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ABSTRACT OF THE THESIS 

 

A Study to Investigate the Efficacy of Ethylenediamine Tetra-(Methylene Phosphonic Acid) as a 

Coating Material to Reduce the Toxicity of Upconversion Nanoparticles in Liver Cell Lines 

 

by 

 

Ruth Hwang 

 

Master of Science in Environmental Health Sciences  

University of California, Los Angeles, 2019 

Professor Yifang Zhu, Chair 

 

Rare earth metals possess unique properties that make them extremely valuable for various 

industrial applications. Recently, there is a surge in the development of rare earth based 

upconversion nanoparticles (UCNPs) for biomedical applications including bioimaging and 

photothermal cancer therapy. Our findings on rare earth oxide nanoparticle biotransformation in 

an acidic environment and cytotoxicity raises safety concerns for rare earth based UCNPs. 

Although the health impacts of UCNPs have been carried out, they are mostly for lung effects after 

inhalation exposure and there are only limited studies on the effects of UCNPs on the liver. The 

liver is an important organ for nanotoxicological research because it is the primary 

bioaccumulation site for both incidental nanomaterials undergoing extrapulmonary translocation 

after inhalation and theranostic nanoparticles that are intravenously injected. This study aims to 

investigate the biotransformation pathways and mechanisms of toxicity of UCNPs to liver cells 
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and determine whether ethylenediamine tetra-(methylene phosphonic acid) (EDTMP) is a suitable 

protective coating material to prevent liver cell toxicity. Understanding this aspect is important for 

the development of safe UCNPs for biomedical applications. Liver cell viability was assessed after 

exposure to coated and non-coated UCNPs. The EDTMP coating material was effective in 

reducing the toxicity of certain UCNPs based on the dose and chemical composition, suggesting 

it could be a safer-by-design approach for UCNP biomedical applications.  
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1. INTRODUCTION 

1.1 Objective and Rationale  

 

Rare earth metals occur naturally in the environment and can also be engineered into 

nanoparticles for a variety of applications. Natural or anthropogenic exposures to rare earth 

nanomaterials can result in deleterious effects in plants, animals, and humans. Since the surge of  

applications utilizing rare earth nanomaterials, a series of studies have been conducted to 

understand their toxicity and how they can be made safer1,2,3,4,5,6. Indeed, rare earth oxide 

nanoparticles have been found to be toxic to mammalian cells and mouse lungs. Despite all this, 

there remains a knowledge gap on health impacts of a real-life application of rare earth-based 

nanomaterials, upconversion nanoparticles (UCNPs), which is a particle designed with various 

rare earth elements at certain percentages to enhance light absorption and emission. Based on 

previous literature on the toxicity of rare earth oxide nanoparticles, it is hypothesized that UCNPs 

could also induce cytotoxicity and ethylenediamine tetra(methylene phosphonic acid) (EDTMP) 

coating on UCNPs will reduce their toxicity in Kupffer (liver) cells. This project is a crucial step 

in understanding the toxic potential of rare earth nanomaterials with real-life relevance. The 

ultimate goal is to deepen the understanding of how different types of rare earth nanomaterials 

induce toxicity and the efficacy of a protective coating on UCNPs in liver cells. The study will 

characterize UCNPs with different compositions, examine their toxicity, and test the effectiveness 

of EDTMP coating in ameliorating the toxicity. The findings of this study will contribute to 

ongoing efforts in safer design of nanomaterials for medical applications including bioimaging, 

biosensing, and cancer treatment.  
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1.2 Importance, Application, and Toxicity of Nanomaterials  

 

 Nanoparticles, whether they are engineered for scientific and industrial purposes or formed 

as byproducts of industrial processes, are irrevocably found all around in society. Nanosized 

materials of all shapes and compositions possess novel properties that researchers can readily 

harness for technological advancement.  A quick glance down a drugstore aisle will reveal items 

such as sunscreens, cosmetics, and powdered foods that contain nanoparticles7,8. For example, 

modern sunscreens contain titanium and zinc oxide nanoparticles that absorb and scatter UV lights, 

and their nano-size makes them transparent to avoid undesirable “white-out” effects9,10. Other 

common applications include, but are not limited to, products in transportation, electronics, 

agriculture, and medicine7-8,11,12,13,14. In medicine, physicians are continuously looking for new 

ways to improve diagnosis and treatments for patients. Engineered nanomaterials have the 

advantage of their small size to access previously inaccessible areas for targeted drug delivery and 

possess unique properties such as photoluminescence for bioimaging3,15. Furthermore, engineered 

nanomaterials can benefit the environment by enhancing current methods of waste water treatment 

by improving the photodegradation and reduction of dyes, organics, and pharmaceutical 

compounds16,17. Although engineered nanomaterials offer improvements not only to medicine but 

also many other industrial disciplines, these applications are dependent upon their safety profiles. 

Among the various types of nanomaterials, rare earth materials are increasingly used in 

many industries for their magnetic, optical, and electronic properties18. In the process of extracting 

rare earth elements through rare earth mining and smelting, the generated aerosols present hazards 

not only to the workers but also to the public in surrounding areas. In the Bayan Obo mine in 

China, inhalation exposure to ultrafine rare earth containing dusts causes severe pulmonary 

diseases, which is an ongoing public health problem19. Increased demand among industries for rare 
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earth nanomaterials, leads to increased mining, separation, and consequently, increases 

possibilities of nanomaterial exposure to humans and the environment. Many studies have 

investigated engineered nanomaterials that are used in common consumer products such as silver 

and silica nanoparticles and have found that they can be toxic to humans, animals, plants, and 

aquatic species20,21,22,23. For each distinct type of nanomaterial, there are different physical and 

chemical properties that are responsible for their mechanism of toxicity. Some defining 

characteristics and factors that contribute to toxicity are size, shape, surface charge, aspect ratio, 

particle composition, and ion dissolution24,25. For example, analysis of zinc oxide nanoparticles 

indicates toxicity in mammalian cells and animals as a result of dissolution and the release of toxic 

zinc ions2,5,26. Similarly, silver nanoparticles are toxic and the mechanism involve dissolution and 

release of silver ions27,28. There are other mechanisms of toxicity induced by nanomaterials. For 

example, carbon nanotubes can rupture lysosomal membranes and result in inflammation and 

fibrosis due to high aspect ratios29. While the health hazards such as asthma, lung cancer, and 

cardiopulmonary disease from exposure to ambient ultrafine particles are well studied30,31,32,33,34,35, 

less is understood on the magnitude that engineered nanoparticles contribute to diseases36. Thus, 

there is a need to study nanoparticles in a controlled setting to understand their mechanism of 

toxicity and pinpoint the properties that make them toxic. Focus should be given to industrially 

relevant nanomaterials since exposures to them are more likely to occur in real-life.  

 

1.3 Rare Earth Oxide and Upconversion Nanoparticles  

 

 Recently, nanomaterials composed entirely or partially of rare earth oxide nanoparticles 

(REO NPs), are increasingly in use across numerous industries for their magnetic, optical, and 

electronic properties18. Among the seventeen rare earth elements, cerium (Ce), erbium (Er), 
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gadolinium (Gd), lanthanum (La), lutetium (Lu), neodymium (Nd), thulium (Tm), ytterbium (Yb), 

and yttrium (Y) are examples of commonly used REO NPs in industry for applications such as 

bio-imaging, catalysts, magnets, and batteries18,37,38. These materials possess unique luminescence 

properties that are particularly useful for improving medical imaging. For example, gadolinium is 

the base ingredient serving as magnetic resonance imaging (MRI) contrast agents39. While 

gadolinium can improve the image quality in MRI, there is a risk of nephrogenic systemic fibrosis 

in patients with renal impairment40. Furthermore, occupational exposures from mines to respirable 

ultrafine rare earth particles can cause coughing, inflammation, fibrosis, and eventually result in 

pneumoconiosis41. Other examples of commercial applications of rare earth nanomaterials are 

lanthanum for secondary batteries, exhaust and water purification, and yttrium for fluorescent 

lighting, fiber optics, and flat screen displays42.  

The unique properties of rare earth metals can be combined with other enhancing elements 

to create UCNPs. This real-life application involves the doping of a transition metal host lattice 

with two rare earth metal guest dopants. The guest dopants consist of an activator and sensitizer 

that work together to absorb and convert two or more low energy photons (near infrared light) into 

an emission of one high energy photon (ultra violet light)6,38,43. This nonlinear optical process of 

upconversion is known as anti-Stokes luminescence44. While still relatively new, UCNPs are being 

actively researched for medical applications including bioimaging, biosensing, and photothermal 

cancer therapy45,46,47. With increasing production and applications of rare earth nanomaterials, 

there is also a growing concern on the potential hazardous effects of these materials on the 

environment and humans. 

1.4 Rare Earth Nanomaterial Toxicity   
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 The unique properties that make rare earth nanomaterials useful may also render them 

toxic. In plants and animals, commercially available engineered nanoparticles such as cerium 

dioxide and lanthanum dioxide, are capable of entering, undergoing bio-transformation, and 

causing toxicity to plants and animals. The biotransformation process, whether it is in the soil 

surrounding plant roots or circulating to organs through an animals’ body, plays an enormous role 

in the toxicity of rare earth nanomaterials48,52. For example, the rhizosphere that envelops roots 

with soil is rich in microbes, mucilage, organic acids, enzymes, and reducing substances, which 

form a microenvironment that can dissolve and reduce nanoparticles48. In a similar fashion, the 

acidic biological environment found in animal cells such as in lysosomes and macrophages, can 

dissolve rare earth nanomaterials, and the dissolved rare earth metal ions have a high binding 

affinity to phosphate groups. Rare earth ions binding with phosphates leads to the formation of 

needle-like or sea urchin-like structures. When phosphates in the lysosomal fluid are all consumed, 

the rare earth ions strip away phosphate groups from lysosomal membranes, causing lysosomal 

damage and releasing lysosomal enzymes including cathepsin B, which could activate NLRP3 

inflammasomes leading to IL-1β production. IL-1β could trigger a series of events to epithelial 

cells and fibroblasts in the lung, leading to TGF-β and PDGF-AA secretion25,49,50,51. This chain of 

events can lead to pro-inflammatory effects, cell death, and fibrosis.  

 Although many studies have focused on REO NPs toxicity, toxicity of UCNPs is relatively 

less studied. It is reasonable to think that UCNPs could undergo similar biotransformation as REOs 

and could induce toxicity in a similar fashion. Indeed, a couple of studies observed that 

NaYF4:Er/Yb, an UCNP, could undergo transformation in acidic biological media and be 

transformed into needle-like yttrium phosphate clusters6,52. These results are a clear indication that 
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UCNPs could also induce toxicity similar to that of REO NPs. In addition, this raises the question 

on how to inhibit UCNPs biotransformation and reduce toxicity. 

1.5 Particle Coating as a Safer Design Method 

 

Previously, it was demonstrated that a phosphate buffer solution could coat and reduce the 

toxic effects of rare earth oxide nanoparticles on THP-1 cells49. However, the protective effects of 

phosphate coating were only temporary. Therefore, phosphonates, which contain one or more C-

PO(OH)2 or C-PO-(OR)2 groups were introduced with the hopes of increasing binding efficiency 

to rare earth atoms to prevent the dissolution of REOs, which is the critical first step of its 

biotransformation. Li et al. tested a variety of phosphate groups containing phosphonates including 

EDTMP, N-(phosphonomethyl)iminodiacetic acid, 3-(bromopropyl)phosphonic acid, and 

(aminomethyl)phosphonic acid as REO coating materials6. Among the four coating materials 

tested, EDTMP demonstrated the greatest particle stabilization in an acidic environment.  Besides 

rare earth oxides, EDTMP is also an effective chelating agent for metal ions53. EDTMP has high 

affinity to metals such as copper, iron, zinc, nickel, cobalt, magnesium, and calcium54. This 

property makes EDTMP an ideal chemical to coat metal oxide nanoparticles that contain metals 

that are harmful to cells. Based on this data, it is hypothesized that EDTMP would also be effective 

in coating UCNPs and reduce their biotransformation and toxicity. Thus, the current study selected 

EDTMP to study its protective effects on UCNPs6,49. 

In addition to safety concerns, another important consideration on EDTMP coated 

nanoparticles is their function. In this case, it is the upconversion effects of UCNPs. If the particle 

is made safer but the UCNP loses its luminescent property and no longer can perform upconversion 

function, the purpose of coating is compromised43. A study found that 92% of cells treated with 
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EDTMP coated UCNPs still had fluorescence compared to only 18% fluorescent cells treated with 

pristine UCNPs after 24 hours. The implications of these results are that EDTMP coating on 

UCNPs does not compromise its photoluminescent property, but rather maintains photostability 

and imaging intensity. Although, the coating protects cells against the pro-inflammatory effects of 

THP-1 cells, the effects on REO induced Kupffer cell death is not clear6. 

Taking into consideration existing research, the challenge remains to determine whether 

EDTMP coating on UCNPs is an efficacious safer design method in liver cells, especially Kupffer 

cells, the first line of defense in the liver. To address this question, four relevant UCNPs with 

different chemical compositions and coatings including NaYF4:Yb,Tm, NaYF4:Yb,Er, 

NaYF4:Yb,Er(polyethylene glycol (PEG) coated), and NaYF4:Yb,Er(dense silica coated) were 

selected for the experiment. Previously, it was demonstrated in REO NPs that EDTMP is not 

completely protective of all types of nanoparticles, with some rare earth metals exhibiting higher 

toxicity than others. In order to increase the real-life relevance of our study, two types of UCNPs 

were selected with the goal to test different compositions of UCNPs in order to obtain a more 

complete picture. NaYF4:Yb,Er and NaYF4:Yb,Tm were selected based on their response to near-

infrared irradiation by emitting multiple colors useful for various biolabeling and cancer treatment 

applications55,56. Additionally, polyethylene glycol (PEG) and dense silica (Silica) surface coatings 

were chosen on the erbium doped UCNP (NaYF4:Yb,Er) to see the EDTMP coating effects in the 

presence of common surface coatings.   

The particles were physically and chemically characterized to determine basic properties 

and coating efficiency. Following confirmation of EDTMP coating on the UCNPs, cell viability 

and imaging assays were completed to assess the effect of coated and non-coated particles in 
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Kupffer cells. Pristine particle toxicity and efficacy of EDTMP coating on reducing cell toxicity 

were subsequently analyzed, reported, and discussed in the following sections.  

2. METHODS 

2.1 Reagents and Materials 

 

Two categories of nanomaterials were used in the experiments: REO NPs (Gd2O3, La2O3, 

Y2O3, and CeO2) as control nanoparticles based on our previous published reports and UCNPs 

(NaYF4:Yb,Tm, NaYF4:Yb,Er, NaYF4:Yb,Er(PEG coated), and NaYF4:Yb,Er(dense silica 

coated)). Gd2O3 and La2O3 were purchased from Nanostructured and Amorphous Materials, Inc. 

(Katy, TX) while Y2O3 and CeO2 were purchased from Meliorum Technologies (Rochester, NY).  

The four upconversion nanoparticles were purchased from Creative Diagnostics (Shirley, NY). 

Ethylenediamine tetra-(methylene phosphonic acid) (EDTMP) with 95% purity, the particle 

coating material, was purchased from Santa Cruz Biotechnologies (Santa Ana, CA) (Table S1. 

Supplementary Information). 

KUP5, an immortalized Kupffer cell line established from the C57BL/6 mouse strain and 

transformed by the human c-myc oncogene, was purchased from RIKEN CELL BANK (Ibaraki, 

Japan). Reagents obtained for KUP5 cells include DMEM cell culture media (Thermo Fisher 

Scientific, Waltham, MA), bovine insulin (Sigma - Aldrich, St. Louis, MO), trypsin (Thermo 

Fisher Scientific, Waltham, MA), 1-thioglycerol (Sigma - Aldrich, St. Louis, MO), 

Lipopolysaccharides (LPS) (Sigma - Aldrich, St. Louis, MO), and 10% fetal bovine serum and 

antibiotics prepared in-house.  

Assay kits used in the experiment include the CellTiter 96® Aqueous 5-(3-

carboxymethoxyphenyl)-2-(4,5-dimenthylthiazoly)-3-(4-sulfophenyl)tetrazolium (MTS) Assay 
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Reagent (Promega, Madison, WI), CytoTox 96® Non-Radioactive Cytotoxicity Assay (Promega, 

Madison, WI), and Magic Red Cathepsin B Assay Kit (ImmunoChemistry Technologies LLC, 

Bloomington, MN).  

2.2 Cell Culture  

 

A KUP5 cell stock was passaged and grown in DMEM cell culture media that was further 

supplemented with 50 mL of 10% fetal bovine serum, 10 μg/mL of bovine insulin (500 μL), and 

250 μM of 1-Thioglycerol (11 μL). Cells were incubated in sterile conditions at 37° C with 5% 

CO2 and passaged at approximately 80% confluency.  

2.3 Surface Coating  

 

The following EDTMP coating procedure was adopted from Li et al.6. A solution of 20 mL 

of deionized H2O containing 8 mg (400 μg/mL) of EDTMP was prepared in a 50 ml falcon tube. 

4 mg (200 μg/mL) of each nanoparticle was separately dispersed in the EDTMP solution and 

stirred with a magnetic stir bar on a magnetic stirrer at room temperature for 24 hours, resulting in 

a 2:1 coating to particle ratio. Following the 24-hour incubation period, the solution containing the 

nanoparticles was washed with 2 mL of deionized H2O three times by centrifugation at 5000 rpm, 

removal of the supernatant, and resuspension of the pellet with deionized H2O. Finally, after the 

last wash, the EDTMP-coated nanoparticles were resuspended in deionized H2O and stored at 4° 

C. As previously mentioned, increased coating and incubation period were tested to determine the 

most efficacious coating parameters.  

2.4 Physical Characterization of Nanoparticles 
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Pristine, coated, and phagolysosomal simulated fluid (PSF) transformed nanoparticles 

were characterized by transmission electron microscopy (TEM) on a JEOL 1200 EX instrument 

(accelerating voltage 80 kV). Particles for TEM analysis were prepared in deionized H2O at 

concentration 50 µg/mL. The samples were fixed with 2.5% glutaraldehyde solution, embedded 

in resin, cut into ultrathin sections by an ultramicrotome with a diamond knife, and collected on a 

copper grid. A final stain with uranyl acetate and lead citrate was applied before imaging at 

500,000X magnification.  

Fourier transform infrared (FTIR) spectra were collected with Bruker Vertex 70 

instrument. A minimum of 1 mg of dried nanoparticle was required and prepared for analysis by 

drying H2O suspended nanoparticles in a scientific medium laboratory oven. The FTIR instrument 

applied IR of 10,000 cm-1 through each sample. While some of the radiation was scattered, the 

absorbed radiation was converted into vibrational energy which was detected by the instrument 

and read as a spectrum (4000 to 400 cm-1). 

2.5 Assessment of EDTMP Coating Effectiveness  

 

In order to conduct a preliminary assessment of EDTMP coating success, the coated 

nanoparticles were challenged in a PSF buffer. The PSF buffer was formulated with 142 mg/L 

Na2HPO4, 6,650 mg/L NaCl, 62 mg/L Na2SO4, 29 mg/L CaCl4-H2O, 250 mg/L glycine, and 8,090 

mg/L C8H5KO4, in 1 L of deionized H2O at pH 4.549. Coated particles were added to 10 mL of 

PSF buffer at 50 μg/mL in 15 mL falcon tubes and incubated at 37° C for 24 hours. Following 

incubation, the mixture was centrifuged at 10,000 rpm for 10 minutes and washed with 2 mL of 

deionized H2O three times. Lastly, the particles were resuspended in 100 μl of deionized H2O.  The 

integrity and condition of the particles before and after the PSF buffer challenge were visualized 
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and assessed with images obtained by TEM (Figure S1a. Supplementary Information). Additional 

coating ratios (5:1 and 10:1) and incubation period (48 hours) were tested to determine the most 

efficacious coating parameters (Table S2 and Figure S1b. Supplementary Information). 

2.6 Determination of Cellular Viability  

 

KUP5 cell viability to UCNPs was assessed with the MTS assay (CellTiter 96® Aqueous 

MTS Assay Reagent). Cells were incubated for 24 hours at 37° C to seat them into 96-well 

microtiter plates (Corning® Costar® TC-Treated 96-Well Plates) at a density of 2 x 104 cells per 

well. Following incubation, the cells were treated with LPS at 1 μg/mL for 4 hours. Immediately 

after the incubation time, the LPS was removed with a pipet and nanoparticles were added at 

concentrations 0, 6.25, 12.5, 25, 50, 100, and 200 µg/mL with three replicates. The cells were 

incubated with the nanoparticles for 24 hours at 37° C. MTS reagent was diluted with cell culture 

media at a 1:5 reagent to media ratio. The post-nanoparticle exposure supernatant was removed 

with a  multi-channel pipet (stored at -80° C for later use in a 96-well plate) before the MTS reagent 

solution was added and incubated with the cells for 1 hour at 37° C. Lastly, the 96-well plate was 

centrifuged and the supernatant transferred to another 96-well plate with a multi-channel pipet to 

read the absorbance at 490 nm in a Biotek absorbance reader.   

2.7 Assessment of Cytotoxicity   

 

In order to determine UCNP cytotoxicity, cell death was assessed with the Lactate 

Dehydrogenase (LDH) release assay (CytoTox 96® Non-Radioactive Cytotoxicity Assay). KUP5 

cells were seated at 2 x 104 cells per well and primed with 1 μg/mL LPS for 4 hours. The positive 

control was prepared with a lysis solution from the assay kit for maximum LDH release. After 

exposing the cells to LPS for 4 hours, LPS was removed and the cells were exposed to 200 ug/mL 
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of each nanoparticle for 24 hours. The supernatant was collected into a 96-well plate and incubated 

at room temperature with the CytoTox 96® Reagent for 30 minutes. The plate was wrapped in foil 

to protect the contents from light. After a stop solution was added, the absorbance was read at 490 

nm on a Biotek absorbance reader.  

2.8 Confocal Microscopy Imaging of Lysosomal Integrity  

 

Using the Magic Red Cathepsin B Assay Kit, KUP5 cells were seated overnight at 37° C 

in 8-well Lab-Tek chamber slides at a density of 5 x 104 cells. The cells were primed with LPS (1 

µg/mL) for 4 hours and exposed to nanoparticles (50 µg/mL) for 1 hour. Uniformity of coverage 

was of nanoparticles was confirmed under a microscope. Following exposure, the cells were 

incubated with 2 μL of Magic Red Cathepsin B working solution for 30 minutes at 37° C. The 

Magic Red Cathepsin B substrate is supplied as a lyophilized powder which is reconstituted with 

200 µl of DMSO. This reconstituted stock is diluted 1:10 with deionized H2O then added to cells 

at a 1:26 ratio. The cells were then fixed with 4% paraformaldehyde in phosphate buffer solution 

(PBS) in order to preserve cell morphology. Lastly, the cells were stained with 2 μL of Hoechst 

33342 (5 µg/mL) and imaged at 100,000X magnification under a Leica Confocal SP8-SMD 

microscope with excitation filter of 365 nm and emission of 480 nm. Three areas from each 

treatment were randomly selected and imaged. Images were analyzed with Image J software to 

obtain corrected total cell fluorescence (CTCF). CTCF was corrected for background noise in the 

images.  

2.9 Statistical Analysis 

 

Using historical data, sample sizes were calculated to achieve an effect level of at least 1-

5% difference in cell viability. A minimum of 3 samples per treatment group is admissible in order 
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to draw statistical conclusions with a Student’s t-Test at 90% power and 0.05 alpha level. The 

following formula was used for sample size calculations: 

𝑛𝑖 =
(𝑍

1−
𝛼
2

+𝑍1−𝛽)

2

Δ2 s 

Where      Δ =  
𝜇2−𝜇1

𝜎2  

In sample calculations specified above, 𝜎2 is estimated by pooled variance, and it’s given by: 

𝑆𝑝𝑜𝑜𝑙𝑒𝑑 =
(𝑛1 − 1)𝑆1

2 + (𝑛2 − 1)𝑆2
2

𝑛1 + 𝑛2 − 2
 

 

MTS data was collected in the form of absorbance values. The negative control values were 

averaged to obtain a healthy cell baseline absorbance value. Each individual negative control value 

was then divided by the baseline mean and multiplied by 100 and averaged together to achieve a 

cell viability percentage for the negative control. The absorbance values from the experimental 

samples were analyzed in the same way to obtain a mean percentage of cell viability for each 

particle type and dose. For each particle type, the dose at which the greatest difference between 

the two treatment groups (EDTMP-coated and non-coated) was calculated by finding the 

difference in means. A two-sample Student t-Test assuming unequal variances was then used to 

determine whether the differences in means were significant. The same approach was taken for 

LDH absorbance and confocal microscopy fluorescence data.  

3. RESULTS   

3.1 REO NP Coating and Abiotic transformation in PSF 

 

 While the focus of this project is UCNPs, the coating method was first tested on control 

REO NPs to determine the best coating ratio and incubation time. Based on Li et al.’s coating 
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method, a 2:1 EDTMP to nanoparticle weight ratio and 24-hour incubation period was chosen6. 

Additionally, a PBS coating, a 5:1 and a 10:1 EDTMP coating ratio, and a 48-hour incubation 

period were tested. PBS was not an effective protective coating (data not shown), nor were 

increased coating ratios and incubation time of EDTMP (Figure S1b. Supplementary Information).  

Thus, for the most efficacious coating strategy, it was decided to use a 2:1 coating ratio and 24-

hour incubation period. 

Furthermore, in order to determine the robustness and quality of EDTMP coating on REO 

NPs, a PSF challenge was completed. PSF (pH 4.5) is a cell free simulated acidic media present 

in lysosomes in cells. The REO NPs were assessed by TEM images comparing before and after 

exposure to PSF. The results demonstrate that EDTMP is effective at preventing abiotic 

transformation of La2O3 and CeO2 nanoparticle but less protective of Gd2O3 and Y2O3 

nanoparticles (Figure S1a. Supplementary Information). This is an indication of expected 

differential levels of toxicity between different rare earth nanomaterials. Therefore, EDTMP is 

more effective at preventing abiotic transformation of REO NPs in acidic biological media for 

certain REOs than others. From these data, the coating experiment was continued with 

commercially available UCNPs.  

3.2 UCNP Physical Chemical Characterization   

 

 The four UCNPs were obtained from a commercial source which came with basic particle 

information such as diameter, storage buffer, and size distribution. Each particle was further 

characterized in-house to obtain a thorough profile in order to better understand their properties, 

which are useful in building a toxicity relationship for the UCNPs.  
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TEM is a technique used to visualize and characterize nanomaterial structures in media, 

plants, and animal tissues. A beam of electrons is transmitted through a prepared sample to form 

an image. The UCNPs were prepared at 50 µg/mL in H2O and imaged with and without EDTMP 

coating. The images showed the same morphology between pristine and EDTMP coated UCNPs 

(Figure 1a). This is an expected result as a coating should not alter the shape and size of 

nanoparticles. Consistent with the commercially provided information, primary particle diameters 

ranged from 20 to 40 nm. NaYF4:Yb,Tm however formed some particle agglomerates with sizes 

greater than 50 nm. The shapes of the particles are predominantly circular or hexagonal. 

 The TEM images revealed no differences between the pristine and EDTMP-coated 

UCNPs. Therefore, in order to confirm that the particles had been successfully coated with 

EDTMP, FTIR spectra was collected and analyzed. The absorbance peaks seen in Figure 2 are 

labelled accordingly to indicate functional groups present in each type of nanoparticle. A solid red 

line represents EDTMP-coated UCNPs and a dotted black line represents the non-coated UCNP. 

In figures 2b and 2d, there is a distinguishable peak labelled P=O at approximately 1000 cm-1 

wavenumber for EDTMP-coated particles. This peak is characteristic of the P=O group found in 

EDTMP and is not present in the absorbance profiles of the non-coated particles. Figures 2a and 

2c however, do not display distinct P=O peaks. 
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Figure 1. Physical characterization of UCNPs by TEM show no change in morphology between 

the non-coated and EDTMP-coated UCNPs. 

 

a) NaYF4:Yb,Er(PEG)           b) NaYF4:Yb,Er 

                                                           

c) NaYF4:Yb,Er(silica)                                                          d) NaYF4:Yb,Tm 
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Figure 2. Chemical characterization of UCNPs by FTIR demonstrates presence of EDTMP 

coating. Graphs b) and d) show a distinct P=O peak in the EDTMP-coated particles that is not 

present in the non-coated particles. This indicates the successful coating of EDTMP onto the 

UCNPs. Graphs a) and c) however do not have distinct P=O peaks. This is likely due to the existing 

PEG and dense silica coating on the NaYF4:Yb,Er particles.  a) NaYF4:Yb,Er(PEG). b) 

NaYF4:Yb,Er. c) NaYF4:Yb,Er(silica). d) NaYF4:Yb,Tm. 

 

3.3 Determination of UCNP toxicity in KUP5 Cells  

 

KUP5 cells were exposed to a range of UCNPs ranging from a concentration of 0-200 

µg/mL (0, 6.25, 12.5, 25, 50, 100, 200 µg/mL). This dose range was decided and based upon other 

studies on metal oxide toxicity in the liver1,25,57,58. The toxicological analysis was first completed 

with the MTS cellular viability assay. MTS, is a tetrazolium salt compound that is biologically 

reduced by living cells into a formazan product59. This conversion relies on NADPH or NADH 

produced by dehydrogenase enzymes in cells. The presence of dehydrogenase enzymes is a 

measure of a cell’s viability. Therefore, the absorbance intensity of formazan is proportional to the 

number of metabolically active living cells in culture. The dose-response curves for three of the 

four UCNPs clearly indicate a significant difference in cell viability when exposed to particles for 

24 hours with and without EDTMP coating (Figure 3). Without EDTMP coating for all four 

UCNPs, at concentrations of 50 μg/mL and lower, cell viability stays above 50% for all UCNPs. 

Greater than 50 μg/mL decreases viability to approximately 20-30%.  Of the four particles, 

EDTMP-coated NaYF4:Yb,Er(PEG) (Figure 3a) displayed the greatest significant cell viability 

difference to the non-coated NaYF4:Yb,Er(PEG). Between the coated and non-coated groups, the 

greatest difference was 47% (p < 0.05) at 100 μg/mL. NaYF4:Yb,Er similarly showed percent 

viability improvement but to a lesser extent with a 23% difference at 6.25 μg/mL (p < 0.05). KUP5 

exposed EDTMP-coated NaYF4:Yb,Er(silica) exhibited improved viability only at doses equal to 
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or lower than 50 µg/mL. There is the greatest difference of 17% at 6.25 μg/mL (p < 0.05). Cells 

exposed to the thulium doped particle, NaYF4:Yb,Tm, did not display any improvement in 

viability. The greatest difference in means was only 0.37% at 12.5 μg/mL (p > 0.05). Overall for 

the UCNPs with a significant difference in means between the coated and non-coated treatments, 

there was an approximate 20-50% viability improvement. 

a)        b)  

          

c)                                                                              d)  
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Figure 3. Graphs a) through d) demonstrate in order from least to most toxic, the differences in 

KUP5 cellular viability (MTS assay) when exposed to non-coated and EDTMP-coated UCNPs.                      

a) NaYF4:Yb,Er(PEG). b) NaYF4:Yb,Er. c) NaYF4:Yb,Er(silica). d) NaYF4:Yb,Tm. *p < 0.05.  

 

 To further investigate toxicity to UCNPs, KUP5 cytotoxicity was determined with the LDH 

assay. While the MTS assay quantifies living cells, the LDH assay quantifies dead lysed cells. 

Lactate dehydrogenase (LDH) is an enzyme found in the cytoplasm of cells. When there is a loss 

of membrane integrity due to various stressors including exposure to xenobiotics, LDH is released. 

This is a phenomenon characteristic of membrane damage and cell death. The assay is capable of 

measuring LDH release from cell membrane damage by quantifying the conversion of a 

tetrazolium salt (iodonitro-tetrazolium violet; INT) by LDH into a formazan product60,61. The 

highest dose of 200 μg/mL UCNPs from the MTS assay was used to measure cell death as the 

endpoint. The results from the LDH assay (Figure 4) closely parallel those from the MTS assay. 

EDTMP coating on NaYF4:Yb,Tm had no effect on reducing cytotoxicity. The other three particles 

exhibited significant differences with p-values < 0.05 in toxicity between the non-coated and 

EDTMP coated groups, consistent with the cell viability results by MTS assay (Figure 3). From 

the non-coated to EDTMP-coated NaYF4:Yb,Er, NaYF4:Yb,Er(silica), and NaYF4:Yb,Er(PEG) 

there was an approximate 42%, 39%, and 37% decrease in cytotoxicity, respectively. 
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Figure 4. Cell death measured by LDH release from KUP5 cells exposed to non-coated and 

EDTMP-coated UCNPs. * p < 0.05.  

 

3.4 Evaluation of Lysosomal Intactness 

 

It is known that cells take up UCNPs which accumulate in lysosomes, potentially leading 

to lysosomal damage. To study lysosomal damage, KUP5 cells exposed to UCNPs, were fixed and 

stained with Hoechst 33342 and Magic Red Substrate. Three sections of each treatment, with and 

without EDTMP coating, were randomly selected to be imaged. One of three images for each 

treatment was randomly selected and displayed in Figure 5. Nuclei are labeled in blue with Hoechst 

33342 to help locate each individual cell. Magic red substrate fluoresces red when cleaved by 

cathepsin B, a lysosomal cysteine protease. Therefore, red in the images shows damaged 

lysosomes. A higher intensity of red fluorescence indicates greater damage to cells and therefore 
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cell viability.  The confocal images show that EDTMP coating on UCNPs is slightly protective in 

KUP5 cells. With the exception of NaYF4:Yb,Tm, the non-coated treatments display greater 

counts of red fluorescence per cell. Image J analysis was performed to quantify the total cell 

fluorescence. A cell was randomly selected from each image and measured for area, integrated 

density, and mean fluorescence of background readings. Integrated density is the sum of the values 

of the pixels in the image. A corrected total cell fluorescence (CTCF) was calculated and averaged 

for each UCNPs by multiplying the area of a selected cell by the mean fluorescence of background 

readings and subtracting it from the integrated density. The CTCFs of EDTMP-coated and non-

coated UCNPs are displayed in Figure 5b. Although EDTMP coating reduced the fluorescence 

intensity for all UCNPs, significant difference in mean CTCFs between the two treatments was 

found only for NaYF4:Yb,Er(PEG). 

(a) 

 

b)   
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Figure 5. Confocal microscopy images of KUP5 cells and corresponding corrected total cell 

fluorescence derived from Image J Analysis. a) Nuclei are labelled in blue and lysosomal enzymes 

in red. b) Corrected total cell fluorescence with higher fluorescence values indicate a greater extent 

of damage to KUP5 cell lysosomes. *p < 0.05. 

 

4. DISCUSSION 

4.1 Summary of Results   
 

 In this study, four commercially available UCNPs were characterized and assessed in 

KUP5 liver cells to understand their properties and cytotoxicity relationships.  Each particle was 

coated with EDTMP and compared to their pristine counterparts. The most important finding in 

this study is that an EDTMP coating can significantly reduce the toxicity of certain UCNPs. 

Additionally, the results indicate that certain UCNPs are more toxic than others due to their dopants 

and coatings. KUP5 cells were on average more viable when exposed to EDTMP-coated erbium 

than thulium UCNPs. Within erbium-doped UCNPs, PEG and silica coating contributed to 
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differential toxicities as well. Despite the variable protective effects of EDTMP coating, overall it 

is a potentially promising safer design material.  

4.2 EDTMP Coating onto UCNPs is Confirmed with TEM and FTIR  

 

 TEM images provide a physical assessment of a coating on a material while FTIR gives a 

definitive confirmation on the presence of a coating. FTIR analysis is therefore essential to 

confirming the presence and successful coating of the EDTMP coating onto UCNPs. TEM images 

in Figure 1 indicated no morphological differences between coated and non-coated particles. 

Unsurprisingly, EDTMP coating did not alter the physical but rather the chemical properties of a 

nanoparticle. In the images for NaYF4:Yb,Er(silica), the dense silica coating is clearly visible as a 

lighter grey ring around a darker circle. However, coatings such as PEG and EDTMP, are not 

electron dense and thus are not visible by TEM. FTIR graphs on the other hand provide a chemical 

snapshot of a material and therefore presence of coatings could be confirmed. The distinct P=O 

peak for NaYF4:Yb,Er and NaYF4:Yb,Tm confirmed the presence of the phosphonate coating onto 

the particles. For the other two UCNPs, NaYF4:Yb,Er(PEG) had a slight P=O peak, while 

NaYF4:Yb(Silica) had no distinguishable P=O peak. Since NaYF4:Yb,Er is able to be successfully 

coated with EDTMP, theoretically, NaYF4:Yb,Er(PEG) and NaYF4:Yb,Er(silica) should be as 

well. However, it is possible that the existing coatings (PEG and silica) on NaYF4:Yb,Er interfered 

with the proper coating of EDTMP and therefore were not clearly identified by FTIR. Although 

the coating is not well confirmed for these two particles as seen in Figures 2a and 2c, the difference 

between the two treatments observed in the following assays is sufficient evidence to conclude 

that the particles are coated with EDTMP.  
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4.3 Chemical Composition and Dose affects Particle Toxicity and Cell Viability 

 

A dose-response curve is fundamental to understanding a xenobiotics hazardous potential 

and toxicity. In vitro analysis of KUP5 cell viability after exposure to different concentrations of 

EDTMP coated and non-coated UCNPs revealed the differential toxicities of the two metal 

dopants, Er and Tm, and surface coatings, PEG and silica. MTS data showed that all four pristine 

UCNPs, had similar baseline toxicities in terms of cellular viability. Starting at 100% viability for 

untreated KUP5 cells, viability gradually decreased to approximately 30% with increased UCNP 

concentrations. However, when coated with EDTMP, NaYF4:Yb,Er-PEG exposed KUP5 cells 

demonstrated the greatest increase in cell viability, whereas NaYF4:Yb,Tm exposed KUP5 were 

not protected by the EDTMP coating (Figure 2(a)). KUP5 exposed to EDTMP-NaYF4:Yb,Er and 

EDTMP-NaYF4:Yb,Er-silica had increased viability but to a lesser degree than EDTMP-

NaYF4:Yb,Er-PEG. The difference between UCNPs doped with thulium versus those doped with 

erbium was more noticeable. Thulium (Tm) and erbium (Er) are the rare earth metal dopants 

(activators) that set the nanoparticles chemically apart. Under the current test conditions, the results 

of the MTS cell viability assay indicate the inherent cytotoxicity of each different particle. The 

order of particle toxicities is clearly demonstrated from least toxic in Figure 2(a) to most toxic in 

Figure 2(d). With EDTMP-coating, cell viability improves from 25% to 60% when the 

concentration of NaYF4:Yb,Er-PEG is at the highest dose (200 μg/mL), even after 24 hours of 

incubation. From these results, it can be concluded that EDTMP coating is most effective in 

reducing NaYF4:Yb,Er-PEG UCNP induced- cytotoxicity compared to the other three UCNPs.  

To confirm these differences in toxicities, cystolic LDH released from KUP5 cells, an 

indicator of cell membrane integrity, was additionally measured. LDH levels detected in this assay 

is equivalent to the proportion of lysed cells. Overall, the LDH assay results reflect those of the 
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MTS cell viability assay (Figure 3). There is however a dramatic decrease in % cytotoxicity for 

EDTMP-coated NaYF4:Yb,Er-(silica) at 200 μg/mL whereas the cell viability does not increase at 

the same dose. These results reflect the sensitivity of the LDH assay in low-level cytotoxicity 

detection and may indicate that among the viable cells, there is a proportion that have disrupted or 

damaged membranes but are not detected as viable in the MTS assay. Therefore, EDTMP can be 

partially protective on NaYF4:Yb,Er-(silica) at higher concentrations.  

The results of the MTS and LDH assays raise the question of why there are differential 

toxicities between the dopants and coating materials. PEG is a polar hydrophilic polymer that has 

been demonstrated to be a biologically inert coating material that reduces nanoparticle cytotoxicity 

and increases water solubility for biological applications4,56,62. Similarly, a silica coating makes 

nanoparticles more dispersible in water and has good in vitro and in vivo biocompatibility58,63. However, 

studies have shown that amorphous silica nanoparticles can induce oxidative stress, inflammation, 

and apoptosis in KUP5 cells25,64. While both coating materials are useful to increase dispersibility 

and biocompatibility of UCNPs in biomedical applications, their inherent properties are a possible 

explanation to the differential toxicities of EDTMP-coated NaYF4:Yb,Er-PEG and NaYF4:Yb,Er-

silica. Meanwhile, there are numerous studies on the bioimaging capabilities of NaYF4:Yb,Tm, 

however, little to no studies on its toxicity in the liver.  In fact, there is research that indicates 

NaYF4:Yb,Tm has low toxicity and is safe65,66. Such studies use different cell lines from different 

species and cytotoxicity assays; therefore, it is difficult to compare the results of this study to 

others. As rare earth materials gain momentum in industry, there still remains a knowledge gap on 

their toxicokinetics and toxicodynamics.  Research to thoroughly map out and understand 

metabolism and mechanisms of toxicity for different UCNPs should be prioritized.  Completing 
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the picture of a novel material’s properties and toxicity profiles will establish a baseline that allows 

for future research advancement.  

The confocal microscopy images of KUP5 cells provide a qualitative visual aid to assess 

lysosomal health. The lysosome is a key organelle for processing and digesting endocytosed 

foreign bodies such as nanoparticles. Thus, if lysosomes are compromised, a cell’s ability to 

protect itself from potentially toxic xenobiotics is also compromised. The negative control image 

shows punctate red fluorescence, indicating healthy viable cells (Figure 4(a) control panel). The 

few red spots visible are as expected since even in non-exposed populations, not all cells will be 

healthy. KUP5 cells exposed to both EDTMP-coated and non-coated UCNPs displayed high levels 

of red fluorescence, indicating lysosomal damage and cathepsin B release. Despite the slight 

protective effect of an EDTMP coating, cell viability is still compromised to an extent as indicated 

by damaged lysosomes. While there is some discrepancy in cell density seen particularly between 

the coated and non-coated NaYF4:Yb,Tm images, overall, there does not appear to be a decrease 

in cells with damaged lysosomes, but rather an increase. For NaYF4:Yb,Er, NaYF4:Yb,Er-PEG, 

and NaYF4:Yb,Er-silica, there is a slight decrease in cells with compromised lysosomes. 

Quantifiable CTCF converted from the confocal microscopy images by Image J analysis allows 

for the measurement of lysosomal damage. Despite the overall trend that suggests KUP5 exposed 

EDTMP-coated UCNPs experience less lyososomal rupturing, there is a high level of variability 

in the data. The variability potentially arises from human error in light adjustments and image area 

selection during imaging. Although differences were found between the EDTMP-coated and non-

coated treated cell viabilities, a significant difference was found only for NaYF4:Yb,Er. Despite of 

challenges to obtain consistent confocal images and quantify the data, lysosomal intactness 

presents itself as an important indicator of cell death and toxicity of an UCNPs. 
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4.4  Limitations and Next Steps  

 

While there are numerous ways to evaluate cellular viability, the MTS, LDH, and Magic 

Red Cathepsin B assays were selected based on the merits of cost, feasibility of completion in a 

relatively short time period, and availability of experimental equipment. Without financial and 

temporal constraints, it would have been ideal to use a much larger library of UCNPs and a greater 

variety of assays to measure cell viability and other factors such as inflammatory cytokines. The 

current work is preliminary in nature and there remains numerous aspects of UCNP toxicity that 

need to be explored and studied. Next steps include the introduction of animal studies to better 

understand EDTMP coated UCNP in vivo toxicity and interaction with metal nutrients in the body. 

Additionally, there is a need to test more biocompatible coating materials since the results of this 

study demonstrated that EDTMP is not protective of all nanoparticles. Another benefit of 

continued exploration of physicochemical properties and cytotoxicity of different UCNPs, is to 

discover novel materials that may substitute the toxic materials with less toxic ones. A better 

understanding of mechanisms of toxicity provides a baseline to develop safer design methods 

while still maintaining application of the material.                             

5. CONCLUSIONS 

 

 The three cytotoxicity endpoints, cell viability, LDH leakage, and lysosomal integrity, were 

assessed in this study, which represent indicators of biological function to provide a preliminary 

understanding of a material’s toxicity. EDTMP is a biocompatible coating material that not only 

does not alter the upconversion function of the particle but also reduces its cytotoxicity on three 

of the four UCNPs investigated. EDTMP coating on NaYF4:Yb,Er, NaYF4:Yb,Er-PEG, and 

NaYF4:Yb,Er-silica were more effective than NaYF4:Yb,Tm. There was a significant difference 
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in percent cellular viability of 47%, 23%, and 17% and decrease in cytotoxicity of 37%, 42%, and 

39% of Kupffer cells exposed to non-coated and EDTMP-coated NaYF4:Yb,Er-PEG, 

NaYF4:Yb,Er, and NaYF4:Yb,Er-silica, respectively. The findings of this study contribute to the 

overall understanding of rare earth nanomaterial toxicity and provide insights to their mechanisms 

of toxicity and subsequent health risk and impact assessments. Furthermore, an understanding of 

how different coating materials affect a particles’ toxicity can help researchers to make decisions 

on suitable materials for safer biomedical applications. 
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6. SUPPLEMENTARY INFORMATION 

 

Nanoparticle Manufacturer Diameter (nm) 

Gd2O3 Nanostructured Amorphous Materials, 

Inc. 

15 - 30  

La2O3 Nanostructured Amorphous Materials, 

Inc. 

15 - 30  

Y2O3 Meliorum Technologies 8 - 10  

CeO2 Meliorum Technologies  8 - 10 

NaYF4:Yb,Tm Creative Diagnostics 30 

NaYF4:Yb,Er Creative Diagnostics 30 

NaYF4:Yb,Er(PEG coated) Creative Diagnostics 30 

NaYF4:Yb,Er(dense silica 

coated) 

Creative Diagnostics 30 

  

Table S1. List of nanoparticles and their respective manufacturers and size in diameters.  

 

  

Nanoparticle 2:1 5:1 10:1 24 

Hours 

48 

Hours 

Effect 

Gd2O3 ✓ ✓ ✓ ✓ 
 

Increased coating 

ratio is not protective 

La2O3 ✓     ✓   Coating highly 

protective 

  

Y2O3 ✓ ✓ ✓ ✓ ✓ Increased coating 

ratio is not protective 

CeO2 ✓     ✓   CeO2 is non - toxic / 

no change 

  

NaYF4:Yb,Tm ✓     ✓   Coating not 

protective 
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NaYF4:Yb,Er ✓     ✓   Coating moderately 

protective 

  

NaYF4:Yb,Er(PEG 

coated) 

✓     ✓   Coating highly 

protective 

  

NaYF4:Yb,Er(dense 

silica coated) 

✓     ✓   Coating protective      

              

  

Table S2. The effects of different EDTMP coating ratios and incubation periods. Higher coating 

ratios were not protective and particles did not maintain their morphology.  

 

 

a)  

 

b)  
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Figure S1. TEM images of non-coated and EDTMP coated REO NPs in PSF and H2O with 

different coating ratios and incubation periods. (a) EDTMP coated Gd2O3, La2O3, Y2O3, and CeO2 

were exposed to PSF to determine effectiveness of the 2:1 coating. (b) Following the PSF challenge 

with all the REO NPs, Gd2O3 and Y2O3, were selected for further testing since the 2:1 EDTMP 

coating was not protective. Additional coating ratios 5:1 and 10:1 were tested along with an 

increased incubation period of 24 hours. Scale bars are 50 nm.  
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