features and introduces the notion of “trigger complexity” for those

computed on GPUs. The FLOPS and processing unit required by the various features used in this

work are shown in Table 5.1.

ACF-based Feature Complexity: ACF features underlie SS, CB, LDA and ACFCNN,

and are pre-computed before detection. The pre-computation cost, which occurs before cascade

evaluation, can be ignored reducing complexity to a memory access. We assign to this a com-

plexity of 1. SS, CB LDA and ACFCNN features are JIT features. Beyond ACF, they require a

number of FLOPs proportional to their filter sizes. As shown in Table 5.1, their complexities are

2, 4, 9 and 30 respectively.

Trigger Complexity: The complexities of CNN and hand-crafted features are of a
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different nature. While CNN features are computed JIT, current libraries makes it inefficient

to compute features individually. If CNN features are needed to classify an image region, it is

significantly more efficient to evaluate all layers over the entire region than only the responses

of the layers needed per sub-region. This makes it difficult to assign a complexity per feature.

Instead, we rely on the concept of a trigger complexity Ωcnn.

When (5.27) is evaluated for a previously unused CNN feature, Ωg = Ωcnn. Similarly

to ACF, once the feature is computed its complexity is set to Ωg = 1. Different CNN features

have different trigger complexities, which reflects their requirements in GPU FLOPS. In our

implementation, CONV5 and CONV7 have trigger complexities of {α5Ωcnn,α7Ωcnn}, where

α5 : α7 = 1 : 1.48. This is summarized in Table 5.1. When CNN architectures are independent,

the same holds for their trigger complexities. However, CNN features are frequently dependent,

e.g. CONV5 and CONV7, which are features from the same network, with CONV7 requiring the

computation of CONV5. To account for this, once CONV5 is computed trigger complexities be-

come {0,(α7−α5)Ωcnn} and once CONV7 is computed they become {0,0}. Once these features

are triggered, complexity becomes {1,1} for both CONV5 and CONV7. CONV5CB features,

obtained by checkerboard filtering the responses of CONV5, have trigger complexity equal to

CONV5. Their after-trigger complexity is 4, the number of FLOPs required by checkerboard

filters.

5.4.3 Embedding Large CNN Models

Large CNNs [86, 150, 61] are popular in computer vision. While, theoretically, they could

be used in any cascade stage, this makes the iterative boosting optimization too computationally

intensive. It is practical, however, to use a large CNN as the final cascade stage. This can, in

principle, be done for any CNN detector in the literature. We next discuss the embedding of a few

popular methods.

R-CNN: The R-CNN detector[51] applies a CNN to object proposals produced by an
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independent algorithm. It is trained with a sequential process of CNN fine-tuning, feature saving,

SVM classifier training and bounding box regression training. This requires substantial human

engineering, time and memory, due to the discrepancy between CNN classification and SVM

detection scores. Some components, e.g. feature saving and SVM training, can be avoided by

using CNN scores as detection scores. Due to the low computational efficiency of the R-CNN

[51], embedding it in a CompACT cascade, which is already very discriminant and produces few

detection candidates, can be very beneficial.

Fast-RCNN: The Fast-RCNN addresses many limitations of the R-CNN by sharing

computation across proposals at different locations and scales. It requires a single forward

image pass to produce all detections. This makes it much more efficient than the R-CNN. The

original Fast-RCNN [50] was trained with third-party generic object proposals [158], which is

not efficient nor effective for pedestrian detection. Better results could, in principle, be obtained

by training a Faster-RCNN model [140] to detect pedestrians first, and then replace the RPN

proposals by CompACT cascade proposals. The latter can, in this case, be seen as a strong

proposal mechanism for the Fast-RCNN. To test this premise, we used Fast-RCNN detectors

based on AlexNet, VGG-Net and ResNet-101.

MS-CNN Despite the good Faster-RCNN results for general object detection, its pedes-

trian detection performance can be weak. On the contrary, the MS-CNN introduced in Chapter

2 is much stronger on pedestrian detection. To use the MS-CNN with CompACT, the proposal

generation of Figure 2.3 is ignored. Only the detection network of Figure 2.4 is embedded in the

CompACT cascade. This is similar to the embedding of the Fast-RCCN (of VGG-Net), but uses

a more accurate pedestrian detector. It could thus enable better trade-offs between accuracy and

complexity.

Embedding Mechanisms: The simplest way to embed a large CNN in a CompACT

cascade is the “Proposal” mechanism of the R-CNN [51]. The CompACT cascade generates

proposals, which are fed to the CNN. The final detection scores are produced by the CNN alone.
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This strategy assumes that the proposal detector is much less discriminant than the large CNN.

This is frequently not true for CompACT cascades which, at least for pedestrian detection, can

even be stronger than the large CNN. To address this, we propose an “Embedded” mechanism,

where the large CNN acts as the final weak learner g of (5.23). Note that this has no loss of

optimality, if α is learned with (5.22). While avoiding the computationally intensive fine-tuning of

the CNN to the cascade proposals, it guarantees that the cascade is still optimal in an end-to-end

manner. The CNN is simply a descent direction of (5.20) that is unavailable to prior stages. In

summary, “Embedding” differs from the “Proposal” mechanism in that 1) not only the bounding

boxes but also the confidence scores of the cascade are forwarded to the deep CNN, and 2) the

combination of the proposal mechanism (cascade) and deep CNN is optimal under the well

defined risk of (5.8).

It should be noted that the stride (step between window evaluations) of CompACT is

usually small, e.g. 4 pixels, while that of large CNN feature maps is relatively large and dependent

on the network architecture, e.g. 16 pixels for the CONV5 features of VGG-Net. However, this

is not a problem when the R-CNN or Fast-RCNN are embedded in the CompACT cascade,

because the networks operate on object proposals. It suffices to feed the proposals to the network

by image warping (R-CNN) or RoI pooling (Fast-RCNN). Another potential problem is that,

despite its small stride, the cascade is not always strong enough to guarantee good localization,

sometimes scoring the ground-truth window lower than neighboring windows. This, however, is

not a problem for Fast-RCNN detectors, which can recover from poor proposal localization by

relying on bounding box regression [50, 140]. Since the latter has a trivial computational cost, it

is always used when either the Fast-RCNN or MS-CNN are embedded in a CompACT cascade.

It remains to decide what CompACT proposals are forwarded to the CNN. As is common

in the literature, when the cascade is used by itself, its output is post-processed with non-

maximum suppression (NMS). Since there are frequently many overlapping proposals, this

drastically reduces the number of deep CNN evaluations, the costliest stage from a computational
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point of view. On the other hand, it is sub-optimal to insert the NMS operation between the two

stages from a detection point of view. We study the impact of embeddings both with and without

NMS on the detection accuracy/complexity in the experimental section.

5.5 Experiments

In this section, we discuss various experiments performed to evaluate CompACT pedes-

trian detection cascades, using the Caltech [32] and KITTI [43] datasets.

5.5.1 Experimental Setting

We started by performing various ablation studies on Caltech, all using cascades of

2048 decision trees of depth of 2. These were learned with 7 bootstrapping rounds, using

{32,96,128,256,512,512,512} decision trees. The training and testing sets were as in [29].

A set of final experiments was then conducted using cascades of 4096 decision trees of depth

of 5 and 9 bootstrapping rounds ({32,96,128,256,512,768,768,768,768} trees). These were

performed on both Caltech and KITTI (a decision tree depth of 4 was used in KITTI, due to its

much smaller number of pedestrian instances). The pedestrian template size was 64×32 including

a contextual border region of 14×12, as in [29]. On Caltech, we used the training set of [121],

on KITTI we used the standard training set. The standard evaluation metrics were used on each

dataset: MR (log-average miss-rate) on Caltech, and mAP (mean average precision) on KITTI.

Since the minimum pedestrian height on KITTI is half of that of Caltech (25 pixels), the original

test images were upsampled by 2. The detected bounding boxes (minimum height of 50) were

then downsampled by 2. All experiments were run on a single CPU core (2.10GHz) of an Intel

Xeon E5-2620 server with 64GB of RAM. An NVIDIA Tesla K40M GPU was used for CNN

computations, with the remaining computations performed on CPU.
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Figure 5.5: Cascade accuracy v.s. complexity for different features.

5.5.2 Homogeneous Cascade Comparison

We started with homogeneous cascades of a single feature family, the predominant

architecture in the literature. In this case, the complexity penalty of (5.27) is equal for all weak

learners, and CompACT reduces to AdaBoost. Figure 5.5 compares homogeneous cascades

based on ACF, SS, CB, LDA, ACFCNN, CONV5, CONV7 and CONV5CB. Note the improved

performance of our ACF cascade implementation over [29], due to the bootstrapping strategy of

Section 5.3.8.

Clearly, SS outperforms the other ACF-based features (ACF, CB, LDA, ACFCNN),

achieving higher accuracy and speed. CB and LDA are more discriminant than ACF, but more

complex. ACFCNN is slightly more accurate than CB, but its heavy features produce the slowest

ACF cascade. The cost/benefits of CNN features are shown on the lower table. CONV5 has

higher accuracy than all ACF-based features but five times the complexity. CONV7 has much

worse detection performance than CONV5. We believe this is due to a coarser sliding window

stride, since (see Figure 5.4) CONV7 is downsampled twice more than CONV5. CONV5CB

has the best detection, but only a marginal gain over CONV5 and four times the computation.

Figure 5.5 also shows that the spectrum of feature accuracies v.s. complexities is quite broad.
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Figure 5.6: Stage configuration learned with different trade-off coefficient η. Only one in five
stages is shown.

This enables CompACT to select features of optimal accuracy vs complexity trade-off at each

cascade stage.

5.5.3 CompACT Cascade Configuration

To test the ability of compACT to trade-off accuracy for complexity, we started by

considering cascades of complexity-restricted trees (Section 5.3.7). Figure 5.6 illustrates the

configuration of cascades learned with different η in (5.8), showing the feature type selected

every fifth stage. Consider the case of η = 500. The cheapest features (ACF) were the only

selected for the first 200 stages, and rarely used after stage 500. This suggests that ACF features

are very efficient but not very discriminant. A better trade-off between the two goals is achieved

by SS features, which were selected throughout the training process. Note that SS features are

competitive even for the later cascade stages, suggesting that they can be very discriminant in

spite of their simplicity. Similarly, CB features were selected across a large range of cascade

stages. This is unlike LDA and ACFCNN, whose rare selection suggests a weak discrimination

vs. complexity trade-off. More surprisingly, CONV5 features were also rarely selected, with

CONV7 and CONV5CB dominating the late stages. This suggests that CONV7 and CONV5CB

are more discriminant. Recall that, while CONV5 is more efficient in Table 5.1, CompACT

boosting weighs complexity less heavily than discrimination in the late stages.

Figure 5.6 also shows that the optimal cascade configuration depends strongly on the
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Figure 5.7: Accuracy v.s. complexity for different trade-off coefficients η.

Lagrange multiplier η that controls the trade-off between accuracy and complexity. Recall, from

(5.7)-(5.8), that η has an inverse relationship with the complexity bound γ. Hence, a smaller η

(larger γ) should produce a slower and more accurate cascade, and vice versa. This is supported

by Figure 5.6, where large η leads to a cascade composed exclusively of low complexity features,

while a small η allows the use of more complex features and the use of those features earlier

on in the cascade. The overall trade-off between accuracy and complexity is shown in Figure

5.7, which compares cascades learned with different η. Small η, which as shown in Figure 5.6

induce CompACT to select expensive CNN features in the early stages, produce slower but more

accurate cascades. Larger η, which prevent the selection of expensive features, produce faster but

less accurate detectors. In the limit of η→ ∞ only the cheapest features are chosen throughout

the cascade, and CompACT reduces to AdaBoost on the ACF feature pool. This is the method

of [29].

Figure 5.7 shows that between the two extremes of η, cascade speeds vary from about

2 to about 10 fps. Interestingly, accuracy plateaus as speed decreases. Note that accuracy does

not improve as η decreases beyond η = 500, even though speed continues to decrease. Since

the knee of the curve corresponds to the lightest cascade with the best accuracy on this dataset,

this is the cascade of optimal trade-off between accuracy and complexity. The fact that cascades
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with heavier features have weaker detection rate suggests some over-fitting and, as discussed in

Section 5.2, that the complexity penalty acts as a regularizer. In these experiments the optimal

trade-off was achieved with η = 500.

One sensible question is whether CNN features would suffice to implement all cascades.

After all, ACF features perform convolutional operations and a well trained CNN model should

be able to learn them. Figure 5.6 suggests this is not the case. This is likely because ACF

features were designed with the explicit purpose of computational efficiency. Although they

cannot guarantee high accuracy, they achieve a strong trade-off between accuracy and run-time.

Note that, in Figure 5.6, they are always chosen to implement the early cascade stages. On the

other hand, CNN features are never chosen for cascades that emphasize computational efficiency

(large η). While the CNN could, in principle, learn the ACF features, this would require 1) a

CNN learning algorithm that somehow penalized feature complexity, which we are not aware

of, and 2) probably some form of hand-coding, through specification of the architecture of early

CNN layers.

5.5.4 Benefits of optimal accuracy/complexity trade-off

We next compared CompACT to algorithms for learning cascades of heterogenous features.

Since there is no literature in this area, we considered two baselines. The first learns a cascade

without complexity constraints (η = 0 in (5.27)), and is denoted as “Boosting”. It is equivalent to

applying existing cascade learning algorithms to the diverse feature set considered in this work1.

The second attempts to “hand-code” the behavior of CompACT, restricting the unconstrained

boosting algorithm (η = 0) to use certain feature types in different cascade stages. This restriction

is based on feature complexity: features were ranked by complexity and used sequentially. ACF

features were used in the first 512 stages and the other feature types used equally in the remaining

1Since, in this case, all feature channels must have the same size (downsampling rate), CONV7 features were not
used in this section.
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Figure 5.8: Stage configuration for “Boosting” and “Manual” cascades.

stages. The resulting cascade is denoted as “Manual”.

Figure 5.8 shows the stage configurations of the “Boosting” and “Manual” cascades.

Since “Boosting” does not penalize complexity, it frequently selects CONV5 and CONV5CB

features for the early cascade stages. Note that this makes it too costly to compute features JIT, as

discussed in Section 5.4.1. Instead, all channel features are computed at the beginning, enabling

feature sharing. Only SS is computed JIT. Despite this feature sharing, the “Boosting” cascade

was still several times slower than the CompACT cascade. This can be seen in Table 5.2, which

compares CompACT (η = 500), “Boosting”, and “Manual”. The two sides of the table differ in

that only ACF-based features were used on the left, while both these and the small CNN based

features were used on the right. In both cases, the “Manual” cascade has low complexity but poor

accuracy. “Boosting” learns a more accurate but significantly more complex cascade. CompACT

has the best trade-off between accuracy and complexity. Note also that the introduction of the

small CNN enabled substantially better cascades.

It is also instructive to compare these results to those of the homogeneous feature cascades

commonly used in the literature, shown in Figure 5.5. When compared to the heterogeneous

CompACT cascades, all homogeneous cascades performed poorly. The CompACT cascade of

multiple ACF features had higher accuracy than all homogeneous ACF-based feature cascades and
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Table 5.2: Comparison to “Boosting” and “Manual” cascades.

Method
ACF-based ACF-based+Small CNN

Boosting Manual CompACT Boosting Manual CompACT
MR 32.09 34.39 33.25 17.39 23.51 18.29

time (s) 0.76 0.11 0.11 2.46 0.23 0.28

Table 5.3: Comparison of complexity restricted and sensitive trees.

η 125 250 500 1000 2000 4000 8000 16000

restricted
MR 30.97 29.23 29.56 29.84 30.35 30.94 30.59 31.68

Time (s) 0.105 0.104 0.103 0.102 0.101 0.101 0.100 0.100

sensitive
MR 29.32 28.30 29.33 29.78 30.16 30.28 30.91 31.31

Time (s) 0.109 0.111 0.103 0.104 0.104 0.101 0.102 0.105

was faster than most. The CompACT cascade of multiple ACF+Small CNN features had the best

overall detection performance. Not only its detection accuracy beat that of the best single-feature

cascade (CONV5CB in Figure 5.5), it was also 5 times faster. These results illustrate the benefits

of combining features of multiple complexities and optimizing the trade-off between accuracy

and complexity.

5.5.5 Complexity Restricted vs. Sensitive Trees

So far, we have reported on heterogenous feature cascades using complexity restricted

trees as weak learners. The next set of experiments compared these to cascades of complexity

sensitive trees (Section 5.3.7). Here, we found that the inclusion of CNN features could lead

to some instability. Although these features have high trigger complexity, they can have small

penalty under (5.32) if the corresponding nodes are visited with small enough probability. Since

small probabilities are difficult to estimate, this can lead to significant errors in node complexity

estimates. In result, CNN features can be selected too often in early cascade stages. To avoid this,

we used only ACF based features in these experiments. Decision trees of depth 3 were also used

to magnify the differences between the two approaches.

As shown in Table 5.3, for equal η, complexity-sensitive trees are more accurate but
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Table 5.4: Faster-RCNN baseline results.

Method Alex VGG ResNet MS-CNN
MR 30.29 15.59 14.91 10.0

slower than complexity-restricted trees. However, the differences are quite small, indicating there

is no need to enforce trade-off optimization inside decision trees. This is a positive finding, in

three ways. First, it shows that CompACT is quite robust, making it unnecessary to carefully

optimize each weak learner. Second, it is in agreement with the boosting philosophy, whose point

is exactly to aggregate “weak” (i.e. sub-optimal) learners . The requirement for a very detailed

optimization of the decision tree would violate this principle. Third, complexity-restricted trees

are simpler and easier to implement than complexity-sensitive trees, making the approach more

practical. Given all this, we use complexity-restricted trees in what follows.

5.5.6 Embedding Large CNN models

We next considered the benefits of embedding large CNNs in CompACT cascades. A

cascade of 4096 decision trees of depth 5 was used in these experiments2. Table 5.5 compares

the performance of the CompACT cascade with small CNNs (denoted CompACT), versus its

combination with the R-CNN and Fast-RCNN embedding of several popular models, including

AlexNet [86], VGG-Net [150], and ResNet-101 [61], and the recently proposed SDS-RCNN

[9] (excluding its RPN part). As discussed in Section 5.4.3, the large CNNs operated only on

proposals generated by CompACT. The Fast-RCNN models were produced by removing the

proposal generator of the Faster-RCNN models, whose baseline results are shown in Table 5.4.

We investigated the benefits of 1) applying NMS to the cascade output before vs. after application

of the large CNN, and 2) simply passing cascade detections to the CNN as a set of proposals

(denoted “Proposal”) vs. actually embedding the large CNN in the cascade with (5.12), to obtain

2Because the combination of CONV7 features and these deeper trees can sometimes over-fit, CONV7 features
were not used in this section.
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Table 5.5: Embedding of large CNNs in CompACT cascades. “+” denotes additional time, after
embedding the CNN, over CompACT.

CompACT
MR 15.27

time (s) 0.34
R-CNN

after NMS
Proposal Embedded

Alex VGG ResNet SDS Alex VGG ResNet SDS
MR 17.33 12.05 13.23 14.66 14.80 11.37 12.31 11.82

time (s) +0.02 +0.06 +0.07 +0.07 +0.02 +0.06 +0.07 +0.07
before NMS

Proposal Embedded
Alex VGG ResNet SDS Alex VGG ResNet SDS

MR 17.09 10.61 12.40 11.38 13.46 9.61 10.65 9.44
time (s) +0.13 +0.21 +0.72 +0.54 +0.13 +0.21 +0.72 +0.54

Fast-RCNN
after NMS

Proposal Embedded
Alex VGG ResNet MS-CNN Alex VGG ResNet MS-CNN

MR 27.55 14.83 15.93 12.65 20.69 11.95 13.00 10.91
time (s) +0.03 +0.24 +0.26 +0.24 +0.03 +0.24 +0.26 +0.24

before NMS
Proposal Embedded

Alex VGG ResNet MS-CNN Alex VGG ResNet MS-CNN
MR 25.32 13.23 12.64 10.12 18.49 10.01 10.65 9.06

time (s) +0.03 +0.24 +0.28 +0.24 +0.03 +0.24 +0.28 +0.24

an integrated detector (denoted “Embedded”).

A number of interesting observations follow from the table. First, the theoretically

sounder embedding of “Embedded” outperformed the more ad-hoc “Proposal” mechanism, in all

cases. This shows that CompACT cascade scores and large CNN scores contain complimentary

information. Second, CompACT is already a good pedestrian detector. Under “Proposal,” Alex

does not improve on the CompACT cascade. In fact, its MR (15.27) is comparable to the

Faster-RCNN result of ResNet (14.91) in Table 5.4. Third, higher detection accuracy was

always obtained by applying the large CNN models before NMS of the cascade output. Fourth,

the embedding of existing detectors on the CompACT cascade can significantly enhance their
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performance. The comparison between the columns of “Proposal” under “before NMS” and the

baseline Faster-RCNN results in Table 5.4, shows that the proposal generation by CompACT is

stronger than the innate proposal generation of the Faster-RCNN. In addition, the combination of

“Embedded” and “before NMS” outperformed the baseline Faster-RCNN by 11.8, 5.58, and 4.26,

points, for Alex, VGG, and ResNet, respectively! Finally, the overall best results were obtained by

embedding the MS-CNN before NMS. Although the MS-CNN uses the backbone VGG-Net, it is

better suited for multi-scale detection than the vanilla Faster-RCNN. Since pedestrians can appear

at very diverse scales, its use leads to a better trade-off between the accuracy and complexity of

the pedestrian detector. These observations show that many CNN detectors can be successfully

embedded in CompACT, producing an embedded cascade of higher accuracy than both the

original CompACT and the large CNN detectors.

Table 5.5 also confirms a property that we have observed very consistently in all our

experiments: the complementarity between ACF and CNN features. This can, for example, be

seen by comparing the performance of the single CNN feature cascade of Figure 5.5 (CONV5

19.96, CONV7 32.34, and CONV5CB 18.83) to the cascades using ACF+CNN features in

Table 5.2 (Boosting 17.39 and CompACT 18.29). Note that, for the combination ACF+CNN, the

CompACT cascade is not only faster (0.28 vs. 0.36, 0.37, 1.35) but also more accurate (18.29 vs.

19.96, 32.34, 18.83) than all single CNN feature cascades in Figure 5.5. More surprisingly, the

ACF features are complementary even with large CNN features. This can be seen in Table 5.5,

where all large CNN models achieve better performance when embedded in the CompACT

cascade than when simply using the latter as a proposal mechanism.

With respect to detection complexity, Table 5.5 shows that there is no additional cost

for “Embedded” over “Proposal”. However, in both cases, the cost of embedding the R-CNN

increases linearly with the number of proposals. This, and the fact that NMS rejects many

overlapping proposals, explains why “before NMS” is much more expensive than “after NMS,”

for this model. On the other hand, because the Fast-RCNN computation is shared among proposal
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regions, the complexity of embedding the Fast-RCNN is nearly constant, regardless of the number

of proposals. These different settings make it possible to obtain multiple CompACT cascades

of different detection accuracies and complexities. On the high-end of detection rates, the best

trade-off between complexity and accuracy is achieved by the combination of Fast-RCNN, MS-

CNN, “Embedded,” and “before NMS.” On the high-end of detection speeds, this holds for the

combination of R-CNN, Alex, “Embedded,” and “after NMS.”

Finally, we note that the use of different embedding strategies and large CNN models

enables a range of speed/accuracy trade-offs of interest for application developers. In this context,

the flexibility enabled the family of models of Table 5.5 can far outweigh simple performance

measures, such as speed or accuracy. By simply implementing CompACT, which does not use

large CNN features, a developer can achieve a MR of 15.27 and a running time of 0.34. This is

fairly cheap, and, as will be shown below, it is both faster and more accurate than other pedestrian

detectors with this property. If higher accuracies are needed, the table offers a number of other

choices. By augmenting CompACT with an R-CNN based on VGG-Net, “embedded” after

NMS, accuracy can be increased by 3.9 points with a very marginal increase of 0.06s in running

time. This requires a large CNN, but has virtually no additional cost in running time. It is a

GPU based solution that emphasizes running time over accuracy. On the other hand, augmenting

CompACT with a Fast-RCNN based on the MS-CNN, “embedded” before NMS, significantly

increases accuracy (6.2 points) at the cost of a running time increase of 0.24s. This is one of

the top detectors in the literature accuracy-wise, at the cost of a non-trivial increase in running

time. The point is that the developer has a range of solutions to chose from, that cover a range of

budgets in terms of accuracy, running time, energy consumption, and implementation cost.

5.5.7 Pedestrian Detection on Caltech

We next compared CompACT cascades to state of the art pedestrian detectors. We start by

a comparison on Caltech, with the results of Figure 5.9. As usual, we present curves of miss-rate
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Figure 5.9: Comparison to the state-of-the-art on Caltech (reasonable).

v.s. false-positives per image (FPPI). CompACT uses ACF features and a small CNN, and

outperforms all state of the art detectors of handcrafted features [192, 5, 127]. Note that some of

these use many more features (HOG, LBP, spatial covariance, optical flow, multiple detectors, etc)

and all are quite slow. On the other hand, CompACT runs at 3 fps on a relatively slow processor.

CompACT-MSCNN embeds the MS-CNN in the last cascade stage. It outperforms most of

the detectors using large CNNs, e.g. DeepParts [154], RPN+BF [190], SA-FastRCNN [92] and

UDN+ [125]. The only competitive detector is the SDS-RCNN of [9]. This has a lower MR

than CompACT-MSCNN, but the miss-rate v.s. FPPI curves behave very differently. CompACT-

MSCNN dominates at low FPPI and SDS-RCNN at high FPPI. Overall, the two detectors are

comparable. The comparison is also somewhat unfair because CompACT-MSCNN does not

use a CNN to generate proposals. For completeness, we report on a modified version, denoted

136



Table 5.6: Pedestrian detection mAP comparison on KITTI.

Methods Easy Moderate Hard Time (s)
DPM 50.01 38.35 34.78 10

FilteredICF [192] 61.14 53.98 49.29 40
pAUCEnsT [127] 66.11 54.58 48.49 60

regionlet [164] 72.96 61.16 55.22 1
RCNN [64] 62.05 50.20 44.85 4

DeepParts [154] 70.46 58.68 52.73 1
CompACT 68.62 58.08 52.61 0.5

RPN+BF [190] 75.58 61.29 56.08 0.6
SDS-RCNN [9] - 63.05 - 0.2
SDP+CRC [180] 77.81 64.25 59.31 0.6

Faster-RCNN [140] 78.35 65.91 61.19 2
Mono3D [15] 77.30 66.66 63.44 4.2

3DOP [16] 82.36 67.46 64.71 3
MM-MRFC [20] 82.37 69.96 64.76 0.05
F-PointNet [133] 87.81 77.25 74.46 0.17

CompACT-MSCNN 78.95 68.86 63.67 0.75

CompACT-MSCNN+, that combines the proposals generated by the MS-CNN and CompACT,

and computes the final scores using the “Embedded” strategy. This improves performance at high

FPPIs, which becomes close to that of SDS-RCNN.

5.5.8 Pedestrian Detection on KITTI

Table 5.6 compares the mAP of CompACT and CompACT-MSCNN to the state of the art

on KITTI. Since KITTI test images are larger than those of Caltech, running times are higher for

this dataset. Nevertheless, the CompACT cascade is among the fastest detectors. Among hand-

crafted detectors (shown at the top of the table) only regionlet [164] has higher mAP. However, it

uses very different features and is twice as slow. A more informative comparison is with channel

based detectors, such as pAUCEnsT [127] and FilteredICF [192]. CompACT uses approximately

the same number of feature channels (including the CNN model) but is both more accurate and

faster. Again, CompACT even outperforms or is competitive with some detectors that use large

CNNs, e.g. RCNN [64] and DeepParts [154].
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Table 5.7: The results on CityPersons validation set.

Method ACF CompACT Faster R-CNN MS-CNN CompACT-MSCNN+
MR 33.13 25.15 18.35 16.32 14.46

The CompACT-MSCNN cascade, which includes a large CNN, outperforms these meth-

ods by a large margin. The second part of the table compares it to models based on large CNNs.

The table is ordered by increasing mAP in the moderate task. The detectors slightly faster than

CompACT-MSCNN, RPN+BF [190], SDS-RCNN [9] and SDP+CRC [180], have substantially

weaker mAP, e.g. a loss of about 4 mAP points for SDP+CRC. The next three detectors, Faster-

RCNN, Mono3D [15] and 3DOP [16], have weaker mAP and speed than CompACT-MSCNN.

For completeness, we also present the very best results on this dataset, i.e. MM-FRC [20] and

F-PointNet [133]. These methods use stereo and LIDAR data, which the CompACT-MSCNN

does not leverage. They show that 3D information is very helpful on KITTI. The design of

cascades leveraging this information is left for future work. Note that the F-PointNet cannot

be applied to color images alone, e.g. datasets like Caltech, and MM-MRFC has much weaker

performance without 3D data, e.g. 12% on Caltech.

These results show that CompACT can generate high quality proposals even on datasets

like KITTI, where proposal generation is known to be difficult [16]. It is particularly interesting

that CompACT-MSCNN outperforms methods based on region proposal networks (RPN) [140],

such as RPN+BF [190] or the Faster-RCNN. This shows that, using only small CNN models,

CompACT can generate better proposals than the much more expensive RPN. Finally, it is also

interesting that the closest competitors on Caltech, RPN+BF [190] and DeepParts [154], and the

recent SDS-RCNN [9], are outperformed by CompACT-MSCNN on KITTI Moderate by a large

margin: 7.57, 10.18 and 5.81 points, respectively.
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Figure 5.10: Processing time spent per Caltech test image.

5.5.9 Pedestrian Detection on CityPersons

CityPersons [193] is a recent pedestrian detection dataset, collected across multiple

European cities. It has 2,975 training and 500 validation images, and 1,575 images for testing

with held annotations. Images have size 2048×1024 and detection performance is evaluated as in

Caltech. Table 5.7 compares the performace of the proposed detectors with the baselines of ACF

[29] and Faster R-CNN [140], on the CityPersons validation set. For fair comparison, all detectors

are implemented without upsampling the input images, and the Faster R-CNN was trained using

the publicly available codebase of [10]. The CompACT cascade significantly outperforms ACF,

and the CompACT-MSCNN+ cascade achieves better results than the Faster R-CNN. Note that

the CompACT-MSCNN+ is an embedded cascade of higher accuracy than both the CompACT

cascade and the very strong MS-CNN detector. These observations are consistent with the Caltech

experiments.

5.5.10 CompACT as Attention Mechanism

One interesting property of CompACT, is that a detector cascade can be seen as an

attention mechanism that assigns computation to image locations according to their detection
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complexity. Figure 5.10 illustrates this property, summarizing the computation spent on each of

the Caltech test images. Clearly, time complexity varies significantly with image content. The

image on the left depicts a simple scene, with few objects and no pedestrian. Since simple and

efficient features are enough to reject all windows, the image is processed with low complexity.

The rightmost image depicts a more complicated scene with details of various scales (foreground

vs. background buildings) and several pedestrians. In this case, many image regions propagate

until the final stages of the cascade, and complexity is high. In this sense, CompACT behaves

more like the human visual system. For example, a human annotator quickly realizes that the

left image contains no pedestrians, but requires significantly longer time to count the number of

pedestrians on the rightmost image.

This behavior is very different from channel-wise object detectors [192, 127] and CNN

based object detectors [10, 190], whose time complexity is nearly independent of image content.

From an application point of view, this can have benefits and disadvantages. For example, in

Figure 5.10, processing time ranges from 0.05 to 2.0 seconds per frame, with a variance of about

0.04 seconds. This can create problems for applications that require a fixed processing time.

For these, channel-wise or CNN detectors may be a better solution. On the other hand, there

are benefits to the allocation of computation as needed, especially when power is an issue. For

example, operating a Titan X GPU card 24-hours/day requires 6 kWh per day, i.e. 6 times the

consumption of a fridge. This alone can preclude deployment on applications such as home

surveillance, edge devices, drones, etc.

The ability of CompACT to detect the absence of pedestrians in a scene with simple

CPU-based features enables drastic energy savings for applications on the home or edge, where

such scenes can happen 99% of the time. On more complex and rare scenes the detector can

activate energy intensive GPU features or even even ship the image regions in question to a central

GPU, which serves all devices. Note that, on Caltech, the average image region size processed by

a large CNN is 5.94% and 11.34% when embedding before and after NMS, respectively. This is
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opposed to the 100% of standard CNN implementations, e.g. the Faster R-CNN [140]. Besides

saving energy, this would split the large cost of a GPU by various edge devices, which could

themselves be inexpensive.

5.6 Conclusion

In this work, we proposed the CompACT boosting algorithm for learning complexity-

aware detector cascades. By optimizing classification risk under a complexity constraint, Com-

pACT produces cascades that push features of high complexity to the later cascade stages. This

has been shown to enable the seamless integration of multiple feature families in a unified design.

This integration extends to features, such as deep CNNs, that were previously beyond the realm of

cascaded detectors. The proposed CompACT cascades also generalize the popular combination

of object proposals+CNN, which they were shown to outperform. Finally, we have shown that

a pedestrian detector learned by application of CompACT to a diverse feature pool achieves

accurate detection rates on Caltech and KITTI, at fairly fast speeds.
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Chapter 6

Learning Low-Precision Neural Networks
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6.1 Introduction

Deep neural networks have achieved state-of-the-art performance on computer vision

problems, such as classification [86, 150, 152, 60, 61], detection [50, 140, 10], etc. However,

their complexity is an impediment to widespread deployment in many applications of real world

interest, where either memory or computational resource is limited. This is due to two main

issues: large model sizes (50MB for GoogLeNet [152], 200M for ResNet-101 [61], 250MB for

AlexNet [86], or 500M for VGG-Net [150]) and large computational cost, typically requiring

GPU-based implementations. This generated interest in compressed models with smaller memory

footprints and computation.

Several works have addressed the reduction of model size, through the use of quantization

[21, 101, 96], low-rank matrix factorization [75, 28], pruning [55, 54], architecture design [97, 71],

etc. Recently, it has been shown that weight compression by quantization can achieve very large

memory savings, reducing each weight to as little as 1 bit, at a marginal cost in classification

accuracy [21, 101]. It is, however, less effective along the computational dimension, because the

core network operation, implemented by each of its units, is the dot-product between a weight

and an activation vector. Complementing binary or quantized weights with quantized activations

would enable the replacement of expensive dot-products by logical and bit-counting operations.

Substantial speed ups should thus be possible if, in addition to weights, the inputs of each unit

were binarized or quantized to low-bit.

However, the quantization of activations is more difficult than that of weights. For

example, [22, 134] have shown that, while it is possible to binarize weights with a marginal cost

in model accuracy, additional quantization of activations incurs nontrivial losses for large-scale

classification, such as on ImageNet [143]. The difficulty is that binarization or quantization

of activations requires their processing with non-differentiable operators that create problems

for the backpropagation algorithm. This iterates between a feedforward step that computes
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network outputs and a backpropagation step that computes the gradients required for learning.

The difficulty is that binarization or quantization operators have step-wise responses that produce

very weak gradient signals during backpropagation, compromising learning efficiency. So far,

the problem has been addressed by using continuous approximations of the operator used in the

feedforward step to implement the backpropagation step. This, however, creates a mismatch

between the model that implements the forward computations and the derivatives used to learn it,

leading to a sub-optimal model.

In this work, we view the quantization operator, used in the feedforward step, and the

continuous approximation, used in the backpropagation step, as two functions that approximate

the activation function of each network unit. We refer to these as the forward and backward

approximation of the activation function. We start by considering the binary±1 quantizer, used in

[22, 134], for which these two functions can be seen as a discrete and a continuous approximation

of a non-linear activation function, the hyperbolic tangent, frequently used in classical neural

networks. This activation is, however, not commonly used in recent deep learning literature,

where the ReLU nonlinearity [117, 189, 60] has achieved much greater preponderance. This is

exactly because it produces much stronger gradient magnitudes. While the hyperbolic tangent or

sigmoid non-linearities are squashing non-linearities and mostly flat, the ReLU is an half-wave

rectifier, of linear response to positive inputs. Hence, while the derivatives of the hyperbolic

tangent are close to zero almost everywhere, the ReLU has unit derivative along the entire positive

range of the axis.

To improve the learning efficiency of quantized networks, we consider the design of

forward and backward approximation functions for the ReLU. To discretize its linear component,

we propose to use an optimal quantizer. By exploiting the statistics of network activations and

batch normalization operations that are commonly used in the literature, we show that this can be

done with an half-wave Gaussian quantizer (HWGQ) that requires no learning and is very efficient

to compute. While some recent works have attempted similar ideas [22, 134], their design of a
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quantizer is not sufficient to guarantee good deep learning performance. We address this problem

by complementing this design with a study of suitable backward approximation functions that

account for the mismatch between the forward model and the back propagated derivatives. This

study suggests operations such as linearization, gradient clipping or gradient suppression for the

implementation of the backward approximation. We show that a combination of the forward

HWGQ with these backward operations produces very efficient low-precision networks, denoted

as HWGQ-Net, with much closer performance to continuous models, such as AlexNet [86],

ResNet [61], GoogLeNet [152] and VGG-Net [150], than other available low-precision networks

in the literature. To the best of our knowledge, this is the first time that a single low-precision

algorithm could achieve success for so many popular networks. Using the arguments of [134],

the HWGQ-Net (1-bit weights and 2-bit activations) could theoretically achieve ∼32× memory

and ∼32× convolutional computation savings. This suggests that the HWGQ-Net can be very

useful for the deployment of state-of-the-art neural networks in real world applications.

6.2 Related Work

The reduction of model size is a popular goal in the deep learning literature. One strategy

is to exploit the widely known redundancy of neural network weights [27]. For example, [28, 75]

proposed low-rank matrix factorization as a way to decompose a large weight matrix into several

separable small matrices. An alternative procedure, known as connection pruning [55, 54],

consists of removing unimportant connections of a pre-trained model and retraining, showing

considerable model reduction without noticable loss in accuracy. Another model compression

strategy is to constrain the model architecture itself, e.g. by removing fully connected layers,

using convolutional filters of small size, etc. Many state-of-the-art deep networks, such as NIN

[97], GoogLeNet [152] and ResNet [61], rely on such design choices. For example, SqueezeNet

[71] has been shown to achieve a parameter reduction of ∼50 times, for accuracy comparable to
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that of AlexNet. Moreover, hash functions have also been used to compress model size [14].

Another branch of approaches for model compression is weight binarization [21, 134, 22]

or quantization [101, 96, 52]. [159] used a fixed-point representation to quantize weights of

pre-trained neural networks. [52] showed that vector quantization enables 4∼8 times compression

with minimal accuracy loss. [96] proposed a method for fixed-point quantization based on the

optimal bit-width allocations across network layers. [90, 101] have shown that ternary weight

quantization into levels {−1,0,1} can achieve 16× or 32× model compression with slight

accuracy loss, even on large-scale classification tasks. Finally, [21] has shown that filter weights

can be quantized to ±1 without noticeable loss of classification accuracy on CIFAR-10 [85].

Since quantization of activations enables further speed-ups and reduces training memory

requirements, it has attracted some attention [159, 96, 22, 134, 197, 95, 101]. [159, 96] performed

the quantization after network training, avoiding the issues of nondifferentiable optimization.

Recently, [22, 134, 197] tried to tackle the nondifferentiable optimization issue by using a

continuous approximation to the quantizer function in the backpropagation step. [95] proposed

several potential solutions to the problem of gradient mismatch and [101, 197] showed that

gradients can be quantized with a small number of bits during the backpropagation step. While

some of these methods have produced good results on CIFAR-10, none has produced low

precision networks competitive with full-precision models on large-scale classification tasks, such

as ImageNet [143].

6.3 Binary Networks

We start with a brief review of the issues involved in the binarization of a deep network.
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6.3.1 Goals

Deep neural networks consist of layers of units that roughly model the computations of

neurons in the mammalian brain. Each unit computes an activation function

z = g(wT x), (6.1)

where w ∈ Rc·w·h is a weight vector, x ∈ Rc·w·h an input vector, and g(·) a non-linear function. A

convolutional network implements layers of these units, where weights are usually represented as

a tensor W ∈ Rc×w×h. The dimensions c, w and h are defined by the number of filter channels,

width and height, respectively. Since modern networks have very large numbers of these units,

the structure of (6.1) is the main factor in the complexity of the overall model. This complexity

can be a problem for applications along two dimensions. The first is the large memory footprint

required to store weights w. The second is the computational complexity required to compute

large numbers of dot-products wT x. Both difficulties are compounded by the requirement of

floating point storage of weights and floating point arithmetic to compute dot-products, which

are not practical for many applications. This has motivated interest in low-precision networks

[22, 134, 197].

6.3.2 Weight Binarization

An effective strategy to binarize the weights W of convolutional filters, which we adopt in

this work, has been proposed by [134]. This consists of approximating the full precision weight

matrix W, used to compute the activations of (6.1) for all the units, by the product of a binary

matrix B ∈ {+1,−1}c×w×h and a scaling factor α ∈ R+, such that W ≈ αB. A convolutional

operation on input I can then be approximated by

I∗W≈ α(I⊕B), (6.2)
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Figure 6.1: Forward and backward functions for binary sign (left) and half-wave Gaussian
quantization (right) activations.

where⊕ denotes a multiplication-free convolution. [134] has shown that an optimal approximation

can be achieved with B∗ = sign(W) and α∗ = 1
cwh‖W‖1. While binary weights tremendously

reduce the memory footprint of the model, they do not fully solve the problem of computational

complexity. Substantial further reductions of complexity can be obtained by the binarization

of I, which enables the implementation of dot products in (6.2) with logical and bit-counting

operations [22, 134].

6.3.3 Binary Activation Quantization

The use of binary activations has been suggested in [134, 22, 197]. It is usually imple-

mented by replacing g(x) in (6.1) with the sign non-linearity

z = sign(x) =

 +1, if x≥ 0,

−1, otherwise
(6.3)
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shown in Figure 6.1. This creates difficulties to the backpropagation algorithm used to learn the

neural network, by minimizing a cost C with respect to the weights w. Consider the unit of (6.1).

The derivative of C with respect to w is

∂C
∂w

=
∂C
∂z

g′(wT x)x. (6.4)

When g(x) is replaced by (6.3), the derivative g′(wT x) is zero almost everywhere and the gradient

magnitudes tend to be very small. In result, the gradient descent algorithm does not converge to

minima of the cost. To overcome this problem, [22] proposed to use an alternative function, hard

tanh, which we denote by s̃ign, in the backpropagation step. This function is shown in Figure 6.1,

and has derivative

s̃ign
′
(x) =

 1, if |x| ≤ 1

0, otherwise.
(6.5)

In this work, we denote (6.3) as the forward and (6.5) as the backward approximations of

the activation non-linearity g(x) of (6.1). These approximations have two main problems. The

first is that they approximate the hyperbolic tangent (tanh), which is a squashing non-linearity.

The saturating behavior of squashing non-linearities (such as the tanh or the sigmoid) emphasizes

the problem of vanishing derivatives, compromising the effectiveness of backpropagation. The

second is that the discrepancy between the approximation of g(x) by the forward sign and by

the backward s̃ign creates a mismatch between the feedforward model and the derivatives used

to learn it. In result, backpropagation can be highly suboptimal. This is called the “gradient

mismatch” problem [95].

6.4 Half-wave Gaussian Quantization

In this section, we propose an alternative quantization strategy, the approximation of the

ReLU non-linearity.
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6.4.1 ReLU

The ReLU is the half-wave rectifier defined by [117],

g(x) = max(0,x). (6.6)

It is now well known that, when compared to squashing non-linearities, its use in (6.1) significantly

improves the efficiency of the backpropagation algorithm. It thus seems more sensible to rely on

ReLU approximations for network quantization than those of the previous section. We propose

a quantizer Q(x) to approximate (6.6) in the feedforward step and a suitable piecewise linear

approximation Q̃(x) for the backpropagation step.

6.4.2 Forward Approximation

A quantizer is a piecewise constant function

Q(x) = qi, i f x ∈ (ti, ti+1], (6.7)

that maps all values of x within quantization interval (ti, ti+1] into a quantization level qi ∈ R, for

i = 1, · · · ,m. In general, t1 =−∞ and tm+1 = ∞. This generalizes the sign function, which can be

seen as a 1-bit quantizer. A quantizer is denoted uniform if

qi+1−qi = ∆, ∀i, (6.8)

where ∆ is a constant quantization step. The quantization levels qi act as reconstruction values for

x, under the constraint of reduced precision. Since, for any x, it suffices to store the quantization

index i of (6.7) to recover the quantization level qi, non-uniform quantization requires log2 m

bits of storage per activation x. However, more than log2 m bits are needed to represent x in
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arithmetic operations, since these use qi, not the index i. For a uniform quantizer, where ∆ is a

universal scaling factor that can be placed in evidence, log2 m bits are enough for both storage

and arithmetic computation.

Optimal quantizers are usually defined in the mean-squared error sense, i.e.

Q∗(x) = argmin
Q

Ex[(Q(x)− x)2] (6.9)

= argmin
Q

∫
p(x)(Q(x)− x)2dx

where p(x) is the probability density function of x. Hence, the optimal quantizer of the dot-

products of (6.1) depends on their statistics. While the optimal solution Q∗(x) of (6.9) is usually

non-uniform, a uniform solution Q∗(x) is available by adding the uniform constraint of (6.8)

to (6.9). Given dot product samples, the optimal solution of (6.9) can be obtained by Lloyd’s

algorithm [106]. This, however, is an iterative algorithm. Since a different quantizer must be

designed per network unit, and this quantizer changes with the backpropagation iteration, the

straightforward application of this procedure is computationally intractable.

This difficulty can be avoided by exploiting the statistical structure of the activations of

deep networks. For example, [70, 73] have noted that the dot-products of (6.1) tend to have a

symmetric, non-sparse distribution, that is close to Gaussian. Taking into account the fact that the

ReLU is a half-wave rectifier, this suggests the use of the half-wave Gaussian quantizer (HWGQ),

Q(x) =

 qi, if x ∈ (ti, ti+1],

0, x≤ 0,
(6.10)

where qi ∈ R+ for i = 1, · · · ,m and ti ∈ R+ for i = 1, · · · ,m+ 1 (t1 = 0 and tm+1 = ∞) are the

optimal quantization parameters for the Gaussian distribution. The adoption of the HWGQ

guarantees that these parameters only depend on the mean and variance of the dot-product

distribution. However, because these can vary across units, it does not eliminate the need for the
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Figure 6.2: Dot-product distributions on different layers of AlexNet with binary weights and
quantized activations (100 random images).

repeated application of Lloyd’s algorithm across the network.

This problem can be alleviated by resorting to batch normalization [73]. This is a widely

used normalization technique, which forces the responses of each network layer to have zero

mean and unit variance. We apply this normalization to the dot-products, with the result illustrated

in Figure 6.2, for a number of AlexNet units of different layers. Although the distributions are not

perfectly Gaussian and there are minor differences between them, they are all close to Gaussian

with zero mean and unit variance. It follows that the optimal quantization parameters q∗i and t∗i

are approximately identical across units, layers and backpropagation iterations. Hence, Lloyd’s

algorithm can be applied once, with data from the entire network. In fact, because all distributions

are approximately Gaussian of zero mean and unit variance, the quantizer can even be designed

from samples of this distribution. In our implementation, we drew 106 samples from a standard

Gaussian distribution of zero mean and unit variance, and obtained the optimal quantization

parameters by Lloyd’s algorithm. The resulting parameters t∗i and q∗i were used to parametrize a

single HWGQ that was used in all layers, after batch normalization of dot-products.

152



6.4.3 Backward Approximation

Since the HWGQ is a step-wise constant function, it has zero derivative almost everywhere.

Hence, the approximation of g(x) by Q(x) in (6.4) leads to the problem of vanishing derivatives.

As in Section 6.3, a piecewise linear function Q̃(x) can be used during the backpropagation step

to avoid weak convergence. In summary, we seek a piece-wise function that provides a good

approximation to the ReLU and to the HWGQ. We next consider three possibilities.

Vanilla ReLU: Since the ReLU of (6.6) is already a piece-wise linear function, it seems

sensible to use the ReLU itself, denoted the vanilla ReLU, as the backward approximation

function. This corresponds to using the derivative

Q̃′(x) =

 1, if x > 0,

0, otherwise
(6.11)

in (6.4). The forward and backward approximations Q(x) and Q̃(x) of the ReLU are shown in

Figure 6.1. Note that, while the backward approximation is exact, it is not equal to the forward

approximation. Hence, there is a gradient mismatch. For x > 0, the approximation of Q(x) by the

ReLU has error |Q(x)− x|. This is upper bounded by (ti+1−qi) for x ∈ (ti, ti+1] but unbounded

when x ∈ (tm,∞). Hence, the mismatch is particularly large for large values of x. Since these are

the values on the tail of the distribution of x, the ReLU is said to have a large mismatch with Q(x)

“on the tail”. When the ReLU is used to approximate g′(x) in (6.4), it can originate very inaccurate

gradients for large dot-products. In our experience, this can make the learning algorithm unstable.

This is a classical problem in the robust estimation literature, where outliers can unduly

influence the performance of a learning algorithm [69]. For quantization, where Q(x) assumes

that values of x beyond qm have very low probability, large dot-products are effectively outliers.

The classical strategy for outlier mitigation is to limit the growth rate of the error function, in this

case |Q(x)− x|. Hence, the problem is the monotonicity of the ReLU beyond x = qm. To address
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it, we investigate alternative backwards approximation functions of slower growth rate.

Clipped ReLU: The first approximation, denoted the clipped ReLU, is identical to the

vanilla ReLU in (−∞,qm] but constant beyond x = qm,

Q̃c(x) =


qm, x > qm,

x, x ∈ (0,qm],

0, otherwise.

(6.12)

Its use to approximate g′(wT x) in (6.4) guarantees that there is no mismatch on the tail. Gradients

are non-zero only for dot-products in the interval (0,qm]. As illustrated in Figure 6.3, the clipped

ReLU is a better match for the HWGQ than the vanilla ReLU. In our experiments, ReLU clipping

was proved very useful to guarantee a stable optimization. This is similar to previous observations

that gradient clipping robustifies the learning of very deep networks [129].

Log-tailed ReLU: Ideally, a network with quantized activations should approach the

performance of a full-precision network as the number of quantization levels m increases. The

sensitivity of the vanilla ReLU approximation to outliers limits the performance of low precision

networks. While the clipped ReLU alleviates this problem, it can impair network performance

due to the loss of information in the clipped interval (qm,∞). An intermediate solution is to

use, in this interval, a function whose growth rate is in between that of the clipped ReLU (zero

derivative) and the ReLU (unit derivative). One possibility is to enforce logarithmic growth on
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the tail, according to

Q̃l(x) =


qm + log(x− τ), x > qm,

x, x ∈ (0,qm],

0, x≤ 0,

(6.13)

where τ= qm−1. This is denoted the log-tailed ReLU and is shown in Figure 6.3. It has derivative

Q̃
′
l(x) =


1/(x− τ), x > qm,

1, x ∈ (0,qm],

0, x≤ 0.

(6.14)

When used to approximate g′(x) in (6.4), the log-tailed ReLU is identical to the vanilla ReLU for

amplitudes smaller than qm, but gives decreasing weight to amplitudes larger than this. It behaves

like the vanilla ReLU (unit derivative) for 0 < x≤ qm but converges to the clipped ReLU (zero

derivative) as x grows to infinity.

6.5 Experimental Results

The proposed HWGQ-Net was evaluated on ImageNet (ILSVRC2012) [143], which has

∼1.2M training images from 1K categories and 50K validation images. The evaluation metrics

were top-1 and top-5 classification accuracy. Several popular networks were tested: AlexNet [86],

ResNet [61], a variant of VGG-Net [150, 60], and GoogLeNet [152]. Our implementation uses

Caffe [76], see source code at https://github.com/zhaoweicai/hwgq.

6.5.1 Implementation Details

In all experiments, training images were resized to 256×256, and a 224×224 (227×227

for AlexNet) crop was randomly sampled from an image or its horizontal flip. Batch normalization
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[73] was applied before each quantization layer, as discussed in Section 6.4.2. The ratio of dropout

[62] was set as 0.1 for networks with binary weights and full activations, but no dropout was used

for networks with quantized activations. All networks were learned from scratch with SGD. No

data augmentation was used other than standard random image flipping and cropping. No bias

term was used for binarized weights. As in [134], networks with quantized activations used max-

pooling before batch normalization. This is denoted “layer re-ordering”. As in [134, 197], the

first and last network layers had full precision. Evaluation was based solely on central 224×224

crops.

On AlexNet [86] experiments, the mini-batch size was 256, weight decay 0.0005, and

learning rate started at 0.01. For ResNet, we used the parameters of [61]. For the variant of

VGG-Net, denoted VGG-Variant, a smaller version of model-A in [60], only 3 convolutional

layers were used for input size of 56, 28 and 14, and the “spp” layer was removed. The mini-batch

size was 128, and learning rate started at 0.01. For GoogLeNet [152], the branches for side losses

were removed, in the inception layers, max-pooling was removed and the channel number of

the “reduce” 1×1 convolutional layers was increased to that of their following 3×3 and 5×5

convolutional layers. Weight decay was 0.0002 and the learning strategy was similar to ResNet

[61]. For all networks tested, momentum was 0.9, and when mini-batch size was 256 (128),

the learning rate was divided by 10 after every 50K (100K) iterations, 160K (320K) in total.

Only AlexNet, ResNet-18 and VGG-Variant were explored in the following ablation studies. In

all tables and figures, “FW” indicates full-precision weights, “BW” binary weights, and “Full”

full-precision weights and activations.

6.5.2 Full-precision Activation Comparison

Before considering the performance of the forward quantized activation functions sign(x)

and Q(x), we compared the performance of the continuous s̃ign(x) (hard tanh) and Q̃(x) (ReLU)

as activation function. In this case, there is no activation quantization nor forward/backward

156



Table 6.1: Full-precision Activation Comparison for AlexNet.

Full FW+s̃ign FW+Q̃ BW+s̃ign BW+Q̃
Top-1 55.7 46.7 55.7 43.9 53.9
Top-5 79.3 71.0 79.3 68.3 77.3

Table 6.2: Low-bit Activation Comparison.

Model Full BW FW+Q BW+sign BW+Q

AlexNet
Top-1 55.7 52.4 49.5 39.5 46.8
Top-5 79.3 75.9 73.7 63.6 71.0

ResNet-18
Top-1 66.3 61.3 37.5 42.1 33.0
Top-5 87.5 83.6 61.9 67.1 56.9

VGG-Variant
Top-1 68.6 65.5 48.3 50.1 44.1
Top-5 88.9 86.5 72.3 74.3 68.7

gradient mismatch. AlexNet results are presented in Table 6.1, using identical settings for s̃ign(x)

and Q̃(x), for fair comparison. As expected from the discussion of Sections 6.3 and 6.4, Q̃(x)

achieved substantially better performance than s̃ign(x), for both FW and BW networks. The fact

that these results upper bound the performance achievable when quantization is included suggests

that sign(x) is not a good choice for quantization function. Q(x), on the other hand, has a fairly

reasonable upper bound.

6.5.3 Low-bit Activation Quantization Results

We next compared the performance achieved by adding the sign and HWGQ Q(x) (back-

ward vanilla ReLU) quantizers to the set-up of the previous section. The results of AlexNet,

ResNet-18 and VGG-Variant are summarized in Table 6.2. Notice, first, that BW has weaker

performance than BW+Q of AlexNet in Table 6.1, due to the impact of the layer re-ordering [134]

introduced in Section 6.5.1. Next, comparing BW to FW+Q, where the former binarizes weights

only and the latter quantizes activations only, it can be seen that weight binarization causes a

minor degradation of accuracy. This is consistent with the findings of [134, 22]. On the other

hand, activation quantization leads to a nontrivial loss. This confirms that the latter is a more
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Figure 6.4: The error curves of training (thin) and test (thick) for sign(x) and Q(x) (HWGQ)
activation functions.

difficult problem.

When weight binarization and activation quantization were combined, recognition per-

formance dropped even further. For AlexNet, the drop was much more drastic for BW+sign

(backward hard tanh) than for BW+Q (backward vanilla ReLU). These results support the hy-

potheses of Section 6.3 and 6.4, as well as the findings of Table 6.1. The training errors of

BW+sign and BW+Q for AlexNet are shown in Figure 6.4. Note the much lower training error of

Q(x), suggesting that it enables a much better approximation of the full precision activations than

sign(x). Nevertheless, the gradient mismatch due to the use of Q(x) as forward and the vanilla

ReLU as backward approximators made the optimization somewhat instable. For example, the

error curve of BW+Q is bumpy during training. This problem becomes more serious for deeper

networks. In fact, for the ResNet-18 and VGG-Variant, BW+Q performed worse than BW+sign.

This can be explained by the fact that the sign has a smaller gradient mismatch problem than the

vanilla ReLU. Substantial improvements are possible by correcting the mismatch between the

forward quantizer Q(x) and its backward approximator.
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Table 6.3: Backward Approximations Comparison.

Model BW no-opt vanilla clipped log-tailed

AlexNet
Top-1 52.4 30.0 46.8 48.6 49.0
Top-5 75.9 53.6 71.0 72.8 73.1

ResNet-18
Top-1 61.3 34.2 33.0 54.5 53.5
Top-5 83.6 59.6 56.9 78.5 77.7

VGG-Variant
Top-1 65.5 42.8 44.1 60.9 60.6
Top-5 86.5 68.3 68.7 83.2 82.9
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Figure 6.5: The error curves of training (thin) and test (thick) for alternative backward approxi-
mations.

6.5.4 Backward Approximations Comparison

We next considered the impact of the backward approximators of Section 6.4.3. Table 6.3

shows the performance under the different approximations. In all cases, weights were binarized

and the HWGQ was used as forward approximator (quantizer). “no-opt” refers to the quantization

of activations of pre-trained BW networks. This requires no nondifferentiable approximation, but

fails to account for the quantization error. We attempted to minimize the impact of cumulative

errors across the network by recomputing the means and variances of all batch normalization

layers. Even after this, “no-opt” had significantly lower accuracy than the full-precision activation

networks.

Substantial gains were obtained by training the activation quantized networks from scratch.

Although the vanilla ReLU had reasonable performance as backwards approximator for AlexNet,

much better results were achieved with the clipped ReLU of (6.12) and the log-tailed ReLU
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Table 6.4: Bit-width Comparison of Activation Quantization.

quantization type non-uniform uniform none
# levels 2 3 7 15 3∗ 7∗ BW

AlexNet
Top-1 48.6 50.6 52.4 52.6 50.5 51.9 52.4
Top-5 72.8 74.3 75.8 76.2 74.6 75.7 75.9

ResNet-18
Top-1 54.5 57.6 60.3 60.8 56.1 59.6 61.3
Top-5 78.5 81.0 82.8 83.4 79.7 82.4 83.6

of (6.13). Figure 6.5 shows that the larger gradient mismatch of the vanilla ReLU created

instabilities in the optimization, for all networks. However, these instabilities were more serious

for the deeper networks, such as ResNet-18 and VGG-Variant. This explains the sharper drop in

performance of the vanilla ReLU for these networks, in Table 6.3. Note, in Figure 6.5, that the

clipped ReLU and the log-tailed ReLU enabled more stable learning and reached a much better

optimum for all networks. Among them, the log-tailed ReLU performed slightly better than the

clipped ReLU on AlexNet, but slightly worse on ResNet-18 and VGG-Variant. To be consistent,

“clipped ReLU” was used in the following sections.

6.5.5 Bit-width Impact

The next set of experiments studied the bit-width impact of the activation quantization.

In all cases, weights were binarized. Table 6.4 summarizes the performance of AlexNet and

ResNet-18 as a function of the number of quantization levels. While the former improved with the

latter, there was a saturation effect. The default HWGQ configuration, also used in all previous

experiments, consisted of two non-uniform positive quantization levels plus a “0”. This is denoted

as “2” in the table. For AlexNet, this very low-bit quantization sufficed to achieve recognition

rates close to those of the full-precision activations. For this network, quantization with seven

non-uniform levels was sufficient to reproduce the performance of full-precision activations.

For ResNet-18, however, there was a more noticeable gap between low-bit and full-precision

activations. These results suggest that increasing the number of quantization levels is more
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Table 6.5: HWGQ implementation of various popular networks.

Model Reference Full HWGQ

AlexNet
Top-1 57.1 58.5 52.7
Top-5 80.2 81.5 76.3

ResNet-18
Top-1 69.6 67.3 59.6
Top-5 89.2 87.9 82.2

ResNet-34
Top-1 73.3 69.4 64.3
Top-5 91.3 89.1 85.7

ResNet-50
Top-1 76.0 71.5 64.6
Top-5 93.0 90.5 85.9

VGG-Variant
Top-1 - 69.8 64.1
Top-5 - 89.3 85.6

GoogLeNet
Top-1 68.7 71.4 63.0
Top-5 88.9 90.5 84.9

beneficial for ResNet-18 than for AlexNet.

Table 6.4 also shows the results obtained with uniform quantization, with superscript

“∗”. Interestingly, for the same number of quantization levels, the performance of the uniform

quantizer was only slightly worse than that of its non-uniform counterpart. This is, however,

not a completely fair comparison since, as discussed in Section 6.4.2, non-uniform quantization

requires more bits for arithmetic operations. For the same bit width, e.g. both “2” and “3∗” require

a 2-bit representation for arithmetic computation, the uniform quantizer was noticeably superior

to the non-uniform quantizer.

6.5.6 Comparison to the state-of-the-art

Table 6.51 presents a comparison between the full precision and the low-precision HWGQ-

Net of many popular network architectures. In all cases, the HWGQ-Net used 1-bit binary

weights, a 2-bit uniform HWGQ as forward approximator, and the clipped ReLU as backwards

approximator. Comparing to the previous ablation experiments, the numbers of training iterations

1The reference performance of AlexNet and GoogLeNet is at https://github.com/BVLC/caffe, and of ResNet is at
https://github.com/facebook/fb.resnet.torch. Our worse ResNet implementations are probably due to fewer training
iterations and no further data augmentation.
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Table 6.6: Comparison to state-of-the-art low-precision methods. Top-1 gap to the correspond-
ing full-precision network is also reported.

Model
AlexNet ResNet-18

XNOR DOREFA HWGQ XNOR HWGQ
Top-1 44.2 47.7 52.7 51.2 59.6
Top-5 69.2 - 76.3 73.2 82.2

Top-1 gap -12.4 -8.2 -5.8 -18.1 -7.7

were doubled and polynomial learning rate annealing (power of 1) was used for HWGQ-Net.

Table 6.5 shows that the HWGQ-Net approximates well all popular networks, independently

of their complexity or depth. The top-1 accuracy drops from full- to low-precision are similar

for all networks (5∼9 points), suggesting that low-precision HWGQ-Net will achieve improved

performance as better full-precision networks become available.

Training a network with binary weights and low-precision activations from scratch is a

new and challenging problem, only addressed by a few previous works [22, 134, 197]. Table

6.6 compares the HWGQ-Net with the recent XNOR-Net [134] and DOREFA-Net [197], on the

ImageNet classification task. The DOREFA-Net result is for a model of binary weights, 2-bit

activation, full precision gradient and no pre-training. For AlexNet, the HWGQ-Net outperformed

the XNOR-Net and the DOREFA-Net by a large margin. Similar improvements over the XNOR-

Net were observed for the ResNet-18, where DOREFA-Net results are not available. It is worth

noting that the gaps between the full-precision networks and the HWGQ-Net (-5.8 for AlexNet

and -7.7 for ResNet-18) are much smaller than those of the XNOR-Net (-12.4 for AlexNet and

-18.1 for ResNet-18) and the DOREFA-Net (-8.2 for AlexNet). This is strong evidence that the

HWGQ is a better activation quantizer. Note that, in contrast to the experimentation with one or

two networks by [22, 134, 197], the HWGQ-Net is shown to perform well for various network

architectures. To the best of our knowledge, this is the first time that a single low-precision

network is shown to successfully approximate many popular networks.
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Table 6.7: The results on CIFAR-10. The bit width before and after “+” is for weights and
activations respectively.

precision Method error (%)

Full + Full

Maxout [53] 9.38
NIN [97] 8.81
DSN [88] 8.22

FitNet [141] 8.39
ResNet-110 [61] 6.43

VGG-Small 6.82
1-bit + Full BinaryConnect [21] 8.27
2-bit + Full Ternary Weight Network [90] 7.44
1-bit + 1-bit BNN [22] 10.15
1-bit + 2-bit VGG-Small-HWGQ 7.49

6.5.7 Results on CIFAR-10

In addition, we conducted some experiments on the CIFAR-10 dataset [85]. The network

structure used, denoted VGG-Small, was similar to that of [22] but relied on a cross-entropy loss

and without two fully connected layers. The learning strategy was that used in the VGG-Variant of

Section 6.5.1, but the mini-batch size was 100 and the learning rate was divided by 10 after every

40K iterations (100K in total). The data augmentation strategy of [61] was used. As in Section

6.5.6, polynomial learning rate decay was used for low-precision VGG-Small. The HWGQ-Net

results are compared with the state-of-the-art in Table 6.7. It can be seen that the HWGQ-Net

achieved better performance than various popular full-precision networks, e.g. Maxout [53],

NIN [97], DSN [88], FitNet [141], and than various low precision networks. The low-precision

VGG-Small drops 0.67 points when compared to its full-precision counterpart. These findings

are consistent with those on ImageNet.

6.6 Conclusion

In this work, we considered the problem of training high performance deep networks with

low-precision. This was achieved by designing two approximators for the ReLU non-linearity:
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a half-wave Gaussian quantizer in the feedforward computations, and a piece-wise continuous

function in the backpropagation step. This design overcomes the learning inefficiency of the

popular binary sign quantization procedure. To minimize the problem of gradient mismatch, we

have studied several backwards approximation functions, including clipped ReLU and log tailed

ReLU approximators. The proposed network, denoted HWGQ-Net, was shown to significantly

outperform previous efforts at deep learning with low precision, for various state-of-the-art

networks. These promising results suggest that the HWGQ-Net can be very useful for the

deployment of state-of-the-art neural networks in real world applications.

6.7 Acknowledgements

Chapter 6 is, in full, based on the material as it appears in the publication of “Deep

Learning with Low Precision by Half-wave Gaussian Quantization”, Zhaowei Cai, Xiaodong

He, Jian Sun, and Nuno Vasconcelos, In Proceedings of IEEE Conference on Computer Vision

and Pattern Recognition (CVPR), 2017. The dissertation author was the primary investigator and

author of this material.

164



Chapter 7

Discussion and Conclusion
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In this thesis, we have studied the challenges on the universality of object detection,

including scale-variance, high-quality requirement, domain shift, hardware and computational

constraints, etc. To address each of the challenge, we have proposed a series of novel solutions.

At first, we built an effective and efficient multi-scale object detection architecture for deep neural

network, which uses feature pyramid as an approximation to image pyramid. This new design

not only achieved the state-of-the-art scale-invariant detection performance, but also enabled

real-time running speeds. Second, we discussed why high-quality object detection is important

but widely neglected by the community, and then we proposed a novel multi-stage architecture

(Cascade R-CNN) for high-quality detection. The Cascade R-CNN has shown to be very effective

when the detection quality requirement is high. Next, we studied another important subfield in

object detection, multi-domain and domain-universal object detection, and proposed a couple

of solutions to them. They can substantially extend the detector universality over domains, and

even sometimes surpass the domain specialized object detector. Finally, to address the challenges

induced by hardware and computational constraints, we proposed solutions from two different

perspectives. The former one is on the design of complexity-aware cascades, which is able to

push the expensive cascade stages to the end of the cascade detector, where fewer hypotheses are

left to classify. This enables to learn the optimal cascade configurations given the computational

constraints, e.g. CPU-only or mixed CPU/GPU solutions. The latter one is on low-precision

networks, which could significantly reduce the computation from the full-precision networks. Our

novel low-precision networks achieve very close performance to the full-precision counterparts.

All these efforts have substantially advanced the universality of object detection.

Beyond the above aspects, some other aspects are also important for object detection

universality, e.g. video, 3D and point cloud data, the transferability to downstream tasks, etc.

First, we live in the world with a dimension of time and many detection applications are for

video platform, but the current detectors are widely developed for images. It is more sensible to

exploit the temporal information and structure to achieve better and more stable object detector.
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One difficulty is the expensive cost to annotate the video data, which could be orders of higher

than that of image annotation. However, there is a large amount of unlabeled videos, and the

temporal structure can be exploited to enable weak/self-supervised learning from videos. Second,

we also live in the world with a dimension of depth, which is broadly neglected in 2D object

detection for 2D images. 3D vision is better aligned with human vision system, and 3D object

detection could help to better interact with the physical world. Another special format of 3D data

is point cloud, which is important and popular for autonomous driving and domestic robots. It

has sparse data representation, very different from the typical image dense representation. Its

unique properties could derive very different architectures for feature representation learning and

efficient point cloud detection system. Third, as we discussed before, object detection has many

downstream tasks, e.g. visual question answering, captioning, visual navigation, robot grasping,

knowledge graph, pose estimation, etc. The current object detectors are frequently trained without

knowing that it is going to be used in other tasks, and their transferability could vary application

by application. It will be interesting to develop a task-universal object detector, which could be

well transferred to a large number of various downstream tasks. And this task-universal object

detector could save the repeating development costs for each individual downstream task, and

will have broader impact.

Object detection has been playing an important role in our everyday life. Although it has

made huge progresses in the past a few years and, in this thesis, we have advanced its universality

from multiple different aspects, there is still a long journey to go to achieve the ultimate goal: a

universal object detector that can work in any case under any condition like human visual system.

These will motivate me to continue to work on object detection and try to push forward its limits

in the future.
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