
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science 
Society

Title
Examining the Role of Prediction in Infants' Physical Knowledge

Permalink
https://escholarship.org/uc/item/5v35h805

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 25(25)

ISSN
1069-7977

Authors
Schlesinger, Matthew
Young, Michael E.

Publication Date
2003
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/5v35h805
https://escholarship.org
http://www.cdlib.org/


Examining the Role of Prediction in Infants' Physical Knowledge 
 

Matthew Schlesinger (MATTHEWS@Siu.Edu) 
Department of Psychology, Southern Illinois University 

Carbondale, IL 62901 USA 
 

Michael E. Young (MEYOUNG@Siu.Edu) 
Department of Psychology, Southern Illinois University 

Carbondale, IL 62901 USA 
 
 
 

Abstract 

The violation-of-expectation paradigm investigates infants' 
physical knowledge by exploiting their tendency to look 
longer at events that are surprising, unexpected, or physically 
impossible. The current simulation study examines the role of 
prediction as a fundamental component of infants' 
expectations in physical-knowledge studies. A recurrent 
network is presented with a computer-animated version of 
Baillargeon’s “car study” (1986; Baillargeon & DeVos, 
1991), in which a car rolls down a ramp and behind a screen. 
After learning to predict the outcome of a training event, the 
model is then tested on possible and impossible events from 
the same study. During testing, the model successfully 
predicts only superficial features of the test events. These 
results are used to argue for the necessity of prior physical 
knowledge, and perhaps also a built-in capacity for mental 
representation, in order for a prediction system to work.  

Introduction 
Over the last 20 years, developmental researchers have 
mounted a broad and compelling challenge to Piaget's 
theory of infant cognitive development (e.g., Baillargeon, 
1995; Spelke, Breinlinger, Macomber, & Jacobson, 1992). 
Much of this research has focused on two particular 
elements of Piaget's theory: first, that infants' physical 
knowledge (i.e., their concepts of objects, space, time, and 
causality) depends on sensorimotor experience, and second, 
that the capacity for mentally representing the world 
develops gradually over the first two years (Piaget, 1952). 

In contrast, the "competent infant" view argues that Piaget 
underestimated what young infants know and understand 
about the physical world. This approach is based on three 
closely-related ideas. The first is that infants' visual 
expectations are guided by a core set of intuitive or naïve 
physical principles (e.g., that solid objects move along 
continuous paths; Spelke et al., 1992). In addition, Spelke 
and others have argued that this core knowledge may either 
be innate, or develop too early in infancy to depend on input 
from sensorimotor experience.  

The second idea is that the ability to mentally represent 
the world is also present early in life, if not innate (e.g., 
Baillargeon, 1986; Meltzoff & Moore, 1998). This capacity 
is exploited by infants in a variety of ways, including 
mentally tracking occluded objects (e.g., Carey & Xu, 
2001), and also reasoning about the physical properties of 

those objects while they are out of sight (e.g., size and 
location; Baillargeon & DeVos, 1991).  

The third idea is built on the first two: during everyday 
experiences, infants exploit both their prior knowledge and 
capacity for representation as they generate predictions for 
the events they observe. This tendency to forecast or predict 
the outcome of events has helped motivate the predominant 
methodology for studying infants' physical knowledge, that 
is, the violation-of-expectation (VOE) paradigm. 
Specifically, the VOE paradigm proposes that infants will 
increase their attention toward events that violate their 
understanding of the physical world, or in other words, 
events that are surprising, unexpected, or physically 
impossible (e.g., Baillargeon, 1993; Spelke, 1985).  

Learning by Prediction 
A number of developmental theorists have highlighted the 

role of prediction-learning as a developmental mechanism, 
and in particular, a wide variety of connectionist models 
have implemented this idea in an artificial neural network 
(e.g., Elman, 1990; McClelland, 1995). Prediction-learning 
is typically simulated by training a neural network to predict 
a sequence of stimuli (e.g., speech segments) as the 
sequence is presented one element at a time. The success of 
these models, which have no built-in knowledge, suggests 
that prediction-learning can function without an a priori 
knowledge base. In addition, mental representation need not 
play a central role, at least in a strong form (e.g., internal 
symbols, recall memory, etc.). However, weaker forms of 
representation may be necessary for supporting a prediction-
learning system. For example, in the face of an ambiguous 
stimulus, a sensory trace can provide a form of implicit 
memory that facilitates predicting the next experience (e.g., 
in a recurrent network; Mareschal, Plunkett, & Harris, 1999; 
Munakata, McClelland, Johnson, & Siegler, 1997).  

Two recent models explore the role of prediction by 
simulating the development of object-oriented behaviors in 
infants (i.e., visual tracking and reaching; Mareschal et al., 
1999; Munakata et al., 1997). In particular, these models 
simulate the ability to track the movement of an object 
while it is briefly occluded. Although there are important 
differences between the architectures and learning 
algorithms employed by Mareschal and Munakata, both 
models rely on a comparable learning rationale.  
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Figure 1: Schematic display of the Habituation (A), Possible (B), and Impossible (C)  
events studied by Baillargeon (1986; Baillargeon & DeVos, 1991).  

Specifically, a recurrent network (i.e., a feed-forward 
network that also includes an additional input loop from the 
hidden layer back to the input layer; see Elman, 1990) is 
presented with the event sequence, one "frame" at a time, 
and the task of the network is to learn to predict the next 
step in the sequence (using backpropagation-of-error as a 
learning algorithm). Both models demonstrate that recurrent 
feedback can function like an internal sensory trace, helping 
the model to predict the reappearance of the target while it is 
occluded.  

The current investigation extends the work of the 
Mareschal and Munakata models, by asking whether a 
recurrent network that learns by prediction--but that has no 
prior knowledge--can generalize what it learns to either 
possible or impossible events. By analogy, to what extent do 
infants' reactions in VOE studies depend on prediction-
learning mechanisms versus prior knowledge of the physical 
world? Therefore, the goal of this paper is to decouple these 
two processes, and to focus on the role of prediction during 
possible and impossible events.  

The rest of the paper is organized as follows: In the next 
section, we briefly describe Baillargeon's "car study", which 
provides a platform for investigating the role of prediction 
in VOE studies. We then provide an overview of the 
prediction model, which first learns to predict the outcome 
of a computer-animated training event, and is then tested on 
possible and impossible events from the same study. Next, 
Simulations 1 and 2 examine the model's ability to 
generalize to the novel test events. Finally, we discuss the 
performance of the model, and relate the findings to current 
debates in early infant cognition.  

The "Car Study" 
Baillargeon (1986; Baillargeon & DeVos, 1991) studied 
infants' knowledge of the permanence and solidity of objects 

by presenting young infants with a simple mechanical 
display, in which a screen is raised then lowered, and then a 
car rolls down a ramp, passing behind the screen and 
reappearing on the other side (see Figure 1A, Habituation 
event). Infants watched this event repeat several times until 
they habituated (i.e., grew disinterested and began to look 
away). After habituating, infants then saw two test events in 
alternation (see Figures 1B and 1C). During both the 
Possible and Impossible test events, a box is revealed 
behind the screen. During the Possible event, the box 
appears behind the track; during the Impossible event, 
however, the box is placed on the track, in the path of the 
car. Nevertheless, during both test events the car reappears 
after passing behind the screen. 

Baillargeon found that by at least age 6 months, and 
perhaps earlier, infants look significantly longer at the 
Impossible event than the Possible event. These findings 
were replicated in a follow-up study, in which infants saw 
the car placed on (Impossible) versus in front of the track 
(Possible). She interpreted these results to suggest (a) that 
infants mentally represent both the car and the box while 
they are occluded, (b) that they do not expect the car to 
reappear during the Impossible event, and (c) they 
consequently look longer at the Impossible event because it 
violates their expectations.  

The Prediction Model 
Note that the events in Baillargeon's car study pose at least 
two challenges for a prediction model. First, like the events 
simulated by Mareschal and Munakata, there is a moving 
object that is briefly occluded. Second, there is also a 
potential causal interaction between the car and box (i.e., 
obstruction or collision), which is also occluded. While the 
occluded movement may be predictable, it is not clear what 
experiences may be necessary for correctly learning to 
predict an occluded obstruction or collision event.  

A 
Habituation 

Event 

B 
Test Event: 

Possible 

C 
Test Event: 
Impossible 
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Figure 2: Selected frames from the animation events used in Simulation 1 to train (A)  
and test (B-C) the prediction model (frame number displayed in upper right corner).  

From a design standpoint, the current prediction model 
shares a number of features with both the Mareschal and 
Munakata models. First, like the Mareschal model, the 
prediction model receives as input a 2-dimensional array of 
pixel values from an animation event, which is projected 
onto a simplified retina. Second, like the Munakata model, 
the input is propagated through a hidden layer, and then to 
an output layer with the same number of units as the input 
layer. On each timestep, the task of the network is to 
produce as output the pattern of pixel values that correspond 
to the next animation frame. Third, like both of the prior 
models, the observed values on the next frame provide the 
basis for a "teaching signal", which is used to adjust the 
connection weights in the network.  

Stimuli 
Three animation events were designed as 2-dimensional 

analogs to those in Baillargeon's car study. Figure 2 presents 
selected frames from these events, which were used to train 
and test the prediction model. Each event is 82 frames in 
duration. Note that unlike Baillargeon's study, the model is 
trained rather than habituated. Consequently, the habituation 
event is renamed the Training event in the prediction model.  

The Training and Test events were rendered in grayscale, 
with the "car" pixel values represented as 1.0, the "box" 
values as 0.6, the "screen" values as 0.3, and the background 
as 0. The entire event display is 10 pixels tall by 30 pixels 
wide, for a total of 300 pixels.  

Architecture 
The prediction model is implemented with a simple 

recurrent network (SRN). The SRN has three layers that are 
fully connected. First, the input layer (300 units) operates 
like a simple retina; each input unit is activated by a single 
corresponding pixel in the 10-by-30 animation display. 
Second, the input layer feeds forward to a hidden layer (20 
units), which not only feeds forward to the output layer, but 
also sends a set of activations back to the input layer (i.e., 
via recurrent connections). Consequently, on each timestep 
the hidden layer of the SRN receives signals from both the 
input layer as well as from itself (i.e., from the hidden layer 

activation values during the previous timestep). Finally, the 
output layer is the same size as the input layer (300 units).  

Learning Algorithm 
The backpropagation-of-error learning algorithm was 

used to train the SRN. Specifically, on each timestep the 
SRN received as input one frame from the animation 
sequence. The corresponding output for that timestep was 
then compared to the input frame for next timestep, using 
the mean-squared difference between expected and 
observed pixel values as the error metric (i.e., mean-squared 
error or MSE).  

Simulation Overview 
Simulations 1 and 2 employed the same training and 

testing regime. In each case, the SRN was first presented 
with the Training event. The results of pilot simulations 
suggested that 300 training trials were sufficient to reduce 
the MSE per pixel to approximately 0.01 (recall that pixel 
values ranged from 0 to 1). Therefore, training continued for 
300 trials (i.e., repetitions of the training event). After 
completing training, each SRN was tested on the Possible 
and Impossible events. Note that for each simulation, 50 
replications of the SRN were randomly initialized, trained, 
and tested.  

Performance Measures 
Recall that the VOE paradigm relies on looking time (i.e., 

the amount of time spent fixating a stimulus or event) as an 
index for infants' expectations. However, the prediction 
model does not produce overt eye movements or fixations 
(cf. Schlesinger, in press). Nevertheless, there are a variety 
of ways in which both the model's internal activity and 
output can be viewed as computations that would precede 
and possibly modulate an attentional signal (e.g., gaze 
control in the superior colliculus, tracking of motion in area 
MT, etc.). Two such performance metrics are employed in 
the current model.  

First, prediction-errors (i.e., MSE) in the model can be 
interpreted as an influence on looking behavior (e.g., 
Mareschal et al., 1999; Munakata, 1997). That is, when 

A 
Training 

Event 

B 
Test Event: 

Possible 

C 
Test Event: 
Impossible 
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Figure 3: Mean prediction error (A) and "novelty" (B) in 
Simulation 1, during the Control, Possible, and Impossible 

events. Error bars indicate 95% confidence intervals.  

discrepancies occur between predicted and observed inputs, 
we should expect infants to continue monitoring an event, 
until their predictions agree with their observations. This is, 
of course, the rationale of the VOE paradigm.  

Second, we can also compare the model's hidden-layer 
activations across events. Specifically, the internal 
activation pattern during the training event can be 
interpreted as a template or sensory encoding, against which 
the test events are compared (e.g., Mareschal et al, 1999; for 
a discussion of template-matching as a developmental 
mechanism, see Charlesworth, 1969). Much like prediction 
errors, when differences occur between the encoding of the 
training event and a test event, that test event is assumed to 
be novel, and therefore, should increase attention.  

Simulation 1 
Simulation 1 follows the general procedure of Baillargeon's 
(1986) Experiment 1, in which, during the test phase, infants 
see the car placed either on or behind the track, respectively 
(i.e., Impossible or Possible event).  

Method 
Fifty replications of the model were trained and tested. 

During each replication, an individual SRN was first 
initialized with random connection weights (in the range -1 
to 1). Next, the SRN was presented with the Training event 
(see Figure 2A), one frame at a time. For each input frame, 
the model produced as output a corresponding set of pixel 
values that were a prediction for the next input frame.  

After each output was generated, it was then compared to 
the next input frame. MSE was computed by comparing the 
difference between predicted and observed pixel values, and 
was then minimized by adjusting the connection weights of 
the network with the backpropagation-of-error learning 
algorithm. Learning was terminated after 300 repetitions of 
the Training event. Connections weights in the SRN were 
then "frozen" (i.e., learning was turned off).  

During the test phase, three events were presented. First, 
in order to establish a prediction-error baseline, the Training 
event was re-presented; in this case, to distinguish between 
the SRN's reactions during the training and test phases, this 
event was called the Control event. Next, the Possible and 
Impossible events were presented (see Figures 2B and 2C), 
corresponding to Baillargeon's study in which the box was 
placed on or behind the tracks, respectively.  

Results 
As proxies for looking time, analyses focused on 

prediction errors and similarity between hidden-layer 
patterns. First, as noted above, mean prediction error was 
computed as the MSE per pixel in the output layer 
(averaged over the 82 frames of animation during each test 
event).  

Figure 3A presents the MSE per pixel as a function of test 
event. Mean prediction errors were 0.014, 0.015, and 0.019 
during the Control, Possible, and Impossible events, 
respectively. All three events were significantly different. 

Specifically, prediction error was higher during the Possible 
than the Control event (t(49) = 36.60, p < .001), but lower 
during the Possible than the Impossible event (t(49) = 37.57, 
p < .001).  

Next, we computed Euclidean distance between Training 
and the Control, Possible, and Impossible events. First, as a 
baseline, hidden-layer activations during the last five 
training trials were pooled and averaged, resulting in an 
82x20 (i.e., frames by hidden-layer units) matrix. Second, 
Euclidean distance was then computed, using comparable 
activation values during the Control, Possible, and 
Impossible events.  

Figure 3B presents the mean "novelty" (i.e., Euclidean 
distance) during the test phase (averaged over the 82 
frames). Note that higher novelty corresponds to greater 
dissimilarity or distance between the Training and test 
event. Mean novelty was 0.04, 0.14, and 0.28 for the 
Control, Possible, and Impossible events, respectively. As 
before, all events were significantly different. In particular, 
the Impossible event was significantly more novel than the 
Possible event (t(49) = 20.63, p < .001).  

Discussion 
Both sets of analyses provide convergent results. In 

particular, the prediction model produces (a) higher 
prediction errors and (b) a more novel or dissimilar pattern 
of internal activity, during the Impossible event.  

A preliminary conclusion based on these findings is that 
prediction-based learning that occurs during the Habituation 
event may be sufficient to explain infants' greater attention 
to the Impossible event during the test phase. A related 
conclusion is that prior physical knowledge (i.e., naïve 
physics) does not seem necessary to explain why infants 
look longer at the Impossible event in the car study.  

However, a potential qualification to these results is that 
the box appears at different times, and for different 
durations, during the two test events. Specifically, it is 
revealed sooner and for more time during the Impossible 
event. Recall that Baillargeon addressed this confound by 
testing infants in a second condition, in which the car was 
placed either on (Impossible) or in front of the tracks 
(Possible). Therefore, in order to replicate and extend the 
current results, Simulation 2 modifies the trajectory of the 
car, so that now (in contrast to Simulation 1) the box 
appears first, and for more time, during the Possible event.  

A B 
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Figure 4: Selected frames from the animation events used in Simulation 2 to train (A)  
and test (B-C) the prediction model (frame number displayed in upper right corner).  

      
 

Figure 5: Mean prediction error (A) and "novelty" (B) in 
Simulation 2, during the Control, Possible, and Impossible 

events. Error bars indicate 95% confidence intervals.  

Simulation 2 
While the results of Simulation 1 suggest that the 
Impossible event may be more difficult to predict, a careful 
examination of Figure 2 shows that in fact the Possible and 
Impossible events are nearly identical. In fact, the only 
visible difference is the location and timing of the box's 
appearance during the two test events. One possibility is that 
the Impossible event is more "surprising" because the box is 
revealed in the car's trajectory. Alternatively, it is because 
the box, a novel object, is revealed sooner and for more time 
during the Impossible event.  

Simulation 2 investigates this second account by moving 
the car's trajectory to the upper half of the display (see 
Figure 4). Thus, the box is now revealed later and for less 
time during the Impossible event. If in fact the model 
acquires some kind of expectations or general knowledge 
about physical objects during the training phase, the 
Impossible event should still generate greater prediction 
errors and be more dissimilar to the Training event. 
Alternatively, if the prediction model is simply reacting to 
the appearance of a novel object in the display, then the 
Possible event should now produce greater prediction errors 
and be more dissimilar to the Training event.  

Method 
The method of Simulation 2 was identical to that of 

Simulation 1, with one exception as noted above: 
specifically, the path of the car was modified so that it 

moved along the upper half of the display (see Figure 4). As 
before, 50 SRNs were trained and tested.  

Results 
As Figures 5 indicates, the overall pattern of results in 

Simulation 2 was the mirror-image of that in Simulation 1. 
First, Figure 5A presents MSE per pixel during the test 
phase. Mean errors were 0.014, 0.019, and 0.015 for the 
Control, Possible, and Impossible events, respectively. In 
contrast to Simulation 1, prediction errors during the 
Impossible event were significantly lower than during the 
Possible event (t(49) = 48.90, p < .001).  

Second, mean novelty of the Control, Possible, and 
Impossible events was 0.05, 0.30, and 0.15, respectively 
(see Figure 5B). Paralleling the previous analysis, the 
Impossible event was significantly less novel than the 
Possible event (t(49) = 26.46, p < .001).  

Discussion 
Unlike the results of Simulation 1, those of Simulation 2 

suggest that the Possible event should not only be more 
difficult to predict, but also more dissimilar to the Training 
event than the Impossible event. Therefore, in this case the 
prediction model fails to replicate the findings of 
Baillargeon (1986; Baillargeon & DeVos, 1991), as it 
implies that infants in this condition should look longer at 
the Possible than the Impossible event.  

General Discussion 
Taken together, the results of Simulations 1 and 2 provide at 
best a partial replication of Baillargeon's car study 
experiments. However, even the success of Simulation 1 
seems to raise more questions than it answers. In particular, 
why does the performance of the prediction model 
correspond with infants' looking time patterns, when (a) the 
model has no prior physical knowledge, and (b) it is 
presented with computer-animated events (i.e., that are not 
bound by the laws of physics)?  

The answer to this question, perhaps obvious in 
retrospect, is that during training the prediction model learns 
to base its predictions, not on a set of underlying physical 

A 
Training 

Event 

B 
Test Event: 

Possible 

C 
Test Event: 
Impossible 

A B 
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regularities or principles, but instead on superficial 
perceptual features of the event display. Specifically, the 
model's performance during the test phase is determined in 
large part by the appearance of the box. Therefore, in 
whichever event the box appears sooner and for more time 
(i.e., the Impossible event in Simulation 1, and the Possible 
event in Simulation 2), that event leads to greater prediction 
errors and appears more novel in comparison to the Training 
event.  

Consequently, at least one implication of the prediction 
model is that in order to correctly predict or anticipate the 
outcomes of causal events (and consequently, be surprised 
when those predictions are violated), prior knowledge or 
experience may be necessary. Given this close and possibly 
necessary tie between causal expectations and prior 
knowledge, it is perhaps inevitable that some theorists have 
taken a strong theoretical stand in favor of innate, or at least 
very precocious physical knowledge in infants (e.g., 
Baillargeon, 1986; Spelke et al., 1992).  

How might we incorporate prior knowledge into the 
prediction model, so that the appearance of novel objects 
such as the box has a negligible effect, while violations of 
basic physical principles (e.g., two objects in the same place 
at the same time) cause large prediction errors? Specifically, 
what would need to be added to the model in order to 
replicate Baillargeon’s findings? One solution would be to 
give the prediction model basic knowledge about the 
behavior of solid objects. This knowledge could be pre-
programmed in any of several ways (e.g., via the network 
architecture, connection weights, etc.), or alternatively, 
learned through an appropriate series of pre-training 
experiences. For example, prior to watching the training 
event, the model could learn to predict the path of a car that 
approaches a fully visible obstacle (for an example of this 
training strategy, see Schlesinger & Barto, 1999). This prior 
knowledge would then provide a basis for correctly 
predicting when the car should reappear during the Possible 
and Impossible test events.  

A related question concerns the fact that a large number 
of physical knowledge studies not only use the VOE 
paradigm, but also use occluded objects. Therefore, an 
additional implication of the prediction model is that a 
"strong" form of representation (e.g., counterfactual or 
hypothetical reasoning) may also be necessary, so that the 
prediction system can systematically generate predictions 
about events that are only partially observed.  
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