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KEY POINTS 

• The expansion of EV ownership in California will include both changes in where the vehicles are 
owned as well as how they are used and charged. EV ownership will expand into rural areas as 
well as household types that are currently much less likely to own EVs. 

• The spatial distribution, demographic characteristics, and commute patterns of future EV 
owners depend substantially on the body styles of EVs sold. If EV production continues to 
emphasize small sedans, EVs will remain much more popular in urban / suburban commute 
uses. Increasing availability of electric trucks and larger SUVs may increase the adoption for 
other uses. 

• Demand for workplace charging is highly responsive to cost; if commute destinations provide 
charging for free, they will need to provide many more chargers. 

ABSTRACT 

Accurately predicting the spatial distribution and charging demand of future electric vehicles is vital to 
directing investment in charging infrastructure and planning policy interventions. To date, this expansion 
has been heavily concentrated in wealthy cities and suburbs, among commuters, and among households 
able to charge their vehicles at home. The expansion of EV ownership will include both changes in where 
the vehicles are owned as well as how they are used and charged. This paper demonstrates methods to 
predict where the expansion of electric vehicle ownership is likeliest to occur under current market 
characteristics and allow for testing of scenarios of future characteristics. These methods are 
demonstrated with an analysis of California, using a scenario of 4 million battery electric vehicles and 1 
million plug-in hybrid electric vehicles, to match the state’s goal of 5 million zero-emission vehicles by 
2030. These projections are combined with a model for charging behavior to generate scenarios of 
demand for charging away from home under various fleet characteristics and identify areas of the state 
with the greatest need for infrastructure investment.  
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INTRODUCTION 

Plug-in Electric Vehicles (PEVs) make up an increasing share of the personal vehicle market throughout 
the United States, but their adoption is expanding at widely varied rates in different places. This 
presents a challenge to decisionmakers seeking to invest in charging infrastructure. This paper 
investigates the impact of uncertainty in the spatial expansion of PEV ownership and the makeup and 
usage of the PEV fleet on demand for out-of-home charging. This analysis will center on a statewide 
projection for California PEV ownership and workplace charging demand in 2030, with a spatial 
resolution of census block groups, but the methods presented here are intended to be portable and 
work across a range of geographic scales. The use of a spatially explicit model for PEV adoption makes it 
possible to incorporate commute patterns and, electricity costs directly into the model for charging 
demand.   
 
Existing research on PEV adoption has identified differences in purchasing incentives as the primary 
means of explaining differences in adoption rates between different states and countries, but 
differences in incentives are much less useful for explaining the considerable spatial variability in 
adoption within states. Other studies focused on the factors affecting individual decision makers, 
highlight the importance of and positive predisposition to clean technology and early adoption of new 
technology (3,4). Additionally, regional factors like access to HOV lanes, availability of charging 
infrastructure, and the influence of seeing other PEVs on the road (5) have been identified as important. 
Public charging infrastructure has also been shown to boost PEV adoption, particularly in urban areas 
where home charging is more difficult (6,7).  
 
The spatial adoption model presented in this paper account for many of these factors while also 
providing ownership projections at a fine spatial scale based on multiple years of ownership data in 
California. These ownership estimates are converted to estimates of demand for charging under various 
PEV fleet makeup scenarios. These scenarios account for the potential impact of changes in the sizes 
and body types of PEVs produced on the ways these vehicles are used. Today’s PEVs are overwhelmingly 
used for commuting in part because today’s PEV fleet is dominated by small sedans. Future PEV 
production is likely to include a higher proportion of SUVs and other large vehicles, many of which will 
be used as family cars or for other purposes. 
 
This paper presents a projection of PEV allocation for California based on the current state targets for 
2030 and patterns of EV market growth from 2011-2017, with separate estimates produced for plug-in 
hybrid electric vehicles (PHEVs) and battery electric vehicles (BEVs). These projections are used to 
estimate charging demand under a set of scenarios for the cost of charging vehicles at the workplace 
and the makeup of the fleet, which affects usage for commute and availability of charging infrastructure 
at home. The work presented here represents a further development of the Electric Vehicle Planning GIS 
Toolkit for Greater Philadelphia (8) and previous versions of the UC Davis EV Toolbox1.  

 
BACKGROUND 

Why is it important to perform analysis with this level of granularity? Block-group-level analysis makes it 
possible to link ownership scenarios directly to charging models that account for regional variations in 
commute patterns, electricity prices, home charging access, and charger availability. Reviews of models 
for PEV adoption have identified three common levels of analysis: aggregate approaches that track sales 

 
1 https://dvrpcgis.maps.arcgis.com/apps/MapSeries/index.html?appid=793fa4e10eac43b387adfc9cd2621a3d 

https://dvrpcgis.maps.arcgis.com/apps/MapSeries/index.html?appid=793fa4e10eac43b387adfc9cd2621a3d
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in countries or states, disaggregate models that divide the fleet by household category within a country 
or state, and agent-based/choice models that attempt to understand the purchase decisions of 
individual households (9). While these models can be used to account for the impact of changing 
equipment prices over time (10–14) and policy changes between regions (13,15,16), they have difficulty 
accounting for the heavily clustered spatial distribution of the adoption of new vehicle technologies  
(17–19). Likewise, models for future charging demand are most informative when they account for 
spatial variation in adoption and behavior (20), which is missing from analyses that work from spatially 
aggregate estimates and assume equal adoption rates throughout the study region (21). This paper 
modifies the disaggregate approach to instead focus on variability in adoption between small geographic 
units to address these spatial patterns. 
 
Local estimates of PEV ownership can be linked with commute patterns to predict demand for 
workplace charging at a scale fine enough to compare to existing infrastructure. Existing PEV adoption 
has concentrated in cities and wealthy suburbs, but the continued expansion of PEV ownership is likely 
to include adoption in a wider range of areas. In this analysis, we must both identify areas in which PEV 
ownership and charging demand are likely to grow most rapidly and account for changes in the needs of 
PEV drivers as the vehicles expand into the broader market. Two key factors that will likely impact the 
charging needs of future PEVs are access to home charging and vehicle usage for commuting. Access to 
charging at home is a key predictor of PEV adoption (16) to such a degree that home charging is nearly 
universal among early adopters of PEVs (22), but the continued expansion of PEV ownership will require 
some people to buy electric vehicles without being able to charge them at home. Existing estimates of 
the potential for home charging suggest that between 30 and 50% of households could charge a vehicle 
at home without having to spend thousands of dollars on electrical work (23,24). Likewise, current PEVs 
are used for commuting at a much greater rate than Internal Combustion Engine Vehicles (ICEVs). Many 
workplaces provide chargers for their employees and vehicles can be charged much more during the 
workday than during a brief stop at another destination, making charging while at work nearly as 
convenient as charging at home. 
 
DATA 

We produce spatially explicit estimates of electric vehicle ownership by combining information about 
the current distribution of PEV ownership with factors that have correlated to past PEV adoption. Local 
PEV ownership rates are predicted using a spatial regression model combined with a component that 
tracks a Bass diffusion curve in each block group. This model takes current sales of PEVs as a starting 
point and predicts future sales by accounting for local characteristics and neighborhood effects. Once 
the distribution of ownership is established, it predicts charging demand based on existing commute 
patterns, current patterns of vehicle usage for commute across the whole fleet, and our current 
understanding of the charging behavior of current PEV owners and vehicle usage patterns. 
 
Input data comes primarily from sources that are available at consistent quality nationwide. Inputs are 
drawn from two surveys run by the U.S. Census Bureau: the American Community Survey (ACS) and 
Longitudinal Employer-Household Dynamics Origin-Destination Employment Statistics (LODES). ACS 5-
year estimates provide information about household income and housing type for all block groups (and 
larger spatial units) that are useful predictors of local PEV market share, as well as vehicle ownership 
totals that form a key component of the model. LODES is a block-group-to-block-group origin-
destination matrix for individual states or the entire country. Commute data from LODES is paired with 
road network data from OpenStreetMap to estimate the distribution of commute distances and possible 
distance traveled on HOV lanes during commute, distances were computed using shortest paths 
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weighted by average speed. Information about commutes derived from LODES is useful both to estimate 
PEV uptake and to predict demand for workplace charging, and access to HOV lanes is often cited as a 
key reason people purchase PEVs. Variables used in the models for BEV and PHEV ownership in each 
block group are median household income, average commute distance, percent of households in various 
housing types (single-family detached, single-family attached, and apartments), and percent of 
commuters whose shortest-path commute includes significant distance on a road with an HOV lane, and 
a “neighborhood effect” term tracking the average PEV adoption rate in nearby block groups all of which 
have been found to be important to PEV adoption in the past (1,16). 
 
The model for the spatial distribution of PEV ownership under growth scenarios is based on PEV 
ownership rates from previous years, which are extracted from anonymized vehicle ownership records 
for 2014-2017. This dataset contains records almost all privately-owned vehicles in the state, including 
VINs that can be used to extract more information about the vehicle. While this dataset is a snapshot of 
vehicle ownership in each year, it also tracks changes of ownership and can be used to estimate used 
vehicle turnover and to get a general sense of PEV ownership in each block group for previous years as 
well, making it possible to fit the model for ownership data from 2011-2017. The location information 
attached to these vehicles is somewhat imprecise, so PEV ownership rates are estimated for each block 
group from the overall PEV ownership rate of all neighboring block groups. 
 
Additional data is drawn from the 2019 California Vehicle Survey, from which we extract information on 
the home type and commute usage patterns for various body styles and sizes of vehicles (25); the UC 
Davis EVMT survey, which is used to populate the model for charging behavior (26); and the US 
Department of Energy Alternative Fuels Data Center (AFDC), which provides location information for 
public charging facilities throughout the North America (27). 

 
METHODS 

The overall process for this study can be broken up into two main sections: vehicle ownership 
assignment and charging demand estimation. Vehicle ownership is modeled at the level of census block 
groups using a spatial regression model based on growth patterns in BEV and PHEV ownership from 
2011-2017. The model for charging demand uses the vehicle ownership allocation as a starting point, 
attaches information about commute distances and energy costs, and predicts the locations and 
frequencies of charging events. These per-vehicle predictions are then adjusted based on various 
scenarios of fleet makeup and the charging cost to produce statewide and regional estimates for 
charging demand at home, work, and in other locations. 

 
Vehicle Ownership Inputs 
Two of the variables require a significant degree of processing before they can be used in a model: HOV 
lane access and neighborhood average PEV adoption. LODES is an origin-destination matrix of commutes 
for all pairs of block groups in California between which people commute. For each of these pairs, the 
travel-time-weighted shortest path on the OpenStreetMap road network is calculated, and the routes 
are retraced using OpenStreetMap data to identify the potential distance traveled on HOV lanes for 
each commute route. Commute HOV access is averaged for each block group based on the number of 
people who do a specific commute. While other studies have used the local density of HOV lanes as a 
proxy for access to HOV lanes, we believe it is more accurate to identify what proportion of the area’s 
drivers would benefit from HOV lane access on their commute. 
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Adoption of new vehicle technologies is also highly spatially concentrated (17,19,28), and preliminary 
investigations found significant spatial autocorrelation in model residuals, indicating that this spatial 
concentration cannot be fully explained using the sociodemographic variables included in our model. To 
address this spatial concentration, a regional average of PEV adoption is added as an explanatory 
variable in the model. For each block group, the value of this neighborhood component is calculated 
using a gravity model, shown in equation 1, with the effect for each block group 𝑏𝑏 is calculated from the 
average 2017 PEV adoption rate (EVn) of all 𝑁𝑁 block groups within 100km, weighted by inverse-square of 
the distance between the block groups (𝐷𝐷𝑛𝑛,𝑏𝑏

2 ).  
 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝑏𝑏𝑣𝑣𝑣𝑣𝑏𝑏  = � 𝐸𝐸𝐸𝐸𝑛𝑛
𝐷𝐷𝑛𝑛,𝑏𝑏
2

𝑁𝑁

      (1) 

Vehicle Ownership Model 
The model for PEV ownership is structured as a spatial regression model linked to a Bass diffusion curve, 
which tracks the expansion of the market for a new technology from the early adopters through the 
main bulk of the market, to the people most resistant to new technology. The Bass diffusion curve was 
chosen for this analysis because this approach has been shown to accurately track the diffusion of new 
vehicle technologies (29,30). Additionally, if we assume that PEVs are generally purchased as 
replacements for ICEVs, the total number of vehicles in a block group can be used as an estimate for the 
market limit or the maximum number of PEVs to assign. In order to approximate this curvilinear growth 
pattern, the prediction process is split into a series of 40 iterative steps, with the total number of 
vehicles being added to the market split evenly between each step. The model assignment process 
follows equations 2-5.  
 

𝑉𝑉𝑏𝑏𝑏𝑏 =  𝑊𝑊𝑏𝑏𝑏𝑏
∑ 𝑊𝑊𝑏𝑏𝑏𝑏𝑏𝑏

×(𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 𝑣𝑣𝑣𝑣ℎ𝑏𝑏𝑖𝑖𝑇𝑇𝑣𝑣𝑖𝑖 𝑇𝑇𝑖𝑖𝑖𝑖𝑏𝑏𝑎𝑎𝑛𝑛𝑣𝑣𝑎𝑎 𝑎𝑎𝑇𝑇𝑇𝑇𝑏𝑏𝑇𝑇𝑇𝑇𝑇𝑇𝑔𝑔 𝑝𝑝𝑣𝑣𝑝𝑝 𝑏𝑏𝑇𝑇𝑣𝑣𝑝𝑝𝑇𝑇𝑇𝑇𝑏𝑏𝑇𝑇𝑛𝑛)   (2) 
𝑊𝑊𝑏𝑏𝑏𝑏 = 𝐵𝐵𝐵𝐵𝑏𝑏 × 𝑀𝑀𝑀𝑀𝑏𝑏 × 𝐴𝐴𝑏𝑏𝑏𝑏      (3) 
𝐵𝐵𝐵𝐵𝑏𝑏 = 𝛽𝛽𝑏𝑏𝑛𝑛𝑇𝑇 + 𝐼𝐼𝐼𝐼𝐼𝐼𝑏𝑏 + 𝛽𝛽𝑥𝑥1 × 𝑥𝑥1𝑏𝑏 + ⋯+ 𝛽𝛽𝑥𝑥2 × 𝑥𝑥2𝑏𝑏   (4)  
𝐴𝐴𝑏𝑏𝑏𝑏 = �𝑝𝑝 + 𝑞𝑞 𝑍𝑍𝑏𝑏(𝑏𝑏−1)

𝑀𝑀𝑀𝑀𝑏𝑏
� × �1 − 𝑍𝑍𝑏𝑏(𝑏𝑏−1)

𝑀𝑀𝑀𝑀𝑏𝑏
�     (5) 

 
In each iteration 𝐺𝐺, the number of vehicles added to block group 𝑏𝑏 is equal to 𝑉𝑉𝑏𝑏𝑏𝑏, the proportion of the 
region’s total assignment weight taken up by that block group (equation 2). The weight of each block 
group in each iteration, 𝑊𝑊𝑏𝑏𝑏𝑏, is equal to the product of the base penetration rate 𝐵𝐵𝐵𝐵𝑏𝑏, the 𝑀𝑀𝑀𝑀𝑏𝑏 (equal to 
the total number of light duty vehicles owned by residents of that block group), and the saturation 
coefficient 𝐴𝐴𝑏𝑏𝑏𝑏 (equation 3). The base penetration rate 𝐵𝐵𝐵𝐵𝑏𝑏 for a block group is a linear combination of 
block group attributes (𝑥𝑥1𝑏𝑏, etc.) with coefficients (𝛽𝛽) for these attributes and is fixed across all 
iterations (equation 4).  One of the coefficients must be fixed at a specific value. Because income is one 
of the most consistent predictors of PEV adoption, income was chosen as the variable to fix; block group 
average income is denoted in the model with 𝐼𝐼𝐼𝐼𝐼𝐼𝑏𝑏. To make the estimated coefficients directly 
comparable with each other, all variables were centered and scaled, setting the mean value to 0 and 
adjusting the standard deviation to 1 before estimating the model; this means all estimated coefficients 
can be interpreted relative to the effect of income, which has its coefficient effectively locked at 1. The 
saturation coefficient for each block group in each model iteration (𝐴𝐴𝑏𝑏𝑏𝑏) is a function of ratio between 
the total number of PEVs in that block group in the previous iteration 𝑍𝑍𝑏𝑏(𝑏𝑏−1) and the total number of 
light duty vehicles in that block group 𝑀𝑀𝑀𝑀𝑏𝑏 as well as the two diffusion parameters innovation (𝑝𝑝), which 
controls the rate of purchasing of new PEVs in areas with limited market penetration and imitation (𝑞𝑞), 
which controls the rate of market penetration in areas where PEVs make up a significant share of all 
vehicles. 
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Model parameters are estimated by minimizing the sum of squared errors of estimates for PEV 
ownership data for the same block groups from 2014-2017. Coefficients were tested for significance by 
generating bootstrap samples of block groups and the model’s predictions were validated using 10-fold 
random cross-validation to test for overfitting, which found that the model had consistent error rates 
across all validation runs.  
 
Once this model’s coefficients are estimated, it can be switched into prediction mode to estimate the 
total number of PEVs in each block group at the end of a scenario, with more vehicles assigned to areas 
with characteristics that are linked to PEV adoption. The predicted number of PEVs is constrained on the 
bottom by the number of PEVs present in the block group at the start of the scenario and on the top by 
the total number of privately owned light duty vehicles; these limits draw from the assumption that 
PEVs are entering the market as replacements for existing ICEVs rather than as additional vehicles 
owned by households. In prediction runs with high values of q or a small number of vehicles to assign, 
the final predictions will generally reflect the starting values, but when the value of q is relatively low or 
many more vehicles will be assigned than there currently are in the market, the predictions will 
generally follow the base penetration rate, which is a function of block group attributes.  

 
Charging Demand 
In order to estimate demand for PEV charging at commute destinations, we take the ownership 
estimates produced by the method described in the Vehicle Ownership section and combine them with 
an existing model for charging behavior eveloped by Chakraborty et al. (31). This model predicts 
charging probability and aggregate expected number of charging events per day for commute routes in 
the LODES dataset. Attributes that affect charging behavior can either be kept constant, allowed to vary 
between block groups based on external information, or controlled for scenario testing.  
 
The first step for estimating charging demand is to identify the proportion of vehicles used for 
commuting. Current BEVs and PHEVs are used for commuting at a much higher rate than ICEVs, even 
within the same age and body style categories. Analysis of the 2019 California Vehicle Survey indicates 
that 59.8% of BEVs and 56.8% of PHEVs are used for commuting, in contrast to only 39.6% of ICEVs (25). 
As PEVs make up an increasing share of the market, their usage will gradually approach that of the rest 
of the fleet, and this transition will likely take place both through an expansion of PEV production into a 
wider range of body types and increasing age of PEVs in the fleet. Figure 1 shows the relationship 
between vehicle age and commute usage for several vehicle types. Smaller and newer vehicles are more 
likely to be used for commuting, and all but the oldest group of BEVs are used for commuting about 
10pp more often than similar-sized ICEVs. There are too few mid-sized and large BEVs from before 2016 
in the survey to estimate a commute fraction, but the new vehicles in this category are somewhat less 
likely to be used for commuting than new smaller BEVs. Newer vehicles of all types are generally more 
likely to be used for commuting, and the decline in commute usage appears to begin around 8-10 years 
for most body types. Making predictions about the distribution of charging demand requires deciding 
how quickly PEV usage will converge with ICEV usage patterns. This decision should be informed by the 
time horizon of the projection, the proportion of PEVs added, and any anticipated technological 
changes.  
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Figure 1. Newer and smaller vehicles are more likely to be used for commuting 
 
Access to chargers at home is another major component of charging demand. The 2019 California 
Vehicle Survey asks about access to electricity at home parking locations and suggests that the ceiling is 
somewhat higher than previous studies have found. 64% of the vehicles in this survey are owned by 
households that can park at least one car in a garage with potential for charger installation and 76% 
report being able to utilize some form of off-street parking with potential for charger installation. These 
fractions vary regionally as a function of the mix of housing types and by vehicle type. Small and midsize 
cars are somewhat less likely to have access to charging at home compared to larger and more 
expensive SUVs. 
 
Table 1 shows the potential for access to charging at home and work for vehicles in the 2019 California 
Vehicle Survey. Across all classes except pickup trucks, between 83 and 89% could potentially have 
access to charging either at home or at work, given sufficient investment in infrastructure at either 
location, but the relative importance of charging at home and charging at work is closely linked to 
vehicle type. Predicting demand for workplace charging depends heavily on assumptions about which 
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segments see the most growth of PEVs. If small sedans and hatchbacks continue to make up the largest 
share, most will still be used for commuting and fewer will have access to charging at home, suggesting 
high demand 
https://www.office.com/launch/word?auth=2&username=awdavis@ucdavis.edu&login_hint=awdavis@
ucdavis.edufor charging at work. If larger PEVs become more popular, a smaller share will be used for 
commuting, and more will have access to charging at home, suggesting much lower demand for 
charging at work.  

 
Table 1. Potential access to charging at home and at work, broken down by vehicle class. 
 

 
Body 

 
Size 

 
Vehicles 

Potential for Home 
Charging 

Overall Potential for 
Charging at Home or Work 

Garage Any Commuter No Options 

Car 

Subcompact 350 56.0% 68.9% 43.1% 16.9% 

Compact 1,282 52.4% 64.9% 50.3% 16.9% 
Midsize 1,652 58.7% 69.7% 47.2% 14.7% 
Large 242 65.3% 78.5% 33.1% 15.3% 
Sports 328 73.2% 82.3% 18.9% 13.4% 

Crossover / 
SUV 

Subcompact 724 64.9% 74.9% 42.4% 14.5% 

Compact 386 64.0% 75.1% 45.6% 12.4% 
Midsize 596 69.1% 78.7% 37.4% 12.8% 
Large 143 64.3% 76.9% 29.8% 14.4% 

Pickup Truck 
Small 215 61.9% 77.7% 31.5% 10.7% 

Large 441 71.7% 83.2% 32.9% 9.8% 

Van 
Small 201 64.2% 73.6% 35.3% 18.4% 

Large 50 62.0% 78.0% 26.0% 14.0% 
 
Once we have an estimate of the proportion of vehicles that are used for commuting and the proportion 
of those that have access to charging at home, we use commute numbers from LODES to allocate PEVs 
from home block groups to work block groups. The charging model used in this paper predicts charging 
location and frequency for PEV commuters who have access to chargers at home, at work, and in public 
places based on the characteristics of their commute, vehicle, and the charging infrastructure at home 
and work. For each commuter, the model provides the daily probability of charging their vehicle at any 
one location or multiple locations. For this analysis, public charging refers to the use of Level 2 chargers 
located neither at home nor at the commute destination. The data used for the charging model included 
relatively few vehicles capable of using DC Fast Charging (DCFC) and even fewer drivers who used it 
frequently, but increased availability of DCFC might substantially increase the share of public charging 
events. According to this model, people are more likely to charge at home if they have single family 
detached houses, cheap electricity at home, and an PEV-friendly electrical rate structure, whereas 
people are more likely to charge at commute locations if there are large numbers of chargers available 
at that location and whether charging is paid or free (31). People who use a large portion of their 
vehicle’s range on their commute are likelier to charge at any location. The choice of where to charge 
becomes much simpler for commuters with fewer options for charging, but the frequency of charging 

https://www.office.com/launch/word?auth=2&username=awdavis@ucdavis.edu&login_hint=awdavis@ucdavis.edu
https://www.office.com/launch/word?auth=2&username=awdavis@ucdavis.edu&login_hint=awdavis@ucdavis.edu
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remains to be determined. For commuters who do not have access to charging at home, the combined 
probability of charging at either home or work is used instead. 

 
RESULTS AND DISCUSSION 

Vehicle Ownership 
The rest of this paper presents a case study applying the models to a set of scenarios for the geographic 
distribution of electric vehicle ownership and workplace charging demand in California. These 
projections are based on the state’s 2030 target of 5 million zero-emission vehicles (32). In this case 
study, we follow Deloitte’s projected sales split for 2020-2030 of 80% BEVs and 20% PHEVs (33), so the 
scenario will include 4 million battery electric vehicles and 1 million plugin hybrids and use evidence 
from electric vehicle ownership patterns from 2012-2017 to predict both the spatial distribution of these 
vehicles and their charging behaviour. Adoption of BEVs and PHEVs are modelled separately because 
these vehicles have shown very different growth patterns in California. A case could be made for further 
separating BEVs by price in order to account for the clear distinction in the markets for expensive and 
mass-market BEVs (34), but we keep the categories together for simplicity. 
 
A range of block-group-level variables measuring sociodemographic characteristics, housing stock, 
commute patterns, and current BEV/PHEV adoption were tested. The final models for BEV and PHEV 
adoption are shown in Table 2, with middle-95% confidence ranges estimated by running 200 bootstrap 
replicates. Coefficient ranges that do not include 0 can be understood as significant at a 5% level. In both 
models, median income was used as the reference category, so its effect is fixed at 1. All explanatory 
variables have been centered at 0 and scaled to have a standard deviation of 1, so coefficients can be 
interpreted relative to the effect of income. For example, the coefficient for HOV Access for BEVs is 0.57, 
this means that an increase of one standard deviation in the proportion of commuters who could use a 
road with an HOV lane would have 57% the impact on a block group’s BEV adoption rate as a one-
standard-deviation increase in average household income.  

 
Table 2. Coefficient Estimates and ranges for models of BEV and PHEV adoption.  
 

  Battery Electric Vehicle Plug-in Hybrid Electric Vehicle 
  Estimate 95% Range Estimate 95% Range 
 Intercept 3.48 2.83 – 4.87 4.04 3.59 – 4.57 

Income Income 1.00 -- 1.00 -- 

Commute 
Mean Commute 

Distance -0.34 -0.46 – -0.23 0.06 -0.02 – 0.15 

HOV Access 0.57 0.39 – 0.77 0.05 0.00 – 0.11 

Housing 

% Detached 
Houses 0.27 0.09 – 0.42 -- -0.08 – 0.08 

% Attached  
Houses 0.20 0.00 – 0.56 0.14 -0.193 – -0.06 

     

Regional / 
Cultural and 

Neighborhood 

Regional PEV 
Adoption 1.26 1.01 – 1.73 1.50 1.34 – 1.72 

Innovation (p) 0.01 0.01 – 0.02 0.10 0.06 – 0.75 
Imitation (q) 0.86 0.77 – 1.00 0.88 0.19 – 0.99 

As table 2 highlights, BEV and PHEV adoption are linked to similar block group attributes but in different 
proportions. Median income was set as the reference parameter for both models because it has a strong 
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effect on new vehicle purchases regardless of vehicle type. Housing type appears to make a larger 
difference in the adoption rate of BEVs than PHEVS. Areas with many detached houses or attached 
single-family houses (as opposed to multi-unit dwellings) are more attractive for BEVs, likely since it is 
much easier to install chargers in these types of houses, but PHEV adoption is minimally impacted by a 
region’s housing type. Typical commutes are one category in which these models differ substantially: 
block groups with longer commutes have had a slightly lower BEV adoption rate over the study period, 
whereas commute distance may have a small positive impact, although this is likely to change as longer-
range BEVs become the norm. The proportion of block group residents whose commutes include 
significant stretches with HOV lanes is very important to BEV adoption but much less so to PHEV 
adoption, likely because California allows BEV owners to purchase stickers granting access to HOV lanes. 
Neighborhood effects, which in this model captures both the innovation curve and difficult-to-measure 
cultural and regional factors, also work differently between the two models. Adoption of both types of 
vehicles concentrates in areas where adoption was high at the start of the study period, as shown by the 
impact of regional PEV adoption, and both vehicle types have much higher values for the imitation (q) 
parameter than the innovation (p) parameter, which indicates that adoption rates generally start 
increasing fastest after a few PEVs have been purchased in the neighborhood. 
 
This model is used to predict PEV adoption throughout California under a 5 million PEV scenario, 
tracking the state’s zero emission vehicle adoption goal for 2030, divided into 4 million BEVs and 1 
million PHEVs, the results of which are mapped in Figure 2. These vehicles would make up 
approximately 18.5% of the privately-owned light-duty vehicles in the state, but they would not be 
evenly distributed. In the regions of heaviest adoption, PEVs are projected to make up slightly more than 
half of privately-owned light-duty vehicles, whereas in the areas of lightest adoption, they would make 
up less than 10%. As this map shows, PEV adoption is projected to concentrate most densely in the 
state’s largest urban areas, with PEVs making up a far smaller share of vehicles in less dense areas. The 
state capital Sacramento has a much denser concentration of PEVs than any of the state’s other 
midsized cities. The San Francisco Bay Area (inset labeled SF) is projected to have the densest 
concentration of PEV ownership, particularly in wealthier suburban neighborhoods that ring the region’s 
three major cities San Francisco (a on the map), Oakland (b), and San Jose (c). In the Los Angeles region 
(inset labeled LA), projected PEV ownership is concentrated in the wealthier areas along the coast (d) 
and in Orange County (d), whereas the center city (f) has a much lower rate of PEV ownership. In San 
Diego (inset labeled SD), PEV ownership is heavily concentrated in the wealthier suburbs north (g) of the 
central city. Other areas of relatively dense PEV adoption correspond to other small and midsized urban 
areas, and the change in rate of PEV ownership in these areas is projected to be among the highest in 
the state. This model projects that rural areas will be the slowest to adopt PEVs if consumer behavior 
remains roughly consistent with today. 
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Figure 2. Total electric vehicles as a proportion of all vehicles in each block group, 4M BEV / 1M PHEV 
scenario 

 
Charging Demand 
Next, we convert the spatial distribution of PEV ownership into a projection of demand for charging 
based on the household characteristics and commute patterns throughout the state. The model predicts 
the number of charging events, not the total number of chargers needed or the total kWh of charging 
performed, and the conversion among these metrics is unlikely to be linear. In this analysis, we test four 
scenarios across two variables to estimate approximate boundaries for the total statewide demand for 
shared charging. The two scenario variables are cost of workplace charging and PEV body type mix. The 
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first variable affects the charging decision for commuters who have multiple options and is tested for all 
free and all paid. The second variable controls the proportion of vehicles that are used for commuting 
and the proportion that have access to charging at home; this variable is tested for a scenario in which 
future PEVs have similar commute probabilities and access to charging as today’s PEVs and a scenario in 
which they have similar commute probabilities and access to charging as today’s full vehicle fleet. 
Vehicle range is rapidly increasing, particularly for BEVs, and has a strong impact on out-of-home 
charging behaviour. In this model, we split the BEV population equally among vehicles with 120 miles 
range, vehicles with 200 miles range, and vehicles with 280 miles range, roughly tracking the range 
distribution of vehicles available for sale in 2020. Home electricity prices and other variables that impact 
charging behaviour are set to match local distributions, when sufficient data is available, or state / local 
averages, when less data is available. 
 
Data from the 2019 California Vehicle Survey is used to establish the two vehicle usage scenarios that 
control the proportion of vehicles used for commuting and the proportion that have access to charging 
at home. The base location scenario assumes that California’s PEV fleet in 2030 will look almost exactly 
like it does in 2020. Under this scenario, 59.8% of BEVs and 56.8% of PHEVs are used for commuting and 
almost all (90% in this analysis) vehicles have access to charging at home. The other scenario assumes 
that the PEV fleet will converge with the state’s ICEV fleet. Under this scenario, 41.7% of vehicles will be 
used for commuting, and access to charging will be slightly higher for non-commute vehicles than for 
commuters. The “full fleet scenario” will assign 26.0% of vehicles to commute usage with access to 
home charging, 15.7% to commute usage without access to home charging, 38.7% to non-commute 
usage with access to home charging, and 19.6% to non-commute usage without access to home 
charging. Vehicles without access to charging while at home or work will rely on shared charging 
infrastructure in public locations. 
 
To compute average workplace charging demand, 5/7 (71.4%) of vehicles used for commutes will be 
assumed to make a trip to the workplace on a given day. The model discussed under Charging Demand 
in the Methods section will be used to assign charging locations. For vehicles without access to charging 
at home, the charging probability will equal the predicted probability of charging at any location.  
 
Results of the charging demand analysis across these two vehicle distribution scenarios and the scenario 
for price of workplace charging are shown for charging while at work in Figure 3 and for public charging 
while not at work in Figure 4. Error bars on these plots reflect the variability in charging demand 
resulting from using the bootstrapped adoption models to assign vehicles to block groups; uncertainty 
and variability within the charging model has a much smaller impact on charging demand because the 
charging model results are spread over 5 million vehicles. The total demand for charging while work is 
heavily sensitive to the price of workplace charging as well as to fleet makeup, which affects the share of 
vehicles used for commuting and having access to charging at home. Demand for charging while not at 
work is highly dependant on the makeup of the fleet. Interestingly, PHEVs appear to be less sensitive to 
the price of charging at work overall and to the differences in fleet makeup. Demand for charging at 
workplaces is much lower under the full fleet scenario because the decrease in share of vehicles used 
for commuting is enough to offset the effect of the decrease in access to charging at home. The impact 
of pricing appears to be somewhat less in the full fleet scenario, possibly because the larger share of 
owners who cannot charge at home and are therefore less price sensitive. While current PEVs are much 
more likely to be used for commuting than other vehicle types, almost all current PEV owners have 
access to charging at home, making their other charging decisions fairly price sensitive. As PEVs expand 
into other market segments, use for commuting is likely to decrease, but a larger share of vehicles used 
for commuting will be highly reliant on charging at work, making them much less sensitive to price. The 
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relationship between the demand for charging events and the number of chargers required to meet this 
demand may also vary between the scenarios. At very least, charging events that would only happen 
given free charging are not strictly necessary for the vehicle to get home, which means their duration 
can be limited and more vehicles could use the same charger during the day. Demand for public 
charging is much less different between the two fleet makeup scenarios. A lack of free charging at work 
drives many commuters in this model to choose public charging options instead. 

 

 
Figure 3. Projected daily demand for workplace charging under scenarios for pricing and home 
charging / vehicle usage when 4M BEVs and 1M PHEVs are owned by California households. Error 
ranges from vehicle assignments based on bootsrapped coefficient estimates.  
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Figure 4. Projected daily demand for public charging under two scenarios each for pricing and home 
charging / vehicle usage when 4M BEVs and 1M PHEVs are owned by California households. Error 
ranges from vehicle assignments based on bootsrapped coefficient estimates. 
 
In addition to the statewide charging demand estimates shown in Figures 3 and 4, this study produces 
localized charging demand estimates. Figure 5 shows the relationship between predicted charging 
demand and existing infrastructure locations contained in the AFDC dataset. The absolute expected 
demand for charging is likely highest in urban centers where the most people live, but this map suggests 
that highest potential for unmet demand is found in suburban areas, particularly the most remote 
suburbs of the Bay Area and Los Angeles. Less densely populated regions are expected to see much less 
growth of PEV ownership and already have some amount of charging infrastructure in place, both to 
support long distance travel and local communitues. Several of the counties with the highest potential 
for unmet charging demand are among the state’s poorest, which suggests that infrastructure 
development in these areas may require additional subsidies. Imperial county has the lowest per-capita 
income in the state and Lake, San Benito, San Joaquin, and Sutter counties are also well below the 
statewide average. 
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Figure 5. Ratio of predicted demand for out of home charging (both work and non-work) to number of 
existing charging facilities, highlighting the counties with the highest ratio of demand to supply 

 
CONCLUSIONS AND LIMITATIONS 

The relative shares of PEVs and ICEVs on the market depends heavily on policy decisions at the national, 
state, and local level, and macroeconomic circumstances that are out of the scope of this project. 
Instead of predicting when a certain target number of PEVs will be on the road, this paper develops 
methods to identify what areas are likely to see the largest expansions of the PEV ownership under 
various projections of the market’s overall expansion, with a goal of allowing policymakers to explore 
the impact of a range of scenarios on demand for infrastructure both at the workplace and on long-
distance travel corridors.  
 
The rapid expansion of PEV sales beyond the initial set of early adopters also means that the ways these 
vehicles are used are likely to shift dramatically, particularly as a wider range of body styles and vehicles 
sizes enter the market. This shift, as well as an expansion into households that lack the capability to 
charge vehicles at home, will dramatically impact where and how much public charging infrastructure is 
needed. While the block-group-level models presented here provide a useful baseline for this sort of 
analysis, future models should disaggregate the analysis one step further. Vehicle ownership and 
charging decisions are made at the level of individual households and should be modeled as such where 
possible. Future work will be required to convert the number of charging events presented in this paper 



Davis and Tal 

 16 

to estimates of total amount of energy required or the number of chargers that would be needed to 
support this level of demand. 
 
The analysis of charging presented in this paper uses current PEV ownership patterns to predict future 
ones and the behavior of current PEV commuters as a proxy for the behavior of future PEV drivers, but 
this approach introduces some key limitations to the analysis. First, an expansion of used PEVs and 
continually decreasing battery costs may make these vehicles affordable for a much larger share of the 
population, which would decrease the degree of spatial concentration in wealthy areas. Second, while it 
is possible for California to get to 5 million PEVs without many multi-PEV households, it is worth 
considering how different the charging behavior of such households will be. Most households may be 
able to adjust their schedules enough to make do with only a single charger (35), but charger congestion 
may push others to use shared chargers more often. Finally, due to data constraints the charging model 
this paper is based on does not distinguish between DCFC and Level 2 charging. Level 2 public chargers 
are utilized at much lower rates than other types of chargers because they are generally more expensive 
and less convenient than chargers at home or work (31,36), but DCFC chargers have a tremendous 
advantage in charging speed. An expansion of DCFC availability may substantially increase the usage of 
public charging overall. 
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